
RoseNMS Documentation
Release 0.1

Craig Small

April 02, 2016

Contents

1 Introduction 3

2 History of RoseNMS 5

3 Installation 7
3.1 Baseline . 7
3.2 RoseNMS Environment . 8
3.3 Apache Configuration . 8
3.4 WSGI File . 8

4 Hosts and Attributes 11
4.1 Zones . 11
4.2 Hosts . 11
4.3 Attributes . 11

5 Attribute Types 13
5.1 Apache . 13
5.2 APC . 13
5.3 Alteon Load Balancers . 13
5.4 Applications . 13
5.5 BGP Neighbors . 13
5.6 Brocade FC Ports . 14
5.7 Brocade Sensors . 14
5.8 Cisco 802.11X Device . 14
5.9 Cisco NAT . 14
5.10 Cisco PIX . 14
5.11 Cisco Power Supply . 14
5.12 Cisco SA Agent . 14
5.13 Cisco System Info . 14
5.14 Compaq CPQ MIB . 14
5.15 Dell Chassis . 14
5.16 Fibre Channel Ports . 14
5.17 IIS Webserver Information . 14
5.18 Linux/Unix System Info . 14
5.19 NTP . 14
5.20 OS/400 System Info . 15
5.21 Physical Interfaces . 15
5.22 Reachablity . 15

i

5.23 Sensors . 15
5.24 Solaris System Info . 15
5.25 Storage . 15
5.26 TCP Ports . 15
5.27 UPS and Lines . 15

6 Users and Permissions 17
6.1 Users . 17
6.2 Permissions . 17
6.3 Groups . 17

7 Events 19

8 Alarmed Events 21

9 Event Type 23

10 Event State 25

11 How Attribute state is determined 27

12 SNMP Traps 29
12.1 SNMP Trap Daemon . 29
12.2 How RoseNMS treats traps . 29
12.3 Trap Match Commands . 30

13 rnmsd 31
13.1 SYNOPSYS . 31
13.2 DESCRIPTION . 31
13.3 OPTIONS . 31
13.4 SEE ALSO . 31

14 rnms_info 33
14.1 SYNOPSYS . 33
14.2 DESCRIPTION . 33
14.3 OPTIONS . 33
14.4 EXAMPLE . 33
14.5 SEE ALSO . 34

15 Indices and tables 35

ii

RoseNMS Documentation, Release 0.1

Contents:

Contents 1

RoseNMS Documentation, Release 0.1

2 Contents

CHAPTER 1

Introduction

RoseNMS (rnms) is, as the name implies, a Network Management System. What this means is rnms is a piece
of software that gathers information on devices out on a network and tries to meaningfully interpret them to make
monitoring and managment simpler.

rnms is written in python and is based upon the Turbogears 2 web framework. The basic concept is largely built around
the ideas that were put into another NMS program called JFFNMS.

For more updates, please visit the RoseNMS website

3

http://rnms.org/

RoseNMS Documentation, Release 0.1

4 Chapter 1. Introduction

CHAPTER 2

History of RoseNMS

Rnms is the third network management system that I have worked on. In the early 2000’s there was a design which
was not much more than some penciled scribbles for something along the lines of logcheck. That program was called
GEMS (Generic Event Management System) and didn’t progress past the concept stage.

What accelerated GEMS’ demise was a project called Just For Fun Network Management System or JFFNMS. This
program was written in PHP and combined the status polling of Nagios with the RRD graphs of cricket and MRTG. As
it was written in PHP this had all the bonuses and problems of other PHP programs. It was able to reasonably easily
run on Windows and Linux systems, amongst others and handled the database and SNMP parts through modules.

Maintaining a PHP program is not easy and tracking down bugs gets very difficult. There needed to be a better way
and one solution was to keep PHP but use a framework such as CakePHP. While this solved some of the framework
problems, it still left PHP with all its quirkyness.

Another series of searches and it was decided to start a completely new project. Given it was a rewrite, then there was
no need to stay with the same langauge. Also the web framework needed to be something reasonably substancial that
took care of things such as database handling, authentication and web request routing. After some research and false
starts, in October 2011, RoseNMS was born based upon TurboGears.

