
rovercode Documentation
Release 0.4.0

Brady L. Hurlburt and other rovercode.org contributers

Jan 27, 2018

Contents:

1 Welcome! 3

2 Architecture 5

3 Get Started 7

4 Contact 9

5 Contents 11

6 Indices and tables 19

Python Module Index 21

i

ii

rovercode Documentation, Release 0.4.0

License GPLv3

Source https://github.com/aninternetof/rovercode

Hosted at https://rovercode.com (master) and https://beta.rovercode.com (development)

Contents: 1

https://github.com/aninternetof/rovercode
https://rovercode.com
https://beta.rovercode.com

rovercode Documentation, Release 0.4.0

2 Contents:

CHAPTER 1

Welcome!

rovercode is an easy-to-use system for controlling robots (rovers) that can sense and react to their environment. The
Blockly editor makes it easy to program and run your bot straight from your browser. Just drag and drop your
commands to drive motors, read values from a variety of supported sensors, and see what your rover sees with the
built in webcam viewer.

3

rovercode Documentation, Release 0.4.0

4 Chapter 1. Welcome!

CHAPTER 2

Architecture

rovercode is made up of two parts:

• rovercode (the docs you’re reading right now) is the service that runs on the rover.

• rovercode-web (a separate repo documented here) is the web app running at rovercode.com.

rovercode runs on the rover. The rover can be any single-board-computer supported by the Adafruit Python GPIO
wrapper library, including the NextThingCo CHIP, Raspberry Pi, and BeagleBone Black.

rovercode-web is hosted on the Internet at rovercode.com. It has a Blockly-based editor (which we call Mission
Control) for creating a routine. The routine executes in the browser (sandboxed, of course), and commands are sent to
the rover for rovercode to execute (e.g. “stop motor, turn on light”). Events on the rover (“right eye detects something”)
are sent to the browser via a WebSocket connection.

The rover and the device running the browser must be on the same local network.

5

http://rovercode-web.readthedocs.io/
https://rovercode.com
https://rovercode.com

rovercode Documentation, Release 0.4.0

6 Chapter 2. Architecture

CHAPTER 3

Get Started

Check out the quickstart guide. Then see how to contribute.

7

rovercode Documentation, Release 0.4.0

8 Chapter 3. Get Started

CHAPTER 4

Contact

Please join the rovercode developer mailing list! Go here, then click “register”.

Also, we’d love to chat with you! Join the the rovercode Slack channel.

You can also email brady@rovercode.com.

9

https://1988.onlinegroups.net/groups/rovercode-developers/
http://chat.rovercode.com
mailto:brady@rovercode.com

rovercode Documentation, Release 0.4.0

10 Chapter 4. Contact

CHAPTER 5

Contents

quickstart

Standard Setup (on rover)

First, on your rover (CHIP, Raspberry Pi, BeagleBone, etc):

$ sudo apt install git
$ git clone --recursive https://github.com/aninternetof/rovercode.git && cd rovercode
$ sudo bash setup.sh #run this only once -- it will take some time
$ # create your .env, as described in the section below
$ sudo bash start.sh #run this each time you boot the rover (or automatically start
→˓if chosen in setup)

Then, on any PC or tablet, head to rovercode.com to connect to your rover. Start playing!

Development Setup (on development PC)

When developing rovercode, you may want to run rovercode on your PC instead of a CHIP/Raspberry Pi/Beaglebone.
Below are instructions for how to install and run rovercode on your PC. Everything should work fine: rovercode will
automatically detect that it is not running on target hardware and will stub out the calls to the motors and sensors.

First, on your development PC:

$ sudo apt install git
$ git clone --recursive https://github.com/aninternetof/rovercode.git && cd rovercode
$ sudo bash setup.sh #run this only once -- it will take some time
$ # create your .env, as described in the section below
$ sudo bash start.sh #run this each time

Then, still on your development PC, head to rovercode.com and connect to your “rover” (your PC running the service).

Alternate Development Setup (on development PC using Docker)

Rather use Docker? First, on your development PC:

$ sudo apt install git docker.io
$ git clone --recursive https://github.com/aninternetof/rovercode.git && cd rovercode
$ sudo docker build -t rovercode .

11

rovercode Documentation, Release 0.4.0

$ # create your .env, as described in the section below
$ sudo docker run --name rovercode -v $PWD:/var/www/rovercode -p 80:80 -d rovercode

Then, still on your development PC, head to rovercode.com and connect to your “rover” (your PC running the service).

