

Welcome to Roboy Memory Module documentation!

The goal of the project is to provide Roboy with modern graph-based Knowledge Representation.

Roboy should feature ability to remember information about himself:

	his name

	his age

	his origin

	his location

	his friends

etc.

The same is applicable to Roboy speaking about people who are friends with him. Roboy should tell information about a person or an object and be able to provide basic automatic inference (supported by the graph nature of KR).
This way, Roboy Memory Module serves as a long-term memory repository of actionable information acquired by other Roboy modules. Persistency layer is presented by a Neo4j graph database.

Upon incoming request, a Java client will pre-process the request and initiate transaction with the database. Two ways of communication between Roboy Java client and Neo4J database are supported: communication using Neo4J driver operating Cypher query language and Neo4J native Java API. Cypher query language offers more flexible querying while communications via Neo4J Java API are implemented as usage-specific routines.
Interfaces are implemented on top of ros through the Java client. The input is any type of information Roboy can retrieve from environment abiding by Knowledge Representation reference in format of Roboy Communication Standard protocol, the output are pieces of data related to the requested scope in the same form.

The current main tasks of this project are:

	Fill the memory in with all possible information about Roboy team

	Ensure KR retention (through a population script)

	Finish and evaluate the rosjava service

	Improve KR (more powerful inference)

Relevant Background Information and Pre-Requisits

A User should be familiar with:

	Knowledge Representation theory

	graph-based KRs

	Roboy Communication Protocol

	Roboy Knowledge Representation Architecture

A Developer should be familiar with:

	graph-based DBs (preferably Neo4j)

	Knowledge Representation theory

	Roboy Communication Protocol

	Roboy Knowledge Representation Architecture

	Java programming language

	Maven automation tool

	rosjava

Reading list for a User:

	Graph Structures for Knowledge Representation and Reasoning proceedings

	rosjava Documentation [http://wiki.ros.org/rosjava]

	Roboy Communication Standard

Reading list for a Developer:

	OReilys Graph Databases [https://goo.gl/C18NpT]

	Neo4j Getting Started [https://neo4j.com/developer/get-started/]

	Cypher RefCard [https://neo4j.com/docs/cypher-refcard/current/]

	Java Documentation [http://www.oracle.com/technetwork/topics/newtojava/new2java-141543.html]

	Maven Documentation [https://maven.apache.org/index.html]

	Roboy Communication Standard

	rosjava Documentation [http://wiki.ros.org/rosjava]

Requirements Overview

The software requirements define the system from a blackbox/interfaces perspective. They are split into the following sections:

	User Interfaces - User Interfaces

	Technical Interfaces - Public Interfaces (ROS)

	Runtime Interfaces and Constraints - Technical Constraints / Runtime Interface Requirements

Contents:

Usage and Installation

	Installation

	Getting started

	Using the ROS services

	Troubleshooting

Interfaces and Scope

	Context

	Conventions

	Architecture Constraints

	Public Interfaces (ROS)

	User Interfaces

	Neo4j Memory Architecture

	Roboy Communication Standard

	Cypher Examples

	API

Development

	Solution Strategy

	Java Client Flowchart

	Building Block View

	Runtime View

	Deployment View

	Libraries and external Software

	About arc42

Installation

Maven

The project requires Maven. You may get it here: Download Maven [https://maven.apache.org/download.cgi]

Consider checking this entries: Install [https://maven.apache.org/install.html],
Configure [https://maven.apache.org/configure.html] and Run [https://maven.apache.org/run.html]

Local Neo4j Instance

There are several options (for a Unix-based OS)

Docker Container Distribution

	get the container with:

docker pull neo4j

Using the Debian Repository

	to use the repository, add it to the list of sources:

wget -O - https://debian.neo4j.org/neotechnology.gpg.key | sudo apt-key add -
echo 'deb https://debian.neo4j.org/repo stable/' | sudo tee /etc/apt/sources.list.d/neo4j.list
sudo apt-get update

	install the latest Neo4j version:

sudo apt-get install neo4j

	cd into /usr/bin and run:

neo4j start

RPM repository

Follow these steps as root:

	add the repository:

rpm --import http://debian.neo4j.org/neotechnology.gpg.key
cat <<EOF> /etc/yum.repos.d/neo4j.repo
[neo4j]
name=Neo4j RPM Repository
baseurl=http://yum.neo4j.org/stable
enabled=1
gpgcheck=1
EOF

	install by executing:

yum install neo4j-3.2.0-rc3 (or the newer version)

	cd into /usr/bin and run:

neo4j start

Tarball installation

	download the latest release from:

http://neo4j.com/download/

	select the appropriate tar.gz distribution for your platform

	extract the contents of the archive, using:

tar -xf <filename>

	refer to the top-level extracted directory as NEO4J_HOME

	change directory to $NEO4J_HOME

	run:

./bin/neo4j console

Build it yourself

	clone a git project with:

git clone git@github.com:neo4j/neo4j.git

	in the project directory do:

mvn clean install

	after building artifacts with Maven do:

export PATH="bin:$PATH" && make clean all

	cd into packaging/standalone/target and run:

bin/neo4j start

Congratulations! You have started the Neo4j instance!

