

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	rovercode 0.4.0 documentation »

rovercode

	License:	GPLv3

	Source:	https://github.com/aninternetof/rovercode

	Hosted at:	https://rovercode.com (master) and https://beta.rovercode.com (development)

[image: https://img.shields.io/badge/chat-on%20Slack-41AB8C.svg?style=flat]
 [http://chat.rovercode.com/][image: https://img.shields.io/badge/join-mailing%20list-yellow.svg?style=flat]
 [https://1988.onlinegroups.net/groups/rovercode-developers/][image: https://api.travis-ci.org/aninternetof/rovercode.svg]
 [https://travis-ci.org/aninternetof/rovercode][image: https://coveralls.io/repos/github/aninternetof/rovercode/badge.svg?branch=development]
 [https://coveralls.io/github/aninternetof/rovercode?branch=deveopment]
Welcome!

rovercode is an easy-to-use system for controlling robots (rovers) that can sense and react to their environment.
The Blockly editor makes it easy to program and run your bot straight from your
browser. Just drag and drop your commands to drive motors, read values from a
variety of supported sensors, and see what your rover sees with the built
in webcam viewer.

[image: https://rovercode.com/static/images/screenshot.jpg]

Architecture

rovercode is made up of two parts:

	rovercode (the docs you’re reading right now) is the service that runs on the rover.

	rovercode-web (a separate repo documented here [http://rovercode-web.readthedocs.io/]) is the web app running at rovercode.com [https://rovercode.com].

rovercode runs on the rover. The rover can be
any single-board-computer supported by the Adafruit Python GPIO wrapper library,
including the NextThingCo CHIP, Raspberry Pi, and BeagleBone Black.

rovercode-web is hosted on the Internet at rovercode.com [https://rovercode.com].
It has a Blockly-based editor (which we call Mission Control) for creating a
routine. The routine executes in the browser (sandboxed, of course), and commands
are sent to the rover for rovercode to execute (e.g. “stop motor, turn on light”).
Events on the rover (“right eye detects something”) are sent to the browser via
a WebSocket connection.

The rover and the device running the browser must be on the same local network.

Get Started

Check out the quickstart guide. Then see how to
contribute.

Contact

Please join the rovercode developer mailing list! Go here [https://1988.onlinegroups.net/groups/rovercode-developers/], then
click “register”.

Also, we’d love to chat with you! Join the the rovercode Slack channel [http://chat.rovercode.com].

You can also email brady@rovercode.com.

Contents

Contents:

	quickstart

	detailed usage

	contribute

	API

	build a rover

Indices and tables

	Index

	Module Index

	Search Page

 © Copyright 2017, Brady L. Hurlburt and other rovercode.com contributers.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rovercode 0.4.0 documentation »

quickstart

Standard Setup (on rover)

First, on your rover (CHIP, Raspberry Pi, BeagleBone, etc):

$ sudo apt install git
$ git clone --recursive https://github.com/aninternetof/rovercode.git && cd rovercode
$ sudo bash setup.sh #run this only once -- it will take some time
$ sudo bash start.sh #run this each time you boot the rover (or automatically start if chosen in setup)

Then, on any PC or tablet, head to rovercode.com to connect to your rover. Start playing!

Development Setup (on development PC)

When developing rovercode, you may want to run rovercode on your PC instead of a CHIP/Raspberry Pi/Beaglebone. Below are instructions for how to install and run rovercode on your PC. Everything should work fine: rovercode will automatically detect that it is not running on target hardware and will stub out the calls to the motors and sensors.

First, on your development PC:

$ sudo apt install git
$ git clone --recursive https://github.com/aninternetof/rovercode.git && cd rovercode
$ sudo bash setup.sh #run this only once -- it will take some time
$ sudo bash start.sh #run this each time

Then, still on your development PC, head to rovercode.com and connect to your “rover” (your PC running the service).

