

    
      
          
            
  
Roll Your Own documentation contents



	Getting started
	Welcome to Roll Your Own

	Quick install guide

	Commerce Framework Tutorial

	Populate Framework Tutorial





	Best Practices Guides
	eCommerce Best Practices





	API Reference
	Summary syntax

	Summary instance methods

	Populator syntax










Indices, glossary and tables


	Index

	Module Index









          

      

      

    

  

    
      
          
            
  
Getting started



	Welcome to Roll Your Own

	Quick install guide

	Commerce Framework Tutorial

	Populate Framework Tutorial






See also

If you’re new to Django [http://www.djangoproject.com/] and Python [http://python.org/], you may want to read up about them. A useful starting guide is in the Django documentation [http://docs.djangoproject.com/en/dev/intro/].







          

      

      

    

  

    
      
          
            
  
Welcome to Roll Your Own

The Django Web Development Framework was developed for the perfectionist developer, someone who wants things done in a particular way. Django does a very good job at allowing and almost anything, it is helpful for most things you want to do, but stays out of the way when you want to do something unexpected.


Approach

In keeping with this approach, the RollYourOwn frameworks aim to give you the developer as much freedom as possible. A few things are especially important:


	You (the developer) have full control over your database models

	Any inherent complexity is encapsulated in the framework (which is well tested)

	The framework encourages well organised, concise and reusable code




The developer in control of their models


Note


	The frameworks do not make any assumptions about your desired database model








Containing complexity


Note


	Any inherent complexity in this domain should be in the framework, where it is tested and analysed by more people








Well organised, concise and reusable


Note


	Provides an clear, interface for the various components of your application










What next?

You might like to read the Quick install guide or start reading through the Commerce tutorial.







          

      

      

    

  

    
      
          
            
  
Quick install guide

The easiest way to install Roll Your Own is to use use easy_install or pip you have have them installed. If that’s the case, use one of the following commands:

pip install rollyourown
easy_install rollyourown





If you don’t have easy_install or pip installed, you will need to do things manually.
Firstly, install Django by following the installation instructions at http://docs.djangoproject.com/en/dev/intro/install/.
Next download the RollYourOwn release from http://code.google.com/p/rollyourown/. To unpack and install it, run the following from your shell:

tar xvzf rollyourown-1.0.tar.gz
cd rollyourown-1.0/
python setup.py install





That’s it, you’ve installed everything you need to install. You can now try the tutorial.


Development version

For those you like to help out, you can check out the development version here:

git clone git@github.com:willhardy/Roll-Your-Own.git











          

      

      

    

  

    
      
          
            
  
Commerce Framework Tutorial

This is designed as a framework, not an app, so you need to write your own models. Once you have done this, define a Summary class, which describes how your cart/order/invoice will operate.


Concept

To maximise flexibility, I’ve tried to identify the core features of carts, orders, invoices or any financial summary. These are:


	items (a many-to-many collection of things to sum up, eg products, work sessions, discounts, vouchers)

	extras (an global added cost or discount, eg tax, delivery, discount)

	totals (a sum of some or all of the above, eg pretax total, total)



This is done to keep things as flexible as possible and divide a cart into parts which operate similarly. For example, a discount could be a single “extra” that is applied to a cart, or you could allow a user to apply several discounts to their cart (several discount “items”). The totals are generated by the framework, based on what you define should be included.




Basic shopping cart

To begin you need to create your own cart app with an appropriate model. Just as in the Django tutorial [http://docs.djangoproject.com/en/dev/intro/tutorial01/], create a new app and edit your models.py file, adding the following three models:

from django.db import models

class Product(models.Model):
    name = models.CharField(max_length=100)
    price = models.DecimalField(max_digits=10, decimal_places=2)

class Cart(models.Model):
    items        = models.ManyToManyField(Product, through="CartItem")

class CartItem(models.Model):
    product  = models.ForeignKey(Product)
    cart     = models.ForeignKey(Cart)
    quantity = models.PositiveIntegerField(default=1)

    def get_item_amount(self, instance):
        return self.product.price * self.quantity

    def __unicode__(self):
        return "%dx %s" % (self.quantity, self.product.name)





As you can see, this is a pretty basic shopping cart. Each product has a price and a name, and can be linked to a number of carts with a varying quantity. You are free to modify these models as you wish later, the commerce framework makes no assumptions as to how things are organised.