Local Redis Instance

In order to compile Redis follow this simple steps:

	get the source code:

wget http://download.redis.io/redis-stable.tar.gz

	unzip the tarball:

tar xvzf redis-stable.tar.gz

	navigate to:

cd redis-stable

	compile:

make

Remote Neo4j Instance

If the local instance is not necessary, use a remote Neo4j instance by establishing a connection to the Roboy server. Please, refer to Getting started

Remote Redis Instance

If the local instance is not necessary, use a remote Redis instance by establishing a connection to the Roboy server. Please, refer to Getting started

Installing ROS

The project is using rosjava [http://wiki.ros.org/rosjava?distro=kinetic] which requires ROS kinetic [http://wiki.ros.org/kinetic].

Simple installation (assuming Ubuntu 16.04 LTS):

	setup your sources.list:

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" >
/etc/apt/sources.list.d/ros-latest.list'

	set up your keys:

sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80
--recv-key 421C365BD9FF1F717815A3895523BAEEB01FA116

	update Debian package index:

sudo apt-get update

	commence desktop full installation of kinetic:

sudo apt-get install ros-kinetic-desktop-full

If the simple installation was not successful, please, refer to this guide [http://wiki.ros.org/ShadowRepository].

Roboy Memory Package Installation

The project is implemented upon a build automation tool - Maven, so the dependencies are tracked automatically, if there is a dependency missing or dependency related exception, please leave a feedback at the GitHub repository.

	clone a git project with:

git clone git@github.com:Roboy/roboy_memory.git

Getting started

Local Neo4j Instance

Before proceeding further, please commence a user configuration step:

	please navigate inside the package folder $ROBOY_MEMORY to:

cd scripts

	run:

./user_conf.sh -u your_username -p your_password

	wait the script to execute.

You may proceed with your current DB now (you need to put the data there) or fetch the remote DB contents.

To copy remote Neo4j DB into your local instance:

	open the script intext editor:

vi backup.sh OR nano backup.sh

	enter the password to connect to bot.roboy.org into respective line

	run the script specifying the path where to copy the DB files:

./backup.sh

	wait the script to execute. You will find the DB in ~/Neo4J/Backups/”date”

	copy the contents of “date” directory to your local DB directory [https://neo4j.com/docs/operations-manual/current/configuration/file-locations/].

Warning

Be cautious! This procedure will overwrite your credentials with the remote ones, see below.

Local Redis Instance

In order to have Redis properly configured, go through the next steps:

	create a directory where to store your Redis config files and your data:

sudo mkdir /etc/redis
sudo mkdir /var/redis

	copy the template configuration file you’ll find in the root directory of the Redis distribution:

sudo cp redis.conf /etc/redis/6379.conf

	create a directory that will work as data and working directory:

sudo mkdir /var/redis/6379

	in the configuration file: set the pidfile to /var/run/redis_6379.pid, set the logfile to /var/log/redis_6379.log, set the dir to /var/redis/6379

Before proceeding further, please commence a password configuration step:

	please navigate to Redis configuration:

cd /etc/redis/

	open configuration file with a text editor:

vi 6379.conf OR nano 6379.conf

	find the line conatining ‘requirepass’, uncomment it and enter your password:

requirepass some_passphrase

	save and start Redis with the updated configuration:

./redis-server /etc/redis/6379.conf

Remote Neo4j Instance

To use a remote intance of Neo4j containing the most recent Knowledge Representation, ensure your connectivity to the Roboy server.
If the server is up, use the roboy_memory package in the remote mode (default):

	bolt://bot.roboy.org:7687 - for the package configuration (enter this in config file)

	http://bot.roboy.org:7474 - for the GUI access in web-browser

For this, please use a remote Neo4j password related to your specific user:

	user, a generic Roboy member

	dialog, a dialog team member

	vision, a vision team member

	memory, a memory team member (developer)

Remote Redis Instance

To use a remote instance of Redis containing the most recent faces features, ensure your connectivity to the Roboy server.
If the server is up, use the roboy_memory package in the remote mode (default):

	redis://bot.roboy.org:6379/0 - for the package configuration (enter this in config file)

For this, please use the remote Redis password.

