
Roum Documentation
Release 0.1.0dev

Roum Inc.

Feb 24, 2019

Contents:

1 Roum Multiplayer Protocol Specification 1
1.1 Protocol Specification Index . 1

2 roum - Roum Core Package 15
2.1 roum.roum - Core Roum Class . 16
2.2 roum.config - Smart Configuration Manager . 16
2.3 roum.event - Event Distribution System . 16
2.4 roum.plugin - Plugin Loading and Management . 16
2.5 roum.logging - Context-aware Logger . 16
2.6 roum.constants - Global Constants . 16
2.7 roum.command - Command Management and Parsing . 16
2.8 roum.command.help - help Command . 16
2.9 roum.command.stop - stop Command . 16
2.10 roum.server - Main Server Package . 16
2.11 roum.server.user - User profile management . 16
2.12 roum.client - Client Main Package . 16
2.13 roum.client.gui - Peng3d Based GUI . 16
2.14 roum.client.gui.resource - Custom Resource Manager 16
2.15 roum.client.gui.menu - Main Menu Renderer . 16
2.16 roum.client.gui.loadingscreen - Loading Screen Menu Renderer 16
2.17 roum.client.gui.settings - Settings Menu Renderer . 16
2.18 roum.client.gui.lobby - Lobby Menu Renderer . 16
2.19 roum.client.gui.ingame - In-Game Menu Renderer . 16
2.20 roum.client.gui.ingame.model - Model and Mesh helper classes 16
2.21 roum.model - Data Model Main Package . 16
2.22 roum.model.match - Match Data Model . 16
2.23 roum.model.player - Player Model . 16
2.24 roum.model.entity - Entity Model . 16
2.25 roum.model.component - Component Model . 16
2.26 roum.net.packet.auth - roum:auth Authentication Packet 16
2.27 roum.net.packet.lobby.startgame - roum:lobby.startgame - Start a Match 16
2.28 roum.net.packet.match.init - roum:match.init Match Initialization Packet 16
2.29 roum.net.packet.match.statusupdate - roum:match.status.update - Status

Update Packet . 16
2.30 roum.net.packet.match.synctime - roum:match.synchronise.time - Time Syn-

chronisation Packet . 16

i

2.31 roum.net.packet.match.entcreate - roum:match.entity.create - Entity Cre-
ation Packet . 16

2.32 roum.net.packet.match.entremove - roum:match.entity.remove - Entity Re-
move Packet . 16

2.33 roum.util - Miscellaneous Utilities and Tools . 16
2.34 roum.util.cache - Smart and Flexible Caching Solution . 16
2.35 roum.util.serializer - Multi-Serializer Wrapper . 16
2.36 roum.util.time - Time Utilities . 16
2.37 roum.util.vector - Vector Utilities . 16
2.38 roum.util.graphics - Graphics Utilities . 16
2.39 roum.error - Custom Exceptions . 16
2.40 roum.version - Version Information . 16

3 Glossary 17

4 Indices and tables 19

ii

CHAPTER 1

Roum Multiplayer Protocol Specification

This section of the documentation describes the protocol used to communicate between the client and server.

The protocol is based on a single TCP Connection per client. This allows for great compatibility and connection
security, due to TCPs automatic packet validation and re-sending.

1.1 Protocol Specification Index

1.1.1 Abstract

The Roum Multiplayer Protocol is designed to let multiple clients share game state information via a single central
server.

The protocol is designed in a way that allows users to easily host their own servers on any semi-powerful computer.
The standalone server does not need any graphical libraries and can thus run on headless server machines.

Central Server Design

A central server design was chosen for security reasons, because only the central server has to be trusted. This means
that all player data is stored on the server. If any data is to shared with other players, it must first go through the central
server. One of the disadvantages of this design is however that scaling to very large (100+) players on a single server
becomes difficult without very powerful and thus expensive server machines.

Security Considerations

The protocol specification is designed to be secure in a way that tampering with connections or stealing the identity of
clients or servers should be nearly impossible.

Additionally, since the protocol will usually be implemented in Python, common attacks used on C/C++ based archi-
tectures are not possible. This assumes that Python itself does not have any unknown security vulnerabilities.

1

Roum Documentation, Release 0.1.0dev

1.1.2 Low-Level Implementation

Framework

The actual handling of sending and receiving packets is done via peng3dnet. This module was developed specifi-
cally for use with peng3d, which is the graphics framework used for rendering.