Let’s create some data for our cart:

>>> from myapp.models import Cart
>>> guitar = Product.objects.create(name="Guitar", price="329.42")
>>> saxophone = Product.objects.create(name="Saxophone", price="672.23")
>>> triangle = Product.objects.create(name="Triangle", price="4.48")
>>> my_cart = Cart.objects.create()
>>> CartItem.objects.create(product=guitar, cart=my_cart)
>>> CartItem.objects.create(product=triangle, cart=my_cart)
>>> CartItem.objects.create(product=saxophone, cart=my_cart, quantity=3)





With your models in hand, you can now create a Summary of your cart.




Cart Summary

This is where the commerce framework comes into the picture. Open up a new file, for example commerce.py and enter the following:

from rollyourown import commerce

class CartSummary(commerce.Summary):
    items    = commerce.Items(attribute="items", item_amount_from="get_item_amount")
    delivery = commerce.Extra()
    total    = commerce.Total()

    def get_amount_delivery(self, instance):
        return "10.00"





This summary will describe our cart. It defines a cart as having a number of items (items), an extra cost (delivery) and a total (total). The summary knows where to find the items (by default it looks for an attribute in the model with the same name, items). The amount of this extra cost (delivery) is found by default by looking for a method call get_amount_X where X is the name of the extra. Conveniently, we defined a method get_amount_delivery which provides this extra cost (fixed at 10.00).

Our total is then generated automatically, by adding everything together in the CartSummary. We can try this out using the shell.

Lets see what the summary can tell us about the cart we filled earlier:

>>> from myapp.commerce import CartSummary
>>> cart_summary = CartSummary(my_cart)
>>> cart_summary.total
Decimal('2360.59')
>>> print cart
1x Guitar      329.42
1x Triangle      4.48
3x Saxophone  2016.69

Delivery        10.00

       Total  2360.59





Great! But it’s not especially impressive; The framework merely added up the cost of the products and added a 10.00 delivery fee. Let’s make things a little more interesting.




New delivery pricing

Revising our CartSummary definition, let’s make the delivery calculation more sophisticated:

from rollyourown import commerce
from decimal import Decimal

class CartSummary(commerce.Summary):
    items    = commerce.Items(attribute="items", item_amount_from="get_item_amount")
    delivery  = commerce.Extra()
    subtotal  = commerce.Total('items')
    total     = commerce.Total()

    def get_amount_delivery(self, instance):
        " Delivery is 10% of the subtotal "
        return (self.subtotal / 10).quantize(Decimal("0.01"))





Now our delivery is calculated as 10% of the cost of the items. We’ve also added a new total (subtotal), which sums only the cost of the items. Let’s see what information our summary provides:

>>> from myapp.commerce import CartSummary
>>> cart_summary = CartSummary(my_cart)
>>> cart_summary.subtotal
Decimal('2350.59')
>>> cart_summary.total
Decimal('2585.65')
>>> cart_summary.delivery.amount
Decimal('235.06')
>>> print cart_summary
1x Guitar      329.42
1x Triangle      4.48
3x Saxophone  2016.69

Delivery       235.06

       Total  2360.59





Now things are getting interesting, we’ve changed our delivery pricing structure without touching our data model.




What else is possible?

This is just a simple demonstration of how everything fits together. The commerce framework has a number of other features, which you can read about in the Summary class syntax reference and the summary class usage. These include:


	automatic and configurable locale-aware currency formatting for amounts

	already-included values, which are removed from a total (eg TAX)

	optional protection against negative values

	sophisticated total calculation

	denormalisation (calculated value caching using model instance)

	utility functions for tax calculation, unique IDs etc









          

      

      

    

  

    
      
          
            
  
Populate Framework Tutorial





          

      

      

    

  

    
      
          
            
  
Best Practices Guides



	eCommerce Best Practices






See also

If you’re new to Django [http://www.djangoproject.com/] and Python [http://python.org/], you may want to read up about them. A useful starting guide is in the Django documentation [http://docs.djangoproject.com/en/dev/intro/].







          

      

      

    

  

    
      
          
            
  
eCommerce Best Practices





          

      

      

    

  

    
      
          
            
  
API Reference



	Summary syntax

	Summary instance methods

	Populator syntax






See also

If you’re new to Django [http://www.djangoproject.com/] and Python [http://python.org/], you may want to read up about them. A useful starting guide is in the Django documentation [http://docs.djangoproject.com/en/dev/intro/].







