
Rotor Documentation
Release 0.6.3

Paul Colomiets

March 21, 2016

Contents

1 Loop Initialization 3
1.1 Overview . 3
1.2 Adding State Machines . 3

2 Implementing State Machines 5
2.1 Boilerplate . 5

3 Ecosystem 7
3.1 Libraries . 7
3.2 Applications . 7
3.3 Other . 7

4 Glossary 9

5 Indices and tables 11

i

ii

Rotor Documentation, Release 0.6.3

This is work in progress book about writing applications in “rotor”. There are also Api Docs.

Contents:

Contents 1

http://tailhook.github.com/rotor/

Rotor Documentation, Release 0.6.3

2 Contents

CHAPTER 1

Loop Initialization

1.1 Overview

Loop initialization has two stages. First is created by:

let loop_creator = try!(rotor::Loop::new());

And the second is created by:

let loop_instance = loop_creator.instantiate(context)

Then you can run the loop:

try!(loop_instance.run());

As you can see the loop_creator.instantiate(..) takes a context for the instantiation. This is the key
difference between two stages.

There is a shortcut if you want to skip second stage of initialization:

let loop_creator = try!(rotor::Loop::new());
try!(loop_creator.run(context));

1.2 Adding State Machines

To have something useful of main loop you need to add a state machine to it. State machine initialization is done via
add_machine_with method:

try!(loop_creator.add_machine_with(|scope| {
Ok(Tcp::new(addr, scope))

}));

And in loop instance there is similar method:

try!(loop_instance.add_machine_with(|scope| {
Ok(Tcp::new(addr, scope))

}));

The difference is in the signature of the function:

3

Rotor Documentation, Release 0.6.3

impl Loop {
fn add_machine_with<F>(&mut self, fun: F)

-> Result<(), SpawnError<()>>
where F: FnOnce(&mut EarlyScope) -> Result<M, Box<Error>>;

}
impl LoopInstance {

fn add_machine_with<F>(&mut self, fun: F)
-> Result<(), SpawnError<()>>
where F: FnOnce(&mut Scope<C>) -> Result<M, Box<Error>>;

}

As you can see the only difference is that loop creator gets EarlyScope as an argument and latter gets
Scope<Context> as an argument:

1. Both have GenericScope implementation, so you can have constructors generic over the scope type

2. Scope dereferences to the context while EarlyScope does not

Thats it. But in reality it’s important. For example, rotor-dns creates a pair: a state machine and a resolver object.
State machine is just added to a loop, but you may want to put resolver object to a context. For example:

extern crate rotor_dns;

let resolver_opt = None;
try!(loop_creator.add_machine_with(|scope| {

let (res, fsm) = try!(rotor_dns::create_resolver(scope, cfg));
resolver_opt = Some(res);
Ok(fsm)

}));
let resolver = resolver_opt.unwrap();
let mut loop_instance = loop_creator.instantiate(Context {

dns: resolver,
});
loop_instance.add_machine_with(..)

With rotor-tools the code is simplified to:

extern crate rotor_dns;
extern crate rotor_tools;
use rotor_tools::LoopExt; // The trait with helper functions

let resolver = try!(loop_creator.add_and_fetch(|scope| {
rotor_dns::create_resolver(scope, cfg)

}));
let mut loop_instance = loop_creator.instantiate(Context {

dns: resolver,
});
loop_instance.add_machine_with(..)

4 Chapter 1. Loop Initialization

http://github.com/tailhook/rotor-dns/
http://github.com/tailhook/rotor-tools/

CHAPTER 2

Implementing State Machines

This guide is for authors of the protocols, not for users of the protocols. Read it if you want to write an new protocol
implementation on top of raw rotor::Machine. Otherwise consult on your protocol documenation (probably good
links are in Ecosystem)

2.1 Boilerplate

This is just a blanket stub implementation I usually start with, filling in methods one by one:

extern crate rotor;

use rotor::{Machine, EventSet, Scope, Response};
use rotor::void::{unreachable, Void};

impl<C> Machine for Fsm<C> {
type Context = C;
type Seed = Void;
fn create(seed: Self::Seed, _scope: &mut Scope<C>)