Configuring the Package

For using roboy_memory package properly, please update the configuration file with the username and password specified for you:

public final static String ROS_MASTER_URI = "***";
public final static String ROS_HOSTNAME = "***";
public final static String NEO4J_ADDRESS = "***";
public final static String NEO4J_USERNAME = "***";
public final static String NEO4J_PASSWORD = "***";
public final static String REDIS_URI = "***";
public final static String REDIS_PASSWORD = "***";

You may use either remote or local addresses and credentials. If using local configuration, then:

public final static String ROS_MASTER_URI = "http://127.0.0.1:11311/";
public final static String ROS_HOSTNAME = "127.0.0.1";
public final static String NEO4J_ADDRESS = "bolt://127.0.0.1:7687";
public final static String REDIS_URI = "redis://127.0.0.1:6379/0";

ROS Configuration (remote)

Before you can use ROS, you will need to initialize rosdep:

sudo rosdep init
rosdep update

To install dependencies for building ROS packages, run:

sudo apt-get install python-rosinstall python-rosinstall-generator python-wstool build-essential

Afterwords, procceed with installing catkin:

sudo apt-get install ros-kinetic-catkin

Source the environment like this:

echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc
source ~/.bashrc

Build a catkin workspace:

mkdir -p ~/catkin_ws/src
cd ~/catkin_ws/
catkin_make

Source your new setup.*sh file:

source devel/setup.bash

Then in separate Terminal, run:

roscore

If you are using Memory Module on the PC other then one with roscore, ROS interfaces require network setup [http://wiki.ros.org/ROS/NetworkSetup].

For this two variables in Config class (util folder of the Memory Module) should be changed:

	ROS_MASTER_URI - defines an URI of roscore module in the network, e.g. “http://bot.roboy.org:11311/“

	ROS_HOSTNAME - defines the IP address of the machine with rosjava mudule in the network, e.g. “192.168.1.1”

If you running ros in a virtual machine, please configure bridged networking and use the respective IP addresses:

	VMware Fusion [https://docs.vmware.com/en/VMware-Fusion/8.0/com.vmware.fusion.using.doc/GUID-E498672E-19DD-40DF-92D3-FC0078947958.html]

	VMware Workstation [https://docs.vmware.com/en/VMware-Workstation-Pro/12.0/com.vmware.ws.using.doc/GUID-0CE1AE01-7E79-41BB-9EA8-4F839BE40E1A.html]

	Parallels [http://kb.parallels.com/en/4948]

	VirtualBox [https://www.virtualbox.org/manual/ch06.html]

	Hyper-V [https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/quick-start/connect-to-network]. We don’t recommend using this one, but as you like.

Running the Package

After you have entered the proper configuration:

	in the project directory do:

mvn clean install

	navigate to:

cd target

	run the package:

java -jar roboy_memory-0.9.0-jar-with-dependencies.jar

Using Remote

Warning

Be careful while using remote and/or interacting with bot.roboy.org server! You are responsible to keep it functioning properly!

Please, do not crush everything. You would make little kittens very sad [http://goo.gl/FZsTTm].

Development

For further development we recommend using Intellij IDEA IDE.
The community edition is available here: Download IDEA [https://www.jetbrains.com/idea/download/].

If you are eligible, we suggest applying for this package [https://www.jetbrains.com/student/] containing the full versions of JetBrains software for free.

Using the ROS services

There you can find basic examples on how to access the memory with JSON-formed queries using ROS.
For more information, please, refer to Public Interfaces (ROS), Neo4j Memory Architecture and Roboy Communication Standard.

Available ROS services

The Roboy Memory Module offers the next services in order to work with the memory contents:

	create - creates a node in the Neo4j DB with provided properties and face features (Redis)

	update - adds new relationships between specified nodes or properties to the specified node

	get - retrieves information about the specified node or returns IDs of all nodes which fall into the provided conditions

	remove - removes properties or relationships from the specified node

In order to check available services, in your catkin environment, run:

rosservice list

You should get the next output:

/roboy/cognition/memory/create
/roboy/cognition/memory/cypher
/roboy/cognition/memory/get
/roboy/cognition/memory/remove
/roboy/cognition/memory/update
/rosout/get_loggers
/rosout/set_logger_level

Calling the ROS

General syntax for a ROS message:

rosservice call /roboy/cognition/memory/--service_name-- "\"---header---\"" "\"---payload---\""

Sample Header:

The header (JSON object) consists of a timestamp and the module which is sending the query (‘user’):
You may try using the next header for your initial experience.

