

 Navigation

 	
 index

 	
 next |

 	Rotor 0.6.3 documentation

Welcome to Rotor’s documentation!

This is work in progress book about writing applications in “rotor”.
There are also Api Docs [http://tailhook.github.com/rotor/].

Contents:

	Loop Initialization
	Overview

	Adding State Machines

	Implementing State Machines
	Boilerplate

	Ecosystem
	Libraries

	Applications

	Other

	Glossary

Indices and tables

	Index

	Search Page

 Copyright 2015, Paul Colomiets.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rotor 0.6.3 documentation

Loop Initialization

Overview

Loop initialization has two stages. First is created by:

let loop_creator = try!(rotor::Loop::new());

And the second is created by:

let loop_instance = loop_creator.instantiate(context)

Then you can run the loop:

try!(loop_instance.run());

As you can see the loop_creator.instantiate(..) takes a context for the
instantiation. This is the key difference between two stages.

There is a shortcut if you want to skip second stage of initialization:

let loop_creator = try!(rotor::Loop::new());
try!(loop_creator.run(context));

Adding State Machines

To have something useful of main loop you need to add a state machine to
it. State machine initialization is done via add_machine_with method:

try!(loop_creator.add_machine_with(|scope| {
 Ok(Tcp::new(addr, scope))
}));

And in loop instance there is similar method:

try!(loop_instance.add_machine_with(|scope| {
 Ok(Tcp::new(addr, scope))
}));

The difference is in the signature of the function:

impl Loop {
 fn add_machine_with<F>(&mut self, fun: F)
 -> Result<(), SpawnError<()>>
 where F: FnOnce(&mut EarlyScope) -> Result<M, Box<Error>>;
}
impl LoopInstance {
 fn add_machine_with<F>(&mut self, fun: F)
 -> Result<(), SpawnError<()>>
 where F: FnOnce(&mut Scope<C>) -> Result<M, Box<Error>>;
}

As you can see the only difference is that loop creator gets EarlyScope
as an argument and latter gets Scope<Context> as an argument:

	Both have GenericScope implementation, so you can have constructors
generic over the scope type

	Scope dereferences to the context while EarlyScope does not

Thats it. But in reality it’s important. For example, rotor-dns [http://github.com/tailhook/rotor-dns/] creates
a pair: a state machine and a resolver object. State machine is just added
to a loop, but you may want to put resolver object to a context. For example:

extern crate rotor_dns;

let resolver_opt = None;
try!(loop_creator.add_machine_with(|scope| {
 let (res, fsm) = try!(rotor_dns::create_resolver(scope, cfg));
 resolver_opt = Some(res);
 Ok(fsm)
}));
let resolver = resolver_opt.unwrap();
let mut loop_instance = loop_creator.instantiate(Context {
 dns: resolver,
});
loop_instance.add_machine_with(..)

With rotor-tools [http://github.com/tailhook/rotor-tools/] the code is simplified to:

extern crate rotor_dns;
extern crate rotor_tools;
use rotor_tools::LoopExt; // The trait with helper functions

let resolver = try!(loop_creator.add_and_fetch(|scope| {
 rotor_dns::create_resolver(scope, cfg)
}));
let mut loop_instance = loop_creator.instantiate(Context {
 dns: resolver,
});
loop_instance.add_machine_with(..)

 Copyright 2015, Paul Colomiets.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rotor 0.6.3 documentation

Implementing State Machines

This guide is for authors of the protocols, not for users of the
protocols. Read it if you want to write an new protocol implementation on
top of raw rotor::Machine. Otherwise consult on your protocol documenation
(probably good links are in Ecosystem)

