

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	rolne 0.2.7 documentation

rolne’s Documentation

rolne data type: Recursive Ordered Lists of Named Elements

Contents:

	An Overview of rolne
	Comparing to Lists and Dictionaries

	Let’s Start with an Example

	Relationships

	Added Bonus: Sequence References

	Conclusion

	rolne’s Class Methods

 Copyright 2014, Maker Redux Corporation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	rolne 0.2.7 documentation

An Overview of rolne

A rolne is a new data type that is ultra-inclusive. As such, it is a useful tool to interpret complex (and less-predictable) data sets such as XML documents, MARDS documents, and configuration files.

Comparing to Lists and Dictionaries

If you are already familiar with Python’s dictionaries and lists, then the following might give useful insight into what I mean by ultra-inclusive:

A rolne is like a dictionary because you use a name to reference elements:

>>> zippy["size"] = 4

A rolne is like a list because the elements are _ordered_.

>>> zippy.append("fruit", "apple")
>>> zippy.append("fruit", "bannana")
>>> zippy.append("fruit", "orange")
>>> zippy.append("fruit", "bannana")
>>> zippy.list_values("fruit")
['apple', 'bannana', 'orange', 'bannana']

And can be referred to by an index:

>>> zippy.has("fruit", "bannana", 1)
True

	But,

	
	In a dictionary, the names (keys) must be unique.

In a rolne, multiple items can (and often do) have the same name.

	In a list, the place in the list is strictly an integer index.

In a rolne, the place in the list is based on the name, value, and index.

Let’s Start with an Example

Let’s borrow one of the examples from XML docs at w3schools.com (http://www.w3schools.com/xml/xml_attributes.asp):

<messages>
 <note id="501">
 <to>Tove</to>
 <from>Jani</from>
 <heading>Reminder</heading>
 <body>Don't forget me this weekend!</body>
 </note>
 <note id="502">
 <to>Jani</to>
 <from>Tove</from>
 <heading>Re: Reminder</heading>
 <body>I will not</body>
 </note>
</messages>

If this were parsed into a rolne, it would end up looking like this

>>> my_xml
%rolne:
messages is None
 note is None
 id = 501
 to = Tove
 from = Jani
 heading = Reminder
 body = Don't forget me this weekend!
 note is None
 id = 502
 to = Jani
 from = Tove
 heading = Re: Reminder
 body = I will not

In this example, the root level of the my_xml has a single item in it:

>>> my_xml.list_keys()
[("messages", None, 0)]

Take note of the ‘list’ of keys: it contains one item. It has a name of "messages", a value of None, and an index of zero (0). The index is zero because it is the first name/value pair to contain "messages"/None.

If you wanted to see the children of messages, one could reference it by key:

>>> my_xml["messages", None, 0]
%rolne:
note is None
 id = 501
 to = Tove
 from = Jani
 heading = Reminder
 body = Don't forget me this weekend!
note is None
 id = 502
 to = Jani
 from = Tove
 heading = Re: Reminder
 body = I will not

Notice that all three parts of the key where used. That is a means of explicitly identifying one of the children. However, as a conveniece, you don’t have to use all three parts. So, the following works the same:

>>> my_xml["messages"]
%rolne:
note is None
 id = 501
 to = Tove
 from = Jani
 heading = Reminder
 body = Don't forget me this weekend!
note is None
 id = 502
 to = Jani
 from = Tove
 heading = Re: Reminder
 body = I will not

If not specified, the following are the base assumptions:

	name is <any>

	value is <any> (when locating, value is None when specifying)

	index is 0

So, ["messages"] finds the first item with a name of messages regardless of the value.

Now, let’s dive down further:

>>> my_xml["messages"]["note", None, 1]
%rolne:
id = 502
to = Jani
from = Tove
heading = Re: Reminder
body = I will not

In this case, we are looking at the first "messages"/None and the second "note"/None. Notice the 1 index. That references the second item of any "note"/None items.

Relationships

Let me point a variable i’ll call ‘here‘ at a specific location.