          

      

      

    

  

    
      
          
            
  
Summary syntax

A summary describes the components of a financial statement (such as an order, shopping cart, or invoice). The data behind these components is stored in your models and can take any form you wish. When you define a Summary class, you describe how your data model forms a financial statement.

To do this, all elements of a financial statement are divided into one of three roles:


	A list of items

	A single extra cost or deduction

	A total of one or more items and extra costs



For example, the following is a very simple Summary class:

from rollyourown import commerce

class CartSummary(commerce.Summary):
    products = commerce.Items()
    delivery = commerce.Extra()
    total    = commerce.Total()





In this typical example, the financial statement (a shopping cart) contains a list of products, an additional cost for delivery and a grand total. All possible elements of financial statements should be able to be put in one of these three roles. Here is a small collection of real world examples.


	Items

	list of products, work sessions, expenses, taxes, deductions/adjustments, discounts, gift vouchers, payments already made, movies watched in hotel room, etc

	Extra

	single discount, single gift voucher, single tax, shipping/delivery cost, commission, fees/surcharges, etc

	Total

	grand total, pretax total, total of all taxes, etc



When this is defined, the framework treats Items and Extra as input and provides Total as output. Side benefits of this process include a very clear organisation of the calculation of these totals. If you need to change how this process is done, it should be very clear what changes are required.

Each summary is eventually linked to a Django model instance. The fields of the model provide the data for the Items and Extra input, and these can be specified as explained below.


Items

When you add a list of items to your summary class, you need to specify which field or attribute from the relevant model provides the required data. This field is generally a ManyToManyField, but could also be a reverse ForeignKey field, if that’s how you’ve defined your model.


	
class rollyourown.commerce.Items(attribute, item_amount_from, cache_amount_as)

	



All arguments are optional.


Arguments


	
Items.attribute

	Which attribute, field or method provides the list of items. By default it is the same as name you give to the Summary class attribute.






	
Items.item_amount_from

	Which attribute, field or method on each item provides the amount to be used in calculating totals.


	If you are referencing the Summary instance, use "self.XYZ", which is called with a single argument (the model instance).

	If you are referencing the model instance, use "model.XYZ". If this is a method, it is called with no arguments.

	You can also pass a callable, which is called with the model instance as an argument.



The default value is "self.get_X_amount", where X is the name of the summary class attribute.






	
Items.editable

	When the summary is displayed as a formset (see Summary Formsets), these fields will be editable.


	If editable is set to True, a standard model formset is used with delete=True.  If the relevant instance is not a Django model instance, then a standard text field will be used, and the instance will be updated (but not saved).

	If editable is set to a string, a standard form field is used for the relevant attribute (using the items model as a reference). A delete form field is also provided. If the relevant instance is not a Django model instance, then a standard text field will be used, and the instance will be updated (but not saved).

	If editable is set to a form, then this form is used. The custom form must accept a keyword argument (instance) and have a .save() method if the data is to be saved.



To Customise the way forms are saved, you can overload the .save_form(formset) method on the Summary class.






	
Items.cache_amount_as

	When a total involving these items is calculated, the amount of each item is stored as an attribute on the relevant model instance. The given string will be the name of this new attribute.  The default value is "AMOUNT".


	This argument cannot be None. Note that, you don’t need to create a field for this, attributes can be added to django models at run time and should not affect the operation of the model. If you do create a field for this value, note that it will not be saved automatically. If you want to store the value, you might like to do so when each item is saved using Django’s usual mechanisms (pre_save signal or overloading the save() method).








Note

One advantage of this framework is that it avoids recalculating things as much as possible. To allow this it makes the assumption that the database does not change once the summary has been created. If you update one of your items or extras after creating the summary, the changes may not appear.






Example

class MySummary(commerce.Summary):
    items    = commerce.Items()
    vouchers = commerce.Items(attribute="gift_vouchers")
    payments = commerce.Items(attribute="payment_set", item_amount_from="model.amount")










Extra

In essence, an extra is simply an amount, which is added to the summary. You can also attach a name and description to this amount to help distinguish it from the others.


	
class rollyourown.commerce.Extra(verbose_name, amount, included, description)

	



All arguments are optional.