Alternate Development Setup (on development PC using Docker)

Rather use Docker? First, on your development PC:

$ sudo apt install git docker.io
$ git clone --recursive https://github.com/aninternetof/rovercode.git && cd rovercode
$ sudo docker build -t rovercode .
$ sudo docker run --name rovercode -v $PWD:/var/www/rovercode -p 80:80 -d rovercode

Then, still on your development PC, head to rovercode.com and connect to your “rover” (your PC running the service).

 © Copyright 2017, Brady L. Hurlburt and other rovercode.com contributers.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rovercode 0.4.0 documentation »

detailed usage

using rovercode with a rovercode-web hosted somewhere other than rovercode.com

By default, when rovercode runs, it registers itself with
https://rovercode.com. But what if you want to try your changes to rovercode
with https://beta.rovercode.com? Or with your local instance of rovercode-web
(as described in the next section)? You can specify the target rovercode-web
url by creating a .env file in your rovercode directory.

first, navigate to the rovercode root diretory (same level as the Dockerfile), then
$ echo ROVERCODE_WEB_URL=https://beta.rovercode.com/ > .env

When you start rovercode, it will register itself with beta.rovercode.com.

develop rovercode and rovercode-web on the same machine at the same time

Get, build, and bring up rovercode-web as usual:

$ git clone --recursive https://github.com/aninternetof/rovercode-web.git && cd rovercode-web
$ sudo docker-compose -f dev.yml build
$ sudo docker-compose -f dev.yml up
$ google-chrome localhost:8000

Get and build rovercode as usual:

$ git clone --recursive https://github.com/aninternetof/rovercode.git && cd rovercode
$ sudo docker build -t rovercode .

Set the url of the rovercode-web target to http://rovercodeweb:8000. You will
see in the next step that this is the hostname that we assign to our local
rovercode-web container.

first, navigate to the rovercode root diretory (same level as the Dockerfile), then
$ echo ROVERCODE_WEB_URL=http://rovercodeweb:8000/ > .env

Finally, when you bring up the rovercode container, add a link flag to allow access
between this container and your rovercode-web container.

$ sudo docker run -t --link rovercodeweb_django_1:rovercodeweb --net rovercodeweb_default --name rovercode -v $PWD:/var/www/rovercode -p 80:80 -d rovercode

docker-compose named it rovercodeweb_django_1, but notice that
we used a colon to rename it simply rovercodeweb. This is necessary,
because this becomes the hostname, and Django does not like underscores in
hostname headers.

We also had to add a net rovercodeweb_default flag, because docker-compose put rovercode-web on
its own network instead of on the default one. (If you’re curious, you can find
its name using the command sudo docker network ls.)

rovercode is now running, and you can see that it has registered itself with
your local rovercodeweb container by going to
http://localhost:8000/mission-control/rovers. You can now select this rover
in the mission-control interface, and rover commands will be sent to your
rovercode container.

	Attribution:	DEIS blog post [https://deis.com/blog/2016/connecting-docker-containers-1/]

 © Copyright 2017, Brady L. Hurlburt and other rovercode.com contributers.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rovercode 0.4.0 documentation »

contribute

There is lots of fun work to be done!

Head on over to the rovercode github [https://github.com/aninternetof/rovercode].
We use ZenHub to improve GitHub’s agile management, so install it [https://www.zenhub.com/],
then visit the boards tab to find a fun card in the backlog. Or submit a new
card [https://github.com/aninternetof/rovercode/issues/new] for a bug or cool
new feature idea.

And remember, you can do all these same things for
rovercode-web [https://github.com/aninternetof/rovercode-web].

Chat with us on the rovercode Slack channel [http://chat.rovercode.com].

Follow the the code of conduct.

 © Copyright 2017, Brady L. Hurlburt and other rovercode.com contributers.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rovercode 0.4.0 documentation »

API

	app
	Rovercode app.

 © Copyright 2017, Brady L. Hurlburt and other rovercode.com contributers.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rovercode 0.4.0 documentation »

 	API »

app

Rovercode app.