>> here = my_xml["messages"]["note", None, 1]

Now let’s examine some of the relationships of the variable called “here”:

[image: _images/relations.png]
Let’s try some stuff out:

>>> here.name
note
>>> here.value
None
>>> here.index
1
>>> here.parents_name()
messages
>>> here.value("id")
502
>>> here.value("heading")
Re: Reminder
>>> here.list_values("to")
["Jani"]
>>> here.list_values("to")[0]
Jani
>>> here.find("to")
%rolne:
empty
>>> here.find("to").value
Jani
>>> here.find("to", "Jani", 0).value
Jani
>>> here["to"].value
Jani

BTW, what is the difference between here.find("to") and here["to"]. Allow me to demonstrate with a search for a key that does not exist:

>>> here["blah"]
KeyError: "('blah',) not found"
>>> here.find("blah")
None

Essentially, the find method avoids key errors by returning None rather than a subtending rolne.

Most of the expected behaviors one would expect from a pythonic class are supported. For example, iteration:

>>> for item in here:
... print "name='{}', value='{}', index={}".format(item.name, item.value, item.index)
...
name='id', value='502', index=0
name='to', value='Jani', index=0
name='from', value='Tove', index=0
name='heading', value='Re: Reminder', index=0
name='body', value='I will not', index=0

And, of course, one can add/remove/update items:

>>> here["to"].value = "Steve"
>>> here["to"].value
Steve
>>> here.append("date", "2014-03-23")
>>> here.append("code", [0, 39, 2])
>>> del here["from"]
>>> print here
%rolne:
id = 502
to = Steve
heading = Re: Reminder
body = I will not
date = 2014-03-23
code = [0, 39, 2]

Added Bonus: Sequence References

In addition the basics, rolne also supports ‘meta’ sequences strings. Essentially, as each element is added rolne a new tracking string is also assigned to the name/value pair. One can simply ignore this. It is not critical to rolne’s use. But it can be a useful short cut for remembering where “something” is.

One can see the sequences by using the ._explicit() method:

>>> print here._explicit()
%rolne:
[19] id = 502
[20] to = Steve
[22] heading = Re: Reminder
[23] body = I will not
[32] date = 2014-03-23
[33] code = [0, 39, 2]

Some items to take note of:

	Don’t try to “predict” the auto-numbering. You can only count on it’s consistence within the context of a single rolne instance. There is no guarantee you will get the same numbering every time you run your program.

	Changing the name or value (or index) of an element does NOT change its sequence. The sequence is only set on insertion.

You can purposely set your own key. The rolne simply checks to make sure the seqence given is unique.

 >>> here.append("something", True, seq="hello")
 >>> print here._explicit()
%rolne:
[19] id = 502
[20] to = Steve
[22] heading = Re: Reminder
[23] body = I will not
[32] date = 2014-03-23
[33] code = [0, 39, 2]
[hello] something = True

Conclusion

You have just been given a quick summary. There is actaully far more to things than this. For example, one can:

	‘replace’ child lines with other rolnes or child lines

	copy with prefix and suffix clauses for sequences

	list the lineage of any element

And lot’s more. Have fun.

 Copyright 2014, Maker Redux Corporation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	rolne 0.2.7 documentation

rolne’s Class Methods

	
class rolne.rolne(in_list=None, in_tuple=None, ancestor=None, NS=None)

	
	
append(name, value=None, sublist=None, seq=None)

	Add one name/value entry to the main context of the rolne.

If you are wanting to “append” another rolne, see the ‘extend’
method instead.

Example of use:

>>> # setup an example rolne first
>>> my_var = rolne()
>>> my_var.append("item", "zing")
>>> my_var["item", "zing"].append("size", "4")
>>> my_var["item", "zing"].append("color", "red")
>>> print my_var
%rolne:
item = zing
 size = 4
 color = red

>>> my_var.append("item", "zing")
>>> my_var["item", "zing", -1].append("size", "2")
>>> my_var["item", "zing", -1].append("color", "blue")
>>> print my_var
%rolne:
item = zing
 size = 4
 color = red
item = zing
 size = 2
 color = blue

New in version 0.1.1.

	Parameters:	
	name – The key name of the name/value pair.

	value – The key value of the name/value pair. If not passed, then the value
is assumed to be None.

	sublist – An optional parameter that also appends a subtending list of entries.
It is not recommended that this parameter be used.

	
append_index(name, value=None, sublist=None, seq=None)

	Add one name/value entry to the main context of the rolne and
return the index number for the new entry.