{
 'user':'test',
 'datetime':'0'
}

Payload Elements:

The payload (JSON object) may comprise several elements such as:

	‘label’ specifies the class of node in the knowledge graph

	‘id’ of a node is a unique number specified for each node that may be accessed be searched or modified in the knowledge graph

	‘relations’ comprise a map of relationship types with an array of node IDs for each of them, providing multiple relationships tracing

	‘properties’ = A map of property keys with values

Consider Roboy Communication Standard for the correct use use of properties, relationships and labels.
Sample payloads as well as the whole structure of the calls are mentioned below.

Create queries

Create a node of the type ‘Person’ with properties:

rosservice call /roboy/cognition/memory/create "\"{
 'user':'vision',
 'datetime':'1234567'
}\"" "\"{
 'type':'node',
 'label':'Person',
 'properties':{
 'name':'Lucas',
 'sex':'male'
 }
}\""

On success you will get:

Answer: {‘id’: x } - //ID of the created node

On error you will get:

Error: {status:”FAIL”, message:”error message”}

You can find detailed information in Public Interfaces (ROS)

Update queries

Add properties to the node with id 15:

rosservice call /roboy/cognition/memory/update "\"{
 'user':'vision',
 'datetime':'1234567'
}\"" "\"{
 'type':'node',
 'id':15,
 'properties':{
 'surname':'Ki',
 'xyz':'abc'
 }
}\""

Add relations to the node with id 15:

rosservice call /roboy/cognition/memory/update "\"{
 'user':'vision',
 'datetime':'1234567'
}\"" "\"{
 'type':'node',
 'id':15,
 'relations':{
 'LIVE_IN':[28,23],
 'STUDY_AT':[16]
 }
}\""

Add properties + relations to the node with id 15:

rosservice call /roboy/cognition/memory/update "\"{
 'user':'vision',
 'datetime':'1234567'
}\"" "\"{
 'type':'node',
 'id':15,
 'properties':{
 'surname':'Ki', 'xyz':123
 },
 'relations':{
 'LIVE_IN':[28,23],
 'STUDY_AT':[16]
 }
}\""

On success you will get:

Answer: {status:”OK”}

On error you will get:

Error: {status:”FAIL”, message:”error message”}

You can find detailed information in Public Interfaces (ROS)

Get queries

Get properties and relationships of a node by id:

rosservice call /roboy/cognition/memory/get "\"{
 'user':'vision',
 'datetime':'1234567'
}\"" "\"{
 'id':15
}\""

Answer::

{
 'id': 15,
 'labels': ["person"],
 'properties': {
 "birthdate":"01.01.1970",
 "surname":"ki",
 "sex":"male",
 "name":"lucas"
 },
 'relations': {
 "from":[28],
 "friend_of":[124, 4, 26, 104, 106, 71, 96, 63],
 "member_of":[20], "study_at":[16], "is":[17],
 "has_hobby":[18],
 "live_in":[23, 28]
 }
}

Get ids of nodes which have all specified labels, relations and/or properties:

rosservice call /roboy/cognition/memory/get "\"{
 'user':'vision',
 'datetime':'1234567'
}\"" "\"{
 'label':'Person',
 'relations':{
 'FRIEND_OF':[15]
 },
 'properties':{
 'name':'Laura'
 }
}\""

On success you will get:

Answer: {‘id’:[x]} - an array with all fitting IDs

On error you will get:

Error: {status:”FAIL”, message:”error message”}

You can find detailed information in Public Interfaces (ROS)

Remove queries

Warning

Please, do not try running remove queries without considering significant risks. Be responsible!

Remove properties of node 15:

rosservice call /roboy/cognition/memory/remove "\"{
 'user':'vision',
 'datetime':'1234567'
}\"" "\"{
 'type':'node',
 'id':15,
 'properties':['birthdate','surname']
}\""

Remove relations of node 15:

rosservice call /roboy/cognition/memory/remove "\"{
 'user':'vision','datetime':'1234567'
}\"" "\"{
 'type':'node',
 'id':15,
 'relations':{
 'LIVE_IN':[28,23],
 'STUDY_AT':[16]
 }
}\""

Remove properties and relations of node 15:

rosservice call /roboy/cognition/memory/remove "\"{
 'user':'vision',
 'datetime':'1234567'
}\"" "\"{
 'type':'node',
 'id':15,
 'properties':['birthdate','surname'],
 'relations':{
 'LIVE_IN':[23]
 }
}\""

On success you will get:

Answer: {status:”OK”}

On error you will get:

Error: {status:”FAIL”, message:”error message”}

You can find detailed information in Public Interfaces (ROS)

Troubleshooting

Possible Common Exceptions

No ROS master connection:

org.ros.internal.node.client.Registrar callMaster
SEVERE: Exception caught while communicating with master.
java.lang.RuntimeException: java.net.ConnectException: Host is down

Check if the roscore master PC is connected to the network or master URI in configuration is stated properly.