Functions

	MotorManager(*args,**kwargs)
	

	connect()
	Connect to the rovercode-web websocket.

	create_app()
	Creator of rovercode flask app.

	download_block_diagram(id)
	API: /download/<id> [GET].

	emit(event,*args,**kwargs)
	Emit a SocketIO event.

	find_dotenv([filename,...])
	Search in increasingly higher folders for the given file

	get_block_diagram(id)
	API: /blockdiagrams/<id> [GET].

	get_block_diagrams()
	API: /blockdiagrams [GET].

	get_local_ip()
	Get the local area network IP address of the rover.

	init_rover_service()
	Initialize hardware pins and motor speeds.

	isfile(path)
	Test whether a path is a regular file

	join(a,*p)
	Join two or more pathname components, inserting ‘/’ as needed.

	jsonify(*args,**kwargs)
	This function wraps dumps() to add a few enhancements that make life easier.

	listdir((path)->list_of_strings)
	Return a list containing the names of the entries in the directory.

	load_dotenv(dotenv_path)
	Read a .env file and load into os.environ.

	run_command(decoded)
	Run the command specified by decoded.

	save_block_diagram()
	API: /blockdiagrams [POST].

	send_command()
	API: /sendcommand [POST].

	send_from_directory(directory,filename,...)
	Send a file from a given directory with send_file().

	sensors_thread()
	Scan each binary sensor and sends events based on changes.

	singleton(class_)
	Helper class for creating a singleton.

	test_message(message)
	Send a debug test message when status is received from rovercode-web.

	upload_block_diagram()
	API: /upload [POST].

Classes

	BinarySensor(name,pin,rising_event,...)
	The binary sensor object contains information for each binary sensor.

	CORS([app])
	Initializes Cross Origin Resource sharing for the application.

	Flask(import_name[,static_path,...])
	The flask object implements a WSGI application and acts as the central object.

	HeartBeatManager(payload[,id])
	A manager to register the rover with rovercode-web and periodically check in.

	Response([response,status,headers,...])
	The response object that is used by default in Flask.

	SocketIO([app])
	Create a Flask-SocketIO server.

	
class app.BinarySensor(name, pin, rising_event, falling_event)

	The binary sensor object contains information for each binary sensor.

	Parameters:	
	name – The human readable name of the sensor

	pin – The hardware pin connected to the sensor

	rising_event – The event name associated with a signal changing from low to high

	falling_event – The event name associated with a signal changing from high to low

Constructor for BinarySensor object.

	
class app.HeartBeatManager(payload, id=None)

	A manager to register the rover with rovercode-web and periodically check in.

	Parameters:	
	run – A flag for the state of the thread. Set to false to gracefully stop
the thread.

	thread – The Thread object that performs the periodic check-in.

	web_id – The rovercode-web id of this rover.

	payload – The json-formatted information about the rover to send to rovercode-web.

Constructor for the HeartBeatManager.

	
register()

	Regiser the rover with rovercode-web.

	
stopThread()

	Gracefully stop the periodic check-in thread.

	
thread_func(run_once=False)

	Thread function that periodically checks in with rovercode-web.

	
app.connect()

	Connect to the rovercode-web websocket.

	
app.create_app()

	Creator of rovercode flask app.

	
app.download_block_diagram(id)

	API: /download/<id> [GET].

Starts a download of the block diagram specified by id

	
app.get_block_diagram(id)

	API: /blockdiagrams/<id> [GET].

Replies with an XML formatted description of the block diagram specified by
id

	
app.get_block_diagrams()

	API: /blockdiagrams [GET].

Replies with a JSON formatted list of the block diagrams

	
app.get_local_ip()

	Get the local area network IP address of the rover.

	
app.init_rover_service()

	Initialize hardware pins and motor speeds.

	
app.run_command(decoded)

	Run the command specified by decoded.

	Parameters:	decoded – The command to run

	
app.save_block_diagram()

	API: /blockdiagrams [POST].

Saves the posted block diagram

	
app.send_command()

	API: /sendcommand [POST].

Executes the posted command

	Available Commands:::

	START_MOTOR
STOP_MOTOR

	
app.sensors_thread()

	Scan each binary sensor and sends events based on changes.

	
app.singleton(class_)

	Helper class for creating a singleton.

	
app.test_message(message)

	Send a debug test message when status is received from rovercode-web.

	
app.upload_block_diagram()

	API: /upload [POST].