If you are wanting to “append” another rolne, see the ‘extend’
method instead.

Example of use:

>>> # setup an example rolne first
>>> my_var = rolne()
>>> index = my_var.append_index("item", "zing")
>>> print index
0
>>> my_var["item", "zing", index].append("size", "4")
>>> my_var["item", "zing", index].append("color", "red")
>>> print my_var
%rolne:
item = zing
 size = 4
 color = red

>>> index = my_var.append_index("item", "zing")
>>> print index
1
>>> my_var["item", "zing", index].append("size", "2")
>>> my_var["item", "zing", index].append("color", "blue")
>>> print my_var
%rolne:
item = zing
 size = 4
 color = red
item = zing
 size = 2
 color = blue

New in version 0.1.4.

	Parameters:	
	name – The key name of the name/value pair.

	value – The key value of the name/value pair. If not passed, then the value
is assumed to be None.

	sublist – An optional parameter that also appends a subtending list of entries.
It is not recommended that this parameter be used.

	Returns:	An integer representing the index of the newly inserted name/pair.

	
append_seq(name, value=None, sublist=None, seq=None)

	Add one name/value entry to the current context of the rolne and
return the new sequence string.

If you are wanting to “append” another rolne, see the ‘extend’
method instead.

Example of use:

>>> # setup an example rolne first
>>> my_var = rolne()
>>> my_var.append("item", "zing")
>>> my_var["item", "zing"].append("size", "4")
>>> my_var["item", "zing"].append("color", "red")
>>> print my_var
%rolne:
item = zing
 size = 4
 color = red

>>> my_var.append("item", "zing")
>>> my_var["item", "zing", -1].append("size", "2")
>>> my_var["item", "zing", -1].append("color", "blue")
>>> print my_var
%rolne:
item = zing
 size = 4
 color = red
item = zing
 size = 2
 color = blue

New in version 0.1.1.

	Parameters:	
	name – The key name of the name/value pair.

	value – The key value of the name/value pair. If not passed, then the value
is assumed to be None.

	sublist – An optional parameter that also appends a subtending list of entries.
It is not recommended that this parameter be used.

	
find(*argv)

	Locate a single rolne entry.

This function is very similar to simply doing a dictionary-style
lookup. For example:

new_rolne = my_var.find(“test”, “zoom”, 4)

is effectively the same as:

new_rolne = my_var[“test”, “zoom”, 4]

The biggest difference is that if entry at [“test”, “zoom”, 4] does
not exist, the dictionary-style lookup generates a key error. Whereas
this method simply returns None.

Example of use:

>>> # setup an example rolne first
>>> my_var = rolne()
>>> my_var.append("item", "zing")
>>> my_var["item", "zing"].append("size", "4")
>>> my_var["item", "zing"].append("color", "red")
>>> my_var["item", "zing"]["color", "red"].append("intensity", "44%")
>>> my_var["item", "zing"].append("reverse", None)
>>> my_var.append("item", "broom")
>>> my_var["item", "broom", -1].append("size", "1")
>>> my_var["item", "broom", -1].append("title", 'The "big" thing')
>>> my_var.append("item", "broom")
>>> my_var["item", "broom", -1].append("size", "2")
>>> my_var["item", "broom", -1].append("title", 'Other thing')
>>> my_var.append("code_seq")
>>> my_var["code_seq", None].append("*", "r9")
>>> my_var["code_seq", None].append("*", "r3")
>>> my_var["code_seq", None].append("*", "r2")
>>> my_var["code_seq", None].append("*", "r3")
>>> my_var.append("system_title", "hello")
>>> #
>>> print my_var.find("item","broom",1)
%rolne:
size = 2
title = "Other thing"

>>> print my_var.find("item","broom",2)
None
>>> print my_var["code_seq", None].find("*","r3")
%rolne:
%empty

New in version 0.1.2.

	Parameters:	
	name – The key name of the name/value pair.

	value – The key value of the name/value pair. If not passed, then the value
is assumed to be empty (None).

	index – The index of the name/value pair. if not passed, then the index is
assumed to be 0.

	Returns:	Returns either a rolne that points to the located entry or None if
that entry is not found.

	
name

	Name property.