5

http://jffnms.org/
http://cakephp.org/
http://turbogears.org/

RoseNMS Documentation, Release 0.1

6 Chapter 2. History of RoseNMS

CHAPTER 3

Installation

There are many ways you can setup RoseNMS. No single way is “correct” but there are often pitfalls depending on
your particular setup. This section describes one way of install RoseNMS.

RoseNMS is basically a WSGI interface enabled program. If you understand how these sort of programs work, you
are free to install RoseNMS any way you like, using your standard setup.

For the rest of us, I’ll assume you have:

• the RoseNMS egg, which contains the program;

• a working apache server with modwsgi installed;

• virtualenv which makes virtual environments and dependencies.

There is also three separate directories involved in the installation. There is absolutely no solid rules where these
directories have to go, the important thing is not to mix them up.

• Baseline - This is where the python interpreter and the system files are kept. We will use
/usr/local/pythonenv/BASELINE

• RoseNMS environment - Additional packages that RoseNMS needs to run will be installed here. This is the lo-
cation of the specific virtualenv we will use. For the document lets call it /usr/local/pythonenv/RoseNMS_NMS

• RoseNMS home - Location of the RoseNMS files, such as a sqlite database we will use /home/rosenberg

So, now to make the various directories, part of this comes from the Virtualenv support for VirtualEnvironments page.

3.1 Baseline

$ cd /usr/local
$ mkdir /usr/local/pythonenv
$ cd /usr/local/pythonenv
$ virtualenv --no-site-packages BASELINE
New python executable in BASELINE/bin/python
Installing distribute..
...
...
.....................done.
Installing pip................done.

This directory is where the WSGI server within Apache will find the python files. You will need to tell it this with a
configuration parameter

code-block:: WSGIPythonHome /usr/local/pythonenv/BASELINE

7

http://wsgi.readthedocs.org/
http://www.virtualenv.org/
http://code.google.com/p/modwsgi/wiki/VirtualEnvironments

RoseNMS Documentation, Release 0.1

3.2 RoseNMS Environment

The RoseNMS Environment is made almost the same way and will be located at /usr/local/pythonenv/rnms. It is best
to install TurboGears first as it pulls in the right sort of dependencies, then install RoseNMS.

$ cd /usr/local/pythonenv
$ virtualenv --no-site-packages rnms
New python executable in rnms/bin/python
Installing distribute..
...
...
.....................done.
Installing pip................done.
$ source rnms/bin/activate
(rnms)$ easy_install -i http://tg.gy/current Turbogears2
(lots of lines of install as things happen!)

(rnms)$ easy_install /tmp/RoseNMS_NMS-0.0.0dev-py2.7.egg

There will be an awful lot of work going on when you try to install RoseNMS as easy_install will go off and download
all the dependent packages that are required for RoseNMS to run correctly.

3.3 Apache Configuration

The apache configuration shown below basically tells Apache where to find the baseline files and where the wsgi file
is located. We have also made 3 WSGI daemons with a name of wsgid. The values given don’t have to be the same
but are the defaults seen in most documentation.

WSGIPythonHome /usr/local/pythonenv/BASELINE/
WSGIDaemonProcess example.com threads=10 processes=3 display-name=wsgid
WSGIProcessGroup example.com
<VirtualHost *:80>

ServerName example.com
WSGIScriptAlias /rnms /home/rosenberg/apache/rnms.wsgi

</VirtualHost>

3.4 WSGI File

import sys
prev_sys_path = list(sys.path)
import site
site.addsitedir('/usr/local/pythonenv/rnms/lib/python2.7/site-packages')

new_sys_path = []
for item in list(sys.path):

if item not in prev_sys_path:
new_sys_path.append(item)
sys.path.remove(item)

sys.path[:0] = new_sys_path
#End of virtualenv support

This adds your project's root path to the PYTHONPATH so that you can import
top-level modules from your project path. This is how TurboGears QuickStarted

8 Chapter 3. Installation

RoseNMS Documentation, Release 0.1

projects are laid out by default.
import os, sys
sys.path.append('/usr/local/pythonenv/rnms')

Set the environment variable PYTHON_EGG_CACHE to an appropriate directory
where the Apache user has write permission and into which it can unpack egg files.
os.environ['PYTHON_EGG_CACHE'] = '/home/rnms/python-eggs'

Initialize logging module from your TurboGears config file
from paste.script.util.logging_config import fileConfig
fileConfig('/home/rnms/production.ini')

Finally, load your application's production.ini file.
from paste.deploy import loadapp
application = loadapp('config:/home/rnms/production.ini')

3.4. WSGI File 9

RoseNMS Documentation, Release 0.1

10 Chapter 3. Installation

CHAPTER 4

Hosts and Attributes

4.1 Zones

Zones are groupings of Hosts. They can be used for displaying a group together or for making a set of hosts visible.