-> Response<Self, Void>
{

unreachable(seed)
}
fn ready(self, _events: EventSet, _scope: &mut Scope<C>)

-> Response<Self, Self::Seed>
{

unimplemented!();
}
fn spawned(self, _scope: &mut Scope<C>) -> Response<Self, Self::Seed>
{

unimplemented!();
}
fn timeout(self, _scope: &mut Scope<C>) -> Response<Self, Self::Seed>
{

unimplemented!();
}
fn wakeup(self, _scope: &mut Scope<C>) -> Response<Self, Self::Seed>
{

unimplemented!();
}

}

There are two intricate things here:

5

Rotor Documentation, Release 0.6.3

1. We use void crate and void::Void type to denote that seed can’t be created so create method is never
called

Keep the type void unless your machine spawns new state machines. And in the latter case it’s advised to use
some abstraction for state machine spawning. There is an rotor_stream::Accept for accepting sockets,
more to come.

2. Implementation should almost always use generic context (impl<C>) as only end application should know the
exact layout of a context.

You may limit the generic with some traits (impl<C: HttpContext>).

Often, your state machine doesn’t rely on context at all. Currently, this requires adding a
PhantomData<*const C> marker to state machine. The marker_ is zero-sized, so it just a little bit of
boring code.

6 Chapter 2. Implementing State Machines

CHAPTER 3

Ecosystem

3.1 Libraries

• rotor-tools – a collection of small convenience utilities

• rotor-test – a collection of utilities for writing unit tests

• rotor-stream – an abstraction for writing protocols which use TCP or Unix stream sockets

• rotor-carbon – implementation of the carbon protocol (more known as graphite)

• rotor-dns – DNS support for rotor

• rotor-http – HTTP server and client implementation

• hyper (mio-rotor branch) the implementation fo HTTP protocol added to hyper itself

3.2 Applications

• Kinglet – a HTTP server

• basic-http-server – also a HTTP server

3.3 Other

• stator – a wrapper around foreign function interface (FFI) for various rotor libraries that allows dispatching them
from scripting languages; thus offloading asynchronous and protocol parsing work to rotor that is put in separate
thread; so rust code is running in parallel to the scripting language interpreter.

7

https://crates.io/crates/rotor-tools/
https://crates.io/crates/rotor-test/
https://crates.io/crates/rotor-stream/
https://crates.io/crates/rotor-carbon/
http://graphite.wikidot.com/
https://crates.io/crates/rotor-dns/
https://crates.io/crates/rotor-http/
https://github.com/hyperium/hyper/tree/mio-rotor
https://github.com/pyfisch/kinglet
https://github.com/brson/basic-http-server
https://github.com/tailhook/stator

Rotor Documentation, Release 0.6.3

8 Chapter 3. Ecosystem

CHAPTER 4

Glossary

state machine You probably know the theory. In this docs when we refer to state machine we refer to a type (most of
the time the enum) that implements some trait designed according to the rules below. There is some introductory
article about why state machines are designed that way.

State machine implements at least abstract rotor::Machine trait. But there are also more state machine
traits that are more concrete.

Rules: TBD

child state machine Often one state machine calls an action from another state machine. The one that calls actions
is a parent. The one that receives actions is called child. The parent state machine usually also owns the child
state machine (means that when parent is shut down, the all the children too).

There might be multiple child state machines when the protocol allows multiple underlying re-
quests/substreams/whatever to be mixed and used simultaneously

parent state machine See child state machine

9

https://en.wikipedia.org/wiki/State_machine
https://medium.com/@paulcolomiets/asynchronous-io-in-rust-36b623e7b965
https://medium.com/@paulcolomiets/asynchronous-io-in-rust-36b623e7b965

Rotor Documentation, Release 0.6.3

10 Chapter 4. Glossary

CHAPTER 5

Indices and tables

• genindex

• search

11

	Loop Initialization
	Overview
	Adding State Machines

	Implementing State Machines
	Boilerplate

	Ecosystem
	Libraries
	Applications
	Other

	Glossary
	Indices and tables