No roscore running on ROS master:

org.ros.internal.node.client.Registrar callMaster
SEVERE: Exception caught while communicating with master.
java.lang.RuntimeException: java.net.ConnectException: Connection refused

Check if roscore is up on the master PC or master URI in configuration is stated properly.

Host PC is not reachable from ROS master:

ERROR: Unable to communicate with service [/roboy/cognition/memory/get],
address [rosrpc://127.0.0.1:51734/]

Check if hostname for ROS publisher (current PC) in configuration is stated properly.

No service is running on host from ROS master:

ERROR: transport error completing service call:
unable to receive data from sender, check sender's logs for details.

Check if the package is running and services were successfully published (on current PC).

No Neo4j connection:

Exception in thread "pool-1-thread-16" org.neo4j.driver.v1.exceptions.ServiceUnavailableException:
Unable to connect to 127.0.0.1:7687, ensure the database is running and that there is a working network connection to it.

Check if Neo4j is up and the Neo4j address in configuration is stated properly.

Neo4j credentials are incorrect:

Exception in thread "pool-1-thread-16" org.neo4j.driver.v1.exceptions.AuthenticationException:
The client is unauthorized due to authentication failure.

Check if Neo4j credentials in configuration are stated properly.

No Redis connection:

Exception in thread "pool-1-thread-33" redis.clients.jedis.exceptions.JedisConnectionException:
java.net.UnknownHostException: 127.0.0.1

Check if Redis is up and the Redis address in configuration is stated properly.

Redis credentials are incorrect:

Exception in thread "pool-1-thread-16" redis.clients.jedis.exceptions.JedisDataException:
ERR invalid password

Check if Redis credentials in configuration are stated properly.

Missing parenthesis:

Exception in thread "pool-1-thread-13" com.google.gson.JsonSyntaxException:
java.io.EOFException: End of input at line 1 column 38 path $.datetime

Check JSON “{}” parenthesis in query.

JSON index is present, but value is not:

Exception in thread "pool-1-thread-24" com.google.gson.JsonSyntaxException:
com.google.gson.stream.MalformedJsonException: Expected value at line 1 column 33 path $.properties

Check if any value in JSON query is missing.

JSON query is formed incorrectly:

Exception in thread "pool-1-thread-18" com.google.gson.JsonSyntaxException:
com.google.gson.stream.MalformedJsonException: Unterminated string at line 1 column 9 path $.

Check if JSON is formed properly: quotes, parenthesis. Refer to Roboy Communication Standard

Primitives are initialized with complex types in JSON query:

Exception in thread "pool-1-thread-14" com.google.gson.JsonSyntaxException:
java.lang.IllegalStateException: Expected an int but was BEGIN_ARRAY at line 1 column 8 path $.id

Exception in thread "pool-1-thread-22" com.google.gson.JsonSyntaxException:
java.lang.IllegalStateException: Expected a string but was BEGIN_ARRAY at line 1 column 11 path $.label

Exception in thread "pool-1-thread-22" com.google.gson.JsonSyntaxException:
java.lang.IllegalStateException: Expected a string but was BEGIN_OBJECT at line 1 column 11 path $.label

Check if the JSON query is type valid: JSON array instead of object is recieved. Change the respective values. Refer to Roboy Communication Standard.

Complex types are initialized with primitive types in JSON query:

Exception in thread "pool-1-thread-21" com.google.gson.JsonSyntaxException:
java.lang.IllegalStateException: Expected BEGIN_ARRAY but was STRING at line 1 column 35 path $.properties[0]

Check if the JSON query is type valid: primitive objects instead of JSON arrays are recieved. Change the respective values. Refer to Roboy Communication Standard.

Wrong complex type is applied on initialization in JSON query:

Exception in thread "pool-1-thread-22" com.google.gson.JsonSyntaxException:
java.lang.IllegalStateException: Expected BEGIN_ARRAY but was BEGIN_OBJECT at line 1 column 11 path $.label

Exception in thread "pool-1-thread-22" com.google.gson.JsonSyntaxException:
java.lang.IllegalStateException: Expected BEGIN_OBJECT but was BEGIN_ARRAY at line 1 column 11 path $.label

Check if the JSON query is type valid: JSON object instead of JSON array and vice versa are received. Change the respective values. Refer to Roboy Communication Standard.

Context

The Memory Module receives input from other Cognition modules in form of ROS messages containing RCS payload which is then parsed internally.
RCS payload contains valid request, otherwise exeption would be raised and Memory Module would answer with “FAIL” and error message.

