

 Navigation

 	
 index

 	
 next |

 	RoseNMS 0.1 documentation

Welcome to RoseNMS’s documentation!

Contents:

	Introduction

	History of RoseNMS

	Installation
	Baseline

	RoseNMS Environment

	Apache Configuration

	WSGI File

	Hosts and Attributes
	Zones

	Hosts

	Attributes

	Attribute Types
	Apache

	APC

	Alteon Load Balancers

	Applications

	BGP Neighbors

	Brocade FC Ports

	Brocade Sensors

	Cisco 802.11X Device

	Cisco NAT

	Cisco PIX

	Cisco Power Supply

	Cisco SA Agent

	Cisco System Info

	Compaq CPQ MIB

	Dell Chassis

	Fibre Channel Ports

	IIS Webserver Information

	Linux/Unix System Info

	NTP

	OS/400 System Info

	Physical Interfaces

	Reachablity

	Sensors

	Solaris System Info

	Storage

	TCP Ports

	UPS and Lines

	Users and Permissions
	Users

	Permissions

	Groups

	Events

	Alarmed Events

	Event Type

	Event State

	How Attribute state is determined

	SNMP Traps
	SNMP Trap Daemon

	How RoseNMS treats traps

	Trap Match Commands

	rnmsd
	SYNOPSYS

	DESCRIPTION

	OPTIONS

	SEE ALSO

	rnms_info
	SYNOPSYS

	DESCRIPTION

	OPTIONS

	EXAMPLE

	SEE ALSO

Indices and tables

	Index

	Search Page

 Copyright 2012-2013 Craig Small.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	RoseNMS 0.1 documentation

Introduction

RoseNMS (rnms) is, as the name implies, a Network Management System.
What this means is rnms is a piece of software that gathers information
on devices out on a network and tries to meaningfully interpret them to
make monitoring and managment simpler.

rnms is written in python and is based upon the Turbogears 2 web framework.
The basic concept is largely built around the ideas that were put into
another NMS program called JFFNMS.

For more updates, please visit the RoseNMS website [http://rnms.org/]

History of RoseNMS

Rnms is the third network management system that I have worked on. In the early
2000’s there was a design which was not much more than some penciled scribbles
for something along the lines of logcheck. That program was called GEMS
(Generic Event Management System) and didn’t progress past the concept stage.

What accelerated GEMS’ demise was a project called Just For Fun Network
Management System or JFFNMS [http://jffnms.org/]. This program was written in PHP and combined
the status polling of Nagios with the RRD graphs of cricket and MRTG. As it
was written in PHP this had all the bonuses and problems of other PHP programs.
It was able to reasonably easily run on Windows and Linux systems, amongst
others and handled the database and SNMP parts through modules.

Maintaining a PHP program is not easy and tracking down bugs gets very
difficult. There needed to be a better way and one solution was to keep
PHP but use a framework such as CakePHP [http://cakephp.org/]. While this solved some of the framework
problems, it still left PHP with all its quirkyness.

Another series of searches and it was decided to start a completely new
project. Given it was a rewrite, then there was no need to stay with the same
langauge. Also the web framework needed to be something reasonably substancial
that took care of things such as database handling, authentication and
web request routing. After some research and false starts, in October 2011, RoseNMS was born based upon TurboGears [http://turbogears.org/].

 Copyright 2012-2013 Craig Small.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	RoseNMS 0.1 documentation

Installation

There are many ways you can setup RoseNMS. No single way is “correct”
but there are often pitfalls depending on your particular setup. This
section describes one way of install RoseNMS.

RoseNMS is basically a WSGI [http://wsgi.readthedocs.org/] interface enabled program. If you understand
how these sort of programs work, you are free to install RoseNMS any
way you like, using your standard setup.

For the rest of us, I’ll assume you have:

	the RoseNMS egg, which contains the program;

	a working apache server with modwsgi installed;

	virtualenv [http://www.virtualenv.org/] which makes virtual environments and dependencies.

There is also three separate directories involved in the installation.
There is absolutely no solid rules where these directories have to go, the
important thing is not to mix them up.

	Baseline - This is where the python interpreter and the system files are
kept. We will use /usr/local/pythonenv/BASELINE

	RoseNMS environment - Additional packages that RoseNMS needs to run
will be installed here. This is the location of the specific virtualenv
we will use. For the document lets call it /usr/local/pythonenv/RoseNMS_NMS

	RoseNMS home - Location of the RoseNMS files, such as a sqlite database
we will use /home/rosenberg

So, now to make the various directories, part of this comes from the
Virtualenv support for VirtualEnvironments [http://code.google.com/p/modwsgi/wiki/VirtualEnvironments] page.