Arguments


	
Extra.verbose_name

	Human readable name for this extra cost. For example, "VAT" for value added tax.


	If you are referencing the Summary instance, use "self.XYZ". If it is callable, it is called with a single argument (the model instance).

	If you are referencing the model instance, use "model.XYZ". If this is callable, it is called with no arguments.

	You can also pass a callable, which is called with the model instance as an argument.



The default value is the attribute name this Extra is assigned to, untranslated.






	
Extra.amount

	Which attribute, field or method on each item provides the amount to be used in calculating totals.


	If you are referencing the Summary instance, use "self.XYZ". If it is callable, it is called with a single argument (the model instance).

	If you are referencing the model instance, use "model.XYZ". If this is callable, it is called with no arguments.

	You can also pass a callable, which is called with the model instance as an argument.

	You can pass an integer or decimal, which is used directly



The default value is "self.get_X_amount", where X is the name of the summary class attribute.






	
Extra.included

	Whether or not the value of this extra is already included in other Items or Extra elements.
For example, tax is often already included in the price of items, so this Extra is really just calculating how much tax is already in the total, and does not contribute its amount to any total calculations, unless explicitly removed (see Total).


	If you are referencing the Summary instance, use "self.XYZ". If it is callable, it is called with a single argument (the model instance).

	If you are referencing the model instance, use "model.XYZ". If this is callable, it is called with no arguments.

	You can also pass a callable, which is called with the model instance as an argument.

	You can of course simply pass True or False or anything that bool() accepts



The default value is False.






	
Extra.description

	Human readable description for this extra cost. For example, "19%" for value added tax if the law requires the relevant rate to be shown.
This could also simply be a form of “help text”.


	If you are referencing the Summary instance, use "self.XYZ". If it is callable, it is called with a single argument (the model instance).

	If you are referencing the model instance, use "model.XYZ". If this is callable, it is called with no arguments.

	You can also pass a callable, which is called with the model instance as an argument.



The default value is None.






	
Extra.editable

	When the summary is displayed as a formset (see Summary Formsets), this field will be editable.


	If editable is set to True, a standard model form is used.  If the relevant instance is not a Django model instance, then a standard text field will be used, and the instance will be updated (but not saved).

	If editable is set to a string, a standard form field is used for the relevant attribute. If the relevant instance is not a Django model instance, then a standard text field will be used, and the instance will be updated (but not saved).

	If editable is set to a form, then this form is used. The custom form must accept a keyword argument (instance) and have a .save() method if the data is to be saved.



To Customise the way forms are saved, you can overload the .save_form() method on the Summary class.








Example

class MySummary(commerce.Summary):
    my_commission = commerce.Extra()
    tax           = commerce.Extra("GST", amount=get_amount_tax, description="15%", included=True)
    discount      = commerce.Extra(verbose_name="Rabatt", description="Mates Rates", amount="-12.23", included=False)










Total

Totals are the output of the framework, summing together the desired Items and Extra elements.


	
class rollyourown.commerce.Total(*attribute_names, prevent_negative, model_cache)

	



All arguments are optional.


Arguments


	
Total.*attribute_names

	Any positional arguments passed when defining the Total are interpreted as attribute names.
Each of these are names of Items elements, Extra elements or custom functions or attributes which contribute to the total in question.

Which attribute, field or method on each item provides the amount to be used in calculating totals.


	All strings are interpreted as referencing an Items, Extra, or a method or attribute on the Summary instance.

	You can also pass a callable, which is called with the summary instance as an argument.

	If a string begins with a minus character (for example ‘-tax’), then the amount is removed from the total.



If no attribute names are given, then all Items and Extra elements are summed together for a grand total (excluding of course Extra elements that are flagged as already being included).






	
Total.prevent_negative

	If this is true, then the final amount cannot be negative. If the total of the elements does sum to a negative value, then Decimal(0) is returned.
By default, this is False.

Note that this argument must be given as a keyword argument.






	
Total.model_cache

	If this value is set, the given string is taken to be the name of an attribute on the model instance which will be set to this total whenever it is calculated. If the value is set on this attribute, the calculation of a total will be skipped. The actual setting of the value is handled by the save_total(instance, name, field_name, total) template method on the Summary class, which can of course be overloaded.