4.2 Hosts

Hosts are the devices that you want to manage. They are essentially something that has an IP address (either IPv4 or
IPv6) and generally would also have some sort of SNMP Agent. The Agent is not essential but is very useful as most
Attribute Types will need SNMP. The main exeption being Reachability, TCP Ports and NTP.

As expected, Hosts have a management address, a name, optionally three ‘SNMP Communities‘_ (read only,
read/write and trap) plus some other parameters such as ‘Autodiscovery Policies‘_. Hosts also belong to a single
Zone.

Hosts do not have an User but may have a default User for Attributes found during Autodiscovery. This makes sense
when a single Host may service many User’s services. For example, a common switch may have user A on port 1 and
user B on port 2, or a particular server may have several websites owned by different users.

4.3 Attributes

An Attribute is one of the major models that is used in RoseNMS. It is effectively something that you want to monitor
or track within a Host. Attributes will have RRD values to update or a status to track or perhaps both these options.

The simplest idea of an Attribute is a physical interface. This Attribute Type has counters that turn into graphs such
as an error or packet rate and the operational and administrative status that change the state of the Attribute. All other
Attributes are variations of this idea, but follow the same basic concept.

Besides the Host it is bound to, an Attribute can have a SLA. The particular SLA that can be assigned to an Attribute
is based upon the Attribute Type. The SLA uses the last 30 minutes of data to determine if the data are within some
specification. Attributes can have a poll priority. While it is not essential to set an Attribute for a host with a priority,
it greatly helps with the efficiency of the poller.

Attributes with the poll priority are selected before normal Attributes. If Attributes within a host with poll priority
set are down, then the remaining Attributes within that host are no polled. This means that with careful selection of
prioritized Attributes, if an entire host is down then the poller doesn’t waste effort attempting to get to the host. The
most common Attribute Type to assign for priority is Reachability. The idea being that if you cannot ping the host,
then you cannot reach it and it doesn’t make sense to attempt to get any more data out of the device.

11

RoseNMS Documentation, Release 0.1

With a prioritized Attribute down for a Host, only the prioritized Attributes are polled.

12 Chapter 4. Hosts and Attributes

CHAPTER 5

Attribute Types

The types of Attributes that can be discovered and polled is setup in the configuration. RNMS comes out with a variety
of Attribute Types and you can add your own.

5.1 Apache

Polls the server status for an Apache webserver. Rnms displays the statistics that this feature exposes, such as number
of workers or accesses.

5.2 APC

Polls the APC UPS devices that have SNMP enabled.

5.3 Alteon Load Balancers

Alteon Load Balancers are reasonably old devices but still in use in some places. As well as the System Information,
which tracks the usual things like CPU loads and memory usage, the Real and Virtual Servers and Services are tracked
for their utilisation and response times. The state of these elements is also tracked and can send alarms.

5.4 Applications

5.5 BGP Neighbors

These Attribute Types are the BGP (Border Gateway Protocol) peers. The number of advertised and received routes,
as well as messages in and out are tracked. The state of the Attribute follows the state of the peer. Information comes
via SNMP using the BGP peer MIB based on RFC 1269.

13

https://tools.ietf.org/html/rfc1269.html

RoseNMS Documentation, Release 0.1

5.6 Brocade FC Ports

5.7 Brocade Sensors

5.8 Cisco 802.11X Device

5.9 Cisco NAT

5.10 Cisco PIX

5.11 Cisco Power Supply

5.12 Cisco SA Agent

5.13 Cisco System Info

An Attribute Type for the CPU or system of Cisco devices. Displays the memory and CPU statistics of the device as
well as the TCP connection count.

Devices that have SNMP enabled and a Cisco enterprise for sysObjectId are polled for this system information.

Cisco Temperature Cisco Voltage

5.14 Compaq CPQ MIB

Monitors the Compaq CPQ environmental elements such as Fans, Power Supplies, Temperature and Physical Drives.