Baseline

$ cd /usr/local
$ mkdir /usr/local/pythonenv
$ cd /usr/local/pythonenv
$ virtualenv --no-site-packages BASELINE
New python executable in BASELINE/bin/python
Installing distribute..
...
...
.....................done.
Installing pip................done.

This directory is where the WSGI server within Apache will find the python
files. You will need to tell it this with a configuration parameter

	code-block::

	WSGIPythonHome /usr/local/pythonenv/BASELINE

RoseNMS Environment

The RoseNMS Environment is made almost the same way and will be located
at /usr/local/pythonenv/rnms. It is best to install TurboGears first as
it pulls in the right sort of dependencies, then install RoseNMS.

$ cd /usr/local/pythonenv
$ virtualenv --no-site-packages rnms
New python executable in rnms/bin/python
Installing distribute..
...
...
.....................done.
Installing pip................done.
$ source rnms/bin/activate
(rnms)$ easy_install -i http://tg.gy/current Turbogears2
(lots of lines of install as things happen!)

(rnms)$ easy_install /tmp/RoseNMS_NMS-0.0.0dev-py2.7.egg

There will be an awful lot of work going on when you try to install
RoseNMS as easy_install will go off and download all the dependent
packages that are required for RoseNMS to run correctly.

Apache Configuration

The apache configuration shown below basically tells Apache where to
find the baseline files and where the wsgi file is located. We have
also made 3 WSGI daemons with a name of wsgid. The values given don’t
have to be the same but are the defaults seen in most documentation.

WSGIPythonHome /usr/local/pythonenv/BASELINE/
WSGIDaemonProcess example.com threads=10 processes=3 display-name=wsgid
WSGIProcessGroup example.com
<VirtualHost *:80>
 ServerName example.com
 WSGIScriptAlias /rnms /home/rosenberg/apache/rnms.wsgi
</VirtualHost>

WSGI File

import sys
prev_sys_path = list(sys.path)
import site
site.addsitedir('/usr/local/pythonenv/rnms/lib/python2.7/site-packages')

new_sys_path = []
for item in list(sys.path):
 if item not in prev_sys_path:
 new_sys_path.append(item)
 sys.path.remove(item)
sys.path[:0] = new_sys_path
#End of virtualenv support

This adds your project's root path to the PYTHONPATH so that you can import
top-level modules from your project path. This is how TurboGears QuickStarted
projects are laid out by default.
import os, sys
sys.path.append('/usr/local/pythonenv/rnms')

Set the environment variable PYTHON_EGG_CACHE to an appropriate directory
where the Apache user has write permission and into which it can unpack egg files.
os.environ['PYTHON_EGG_CACHE'] = '/home/rnms/python-eggs'

Initialize logging module from your TurboGears config file
from paste.script.util.logging_config import fileConfig
fileConfig('/home/rnms/production.ini')

Finally, load your application's production.ini file.
from paste.deploy import loadapp
application = loadapp('config:/home/rnms/production.ini')

 Copyright 2012-2013 Craig Small.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	RoseNMS 0.1 documentation

Hosts and Attributes

Zones

Zones are groupings of Hosts. They can be used for displaying a group together
or for making a set of hosts visible.

Hosts

Hosts are the devices that you want to manage. They are essentially something
that has an IP address (either IPv4 or IPv6) and generally would also have
some sort of SNMP Agent. The Agent is not essential but is very useful as
most Attribute Types will need SNMP. The main exeption being
Reachability,
TCP Ports and NTP.

As expected, Hosts have a management address, a name, optionally three
`SNMP Communities`_ (read only, read/write and trap) plus some other
parameters such as `Autodiscovery Policies`_. Hosts also belong to
a single Zone.

Hosts do not have an User but may have a default User for Attributes
found during Autodiscovery. This makes sense when a single Host
may service many User’s services. For example, a common switch may
have user A on port 1 and user B on port 2, or a particular
server may have several websites owned by different users.

Attributes

An Attribute is one of the major models that is used in RoseNMS.
It is effectively something that you want to monitor or track within
a Host. Attributes will have RRD values to update or a status to track
or perhaps both these options.

The simplest idea of an Attribute is a physical interface. This
Attribute Type has counters that turn into graphs such as an error
or packet rate and the operational and administrative status that
change the state of the Attribute. All other Attributes are variations
of this idea, but follow the same basic concept.

Besides the Host it is bound to, an Attribute can have a SLA. The
particular SLA that can be assigned to an Attribute is based upon the
Attribute Type. The SLA uses the last 30 minutes of data to determine
if the data are within some specification.