The peng3dnet module also includes extensions that allow for simple and (somewhat) secure pinging and location
syncing.

On the Wire

The actual format of packets including headers is described in the peng3dnet documentation.

The payloads sent are encoded using MessagePack due to its various advantages, including low overhead in both speed
and serialized data size.

In this documentation, all specifications will only describe the contents of the payload as if it were encoded as a Python
dict. This is done mainly to simplify the documentation, as all the low-level encoding is done by peng3dnet and
not needed for a good understanding of the protocol itself.

1.1.3 ping Connection Mode

The pinging mechanism is handled by the peng3dnet.ext.ping module.

This mode is also different in that it actually is a different peng3dnet connection type called peng3dnet.ext.
ping.PingConnectionType, whereas all other connection modes use the same connection type and can be
switched between at any time.

Purpose

A ping is intended to be used to query publicly available information from the server. This information may include
the number of players on the server, the name of the server and many other pieces of information.

A ping is usually sent by the game client, but it may also be sent by other applications to gather information about a
server, e.g. in a website presenting a list of servers.

As a side-effect, the roundtrip time from client to server and back is also measured. This ping time automatically
includes packet encoding, network lag, packet decoding/re-encoding by the server and handling by the client. The
roundtrip time is thus an accurate representation of the delays to be expected when querying information from the
server during other modes.

Client Side

Pinging is done by the multiplayer server list found when clicking the Select Server button in the main menu.

The multiplayer server list uses the opendig.client.Client.asyncPingServer() wrapper to ensure that
the returned server data has been normalized

Todo: How does this work for Roum

See also:

See the /format/serverlist documentation for how the server list is stored.

2 Chapter 1. Roum Multiplayer Protocol Specification

https://peng3dnet.readthedocs.io/en/latest/api/peng3dnet.html#module-peng3dnet
https://peng3d.readthedocs.io/en/latest/api/peng3d.html#module-peng3d
https://peng3dnet.readthedocs.io/en/latest/api/peng3dnet.html#module-peng3dnet
https://peng3dnet.readthedocs.io/en/latest/api/peng3dnet.html#module-peng3dnet
https://msgpack.org
https://docs.python.org/3.5/library/stdtypes.html#dict
https://peng3dnet.readthedocs.io/en/latest/api/peng3dnet.html#module-peng3dnet
https://peng3dnet.readthedocs.io/en/latest/api/ext/ping.html#module-peng3dnet.ext.ping
https://peng3dnet.readthedocs.io/en/latest/api/peng3dnet.html#module-peng3dnet

Roum Documentation, Release 0.1.0dev

Server Side

Since ping requests are automatically handled, only a callback that can add server statistics is used for customization.

The callback that is used is opendig.server.dedicated.ODServer.getPingData().

Todo: How does this work for Roum

Transmitted Data

Todo: Add this subsection

1.1.4 auth Connection Mode

Every connection that is not a ping connection will start in this mode. Once this connection mode has been changed
away from, it cannot be reentered, due to security reasons.

Connections in this mode are considered to be not authenticated and not trustworthy.

The main purpose of this connection mode is to exchange credentials to mutually verify the identity of both server and
client.

Handshaking

These procedures need to be followed to ensure that every connection is secure and identity theft is prevented.

Note that I am not a security expert, so please point out any security vulnerabilities privately. Contact information can
be found on my GitHub Profile @not-na.

On First Server Start

On the very first server start, the server registers itself to the authserver calling the roumauth.ServerSession.
createServer() method after creating its own instance of roumauth.ServerSession().

Note that when first creating the server object, only serverdata needs to be supplied, as the other values will be
automatically generated.

This call populates the password and serverid attributes. These values should be stored securely, as they define
the identity of the server. The serverid attribute will be shared with clients and is not secret, while the password
attribute should be kept as secret as a private key.

The password defaults to a random string of length 32.

On Every Server Start

This routine should be done on every server start.

First, the credentials generated in the last subsection should be loaded again and used to create a roumauth.
ServerSession().

If needed, the serverdata may be updated to reflect changes in the configuration.

1.1. Protocol Specification Index 3

Roum Documentation, Release 0.1.0dev

The ServerSession should be kept around for as long as the server is running.

On Every New Connection (Server Preparation)

Whenever a client requests a new connection, the session validity should be checked and renewed. This can be done
by calling the roumauth.ServerSession.refreshToken() method.

Once this has concluded, the authentication may continue.

Further Protocol

First, the client uses the API to create a new roumauth.Session() with the user-supplied credentials. The E-Mail
address used to login should be stored locally to speed up further login attempts.