This property represents the name of the rolne in its current context.
For a new or original rolne, the name is always None. That is because
the root of a rolne cannot conceptually have its own name.

It is possible to both read and write to the name property. Any change to
name is also seen in other contexts. It is strongly recommended that name
be given an immutable value.

It is not possible to delete the name property.

Example of use:

>>> # setup an example rolne first
>>> my_var = rolne()
>>> my_var.append("item", "zing")
>>> my_var["item", "zing"].append("size", "4")
>>> my_var["item", "zing"].append("color", "red")
>>> my_var["item", "zing"]["color", "red"].append("intensity", "44%")
>>> my_var["item", "zing"].append("reverse", None)
>>> my_var.append("item", "broom")
>>> my_var["item", "broom", -1].append("size", "1")
>>> my_var["item", "broom", -1].append("title", 'The "big" thing')
>>> my_var.append("item", "broom")
>>> my_var["item", "broom", -1].append("size", "2")
>>> my_var["item", "broom", -1].append("title", 'Other thing')
>>> #
>>> print my_var.name
None
>>> temp = my_var["item", "broom", 2]
>>> print temp.name
item
>>> temp.name = "hello"
>>> print temp.name
hello
>>> print my_var["hello", "broom", 2].name
hello

New in version 0.2.1.

	
seq

	Sequence property.

This property represents the sequence assigned to the rolne in its current context.
For a new or original rolne, the seq is always None. That is because
the root of a rolne cannot conceptually have a sequence.

You can both read and write seq. However, it is not possible to delete. If written, the
given value is always converted to a string. TODO: test string conversion

New in version 0.2.1.

	
upsert(name, value=None, seq=None)

	Add one name/value entry to the main context of the rolne, but
only if an entry with that name does not already exist.

If the an entry with name exists, then the first entry found has it’s
value changed.

NOTE: the upsert only updates the FIRST entry with the name found.

The method returns True if an insertion occurs, otherwise False.

Example of use:

>>> # setup an example rolne first
>>> my_var = rolne()
>>> my_var.upsert("item", "zing")
True
>>> my_var["item", "zing"].append("color", "blue")
>>> print my_var
%rolne:
item = zing
 color = blue

>>> my_var.upsert("item", "zing")
False
>>> print my_var
%rolne:
item = zing
 color = blue

>>> my_var.upsert("item", "broom")
False
>>> print my_var
%rolne:
item = broom
 color = blue

New in version 0.1.1.

	Parameters:	
	name – The key name of the name/value pair.

	value – The key value of the name/value pair. If not passed, then the value
is assumed to be None.

	Returns:	Returns True if the name/value was newly inserted. Otherwise, it
returns False indicated that an update was done instead.

	
value

	value property.

This property represents the value (of name/value) assigned to the rolne in its
current context. For a new or original rolne, the seq is always None. That is because
the root of a rolne cannot conceptually have a value.

You can both read and write value. If it is deleted, it is simply set to None.

New in version 0.2.1.

 Copyright 2014, Maker Redux Corporation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	rolne 0.2.7 documentation

 Python Module Index

 r

 			

 		
 r	

 	
 	
 rolne	

 Copyright 2014, Maker Redux Corporation.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	rolne 0.2.7 documentation

Index

 A
 | F
 | N
 | R
 | S
 | U
 | V

A

 	

 	append() (rolne.rolne method)

 	append_index() (rolne.rolne method)

 	

 	append_seq() (rolne.rolne method)

F

 	

 	find() (rolne.rolne method)

N

 	

 	name (rolne.rolne attribute)

R

 	

 	rolne (class in rolne)

 	

 	(module)

S

 	

 	seq (rolne.rolne attribute)

U

 	

 	upsert() (rolne.rolne method)

V

 	

 	value (rolne.rolne attribute)

 Copyright 2014, Maker Redux Corporation.
 Created using Sphinx 1.2.2.

 _images/relations.png
here's parent
(also, here's progenitor)

here's sibling

root
no name

no value :
no index id = 501

heading = Reminder
body = Don't forget me this weekend!

heading = Re: Reminder
body = I will not here's children
here:

name of 'note’

value of None (nothing)
index of 1

_static/ajax-loader.gif

_static/plus.png

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/comment-bright.png

_static/comment.png