Boilerplate

This is just a blanket stub implementation I usually start with, filling
in methods one by one:

extern crate rotor;

use rotor::{Machine, EventSet, Scope, Response};
use rotor::void::{unreachable, Void};

impl<C> Machine for Fsm<C> {
 type Context = C;
 type Seed = Void;
 fn create(seed: Self::Seed, _scope: &mut Scope<C>)
 -> Response<Self, Void>
 {
 unreachable(seed)
 }
 fn ready(self, _events: EventSet, _scope: &mut Scope<C>)
 -> Response<Self, Self::Seed>
 {
 unimplemented!();
 }
 fn spawned(self, _scope: &mut Scope<C>) -> Response<Self, Self::Seed>
 {
 unimplemented!();
 }
 fn timeout(self, _scope: &mut Scope<C>) -> Response<Self, Self::Seed>
 {
 unimplemented!();
 }
 fn wakeup(self, _scope: &mut Scope<C>) -> Response<Self, Self::Seed>
 {
 unimplemented!();
 }
}

There are two intricate things here:

	We use void crate and void::Void type to denote that seed can’t be
created so create method is never called

Keep the type void unless your machine spawns new state machines. And
in the latter case it’s advised to use some abstraction for state machine
spawning. There is an rotor_stream::Accept for accepting sockets, more
to come.

	Implementation should almost always use generic context (impl<C>) as
only end application should know the exact layout of a context.

You may limit the generic with some traits (impl<C: HttpContext>).

Often, your state machine doesn’t rely on context at all. Currently, this
requires adding a PhantomData<*const C> marker to state machine.
The marker_ is zero-sized, so it just a little bit of boring code.

 Copyright 2015, Paul Colomiets.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Rotor 0.6.3 documentation

Ecosystem

Libraries

	rotor-tools [https://crates.io/crates/rotor-tools/] – a collection of
small convenience utilities

	rotor-test [https://crates.io/crates/rotor-test/] – a collection of
utilities for writing unit tests

	rotor-stream [https://crates.io/crates/rotor-stream/] – an abstraction for
writing protocols which use TCP or Unix stream sockets

	rotor-carbon [https://crates.io/crates/rotor-carbon/] – implementation of
the carbon [http://graphite.wikidot.com/] protocol (more known as graphite)

	rotor-dns [https://crates.io/crates/rotor-dns/] – DNS support for rotor

	rotor-http [https://crates.io/crates/rotor-http/] – HTTP server and client
implementation

	rotor-redis [https://github.com/tailhook/rotor-redis/] – redis client
implementation

	hyper [https://github.com/hyperium/hyper/] –
the implementation of HTTP protocol added to hyper itself

	rotor-capnp [https://github.com/0x1997/rotor-capnp] – implementation
of Cap’n’Proto protocol

Applications

	Kinglet [https://github.com/pyfisch/kinglet] – a HTTP server

	basic-http-server [https://github.com/brson/basic-http-server] – also a
HTTP server

Other

	stator [https://github.com/tailhook/stator] – a wrapper around foreign
function interface (FFI) for various rotor libraries that allows
dispatching them from scripting languages; thus offloading asynchronous
and protocol parsing work to rotor that is put in separate thread; so
rust code is running in parallel to the scripting language interpreter.

 Copyright 2015, Paul Colomiets.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Rotor 0.6.3 documentation

Glossary

	state machine

	You probably know the theory [https://en.wikipedia.org/wiki/State_machine]. In this docs when we refer to
state machine we refer to a type (most of the time the enum) that
implements some trait designed according to the rules below. There is some
introductory article about why state machines are designed that
way [https://medium.com/@paulcolomiets/asynchronous-io-in-rust-36b623e7b965].

State machine implements at least abstract rotor::Machine trait.
But there are also more state machine traits that are more concrete.

Rules: TBD

	child state machine

	Often one state machine calls an action from another state machine. The
one that calls actions is a parent. The one that receives actions
is called child. The parent state machine usually also owns the child
state machine (means that when parent is shut down, the all the children
too).

There might be multiple child state machines when the protocol allows
multiple underlying requests/substreams/whatever to be mixed and used
simultaneously

	parent state machine

	See child state machine

 Copyright 2015, Paul Colomiets.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Rotor 0.6.3 documentation

Index

 Copyright 2015, Paul Colomiets.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		Rotor 0.6.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Paul Colomiets.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