Creating Your .env

Create a .env file at the root of the project (at the same level as setup.sh and start.sh). In that file, you’ll add your
rovercode.com credentials and the name of your rover.

First, create a rovercode.com account [here](https://rovercode.com/accounts/signup/). Then, add your credentials and
a name for your rover to the .env so that it looks like this:

detailed usage

getting a bash shell inside the Docker container

If you’re using Docker to develop, and you’d like to try out some commands within the Docker container, get a bash
shell like this:

sudo docker exec -it rovercode bash

using rovercode with a rovercode-web hosted somewhere other than rover-
code.com

By default, when rovercode runs, it registers itself with https://rovercode.com. But what if you want to try your
changes to rovercode with https://beta.rovercode.com? Or with your local instance of rovercode-web (as described in
the next section)? You can specify the target rovercode-web url by creating a .env file in your rovercode directory.

first, navigate to the rovercode root diretory (same level as the Dockerfile), then
$ echo ROVERCODE_WEB_URL=https://beta.rovercode.com/ > .env

When you start rovercode, it will register itself with beta.rovercode.com.

develop rovercode and rovercode-web on the same machine at the same time

Get, build, and bring up rovercode-web as usual:

$ git clone --recursive https://github.com/aninternetof/rovercode-web.git && cd
→˓rovercode-web
$ sudo docker-compose -f dev.yml build
$ sudo docker-compose -f dev.yml up
$ google-chrome localhost:8000

Get and build rovercode as usual:

$ git clone --recursive https://github.com/aninternetof/rovercode.git && cd rovercode
$ sudo docker build -t rovercode .

12 Chapter 5. Contents

https://rovercode.com/accounts/signup/

rovercode Documentation, Release 0.4.0

Set the url of the rovercode-web target to http://rovercodeweb:8000. You will see in the next step that this is the
hostname that we assign to our local rovercode-web container.

first, navigate to the rovercode root diretory (same level as the Dockerfile), then
$ echo ROVERCODE_WEB_URL=http://rovercodeweb:8000/ > .env

Finally, when you bring up the rovercode container, add a link flag to allow access between this container and your
rovercode-web container.

$ sudo docker run -t --link rovercodeweb_django_1:rovercodeweb --net rovercodeweb_
→˓default --name rovercode -v $PWD:/var/www/rovercode -p 80:80 -d rovercode

docker-compose named it rovercodeweb_django_1, but notice that we used a colon to rename it simply rovercodeweb.
This is necessary, because this becomes the hostname, and Django does not like underscores in hostname headers.

We also had to add a net rovercodeweb_default flag, because docker-compose put rovercode-web on its own network
instead of on the default one. (If you’re curious, you can find its name using the command sudo docker network ls.)

rovercode is now running, and you can see that it has registered itself with your local rovercodeweb container by going
to http://localhost:8000/mission-control/rovers. You can now select this rover in the mission-control interface, and
rover commands will be sent to your rovercode container.

Attribution DEIS blog post

contribute

There is lots of fun work to be done!

Head on over to the rovercode github. We use ZenHub to improve GitHub’s agile management, so install it, then visit
the boards tab to find a fun card in the backlog. Or submit a new card for a bug or cool new feature idea.

And remember, you can do all these same things for rovercode-web.

Chat with us on the rovercode Slack channel.

Follow the the code of conduct.

API

app Rovercode app.

app

Rovercode app.

Functions

MotorManager(*args, **kwargs)
connect() Connect to the rovercode-web websocket.
display_home_message() Display a message if someone points a browser at the root.

Continued on next page

5.4. API 13

http://localhost:8000/mission-control/rovers
https://deis.com/blog/2016/connecting-docker-containers-1/
https://github.com/aninternetof/rovercode
https://www.zenhub.com/
https://github.com/aninternetof/rovercode/issues/new
https://github.com/aninternetof/rovercode-web
http://chat.rovercode.com

rovercode Documentation, Release 0.4.0

Table 5.2 – continued from previous page
emit(event, *args, **kwargs) Emit a SocketIO event.
find_dotenv([filename, ...]) Search in increasingly higher folders for the given file
get_local_ip() Get the local area network IP address of the rover.
init_input_gpio(left_eye_pin, right_eye_pin) Initialize input GPIO.
jsonify(*args, **kwargs) This function wraps dumps() to add a few enhancements

that make life easier.
load_dotenv(dotenv_path[, verbose, override]) Read a .env file and load into os.environ.
run_command(decoded) Run the command specified by decoded.
send_command() API: /sendcommand [POST].
sensors_thread() Scan each binary sensor and sends events based on

changes.
set_rovercodeweb_url(base_url) Set the global URL variables for rovercodeweb.
singleton(class_) Helper class for creating a singleton.
test_message(message) Send a debug test message when status is received from

rovercode-web.

