

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Rotary

DynamoDB with rules.yarn add @akkoro/rotary

Rotary is an open-source library for AWS DynamoDB queries. It aims to
implement a set of constraints which allow data to be stored
according to one or more “best-practice” [https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/best-practices.html] strategies.Currently the project ships with strategies for relational data and time-series data.

It is written in TypeScript, and builds on both OO and FP principles.In particular, it is worth noting that Futures are used instead of Promises.
All future-returning APIs can be converted to promises by calling .promise() instead of .fork().

Overview

Quickstart

Config.tableName = 'myDynamoTable';

interface UserAddress {
 city: string;
 country: string;
}

@Entity()
class User {
 @Unique
 email: string;

 @Searchable({composite: true})
 address: UserAddress;

 @Searchable({signed: false})
 type: number;

 @Ref(Account)
 account: Account;

 birthdate: string;
}

@Entity()
class Account {
 type: string;
}

@Entity('TimeSeries')
class Post {
 content: string;
}

// create and store new user entity
const user = makeEntity(User)({id: 'myUser'});
user.email = 'clem.fandango@scramblestudios.co.uk';
user.type = 1;
user.country = {
 city: 'London',
 country: 'UK'
};
user.store().fork(console.error, console.log);

// create and store a new post
const post = makeEntity(Post)({id: 'myUser', timestamp: Date.now()});
post.content = 'this is some hot content';
post.store().fork(console.error, console.log);

// query a user by email
query(User)
 .select('email')
 .equals('clem.fandango@scramblestudios.co.uk')
 .fork(console.error, console.log)
;

// query all users who live in the UK
query(User)
 .select('address')
 .match({country: 'UK'})
 .fork(console.error, console.log)
;

Entities

Entities follow the Active Record [https://en.wikipedia.org/wiki/Active_record_pattern] pattern,
and provide the means for modeling data. Entities optionally specify a Storage Strategy such as
Relational or TimeSeries (default is Relational), which determines how the entity is stored in a DynamoDB table.Entity attributes are specified as class fields, and may optionally specify one Attribute decorator.

Attributes

Attributes provide additional query and/or storage functionality to an entity field. They are similar to how a primary key
or foreign key constraint might be specified in a traditional RDBMS ORM such as TypeORM.

Some attribute types insert an additional row in DynamoDB when the entity is stored to support query operations on that attribute.
Care should be taken to balance desired functionality with the extra data & redundancy that is required to support it.

Some attributes can only be used with a specific Storage Strategy.

Built-In Attributes

Name | Supported Strategies | Supported Operations | Details
———–|————————|———————-|——–
Unique | Relational | equals | Specify for attributes which function as a unique identifier. Adds an additional row.
Searchable | Relational | equals, match, range | Specify for attributes non-unique attributes requiring query, or for data that can be queried with partial info. Adds an additoinal row.
Ref | Relational, TimeSeries | N/A | Specify that the attribute contains another entity; the referenced entity will be loaded by ID.

All entities also provide an id attribute which can be queried; the supported operations depend on the storage strategy.

TODO: details on Searchable attribute options composite and signed

Storage Strategies

Storage Strategies implement higher-level details about Entity storage. For example, entities stored with the Relational strategy
are packed into a single DynamoDB table, while TimeSeries entities require their own table.

Built-In Strategies

Name | Requires LSI | ID Operations | Details
———–|————–|—————|———-
Relational | Yes | equals | Emulate a traditional RDBMS
TimeSeries | No | equals, range | Store multiple items with the same id at many timestamps.

DynamoDB Configuration

Relational

Create a table with any name (be sure to specify this name in Config.tableName). This table must have:

	a Primary Key named pk of type string

	a Sort Key named sk of type string

	a local secondary index named sk-data-index with

	a Primary Key named sk

	a Sort Key named data

TimeSeries

Create a table with any base name (specified in Config.tableName), with a suffix of -ENTITYNAME.For example, if tableName is rotary and our entity is called Content, the TimeSeries table must be named rotary-CONTENT.This table must have:

	a Primary Key named pk of type string

	a Sort Key named sk of type number

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