Then, the client opens a new peng3dnet connection and waits for the peng3dnet handshake to finish before
proceeding.

The client then sends a request to the server asking for the server ID and waits for the answer.

This server ID is used by the client to create a MPSession ID on the authserver. The authserver checks the server ID
for validity and returns a MPSession ID and secret.

The MPSession ID is then sent to the server for further processing.

The server checks the MPSession ID with the authserver, also setting a flag that the server has verified the connection.
It also receives the client ID it did not know before and the secret, which are all sent to the client in order to prove the
identity of the server.

Then, the client sends the MPSession ID and secret to the authserver to verify that the server has set the verification
flag. This also sets the client verification flag.

The client also sends a go-ahead packet to the server to signal that it is ready.

The server then checks with the authserver that the client verification flag has been set. If the flag has been set, the
server indicates to the client that the connection has been successfully verified.

After this security handshake has concluded, both parties can mutually trust their supposed identities.

Internally, numbers from 1 to 12 are used to describe the stage of the handshake.

The full table is represented here:

4 Chapter 1. Roum Multiplayer Protocol Specification

https://peng3dnet.readthedocs.io/en/latest/api/peng3dnet.html#module-peng3dnet
https://peng3dnet.readthedocs.io/en/latest/api/peng3dnet.html#module-peng3dnet

Roum Documentation, Release 0.1.0dev

No. Direction Name Description
1-2 — Handshake Peng3dnet handshake

3.
Client->Server ServerID #1 Request for serverID

4.
Server->Client ServerID #2 Sends serverID

5.
Client->Auth Create MPSession Creates MPSession with

serverID and clientID, re-
ceives sessionID

6.
Client->Server Send MPSession Sends MPSession token,

shared between parties

7.
Server->Auth Check Session Validates Token, sets

servercheck, receives
secret

8.
Server->Client Verify Sends secret and clientID

to client for verification

9.
Client->Auth Check Session Checks secret and

servercheck, and sets
clientcheck

10.
Client->Server Ready Indicates to server that it is

ready

11.
Server->Auth Verify Checks clientcheck, re-

ceives client information

12.
Server->Client Ready Indicates to client that it is

ready

Note: After the results of stage 11 have been collected by the authserver, the MPSession is deleted. This makes it
impossible to verify a connection after it has been established.

roumauth Client Library

The roumauth library can be used to easily implement the authentication interface.

Use the roumauth.Session.connectToServer() or roumauth.ServerSession.
connectToClient() methods to create a connector object that will handle authentication.

After this object has been created, you will first need to set the callback function via roumauth._Connector.
setCallback().

For further information, see the roumauth._Connector() class documentation.

Packets

1.1.5 match Connection Mode

1.1. Protocol Specification Index 5

Roum Documentation, Release 0.1.0dev

Purpose

After leaving the lobby, all data transmissions concerning the game itself (all non-chat data) will use this mode.

Packets

roum:match.init - Initialize a new match

roum:match.init

This packet is sent by the server when the client has been added to a match.

Internal Name roum:match.init
Direction Clientbound
Since Version v0.1.0dev
Valid Modes lobby only

Purpose

This packet signals the client to initialize its datastructures for a new match. Usually, this packet will only be sent if
the player is in the queue, but it may also be sent at any other time.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.:

{
"uuid":"443b47701bfc44c3a38a22e943c087f5",

"players_a": ["1a0ab7f4322542ea9d62052c874e25e7", ...],
"players_b": ["7082a2f1f09a4a4fa264281628db179a", ...],

"mode": "classic",
}

uuid is the UUID of the match. It is generated by the server and shared by all clients.

players_a and players_b are lists containing the UUIDs of all players part of the match. The two lists represent
the two different factions.

mode is the game mode this match is in. Currently, only classic is supported.

roum:match.status.update - Update the Game Status

roum:match.status.update

This packet is used to update the game status.

Internal Name roum:match.status.update
Direction Cliendbound
Since Version v0.1.0dev
Valid Modes match only

6 Chapter 1. Roum Multiplayer Protocol Specification

Roum Documentation, Release 0.1.0dev

Purpose

This packet is intended to update major information concerning the game status, like the begin and the end of an match.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.:

{
"time":0

"status":{...}
}

The time is the timestamp in game ticks, at which the status was updated. Here, the time is the serverside time.

status Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

Todo: Specify the attributes of roum.Match

roum:match.synchronise.time - Synchronising Game Ticks

roum:match.synchronise.time

This packet is used to synchronise the clientside and serverside game ticks.