5.15 Dell Chassis

5.16 Fibre Channel Ports

5.17 IIS Webserver Information

5.18 Linux/Unix System Info

5.19 NTP

The poller checks the status of NTP servers on the host by using NTP standard control messages. If the host has at
least one synchronised peer it is considered synchronised and up.

14 Chapter 5. Attribute Types

RoseNMS Documentation, Release 0.1

5.20 OS/400 System Info

5.21 Physical Interfaces

This is the standard ifTable interfaces that are discovered via SNMP. Almost any device that supports SNMP will have
some interfaces from ifTable. The ip address table is also polled at the same time and if there is a match the addresses
are applied to the interface.

The usual statistics such as octect and packet counts as well as errors are polled and the attribute follows the ifOper
column of the ifTable for status.

5.22 Reachablity

All devices that have an IP address are assumed to be reachable. The Reachable Attribute Type requires fping and/or
fping6 to be installed. Round trip time (RTT) and packetloss are graphed for these Attribute Types.

5.23 Sensors

5.24 Solaris System Info

5.25 Storage

Storage Attribute Types are discovered via SNMP by scanning the hrStorageTable. This table considers storage to be
mainly disk drives as well as memory as “storage”. The graphs for these types show the total and used amount for the
device. There is no state tracked.

5.26 TCP Ports

Systems can be port scanned to find open TCP ports. These ports then have their response time captured by connecting
to the ports and, if SNMP is available, the number of connections on that port. There is also an option to check the
content from the port for specific text.

For TCP ports to be autodiscovered, the nmap or nmap6 binary needs to be installed.

5.27 UPS and Lines

Queries for either a standard RFC 1628 or a Mitsubishi UPS using SNMP. Both the device status (such as load or
on-battery) and the input and output lines can be tracked.

Windows System Info

5.20. OS/400 System Info 15

https://tools.ietf.org/html/rfc1628.html

RoseNMS Documentation, Release 0.1

16 Chapter 5. Attribute Types

CHAPTER 6

Users and Permissions

RoseNMS uses the repoze.what method of authorization which is based upon three sets of models.

6.1 Users

The first model is the User. This is usually a person although it can be a role. A User has a username and a password
and the combination of these permits access to RoseNMS. All Attributes within the system are owned by a User, which
can provide them with a limited read-only access to the state of the Attribute.

A User model also has an email_address which is used to send Triggers if they are setup for it.

6.2 Permissions

For each method within each controller the second model called a Permission is used to determine access. The
following permissions are defined for RoseNMS:

Name Description
UserRO Read-Only Access to User, Group and Permissions
UserRW Read/Write Access to User, Group and Permissions
HostRO Read-Only Access to Host and Attribute
HostRW Read/Write Access to Host and Attribute
AdminRO Read-Only Access to remaining models
AdminRW Read/Write Access to remaining models

There is likely to me more Permissions created in future versions of RoseNMS depending on user feedback.

6.3 Groups

Groups are the glue between Permissions and Users. Users cannot have permissions granted to them directly, but
belong to Groups which do have Permissions assigned to them. A User can belong to none, one or many Groups and a
Group can be assigned multiple Permissions. As the relationship between a Group and a Permission is many-to-many,
different Groups can have the same Permision assigned to them.

There are several pre-defined Groups within a standard installation of RoseNMS.

17

RoseNMS Documentation, Release 0.1

Group Name Permissions
User View UserRO
User Admin UserRW
Host View HostRO
Host Admin HostRW
System View UserRO, HostRO, AdminRO
System Admin UserRW, HostRW, AdminRW

18 Chapter 6. Users and Permissions

CHAPTER 7

Events

Events within Rnms are something that has happened. They are created by either a poller backend or a consolidator
and have to be linked to a Host or an Attribute. Plain Events only have an created time, they do not have a concept of
duration like alarmed Events.

19

RoseNMS Documentation, Release 0.1

20 Chapter 7. Events

CHAPTER 8

Alarmed Events

If an Event is of an EventType that permits alarms and is associated with an Attribute then the Event will be marked
as an Alarmed Event. These items have a stop_time which can either be set at creation or when another Event of the
same EventType and Attribute but different state (usually Up) comes along.

21

RoseNMS Documentation, Release 0.1

22 Chapter 8. Alarmed Events

CHAPTER 9

Event Type

All Events have an EventType. This is specific domain or aspect of an Attribute or Host. For example an interface
Attribute may have an operational status change or Error count exceeded EventType. Using Event Types means it is
easier to determine when the Event has been cleared, or its a duplicate Event.