Adds the posted block diagram

 © Copyright 2017, Brady L. Hurlburt and other rovercode.com contributers.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	rovercode 0.4.0 documentation »

build a rover

future plans

We are developing a rover reference design that includes a custom daughter
board [https://upverter.com/ductape/084de978df61d3cb/rovercode/], a Lexan
chassis, and MEMS IR sensors [https://upverter.com/ductape/aef33f7c39fd29d5/rovercode-prox-sensor/]. Join
the #hardware channel of our Slack [http://chat.rovercode.com] to
follow our progress and suggest ideas.

In the meantime, you can still build a rover like the one we built as our
first prototype. In that approach, you borrow the chassis, motors, and motor
driver circuitry from an easily-hackable RC car! Instructions for doing so
are below.

supply list

	Thunder Tumbler RC car [https://www.amazon.com/s?ie=UTF8&field-keywords=thunder%20tumbler&index=blended&link_code=qs&tag=wwwcanoniccom-20https://www.amazon.com/s?ie=UTF8&field-keywords=thunder%20tumbler&index=blended&link_code=qs&tag=wwwcanoniccom-20] (or at CVS)

	IR emitter receiver pairs [https://www.amazon.com/gp/product/B00XPSIT3O/ref=oh_aui_search_detailpage?ie=UTF8&psc=1]

	jumpers [https://www.amazon.com/SUNKEE-100pcs-female-jumper-Dupont/dp/B00AYCON8Y/ref=sr_1_3?ie=UTF8&qid=1495206374&sr=8-3&keywords=female+jumper+wire]

	assorted resistors [https://www.amazon.com/E-Projects-EPC-103-Value-Resistor-Kit/dp/B00E9YQQSS/ref=sr_1_1?ie=UTF8&qid=1495206019&sr=8-1&keywords=assorted+resistors]

	two small proto boards [https://www.amazon.com/Vktech-Prototype-Universal-Printed-Circuit/dp/B00CGV6TZG/ref=sr_1_14?ie=UTF8&qid=1495206282&sr=8-14&keywords=protoboard&th=1]

	0.1-inch headers, male, vertical [https://www.amazon.com/Straight-Single-Header-Arduino-Prototype/dp/B01EFKXXJA/ref=sr_1_5?ie=UTF8&qid=1495206200&sr=8-5&keywords=0.1%22+male+header] (we’ll cut to desired length)

	C.H.I.P [https://getchip.com/pages/chip]

	webcam [https://smile.amazon.com/gp/product/B004FHO5Y6/ref=oh_aui_search_detailpage?ie=UTF8&psc=1]

	powered USB hub [https://smile.amazon.com/gp/product/B00ZYKL6UO/ref=oh_aui_search_detailpage?ie=UTF8&psc=1]

	USB battery [https://smile.amazon.com/gp/product/B011DD6Z2O/ref=oh_aui_search_detailpage?ie=UTF8&psc=1]

	soldering iron and solder

chassis, motors, wheels – the Thunder Tumbler

We’ll use the chassis, motors, and wheels from the venerable Thunder Tumbler
RC car. I get mine at Walgreens or CVS; sometimes they are called something
else there, but whatever RC car they sell is likely to be pretty much a
Thunder Tumbler. You can also order one from Amazon [https://www.amazon.com/s?ie=UTF8&field-keywords=thunder%20tumbler&index=blended&link_code=qs&tag=wwwcanoniccom-20https://www.amazon.com/s?ie=UTF8&field-keywords=thunder%20tumbler&index=blended&link_code=qs&tag=wwwcanoniccom-20].

We’ve chosen this RC car because it’s easy to hack. Specifically, it’s easy
to rip out the radio controller IC. This is the IC that receives
messages from the wireless controller and drives the motors.
We don’t care about the wireless controller; instead, we’d like the C.H.I.P to
drive the motors. So, we’ll remove the radio controller IC, leaving empty its
pads that connected it to the motors. Then we’ll connect some
GPIO from our C.H.I.P to those pads.