Note that this argument must be given as a keyword argument.








Example

class MySummary(commerce.Summary):
    ...
    total   = commerce.Total()
    pretax  = commerce.Total('items', 'delivery', '-tax')
    to_pay  = commerce.Total(prevent_negative=True)










Meta Options

Summary classes can be annotated with meta information that helps provide context for what you are doing. These are defined in the same way Django adds meta information to its classes. The following attributes help with automated number formatting, based on the locale, currency and context. Note that if Babel [http://babel.edgewall.org/] is installed, it’s extensive locale database is used, otherwise the framework falls back to using Django’s own formatting, included in Django 1.2 and upwards.






Attributes


	
Summary.Meta.locale

	Locale to help provide automatic formatting of numbers. For example 9,765.34 would be 9.765,34 in Germany.     - If you are referencing the a method in the Summary instance, use "self.XYZ". If it is callable, it is called with a single argument (the model instance).
- You can also pass a callable, which is called with the model instance as an argument.






	
Summary.Meta.currency

	Relevant currency (eg ISO-4217 or just a symbol) for this Summary. Generally, only one currency is used for financial transactions, so the whole summary will be formatted using this currency.


	If you are referencing the a method in the Summary instance, use "self.XYZ". If it is callable, it is called with a single argument (the model instance).

	You can also pass a callable, which is called with the model instance as an argument.








	
Summary.Meta.decimal_html

	The template for formatting numbers in html. This can be a string (or a callable producing a string) with placeholders for python string substitution.


	If you are referencing the a method in the Summary instance, use "self.XYZ". If it is callable, it is called with a single argument (the model instance).

	You can also pass a callable, which is called with the model instance as an argument.



A dictionary will be used with the following information available:







	Key
	Example




	value
	"1,234.56"


	curr_sym
	"$"


	decimal_sym
	"."


	major
	"1,234"


	minor
	"56"





The default value is:

'span class="money">'
'<span class="currency">%(curr_sym)s</span>%(major)s'
'<span class="cents">%(decimal_sym)s%(minor)s</span>'
'</span>'





Which would produce something equivalent to:

<span class="money">
  <span class="currency">$</span>123<span class="cents">.45</span>
</span>












Example

class MySummary(rollyourown.Summary):
    class Meta:
        locale = 'en-AU'
        currency = 'self.get_currency'

    def get_currency(self, instance):
        return instance.currency or 'AUD'










What next?

Once you have defined your Summary object, you now need to be able to use it. The Summary class usage reference will be useful here.







          

      

      

    

  

    
      
          
            
  
Summary instance methods

Having defined our Summary class, we can now put it to use in querying and formatting our financial information. Given the following summary definition:

class MySummary(commerce.Summary):
    products = commerce.Items()
    delivery = commerce.Delivery()
    total    = commerce.Total()

    class Meta:
        currency = "USD"
        locale = "de-DE"





The simplest use is of course getting the relevant amounts:

>>> my_summary = MySummary(my_model_instance)
>>> my_summary.total
1234.56
>>> my_summary.delivery
129.90
>>> my_summary.products
[<Product: First Product>, <Product: Second Product>]
>>> my_summary.products[0].AMOUNT
933.12






Warning

Any changes to your data after the summary has been created may not be reflected in the summary. This is a deliberate assumption to make optimisation simpler, and is not difficult to abide by. If the summary must be updated, you can recreate it using the updated model instance.




Note

The instance you give to your summary class need not actually be a Django model instance. It can be any python object that has the attributes required by the summary class. Instead of a Many-To-Many relationship, your python object can simply have an attribute with a list of item objects (which can simply be another python object).



Numbers can be formatted to the relevant locale (in this case German):

>>> print my_summary.total
$1.234,56
>>> print my_summary
First Product   $   933,12
Second Product  $   171,54

Delivery        $   129,90
         Total  $ 1.234,56
>>> print my_summary.total.html
<span class="money"><span class="currency">$</span>1.234<span class="cents">,56</span></span>






Accessing elements

Each type of element (Items, Extra, Total) has a slightly different form.

When you access an Items attribute (eg. my_summary.products) you get a Django QuerySet in return. The queryset is identical to a QuerySet returned when using Django’s model API, except that the relevant amount for each item (see item_amount_from) is included as an additional attribute. The name of the attribute is by default AMOUNT, but can be defined by setting the cache_amount_as parameter when defining the Summary class.  The queryset is retrieved only once, and the amount is calculated only once.