23

RoseNMS Documentation, Release 0.1

24 Chapter 9. Event Type

CHAPTER 10

Event State

All Events have a State. While an EventType will tell you the type of event, such an interface status change, or a TCP
port result, the state will tell you more about the Event, such as the interface status is now Down or the TCP port is
now Open.

A departure from JFFNMS is that the Event State has a StateColor which sets the color in the event viewer and the
Attribute and Host maps. Previously an Events colour was determined by its Severity which was based upon the
EventType. Now the state sets the colour.

25

RoseNMS Documentation, Release 0.1

26 Chapter 10. Event State

CHAPTER 11

How Attribute state is determined

An Attributes state is inherited purely from the collection of active alarmed Events for that Attribute. When Rnms
detects that the collection of Events has changed for an Attribute, all of the active (that is, not have a corresponding
stop event or timed out) alarmed Events for that Attribute are collected and the one with the lowest priority setting has
its state copied to the Attribute.

As the EventState has a link to the StateColor table, this is what also determines the colour of an Attribute in the maps.

The state of a host is similiarly determined using the same method with the exception that the active alarmed events
for all Attributes within are host are evaluated.

27

RoseNMS Documentation, Release 0.1

28 Chapter 11. How Attribute state is determined

CHAPTER 12

SNMP Traps

SNMP traps are messages that are sent from SNMP Agents, such as routers or servers to a SNMP Manager, such as
RoseNMS.

For the purposes of how they are handled, a trap has the following fields:

• Source IP address

• Trap OID

• One or more VarBinds which are OID value keypairs, similair to a python dictionary.

SNMP v1 traps use a different format but they are converted to use the same format.

12.1 SNMP Trap Daemon

When the main rnmsd is started up, a thread is opened to create a receiver for SNMP traps. Traps are sent via UDP
and may be high frequency or even spoofed (where the source IP address is forged). The daemon does two checks on
the incoming trap.

First, the trap source IP address is checked against the known list of configured hosts. To minimize impact on the
database, the result is cached in a local dictionary. If there is no Host with that IP address, the trap is discarded.

Secondly the trap is checked against duplicates. Essentially if the trap from the same source IP address with the same
trap OID is seen within 5 seconds of another trap with the same properties, it is discarded. A lot of implementations
send several traps for the same event and this ensures there is only one forwarded. The disadvantage is that if there is
a down trap and then very soon after an up trap and they use the same OID the second one won’t be processed.

12.2 How RoseNMS treats traps

RoseNMS assumes that a particular trap (identified by a trap OID) is for a specific Attribute Type. For example the
ifDown traps describe something happening to a physical interface, while a temperature alarm trap is connected to
either a sensor or perhaps the element (e.g. CPU). If there are multiple Attribute Types that could be applied to the
same trap OID, multiple Trap Matches can be given for that OID and then the Trap Match commands (e.g. matching
on description) can be used to determine which is the correct one for this trap.

At set intervals, currently 30 seconds, a trap consolidator is run on the raw traps. The input data is Host ID, trap OID
and the VarBinds. The consolidator first looks for all Trap Matches that first match exactly the trap OID and then
optionally secondly on the VarBinds. The point of the Trap Match is to find an Attribute and a value or multiplie
values that are passed along to the backend.

29

RoseNMS Documentation, Release 0.1

Just like Pollers have several commands, Trap Matches do too that process the VarBinds of the trap to find the Attribute.
Only Attributes that have the correct type (defined by the Trap Match) will be looked at.

12.3 Trap Match Commands

The following commands are used by Trap Match within the consolidator to locate the attribute.

match_index_state : The Attribute is found by examining the VarBind with the specified OID and matching against
the VarBind value and the Attribute’s index field.

The value is either fixed or if it is an OID the VarBinds are searched for this OID. The result can be mapped to another
value before returning, such as 1=down,2=up.