Internal Name roum:match.synchronise.time
Direction Clientbound
Since Version v0.1.0dev
Valid Modes match only

Purpose

This packet is intended to synchronise the inferior clientside game ticks to the superior serverside game ticks. This
synchronisation occurs each second (60 game ticks) and is sent to all players.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.:

{
"time":8345
}

The time is the serverside time in game ticks.

1.1. Protocol Specification Index 7

Roum Documentation, Release 0.1.0dev

roum:match.player.update.pos - Update Player Position

roum:match.player.update.pos

This packet is used to pass the position of a player to each other player.

Internal Name roum:match.player.update.pos
Direction both
Since Version v0.1.0dev
Valid Modes match only

Purpose

This packet is intended to be sent to all players in the vicinity of the emitting player each game tick. If the recipient is
further away, he will receive this packet less frequent.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.:

{
"time":9162

"player":"1a0ab7f4-3225-42ea-9d62-052c874e25e7"
"position":(531.25, 133.39, 927.78)
}

The time is the timestamp in game ticks, at which the player was at the specified position. Here, the time is
the clientside time of the player, not the serverside game time.

roum:match.entity.update.pos - Update Entity Position

roum:match.entity.update.pos

This packet is used to pass the position of an entity to each other player.

Internal Name roum:match.entity.update.pos
Direction Clientbound
Since Version v0.1.0dev
Valid Modes match only

Purpose

This packet is intended to be sent to all players in the vicinity of the emitting entity each game tick. If the recipient is
further away, he will receive this packet less frequent.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.:

8 Chapter 1. Roum Multiplayer Protocol Specification

Roum Documentation, Release 0.1.0dev

{
"time":13465

"entity":"1ba7070a-22a7-4a0f-9f3b-df91f4ea7b65"
"position":(331.29, 971.01, 566.98)
}

The time is the timestamp in game ticks, at which the entity was at the specified position. Here, the time is
the serverside game time.

roum:match.player.update - Update Player Status

roum:match.entity.update.pos

This packet is used to pass the status of a player to each other player.

Internal Name roum:match.player.update
Direction both
Since Version v0.1.0dev
Valid Modes match only

Purpose

This packet is intended to update the player status every time it changed. It will be sent to all players concerned by the
change.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

The structure of this packet is similar to /format/player_data but does not contain all keys

Todo: Specify the attributes of roum.Player

roum:match.player.takedamage - Signalise the player that he took damage

roum:match.player.takedamage

This packet is used to tell a player that he took damage.

Internal Name roum:match.player.takedamage
Direction Clientbound
Since Version v0.1.0dev
Valid Modes match only

Purpose

This packet is intended to inform a player that he took damage. It will be sent each time he takes damage.

1.1. Protocol Specification Index 9

Roum Documentation, Release 0.1.0dev

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.:

{
"time":8376

"player":"1a0ab7f4-3225-42ea-9d62-052c874e25e7"
"origin":"7082a2f1-f09a-4a4f-a264-281628db179a"
"components":{...}
}

The time is the timestamp in game ticks, at which the player took damage. The origin is the source which
damaged the player. If the source was another player or one of his projectiles, the player’s uuid will be transmitted.
If the player was damaged by an passive object, the objects uuid will be transmitted. Here, the time is the serverside
time.

components Structure

components is a mapping of all the ships components damaged.

Structure of component values::

{
"shield":{"amount":203.15, "type":"laser"},
"thruster_1":{"amount":15.93, "type":"laser"},
...
}

Todo: Add list for components (And how do they even work?)

amount indicates the amount of damage the specified component took. type indicates the type of the damage.

roum:match.entity.create - Create new Entity

roum:match.entity.create

This packet is used to create a new entity.

Internal Name roum:match.entity.create
Direction Clientbound
Since Version v0.1.0dev
Valid Modes match only

Purpose

This packet is intended to signal the new creation of a new entity. This might either be a new launched drone or as
well an object like an asteroid splitting in half or many ship wreckage debris after an explosion. Differently to the
roum:match.entity.update, this packet is sent to all players and not only to those in the vicinity.

10 Chapter 1. Roum Multiplayer Protocol Specification

Roum Documentation, Release 0.1.0dev

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

The structure of this packet is similar to /format/entity_data but does not contain all keys

Todo: Specify the attributes of roum.Entity

roum:match.entity.update - Update Entity

roum:match.entity.update

This packet is used to update the status of entities.