The main output of the Memory Module is either a single piece of data (JSON object) or set of **ID**s.

The context of Roboy Memory Module illustrated in the following diagram:

[image: Bulding blocks overview]
UML System Context

UML-type context diagram - shows the birds eye view of the system (black box) described by this architecture within the ecosystem it is to be placed in. Shows orbit level interfaces on the user interaction and component scope.

Conventions

We follow the coding guidelines:

Coding Guidelines

	Language
	Guideline
	Tools

	Java
	https://google.github.io/styleguide/javaguide.html
	

	Cypher
	https://neo4j.com/developer/cypher-query-language/
	

	Redis
	https://redis.io/commands
	

Architecture Constraints

Technical Constraints / Runtime Interface Requirements

Operating System Constraints

	Constraint Name
	Description

	Ubuntu => 16.04
	Neo4j and ros are much more stable and easier to support on Linux and
Ubuntu is the OS of Roboy as well

Programming Constraints

	Constraint Name
	Description

	IntelliJ IDEA
	There were difficulties with importing the project to NetBeans and Eclipse

	rosjava
	Due to using both Java and ros

	Java => 1.8.0
	Reasonably recent and stable Java release

	Neo4j => 3.2.1
	Stable and tested in production

Public Interfaces (ROS)

Interfaces to other modules are realized through ROS (rosjava).
Currently 5 interfaces (ROS services) have been designed for communication with Memory Module.

ROS Services

All calls are complaint to this general form:

rosservice call /roboy/cognition/memory/---service_name--- "\"---header---\"" "\"---payload---\""

	create service: Service called to perform a query writing data into Neo4j database.:

argument: String header String payload
returns: String answer

rosservice call /roboy/cognition/memory/create

	get service: Service called to perform a query reading data from Neo4j database.:

argument: String header String payload
returns: String answer

rosservice call /roboy/cognition/memory/get

	update service: Service called to perform a query altering data in Neo4j database.:

argument: String header String payload
returns: String answer

rosservice call /roboy/cognition/memory/update

	remove service: Service called to perform a query deleting data from Neo4j database.:

argument: String header String payload
returns: String answer

rosservice call /roboy/cognition/memory/remove

	cypher service: Service called to perform any Cypher query in Neo4j database.:

argument: String header String payload
returns: String answer

rosservice call /roboy/cognition/memory/cypher

For the first 4 services the payload has to be defined according to Roboy Communication Standard.

Payload Elements:

	‘label’ specifies the class of node in the knowledge graph

	‘id’ of a node is a unique number specified for each node that may be accessed be searched or modified in the knowledge graph

	‘relations’ comprise a map of relationship types with an array of node ids for each of them, providing multiple relationships tracing

	‘properties’ = A map of property keys with values

Each of this element is peculiar to respective service payload.

The Cypher service uses a well-formed query in Cypher as the payload, see Cypher Examples.

Responses

Create query provides the following responses.

Success::

{
 'id': x
}

Failure:

	some properties are not specified properly:

{
 status:"FAIL",
 message:"no properties"
}

	when creating a node, the name property is obligatory, name is missing:

{
 status:"FAIL",
 message:"no name specified in properties : name required"
}

	trying to create a node with a non-existing label, see Neo4j Memory Architecture:

{
 status:"FAIL",
 message:"Label 'Xyz' doesn't exist in the DB"
}

Update query provides the following responses.

Success::

{
 status:"OK"
}

Failure:

	trying to create a relationship with a non-existing type, see Neo4j Memory Architecture:

{
 status:"FAIL",
 message:"The relationship type 'XYZ' doesn't exist in the DB"
}

Get query provides the following responses.

Success:

	getting by ID:

{
 'id': 15,
 'labels': ["person"],
 'properties': {
 "birthdate":"01.01.1970",
 "surname":"ki",
 "sex":"male",
 "name":"lucas"
 },
 'relations': {
 "from":[28],
 "friend_of":[124, 4, 26, 104, 106, 71, 96, 63],
 "member_of":[20], "study_at":[16], "is":[17],
 "has_hobby":[18],
 "live_in":[23, 28]
 }
}

	getting IDs:

{
 'id':[x, y]
}

Remove query provides the following responses.

Success::

{
 status:"OK"
}

User Interfaces

There is a GUI for development purposes provided by Neo4j.
In order to invoke the GUI, a user has to run a Neo4j instance, open a browser and go to:

http://localhost:7474

or if using a remote Neo4j instance:

http://85.10.197.57:7474

which is the Roboy server.

[image: ../_images/neo4j.png]

All other parts of the module are provided without GUI and offer interaction on a command line level.

Neo4j Memory Architecture

Architecture of the Neo4j database in remote. Current version: 1.1.1.