Attributes can have a poll priority. While it is not essential to set
an Attribute for a host with a priority, it greatly helps with the
efficiency of the poller.

Attributes with the poll priority are selected before normal Attributes.
If Attributes within a host with poll priority set are down, then the
remaining Attributes within that host are no polled. This means that
with careful selection of prioritized Attributes, if an entire host
is down then the poller doesn’t waste effort attempting to get to
the host. The most common Attribute Type to assign for priority
is Reachability. The idea being that if you cannot ping the host,
then you cannot reach it and it doesn’t make sense to attempt to
get any more data out of the device.

With a prioritized Attribute down for a Host, only the prioritized
Attributes are polled.

 Copyright 2012-2013 Craig Small.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	RoseNMS 0.1 documentation

Attribute Types

The types of Attributes that can be discovered and polled is setup in the
configuration. RNMS comes out with a variety of Attribute Types and you
can add your own.

Apache

Polls the server status for an Apache webserver. Rnms displays the statistics
that this feature exposes, such as number of workers or accesses.

APC

Polls the APC UPS devices that have SNMP enabled.

Alteon Load Balancers

Alteon Load Balancers are reasonably old devices but still in use in some
places. As well as the System Information, which tracks the usual things
like CPU loads and memory usage, the Real and Virtual Servers and Services
are tracked for their utilisation and response times. The state of these
elements is also tracked and can send alarms.

Applications

BGP Neighbors

These Attribute Types are the BGP (Border Gateway Protocol) peers. The
number of advertised and received routes, as well as messages in and out
are tracked. The state of the Attribute follows the state of the peer.
Information comes via SNMP using the BGP peer MIB based on RFC 1269 [https://tools.ietf.org/html/rfc1269.html].

Brocade FC Ports

Brocade Sensors

Cisco 802.11X Device

Cisco NAT

Cisco PIX

Cisco Power Supply

Cisco SA Agent

Cisco System Info

An Attribute Type for the CPU or system of Cisco devices. Displays the
memory and CPU statistics of the device as well as the TCP connection
count.

Devices that have SNMP enabled and a Cisco enterprise for sysObjectId are
polled for this system information.

Cisco Temperature
Cisco Voltage

Compaq CPQ MIB

Monitors the Compaq CPQ environmental elements such as Fans, Power Supplies,
Temperature and Physical Drives.

Dell Chassis

Fibre Channel Ports

IIS Webserver Information

Linux/Unix System Info

NTP

The poller checks the status of NTP servers on the host by using NTP standard
control messages. If the host has at least one synchronised peer it is
considered synchronised and up.

OS/400 System Info

Physical Interfaces

This is the standard ifTable interfaces that are discovered via SNMP.
Almost any device that supports SNMP will have some interfaces from ifTable.
The ip address table is also polled at the same time and if there is a match
the addresses are applied to the interface.

The usual statistics such as octect and packet counts as well as errors are
polled and the attribute follows the ifOper column of the ifTable for status.

Reachablity

All devices that have an IP address are assumed to be reachable. The Reachable
Attribute Type requires fping and/or fping6 to be installed. Round trip
time (RTT) and packetloss are graphed for these Attribute Types.

Sensors

Solaris System Info

Storage

Storage Attribute Types are discovered via SNMP by scanning the hrStorageTable.
This table considers storage to be mainly disk drives as well as memory as
“storage”. The graphs for these types show the total and used amount for
the device. There is no state tracked.

TCP Ports

Systems can be port scanned to find open TCP ports. These ports then have
their response time captured by connecting to the ports and, if SNMP is
available, the number of connections on that port. There is also an option
to check the content from the port for specific text.

For TCP ports to be autodiscovered, the nmap or nmap6 binary needs to be
installed.

UPS and Lines

Queries for either a standard RFC 1628 [https://tools.ietf.org/html/rfc1628.html] or a Mitsubishi UPS using SNMP. Both
the device status (such as load or on-battery) and the input and output
lines can be tracked.

Windows System Info

 Copyright 2012-2013 Craig Small.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	RoseNMS 0.1 documentation

Users and Permissions

RoseNMS uses the repoze.what method of authorization which is based upon
three sets of models.

Users

The first model is the User. This is usually a person although it can be
a role. A User has a username and a password and the combination of these
permits access to RoseNMS. All Attributes within the system are owned
by a User, which can provide them with a limited read-only access to the
state of the Attribute.

A User model also has an email_address which is used to send Triggers
if they are setup for it.