Preparing the Thunder Tumbler

Here are the instructions for preparing the Thunder Tumbler [http://www.instructables.com/id/Robot-Platform-including-h-bridges-from-10-RC-Ca/].
Your end goal is to bring out these connections to a 5-pin header:

	Left motor forward

	Left motor backward

	Right motor forward

	Right motor backward

	Ground

Hot-glue this header somewhere convenient on the chassis. Later we’ll run jumpers
to it from the C.H.I.P.

Here are some tweaks/tips to augment the tutorial:

	Everywhere he says “Arduino”, replace it with “C.H.I.P.”

	Depending on what version of the Thunder Tumbler you happen to get, the radio controller IC could be through-hole or surface-mount. If it’s surface mount, try your best not to rip off the pads when you remove the IC.

	To figure out which pads are the variable left/right forward/backward motor pads, I recommend connecting a wire to the 3.3V supply on your C.H.I.P, then poking the other end around on all the pads. Observe which wheel turns and in which direction, and write it down!

	You can get ground from anywhere you want; you don’t need to use a pad from the radio control IC. Use a multimeter to find a spot that reads zero resistance with the negative terminal of the RC car’s battery holder.

Connecting to the C.H.I.P

Use your jumpers to connect the signals on your new 5-pin header to the C.H.I.P.
Ground connects to ground, and the motor control signals can connect to any
XIO-P[0-7] pin. Right now the pins are hard-coded in blockly-api.js [https://github.com/aninternetof/rovercode-web/blob/development/mission_control/static/js/blockly-api.js#L3]
(booooo, I know), so to avoid having to edit the code, use these pins:

	Motor Signal
	C.H.I.P Pin

	left, forward
	XIO-P0

	left, backward
	XIO-P1

	right, forward
	XIO-P6

	right, backward
	XIO-P7

	ground
	any ground

infrared sensors – the ears

We call the infrared sensors the ears of the rover. They might
be better called eyes since they operate using light (albeit
invisible light). But, the rover already has an eye (the webcam),
and the IR sensor boards stick off the the sides like ears,
so we go with it.

Building the circuit

The rover has two ears: two IR sensor boards. They are identical.
Each has an IR transmitter and an IR receiver. This is the circuit;
create it on two of your proto boards:

[image: http://i.imgur.com/HpGsVQv.png]
Each ear has a header with three things on it:

	3.3V

	ground

	signal (this is what varies to indicate something is detected)

We just want a binary signal out of the sensors, so even though we have a
continuous analog signal coming out of the sensor, we won’t hook it up to
an analog input of the C.H.I.P. We’ll just hook it up to a regular GPIO input,
and let the input hardware of the pin serve as a rough comparator.

Just like the motor signal pins, the pins for the IR ear signals are hardcoded
at the moment (this time in app.py [https://github.com/aninternetof/rovercode/blob/development/www/app.py#L287]
– we are really gonna make this configurable soon). So to avoid having to
change code, connect this like this:

Connecting to the C.H.I.P

	IR Ear Signal
	C.H.I.P Pin

	left
	XIO-P2

	right
	XIO-P4

Note: These sensor circuits are not great. Their detection range is only of a couple of inches.
Our future reference design will include a PCB with a Silicon Labs I2C MEMS
IR sensor [https://upverter.com/ductape/aef33f7c39fd29d5/rovercode-prox-sensor/], which should work much better.

webcam – the eye

	important note:	The default CHIP kernel does not enable the USB Video Class (UVC) driver. In the future we hope to provide a ready-to-use eMMC image with this driver included, but for now you’ll have to rebuild the kernel with the UVC driver included. This is a more advanced task. Your best bet is this tutorial [http://www.raspibo.org/wiki/index.php/Compile_the_Linux_kernel_for_Chip:_my_personal_HOWTO]. If you’re not up for this, don’t worry – just stay tuned for an update to this page telling you where you can get a ready-to-use eMMC image.