[image: ../_images/dbvisual.png]

Visualization of a DB scheme.

Versioning of KR is performed by implementing architecture proposals and evaluating them, upon evaluation the version is fixed and then new proposals are collected. Adding nodes means major ver. X, adding relations is minor ver. Y, adding properties is patch ver. Z: ver. X.Y.Z.

Node Classes (Labels)

	Person

	Robot

	Organization
	Company

	University

	Location
	City

	Country

	Continent

	Hobby

	Type
	Occupation

	Object (which Roboy can detect/interact with)

Edge Classes

(Person, Robot : Person, Robot)

	FRIEND_OF

(Person, Robot : Location)

	LIVE_IN

	FROM

(Person : Organization)

	WORK_FOR

	STUDY_AT

	MEMBER_OF

(Person, Robot : Hobby)

	HAS_HOBBY

(Person, Robot : Object)

	KNOW

(Object, Robot, Person, Organization : Type)

	IS

(Organization, Robot : Organization)

	PART_OF

(Organization, Location : Location)

	IS_IN

Property Keys

General

Describes non-specific prameters for any node

	name

 Roboy Communication Standard

Roboy Communication Standard

Roboy Communication Standard is a proposal on decorating standard ros messages with JSON-like payload.

Create Queries Payload Message

Creating a node:

{
 'label': 'some_label',
 'faceVector': [float, ..., float] // Under comsideration, OPTIONAL
 'properties': {
 'prop_a': 'value_a',
 'prop_b': 'value_b'
 }
}

This query requests creating node with label - some_label, prop_a having value_a and prop_b - value_b.
The faceVector contains face features for the node with specified label Person (applicable only to nodes of this label).

There the label may be:

	Person

	Robot

	Organization

	Company

	University

	Location

	City

	Country

	Continent

	Hobby

	Type

	Occupation

	Object (which Roboy can detect/interact with)

Properties other than ‘name’ are not required on the creation and may be omitted. Later the node’s properties may be updated by an update query.
The query returns the ID of the created node on success. The faceVector is fed into Redis if present.
The named properties and allowed values may be found in Neo4j Memory Architecture.

Update Queries Payload Message

Updating a node

{
 'id': 1, //REQUIRED, contains node id

 'relations': {
 'rel_a': [2, 3],
 'rel_b': [3]
 }

 'properties': {
 'prop_a': 'value_a',
 'prop_b': 'value_b'
 }
}

This query requests updating node with ID - 1.
This query requests creating relations between two nodes, where the relations are e.g. rel_a, the number denotes the ID of the node to where the relations is following from the current node.
This query requests creating (changing) properties of the node, where the properties may be e.g. prop_a with value value_a.

Warning

You should be aware of the node label.

The query returns the OK message on success.
The named properties and allowed values may be found in Neo4j Memory Architecture.

Get Queries Payload Message

Get nodes IDs

{
 'label': 'some_label',

 'relations': {
 'rel_a': [2],
 'rel_b': [3]
 },

 'properties': {
 'prop_a': 'value'
 }
}

This query requests getting all nodes which have node label - some_label, have relationship rel_a with the node having ID 2 and rel_b with the node of ID 3, as well as having prop_a equal to value.
The query returns an array of node IDs on success (may be an empty array if no such nodes exist).
The allowed relation types for each pair of nodes and named properties of nodes may be found in Neo4j Memory Architecture.

Get node by ID

{
 'id': 1
}

This query requests getting all information about a node with respective ID.
The query returns a JSON containing all information about the node on success (may be an empty string if no such node exist).

Warning

You should be aware of the node label.

The respective information about what could be returned may be found in Neo4j Memory Architecture.

Remove Queries Payload Message

Remove properties and relations of the nodes

{
 'id': 1,

 'relations': {
 'rel_a': [2],
 'rel_b': [3]
 },

 'properties': {
 'prop_a'
 }
}

This query requests removing all respective properties and relations with regard to the node with ID = 1: relationships rel_a
with the node having ID = 2 and rel_b with the node having ID = 3, as well as property prop_a.

Warning

You should be aware of the node label.

The query returns the OK message on success.
The named properties and allowed values may be found in Neo4j Memory Architecture.

 Cypher Examples

Cypher Examples

Cypher is a declarative graph query language that allows for expressive and efficient querying and updating of the graph store.
Cypher is a relatively simple but still very powerful language. Very complicated database queries can easily be expressed through Cypher.
This allows you to focus on your domain instead of getting lost in database access.