Classes

BinarySensor(name, pin, rising_event, ...) The binary sensor object contains information for each bi-
nary sensor.

CORS([app]) Initializes Cross Origin Resource sharing for the applica-
tion.

Flask(import_name[, static_path, ...]) The flask object implements a WSGI application and acts
as the central object.

HeartBeatManager(client_id, client_secret[, id]) A manager to register the rover with rovercode-web and
periodically check in.

SocketIO([app]) Create a Flask-SocketIO server.

class app.BinarySensor(name, pin, rising_event, falling_event)
The binary sensor object contains information for each binary sensor.

Parameters

• name – The human readable name of the sensor

• pin – The hardware pin connected to the sensor

• rising_event – The event name associated with a signal changing from low to high

• falling_event – The event name associated with a signal changing from high to low

Constructor for BinarySensor object.

class app.HeartBeatManager(client_id, client_secret, id=None)
A manager to register the rover with rovercode-web and periodically check in.

Parameters

• client_id – The Oauth2 client id for this rover.

• client_secret – The Oauth2 client secret for this rover.

Constructor for the HeartBeatManager.

read()
Look for our name on rovercode-web. Sets web_id if found.

14 Chapter 5. Contents

rovercode Documentation, Release 0.4.0

stopThread()
Gracefully stop the periodic check-in thread.

thread_func(run_once=False)
Thread function that periodically checks in with rovercode-web.

update()
Check in with rovercode-web, updating our timestamp.

app.connect()
Connect to the rovercode-web websocket.

app.display_home_message()
Display a message if someone points a browser at the root.

app.get_local_ip()
Get the local area network IP address of the rover.

app.init_input_gpio(left_eye_pin, right_eye_pin)
Initialize input GPIO.

app.run_command(decoded)
Run the command specified by decoded.

Parameters decoded – The command to run

app.send_command()
API: /sendcommand [POST].

Executes the posted command

Available Commands::: START_MOTOR STOP_MOTOR

app.sensors_thread()
Scan each binary sensor and sends events based on changes.

app.set_rovercodeweb_url(base_url)
Set the global URL variables for rovercodeweb.

app.singleton(class_)
Helper class for creating a singleton.

app.test_message(message)
Send a debug test message when status is received from rovercode-web.

build a rover

future plans

We are developing a rover reference design that includes a custom daughter board, a Lexan chassis, and MEMS IR
sensors. Join the #hardware channel of our Slack to follow our progress and suggest ideas.

In the meantime, you can still build a rover like the one we built as our first prototype. In that approach, you borrow
the chassis, motors, and motor driver circuitry from an easily-hackable RC car! Instructions for doing so are below.

supply list

• Thunder Tumbler RC car (or at CVS)

• IR emitter receiver pairs

5.5. build a rover 15

https://upverter.com/ductape/084de978df61d3cb/rovercode/
https://upverter.com/ductape/aef33f7c39fd29d5/rovercode-prox-sensor/
https://upverter.com/ductape/aef33f7c39fd29d5/rovercode-prox-sensor/
http://chat.rovercode.com
https://www.amazon.com/s?ie=UTF8&field-keywords=thunder%20tumbler&index=blended&link_code=qs&tag=wwwcanoniccom-20https://www.amazon.com/s?ie=UTF8&field-keywords=thunder%20tumbler&index=blended&link_code=qs&tag=wwwcanoniccom-20
https://www.amazon.com/gp/product/B00XPSIT3O/ref=oh_aui_search_detailpage?ie=UTF8&psc=1

rovercode Documentation, Release 0.4.0

• jumpers

• assorted resistors

• two small proto boards

• 0.1-inch headers, male, vertical (we’ll cut to desired length)

• C.H.I.P

• webcam

• powered USB hub

• USB battery

• soldering iron and solder

chassis, motors, wheels – the Thunder Tumbler

We’ll use the chassis, motors, and wheels from the venerable Thunder Tumbler RC car. I get mine at Walgreens or
CVS; sometimes they are called something else there, but whatever RC car they sell is likely to be pretty much a
Thunder Tumbler. You can also order one from Amazon.