30 Chapter 12. SNMP Traps

CHAPTER 13

rnmsd

13.1 SYNOPSYS

rnmsd [-hqv] [-c config] [-p pidfile]

13.2 DESCRIPTION

rnmsd is the main RoseNMS daemon. This main program spawns off several threads to take care of the back-end of
the NMS systems. For most installations, starting this program is all that is required. The threads are

• Poller - collects statistics and status on attributes

• Consolidator - converts raw events such as syslog lines into real events and alarms

• SNMP Trapd - collects SNMP traps from remote devices and stores them for subsequent Consolidator process-
ing

13.3 OPTIONS

-c file, --config file Read configuration settings from file

-d, --debug Turn on debugging

-h, --help Show help message and exit

-p file, --pidfile file Write programs PID to pidfile

-q, --quiet Log critical messages only

-v, --verbose Increase verbosity of logging

13.4 SEE ALSO

• RoseNMS Documentation

• rnms_poller (1)

• rnms_info (1)

31

http://rosenberg-nms.readthedocs.org/en/latest/

RoseNMS Documentation, Release 0.1

32 Chapter 13. rnmsd

CHAPTER 14

rnms_info

14.1 SYNOPSYS

rnms_info [-dhqv] [-c config] [-p pidfile] qtype id...

14.2 DESCRIPTION

rnms_info is a tool to query the database on various models that RoseNMS contains. These queries are meant to assist
administrators in troubleshooting, for example working out what Host a particular Attribute belongs to.

The info tool can query the following models: attributes, attribute types, hosts, poller sets, autodiscovery policies, slas
and triggers. The second parameter is the ID of the item you want to query.

14.3 OPTIONS

-c file, --config file Read configuration settings from file

-d, --debug Turn on debugging

-h, --help Show help message and exit

-p file, --pidfile file Write process PID to file

-q, --quiet Log critical messages only

-v, --verbose Increase verbosity of logging

ID ID of the items you want information about

QTYPE Type of query (model) to perform, see DESCRIPTION for list

14.4 EXAMPLE

For example, to look at attribute #2, you would use the following commands:

$ rnms_info attribute 2

==
Attribute | 2: Async5 (index: 5)

33

RoseNMS Documentation, Release 0.1

--
Host | 5: Cisco1700
State (admin/oper) | down/down
Attribute Type | 4: Physical Interfaces
Poller Set | 42: SNMP Interface (enabled:True)
Poll Priority | False
SLA | 1: No SLA
Created | 2012-03-11 10:34:58
Next SLA | 2013-09-30 12:26:29.878441
Next Poll | 2013-10-07 14:58:20.189101
--
Fields
IP Address | 192.168.101.1
IP Mask | 255.255.255.252
Peer Address | 192.168.101.2
Speed | 38000

Each type of query will display detailed information about the requested object. There can also be cross references, so
to see information about the above attributes host, you would query host 5.

14.5 SEE ALSO

• RoseNMS Documentation

• rnms_poller (1)

• rnmsd (1)

34 Chapter 14. rnms_info

http://rosenberg-nms.readthedocs.org/en/latest/

CHAPTER 15

Indices and tables

• genindex

• search

35

RoseNMS Documentation, Release 0.1

36 Chapter 15. Indices and tables

Index

R
RFC

RFC 1269, 13
RFC 1628, 15

37

	Introduction
	History of RoseNMS
	Installation
	Baseline
	RoseNMS Environment
	Apache Configuration
	WSGI File

	Hosts and Attributes
	Zones
	Hosts
	Attributes

	Attribute Types
	Apache
	APC
	Alteon Load Balancers
	Applications
	BGP Neighbors
	Brocade FC Ports
	Brocade Sensors
	Cisco 802.11X Device
	Cisco NAT
	Cisco PIX
	Cisco Power Supply
	Cisco SA Agent
	Cisco System Info
	Compaq CPQ MIB
	Dell Chassis
	Fibre Channel Ports
	IIS Webserver Information
	Linux/Unix System Info
	NTP
	OS/400 System Info
	Physical Interfaces
	Reachablity
	Sensors
	Solaris System Info
	Storage
	TCP Ports
	UPS and Lines

	Users and Permissions
	Users
	Permissions
	Groups

	Events
	Alarmed Events
	Event Type
	Event State
	How Attribute state is determined
	SNMP Traps
	SNMP Trap Daemon
	How RoseNMS treats traps
	Trap Match Commands

	rnmsd
	SYNOPSYS
	DESCRIPTION
	OPTIONS
	SEE ALSO

	rnms_info
	SYNOPSYS
	DESCRIPTION
	OPTIONS
	EXAMPLE
	SEE ALSO

	Indices and tables