Permissions

For each method within each controller the second model called a Permission
is used to determine access. The following permissions are defined for
RoseNMS:

	Name
	Description

	UserRO
	Read-Only Access to User, Group and Permissions

	UserRW
	Read/Write Access to User, Group and Permissions

	HostRO
	Read-Only Access to Host and Attribute

	HostRW
	Read/Write Access to Host and Attribute

	AdminRO
	Read-Only Access to remaining models

	AdminRW
	Read/Write Access to remaining models

There is likely to me more Permissions created in future versions of RoseNMS
depending on user feedback.

Groups

Groups are the glue between Permissions and Users. Users cannot have
permissions granted to them directly, but belong to Groups which do have
Permissions assigned to them. A User can belong to none, one or many Groups
and a Group can be assigned multiple Permissions. As the relationship
between a Group and a Permission is many-to-many, different Groups can
have the same Permision assigned to them.

There are several pre-defined Groups within a standard installation
of RoseNMS.

	Group Name
	Permissions

	User View
	UserRO

	User Admin
	UserRW

	Host View
	HostRO

	Host Admin
	HostRW

	System View
	UserRO, HostRO, AdminRO

	System Admin
	UserRW, HostRW, AdminRW

Footnotes

	[1]	In JFFNMS users (which had admin access) and clients (which owned the interface) were separate models, they are combined in RoseNMS.

 Copyright 2012-2013 Craig Small.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	RoseNMS 0.1 documentation

Events

Events within Rnms are something that has happened. They are created by
either a poller backend or a consolidator and have to be linked to a Host
or an Attribute. Plain Events only have an created time, they do not have
a concept of duration like alarmed Events.

Alarmed Events

If an Event is of an EventType that permits alarms and is associated with
an Attribute then the Event will be marked as an Alarmed Event. These
items have a stop_time which can either be set at creation or when
another Event of the same EventType and Attribute but different state
(usually Up) comes along.

Event Type

All Events have an EventType. This is specific domain or aspect of an
Attribute or Host. For example an interface Attribute may have an operational
status change or Error count exceeded EventType. Using Event Types means
it is easier to determine when the Event has been cleared, or its a duplicate
Event.

Event State

All Events have a State. While an EventType will tell you the type of event,
such an interface status change, or a TCP port result, the state will tell
you more about the Event, such as the interface status is now Down or the
TCP port is now Open.

A departure from JFFNMS is that the Event State has a StateColor which
sets the color in the event viewer and the Attribute and Host maps. Previously
an Events colour was determined by its Severity which was based upon the
EventType. Now the state sets the colour.

How Attribute state is determined

An Attributes state is inherited purely from the collection of active
alarmed Events for that Attribute. When Rnms detects that the collection
of Events has changed for an Attribute, all of the active (that is, not
have a corresponding stop event or timed out) alarmed Events for that
Attribute are collected and the one with the lowest priority setting
has its state copied to the Attribute.

As the EventState has a link to the StateColor table, this is what also
determines the colour of an Attribute in the maps.

The state of a host is similiarly determined using the same method with the
exception that the active alarmed events for all Attributes within are
host are evaluated.

 Copyright 2012-2013 Craig Small.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	RoseNMS 0.1 documentation

SNMP Traps

SNMP traps are messages that are sent from SNMP Agents, such as routers or
servers to a SNMP Manager, such as RoseNMS.

For the purposes of how they are handled, a trap has the following fields:

	Source IP address

	Trap OID

	One or more VarBinds which are OID value keypairs, similair to a python dictionary.

SNMP v1 traps use a different format but they are converted to use the same
format.

SNMP Trap Daemon

When the main rnmsd is started up, a thread is opened to create a receiver
for SNMP traps. Traps are sent via UDP and may be high frequency or even
spoofed (where the source IP address is forged). The daemon does two
checks on the incoming trap.

First, the trap source IP address is checked against the known list of
configured hosts. To minimize impact on the database, the result is cached
in a local dictionary. If there is no Host with that IP address, the trap
is discarded.

Secondly the trap is checked against duplicates. Essentially if the trap
from the same source IP address with the same trap OID is seen within 5
seconds of another trap with the same properties, it is discarded. A lot
of implementations send several traps for the same event and this ensures
there is only one forwarded. The disadvantage is that if there is a down trap and
then very soon after an up trap and they use the same OID the second
one won’t be processed.

How RoseNMS treats traps

RoseNMS assumes that a particular trap (identified by a trap OID)
is for a specific Attribute Type. For example the ifDown traps describe
something happening to a physical interface, while a temperature alarm
trap is connected to either a sensor or perhaps the element (e.g. CPU).
If there are multiple Attribute Types that could be applied to the same
trap OID, multiple Trap Matches can be given for that OID and then the
Trap Match commands (e.g. matching on description) can be used to determine
which is the correct one for this trap.