Extra elements are returned as a special object with four attributes:







	Attribute
	Type




	.extra.verbose_name
	unicode


	.extra.amount
	FormattedDecimal


	.extra.included
	bool


	.extra.description
	unicode





Total elements are simply FormattedDecimal objects.

Each of the elements can be programmatically accessed using the _meta attribute of the summary. The _meta attribute may change in the future, but will contain at least the following attributes:







	Attribute
	Type




	._meta.locale
	unicode


	._meta.currency
	unicode


	._meta.decimal_html
	unicode


	._meta.extras
	OrderedDict of all Extra elements


	._meta.items
	OrderedDict of all Items elements


	._meta.totals
	OrderedDict of all Total elements








Formatting

A FormattedDecimal works exactly like a decimal, except it has a few extra formatting abilities attached:

>>> my_summary.total
Decimal("1234.56")
>>> my_summary.total + 7
Decimal("1241.56")
>>> print my_summary.total
$1.234,56
>>> my_summary.total.html
u'<span class="money"><span class="currency">$</span>1.234<span class="cents">,56</span></span>'








Summary Formsets

Editable statements using forms can be easily generated, once you have defined your fields as being editable (see Summary Syntax):

>>> my_summary.formset
<Formset: >
>>> print my_summary.formset
<tr><td> ... etc
>>> print my_summary.forms.as_ul
<li> ... etc





Note that non-editable fields are included for convenience. The remaining functionality should be familiar to Django developers:

>>> my_summary.forms.is_valid()
True
>>> my_summary.forms.save()











          

      

      

    

  

    
      
          
            
  
Populator syntax





          

      

      

    

  

    
      
          
            

Index



 A
 | C
 | D
 | E
 | I
 | L
 | M
 | P
 | R
 | V
 


A


  	
      	amount (Extra attribute)


  

  	
      	attribute (Items attribute)


  





C


  	
      	cache_amount_as (Items attribute)


  

  	
      	currency (Summary.Meta attribute)


  





D


  	
      	decimal_html (Summary.Meta attribute)


  

  	
      	description (Extra attribute)


  





E


  	
      	editable (Extra attribute)

      
        	(Items attribute)


      


  





I


  	
      	included (Extra attribute)


  

  	
      	item_amount_from (Items attribute)


  





L


  	
      	locale (Summary.Meta attribute)


  





M


  	
      	model_cache (Total attribute)


  





P


  	
      	prevent_negative (Total attribute)


  





R


  	
      	rollyourown.commerce.Extra (built-in class)


  

  	
      	rollyourown.commerce.Items (built-in class)


      	rollyourown.commerce.Total (built-in class)


  





V


  	
      	verbose_name (Extra attribute)


  







          

      

      

    

  

    
      
          
            
  
RollYourOwn Documentation

Everything you need to know


First steps


	Overview

	Installation






Commerce


	Tutorial

	Summary class syntax

	Summary instance methods

	e-Commerce best practice






Populate


	Tutorial

	Populator syntax






Indices and tables


	Roll Your Own documentation contents

	Index

	Module Index

	Search Page









          

      

      

    

  _static/file.png





_static/ajax-loader.gif





_static/up-pressed.png





_static/comment-bright.png





_static/down.png





_static/up.png





_static/comment-close.png





_static/down-pressed.png





_static/minus.png





_static/comment.png





nav.xhtml

    
      Table of Contents


      
        		Roll Your Own documentation contents


        		Getting started
          
          		Welcome to Roll Your Own
            
            		Approach


            		What next?


            


          


          		Quick install guide
            
            		Development version


            


          


          		Commerce Framework Tutorial
            
            		Concept


            		Basic shopping cart


            		Cart Summary


            		New delivery pricing


            		What else is possible?


            


          


          		Populate Framework Tutorial


          


        


        		Best Practices Guides
          
          		eCommerce Best Practices


          


        


        		API Reference
          
          		Summary syntax
            
            		Items


            		Extra


            		Total


            		Meta Options


            		What next?


            


          


          		Summary instance methods
            
            		Accessing elements


            		Formatting


            		Summary Formsets


            


          


          		Populator syntax


          


        


      


    
  

_static/plus.png