Internal Name roum:match.entity.update
Direction Clientbound
Since Version v0.1.0dev
Valid Modes match only

Purpose

This packet is intended to pass the status of an entity to all players in the vicinity. It is always emitted when an attribute
of the entity changes. Players to far away to be impacted by the status change will only receive an update flag that will
trigger the necessary updates as soon as they get close enough to the entity.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.

The structure of this packet is similar to /format/entity_data but does not contain all keys

Todo: Specify the attributes of roum.Entity

roum:match.entity.takedamage - Signalise an entity took damage

roum:match.entity.takedamage

This packet is used to tell a player that an entity took damage.

Internal Name roum:match.entity.takedamage
Direction Clientbound
Since Version v0.1.0dev
Valid Modes match only

1.1. Protocol Specification Index 11

Roum Documentation, Release 0.1.0dev

Purpose

This packet is intended to signalise to a player that a certain entity took damage. This can be beneficial to inform the
player that for example one of his drones or an allied weapon factory is being attacked.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.:

{
"time":8374

"entity":"94e28628-b83d-498a-8dce-8e2cbc8aff3f"
"origin":"0dd967e3-d418-4815-b347-feecb1d1eb6d"
"components":{...}
}

The time is the timestamp in game ticks, at which the entity took damage. The origin is the source which
damaged the entity. If the source was another player or one of his projectiles, the player’s uuid will be transmitted.
If the player was damaged by an passive object, the objects uuid will be transmitted. Here, the time is the serverside
time.

components Structure

components is a mapping of all the entities components damaged.

Structure of component values::

{
"warhead":{"amount":24.13, "type":"ion"},
"body":{"amount":96.67, "type":"ion"},
...
}

Todo: Add list for components (And how do they even work?)

amount indicates the amount of damage the specified component took. type indicates the type of the damage.

roum:match.entity.remove - Removes an Entity

roum:match.entity.remove

This packet is used to remove an entity.

Internal Name roum:match.entity.remove
Direction Clientbound
Since Version v0.1.0dev
Valid Modes match only

12 Chapter 1. Roum Multiplayer Protocol Specification

Roum Documentation, Release 0.1.0dev

Purpose

This packet is used to inform players of the removal of an entity. Such a case might occur when a weapon factory is
destroyed or when a projectile impacts another entity.

Structure

Note that all examples shown here contain placeholder data and will have different content in actual packets.:

{
"time":3780

"entity":"76874380-20f7-42e3-aefb-46a8dca98d03"
}

The time is the timestamp in game ticks, at which the entity was removed. Here, the time is the serverside game
time.

1.1.6 Packets

auth Connection Mode

lobby Connection Mode

match Connection Mode

chat Connection Mode

1.1. Protocol Specification Index 13

Roum Documentation, Release 0.1.0dev

14 Chapter 1. Roum Multiplayer Protocol Specification

15

Roum Documentation, Release 0.1.0dev

CHAPTER 2

roum - Roum Core Package

2.1 roum.roum - Core Roum Class

2.2 roum.config - Smart Configuration Manager

2.3 roum.event - Event Distribution System

2.4 roum.plugin - Plugin Loading and Management

2.5 roum.logging - Context-aware Logger

2.6 roum.constants - Global Constants

2.7 roum.command - Command Management and Parsing

2.8 roum.command.help - help Command

2.9 roum.command.stop - stop Command

2.10 roum.server - Main Server Package

2.11 roum.server.user - User profile management

2.12 roum.client - Client Main Package

2.13 roum.client.gui - Peng3d Based GUI

2.14 roum.client.gui.resource - Custom Resource Manager

2.15 roum.client.gui.menu - Main Menu Renderer

2.16 roum.client.gui.loadingscreen - Loading Screen Menu
Renderer

2.17 roum.client.gui.settings - Settings Menu Renderer

2.18 roum.client.gui.lobby - Lobby Menu Renderer

2.19 roum.client.gui.ingame - In-Game Menu Renderer

2.20 roum.client.gui.ingame.model - Model and Mesh helper
classes

2.21 roum.model - Data Model Main Package

2.22 roum.model.match - Match Data Model

2.23 roum.model.player - Player Model

2.24 roum.model.entity - Entity Model

2.25 roum.model.component - Component Model

2.26 roum.net.packet.auth - roum:auth Authentication Packet

2.27 roum.net.packet.lobby.startgame - roum:lobby.
startgame - Start a Match

2.28 roum.net.packet.match.init - roum:match.initMatch Ini-
tialization Packet

2.29 roum.net.packet.match.statusupdate - roum:match.
status.update - Status Update Packet