At set intervals, currently 30 seconds, a trap consolidator is run on the
raw traps. The input data is Host ID, trap OID and the VarBinds. The
consolidator first looks for all Trap Matches that first match exactly the
trap OID and then optionally secondly on the VarBinds. The point of the
Trap Match is to find an Attribute and a value or multiplie values
that are passed along to the backend.

Just like Pollers have several commands, Trap Matches do too that process
the VarBinds of the trap to find the Attribute. Only Attributes that have
the correct type (defined by the Trap Match) will be looked at.

Trap Match Commands

The following commands are used by Trap Match within the consolidator to
locate the attribute.

match_index_state : The Attribute is found by examining the VarBind
with the specified OID and matching against the VarBind value and the
Attribute’s index field.

The value is either fixed or if it is an OID the VarBinds are searched
for this OID. The result can be mapped to another value before returning,
such as 1=down,2=up.

 Copyright 2012-2013 Craig Small.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	RoseNMS 0.1 documentation

rnmsd

SYNOPSYS

rnmsd [-hqv] [-c config] [-p pidfile]

DESCRIPTION

rnmsd is the main RoseNMS daemon. This main program spawns off
several threads to take care of the back-end of the NMS systems. For
most installations, starting this program is all that is required.
The threads are

	Poller - collects statistics and status on attributes

	Consolidator - converts raw events such as syslog lines into real
events and alarms

	SNMP Trapd - collects SNMP traps from remote devices and stores
them for subsequent Consolidator processing

OPTIONS

	
-c file, --config file

		Read configuration settings from file

	
-d, --debug
	Turn on debugging

	
-h, --help
	Show help message and exit

	
-p file, --pidfile file

		Write programs PID to pidfile

	
-q, --quiet
	Log critical messages only

	
-v, --verbose
	Increase verbosity of logging

SEE ALSO

	RoseNMS Documentation [http://rosenberg-nms.readthedocs.org/en/latest/]

	rnms_poller (1)

	rnms_info (1)

 Copyright 2012-2013 Craig Small.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	RoseNMS 0.1 documentation

rnms_info

SYNOPSYS

rnms_info [-dhqv] [-c config] [-p pidfile] qtype id...

DESCRIPTION

rnms_info is a tool to query the database on various models that RoseNMS
contains. These queries are meant to assist administrators in troubleshooting,
for example working out what Host a particular Attribute belongs to.

The info tool can query the following models: attributes, attribute types,
hosts, poller sets, autodiscovery policies, slas and triggers. The second
parameter is the ID of the item you want to query.

OPTIONS

	
-c file, --config file

		Read configuration settings from file

	
-d, --debug
	Turn on debugging

	
-h, --help
	Show help message and exit

	
-p file, --pidfile file

		Write process PID to file

	
-q, --quiet
	Log critical messages only

	
-v, --verbose
	Increase verbosity of logging

ID ID of the items you want information about

QTYPE Type of query (model) to perform, see DESCRIPTION for list

EXAMPLE

For example, to look at attribute #2, you would use the following
commands:

$ rnms_info attribute 2

==
Attribute | 2: Async5 (index: 5)
--
Host | 5: Cisco1700
State (admin/oper) | down/down
Attribute Type | 4: Physical Interfaces
Poller Set | 42: SNMP Interface (enabled:True)
Poll Priority | False
SLA | 1: No SLA
Created | 2012-03-11 10:34:58
Next SLA | 2013-09-30 12:26:29.878441
Next Poll | 2013-10-07 14:58:20.189101
--
Fields
IP Address | 192.168.101.1
IP Mask | 255.255.255.252
Peer Address | 192.168.101.2
Speed | 38000

Each type of query will display detailed information about the requested
object. There can also be cross references, so to see information about
the above attributes host, you would query host 5.

SEE ALSO

	RoseNMS Documentation [http://rosenberg-nms.readthedocs.org/en/latest/]

	rnms_poller (1)

	rnmsd (1)

 Copyright 2012-2013 Craig Small.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	RoseNMS 0.1 documentation

Index

 R

R

 	

 	
 RFC

 	

 	RFC 1269

 	RFC 1628

 Copyright 2012-2013 Craig Small.
 Created using Sphinx 1.3.5.

 _static/up.png

_static/down-pressed.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/plus.png

search.html

 Navigation

 		
 index

 		RoseNMS 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012-2013 Craig Small.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