We’ve chosen this RC car because it’s easy to hack. Specifically, it’s easy to rip out the radio controller IC. This is
the IC that receives messages from the wireless controller and drives the motors. We don’t care about the wireless
controller; instead, we’d like the C.H.I.P to drive the motors. So, we’ll remove the radio controller IC, leaving empty
its pads that connected it to the motors. Then we’ll connect some GPIO from our C.H.I.P to those pads.

Preparing the Thunder Tumbler

Here are the instructions for preparing the Thunder Tumbler. Your end goal is to bring out these connections to a 5-pin
header:

• Left motor forward

• Left motor backward

• Right motor forward

• Right motor backward

• Ground

Hot-glue this header somewhere convenient on the chassis. Later we’ll run jumpers to it from the C.H.I.P.

Here are some tweaks/tips to augment the tutorial:

• Everywhere he says “Arduino”, replace it with “C.H.I.P.”

• Depending on what version of the Thunder Tumbler you happen to get, the radio controller IC could be through-
hole or surface-mount. If it’s surface mount, try your best not to rip off the pads when you remove the IC.

• To figure out which pads are the variable left/right forward/backward motor pads, I recommend connecting a
wire to the 3.3V supply on your C.H.I.P, then poking the other end around on all the pads. Observe which wheel
turns and in which direction, and write it down!

• You can get ground from anywhere you want; you don’t need to use a pad from the radio control IC. Use a
multimeter to find a spot that reads zero resistance with the negative terminal of the RC car’s battery holder.

16 Chapter 5. Contents

https://www.amazon.com/SUNKEE-100pcs-female-jumper-Dupont/dp/B00AYCON8Y/ref=sr_1_3?ie=UTF8&qid=1495206374&sr=8-3&keywords=female+jumper+wire
https://www.amazon.com/E-Projects-EPC-103-Value-Resistor-Kit/dp/B00E9YQQSS/ref=sr_1_1?ie=UTF8&qid=1495206019&sr=8-1&keywords=assorted+resistors
https://www.amazon.com/Vktech-Prototype-Universal-Printed-Circuit/dp/B00CGV6TZG/ref=sr_1_14?ie=UTF8&qid=1495206282&sr=8-14&keywords=protoboard&th=1
https://www.amazon.com/Straight-Single-Header-Arduino-Prototype/dp/B01EFKXXJA/ref=sr_1_5?ie=UTF8&qid=1495206200&sr=8-5&keywords=0.1%22+male+header
https://getchip.com/pages/chip
https://smile.amazon.com/gp/product/B004FHO5Y6/ref=oh_aui_search_detailpage?ie=UTF8&psc=1
https://smile.amazon.com/gp/product/B00ZYKL6UO/ref=oh_aui_search_detailpage?ie=UTF8&psc=1
https://smile.amazon.com/gp/product/B011DD6Z2O/ref=oh_aui_search_detailpage?ie=UTF8&psc=1
https://www.amazon.com/s?ie=UTF8&field-keywords=thunder%20tumbler&index=blended&link_code=qs&tag=wwwcanoniccom-20https://www.amazon.com/s?ie=UTF8&field-keywords=thunder%20tumbler&index=blended&link_code=qs&tag=wwwcanoniccom-20
http://www.instructables.com/id/Robot-Platform-including-h-bridges-from-10-RC-Ca/

rovercode Documentation, Release 0.4.0

Connecting to the C.H.I.P

Use your jumpers to connect the signals on your new 5-pin header to the C.H.I.P. Ground connects to ground, and
the motor control signals can connect to any XIO-P[0-7] pin. Right now the pins are hard-coded in blockly-api.js
(booooo, I know), so to avoid having to edit the code, use these pins:

Motor Signal C.H.I.P Pin
left, forward XIO-P0
left, backward XIO-P1
right, forward XIO-P6
right, backward XIO-P7
ground any ground

infrared sensors – the ears

We call the infrared sensors the ears of the rover. They might be better called eyes since they operate using light (albeit
invisible light). But, the rover already has an eye (the webcam), and the IR sensor boards stick off the the sides like
ears, so we go with it.

Building the circuit

The rover has two ears: two IR sensor boards. They are identical. Each has an IR transmitter and an IR receiver. This
is the circuit; create it on two of your proto boards:

Each ear has a header with three things on it:

• 3.3V

• ground

• signal (this is what varies to indicate something is detected)

We just want a binary signal out of the sensors, so even though we have a continuous analog signal coming out of the
sensor, we won’t hook it up to an analog input of the C.H.I.P. We’ll just hook it up to a regular GPIO input, and let the
input hardware of the pin serve as a rough comparator.