At the moment, the webcam streaming service is not installed or
started with the main rovercode service (we have an issue card [https://github.com/aninternetof/rovercode/issues/110] to fix this). So,
you’ll need to get and run mjpg-streamer yourself for now.

Get and build mjpg-streamer by following steps 1 through 5 in these
instructions [https://blog.miguelgrinberg.com/post/how-to-build-and-run-mjpg-streamer-on-the-raspberry-pi].

To make mjpg-start on boot, add this line to /etc/rc.local. Replace {BUILD_DIR} with the absolute path to the directory where you built
mjpg-streamer.

{BUILD_DIR}/mjpg_streamer -i "{BUILD_DIR}/input_uvc.so" -o "{BUILD_DIR}/output_http.so -w {BUILD_DIR}/www"

Restart the rover. You can check that mjpg-streamer has started by
pointing your PC’s browser at {ip-address-of-your-rover}:8080. You should see
the mjpg-streamer demo page.

assembly

Here is how it all hooks together:

[image: http://i.imgur.com/h9Y6mPG.png]
Put everything on the chassis how you see fit. Below are some
photos of how we did it. Hot glue is your friend.

[image: http://i.imgur.com/p3TpMNj.jpg]
[image: http://i.imgur.com/N0N6NQe.jpg]
[image: http://i.imgur.com/TsyoME6.jpg]
Note that the motors are still powered by the Thunder Tumbler AA
battery pack, so make sure there are batteries in there and
that the switch on the bottom is turned on when in use.

The webcam draws too much current to be directly connected to the
C.H.I.P’s USB host port. So, we use a powered USB hub.

install rovercode service

Connect to the C.H.I.P. via serial or SSH.

Follow the Standard Setup on the quickstart page.

play

Go to https://rovercode.com, sign up for an account, then go to Mission Control [https://rovercode.com/mission-control]. Click Connect to a Rover. Choose
your rover, whose name is hardcoded here [https://github.com/aninternetof/rovercode/blob/development/www/app.py#L148],
sadly. You should see a message in the console bar on the right saying
that it has connected to a a rover and listing its local IP address.

Drag in some commands, hit play, and have fun!

 © Copyright 2017, Brady L. Hurlburt and other rovercode.com contributers.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	rovercode 0.4.0 documentation »

 Python Module Index

 a

 		 	

 		
 a	

 	
 	
 app	

 © Copyright 2017, Brady L. Hurlburt and other rovercode.com contributers.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	rovercode 0.4.0 documentation »

Index

 A
 | B
 | C
 | D
 | G
 | H
 | I
 | R
 | S
 | T
 | U

A

 	

 	app (module)

B

 	

 	BinarySensor (class in app)

C

 	

 	connect() (in module app)

 	

 	create_app() (in module app)

D

 	

 	download_block_diagram() (in module app)

G

 	

 	get_block_diagram() (in module app)

 	

 	get_block_diagrams() (in module app)

 	get_local_ip() (in module app)

H

 	

 	HeartBeatManager (class in app)

I

 	

 	init_rover_service() (in module app)

R

 	

 	register() (app.HeartBeatManager method)

 	

 	run_command() (in module app)

S

 	

 	save_block_diagram() (in module app)

 	send_command() (in module app)

 	

 	sensors_thread() (in module app)

 	singleton() (in module app)

 	stopThread() (app.HeartBeatManager method)

T

 	

 	test_message() (in module app)

 	

 	thread_func() (app.HeartBeatManager method)

U

 	

 	upload_block_diagram() (in module app)

 © Copyright 2017, Brady L. Hurlburt and other rovercode.com contributers.
 Created using Sphinx 1.4.8.

 Navigation

 	
 index

 	
 modules |

 	rovercode 0.4.0 documentation »

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience,
nationality, personal appearance, race, religion, or sexual identity and
orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at brady@rovercode.com. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [http://contributor-covenant.org/], version 1.4,
available at http://contributor-covenant.org/version/1/4

 © Copyright 2017, Brady L. Hurlburt and other rovercode.com contributers.
 Created using Sphinx 1.4.8.

 _static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

_static/up-pressed.png

_static/comment-bright.png