2.30 roum.net.packet.match.synctime - roum:match.
synchronise.time - Time Synchronisation Packet

2.31 roum.net.packet.match.entcreate - roum:match.entity.
create - Entity Creation Packet

2.32 roum.net.packet.match.entremove - roum:match.entity.
remove - Entity Remove Packet

2.33 roum.util - Miscellaneous Utilities and Tools

2.34 roum.util.cache - Smart and Flexible Caching Solution

2.35 roum.util.serializer - Multi-Serializer Wrapper

2.36 roum.util.time - Time Utilities

2.37 roum.util.vector - Vector Utilities

2.38 roum.util.graphics - Graphics Utilities

2.39 roum.error - Custom Exceptions

2.40 roum.version - Version Information

16 Chapter 2. roum - Roum Core Package

CHAPTER 3

Glossary

game tick Smallest unit of time in-game. Always represented as an integer. Usually, one game tick is equivalent to
one-sixtieth of a second.

17

Roum Documentation, Release 0.1.0dev

18 Chapter 3. Glossary

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

19

Roum Documentation, Release 0.1.0dev

20 Chapter 4. Indices and tables

Index

G
game tick, 17

R
roum Packet

roum:match.entity.create, 10
roum:match.entity.remove, 12
roum:match.entity.takedamage, 11
roum:match.entity.update, 11
roum:match.entity.update.pos, 8, 9
roum:match.init, 6
roum:match.player.takedamage, 9
roum:match.player.update.pos, 8
roum:match.status.update, 6
roum:match.synchronise.time, 7

roum:match.entity.create
roum Packet, 10

roum:match.entity.remove
roum Packet, 12

roum:match.entity.takedamage
roum Packet, 11

roum:match.entity.update
roum Packet, 11

roum:match.entity.update.pos
roum Packet, 8, 9

roum:match.init
roum Packet, 6

roum:match.player.takedamage
roum Packet, 9

roum:match.player.update.pos
roum Packet, 8

roum:match.status.update
roum Packet, 6

roum:match.synchronise.time
roum Packet, 7

21

	Roum Multiplayer Protocol Specification
	Protocol Specification Index

	roum - Roum Core Package
	roum.roum - Core Roum Class
	roum.config - Smart Configuration Manager
	roum.event - Event Distribution System
	roum.plugin - Plugin Loading and Management
	roum.logging - Context-aware Logger
	roum.constants - Global Constants
	roum.command - Command Management and Parsing
	roum.command.help - help Command
	roum.command.stop - stop Command
	roum.server - Main Server Package
	roum.server.user - User profile management
	roum.client - Client Main Package
	roum.client.gui - Peng3d Based GUI
	roum.client.gui.resource - Custom Resource Manager
	roum.client.gui.menu - Main Menu Renderer
	roum.client.gui.loadingscreen - Loading Screen Menu Renderer
	roum.client.gui.settings - Settings Menu Renderer
	roum.client.gui.lobby - Lobby Menu Renderer
	roum.client.gui.ingame - In-Game Menu Renderer
	roum.client.gui.ingame.model - Model and Mesh helper classes
	roum.model - Data Model Main Package
	roum.model.match - Match Data Model
	roum.model.player - Player Model
	roum.model.entity - Entity Model
	roum.model.component - Component Model
	roum.net.packet.auth - roum:auth Authentication Packet
	roum.net.packet.lobby.startgame - roum:lobby.startgame - Start a Match
	roum.net.packet.match.init - roum:match.init Match Initialization Packet
	roum.net.packet.match.statusupdate - roum:match.status.update - Status Update Packet
	roum.net.packet.match.synctime - roum:match.synchronise.time - Time Synchronisation Packet
	roum.net.packet.match.entcreate - roum:match.entity.create - Entity Creation Packet
	roum.net.packet.match.entremove - roum:match.entity.remove - Entity Remove Packet
	roum.util - Miscellaneous Utilities and Tools
	roum.util.cache - Smart and Flexible Caching Solution
	roum.util.serializer - Multi-Serializer Wrapper
	roum.util.time - Time Utilities
	roum.util.vector - Vector Utilities
	roum.util.graphics - Graphics Utilities
	roum.error - Custom Exceptions
	roum.version - Version Information

	Glossary
	Indices and tables