Just like the motor signal pins, the pins for the IR ear signals are hardcoded at the moment (this time in app.py – we
are really gonna make this configurable soon). So to avoid having to change code, connect this like this:

Connecting to the C.H.I.P

IR Ear Signal C.H.I.P Pin
left XIO-P2
right XIO-P4

Note: These sensor circuits are not great. Their detection range is only of a couple of inches. Our future reference
design will include a PCB with a Silicon Labs I2C MEMS IR sensor, which should work much better.

webcam – the eye

important note The default CHIP kernel does not enable the USB Video Class (UVC) driver. In the
future we hope to provide a ready-to-use eMMC image with this driver included, but for now you’ll
have to rebuild the kernel with the UVC driver included. This is a more advanced task. Your best
bet is this tutorial. If you’re not up for this, don’t worry – just stay tuned for an update to this page
telling you where you can get a ready-to-use eMMC image.

5.5. build a rover 17

https://github.com/aninternetof/rovercode-web/blob/development/mission_control/static/js/blockly-api.js#L3
https://github.com/aninternetof/rovercode/blob/development/www/app.py#L287
https://upverter.com/ductape/aef33f7c39fd29d5/rovercode-prox-sensor/
http://www.raspibo.org/wiki/index.php/Compile_the_Linux_kernel_for_Chip:_my_personal_HOWTO

rovercode Documentation, Release 0.4.0

At the moment, the webcam streaming service is not installed or started with the main rovercode service (we have an
issue card to fix this). So, you’ll need to get and run mjpg-streamer yourself for now.

Get and build mjpg-streamer by following steps 1 through 5 in these instructions.

To make mjpg-start on boot, add this line to /etc/rc.local. Replace {BUILD_DIR} with the absolute path to the
directory where you built mjpg-streamer.

{BUILD_DIR}/mjpg_streamer -i "{BUILD_DIR}/input_uvc.so" -o "{BUILD_DIR}/output_http.
→˓so -w {BUILD_DIR}/www"

Restart the rover. You can check that mjpg-streamer has started by pointing your PC’s browser at {ip-address-of-your-
rover}:8080. You should see the mjpg-streamer demo page.

assembly

Here is how it all hooks together:

Put everything on the chassis how you see fit. Below are some photos of how we did it. Hot glue is your friend.

Note that the motors are still powered by the Thunder Tumbler AA battery pack, so make sure there are batteries in
there and that the switch on the bottom is turned on when in use.

The webcam draws too much current to be directly connected to the C.H.I.P’s USB host port. So, we use a powered
USB hub.

install rovercode service

Connect to the C.H.I.P. via serial or SSH.

Follow the Standard Setup on the quickstart page.

play

Go to https://rovercode.com, sign up for an account, then go to Mission Control. Click Connect to a Rover. Choose
your rover, whose name is hardcoded here, sadly. You should see a message in the console bar on the right saying that
it has connected to a a rover and listing its local IP address.

Drag in some commands, hit play, and have fun!

18 Chapter 5. Contents

https://github.com/aninternetof/rovercode/issues/110
https://github.com/aninternetof/rovercode/issues/110
https://blog.miguelgrinberg.com/post/how-to-build-and-run-mjpg-streamer-on-the-raspberry-pi
https://rovercode.com
https://rovercode.com/mission-control
https://github.com/aninternetof/rovercode/blob/development/www/app.py#L148

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

19

rovercode Documentation, Release 0.4.0

20 Chapter 6. Indices and tables

Python Module Index

a
app, 13

21

rovercode Documentation, Release 0.4.0

22 Python Module Index

Index

A
app (module), 13

B
BinarySensor (class in app), 14

C
connect() (in module app), 15

D
display_home_message() (in module app), 15

G
get_local_ip() (in module app), 15

H
HeartBeatManager (class in app), 14

I
init_input_gpio() (in module app), 15

R
read() (app.HeartBeatManager method), 14
run_command() (in module app), 15

S
send_command() (in module app), 15
sensors_thread() (in module app), 15
set_rovercodeweb_url() (in module app), 15
singleton() (in module app), 15
stopThread() (app.HeartBeatManager method), 14

T
test_message() (in module app), 15
thread_func() (app.HeartBeatManager method), 15

U
update() (app.HeartBeatManager method), 15

23

	Welcome!
	Architecture
	Get Started
	Contact
	Contents
	Indices and tables
	Python Module Index