Useful Cypher queries related to actual Knowledge Representation (developer)

Create a „location“-node:

CREATE (n:Location {name: "Munich"})

Add a 2nd Lable (Organization) to a Node:

match (n:Company)
set n:Organization
return n

Create a relationship

if relationship type is not existing yet:

MATCH (a:Person),(b:City) WHERE a.name = 'Lucas' AND b.name = 'Frankfurt' CREATE (a)-[r:FROM]->(b) RETURN r

if relationship type is existing::

MATCH (a:Country),(b:Continent) WHERE a.name = 'Germany' AND b.name = 'Europe' Merge (a)-[r:IS_IN]->(b) RETURN r

Delete

all „location“-Nodes:

MATCH (n:Location) DETACH Delete n

a specific Node by ID:

MATCH (n:Person) where ID(n)=13 DELETE n

all relationships from Roboy:

MATCH (n:Robot { name: 'Roboy' })-[r:FRIEND_OF]->() DELETE r

Add Properties:

Match (n:Object {name: 'Ball'})
Set n.color = 'red'
Set n.price_euro = 15
Set n.usage = ["playing", "trowing", "rolling"]
Return n

Show

all nodes with relationships:

MATCH (n) RETURN n;

the database scheme:

CALL db.schema()

 API

API

	
class Answer

	Answer wrapper.

Outputs OK or error messages to ROS.

Public Static Functions

	
static String org.roboy.memory.util.Answer.ok()

	Answer for ROS if no errors were detected.

	Return

	JSON object {status:”OK”} to ROS

	
static String org.roboy.memory.util.Answer.error(String message)

	Answer for ROS if an error occurred.

	Return

	JSON object containing status and message

	Parameters

	
	message: contains the error message according to the obstacle approached

Private Static Attributes

	
Logger org.roboy.memory.util.Answer.logger = Logger.getLogger(Answer.class.toString())

	

	
class Config

	Configuration for ROS, Neo4J and Redis Server connectivity.

Public Static Attributes

	
final String org.roboy.memory.util.Config.ROS_MASTER_URI = "http://127.0.0.1:11311/"

	ROS Configuration.

IP adress of the PC with roscore

	
final String org.roboy.memory.util.Config.ROS_HOSTNAME = "127.0.0.1"

	IP address of the current PC in the network.

	
final String org.roboy.memory.util.Config.NEO4J_ADDRESS = "bolt://127.0.0.1:7687"

	Neo4J Configuration.

Neo4j DB location

	
final String org.roboy.memory.util.Config.NEO4J_USERNAME = "***"

	Neo4j instance username.

	
final String org.roboy.memory.util.Config.NEO4J_PASSWORD = "***"

	Neo4j instance password.

	
final String org.roboy.memory.util.Config.REDIS_URI = "redis://127.0.0.1:6379/0"

	Redis Configuration.

Redis storage location

	
final String org.roboy.memory.util.Config.REDIS_PASSWORD = "***"

	Redis storage instance password.

	
final String [] org.roboy.memory.util.Config.LABEL_VALUES = new String[] { "Person","Robot","Company","University","City","Country","Hobby","Occupation","Object" }

	KR Entries Configuration.

Available label types

	
final String [] org.roboy.memory.util.Config.RELATION_VALUES = new String[] { "FRIEND_OF","LIVE_IN","FROM","WORK_FOR","STUDY_AT","MEMBER_OF","HAS_HOBBY","KNOW","IS","PART_OF","IS_IN" }

	Available reltionship types.

	
class Create

	Data model for JSON parser.

Creates objects, that contain the elements of the Create queries.

Public Functions

	
String org.roboy.memory.models.Create.getLabel()

	

	
String org.roboy.memory.models.Create.getType()

	

	
Map<String, String> org.roboy.memory.models.Create.getProperties()

	

	
String [] org.roboy.memory.models.Create.getFace()

	

Private Members

	
String org.roboy.memory.models.Create.type

	Currently only used to specify the type “node”.

	
String org.roboy.memory.models.Create.label

	Specifies the type of node that shall be created, like “Person”.

	
String [] org.roboy.memory.models.Create.faceVector

	JSON array containing facial features from vision module.

	
Map<String, String> org.roboy.memory.models.Create.properties

	Contains the node properties.

	
class Get

	Data model for JSON parser.

Creates objects, that contain the elements of the Get queries.

Public Functions

	
int org.roboy.memory.models.Get.getId()

	

	
String org.roboy.memory.models.Get.getLabel()

	

	
Map<String, String[]> org.roboy.memory.models.Get.getRelations()

	

	
Map<String, String> org.roboy.memory.models.Get.getProperties()

	

Private Members

	
String org.roboy.memory.models.Get.label

	Specifies the type of node that shall be searched, like “Person”.

	
int org.roboy.memory.models.Get.id

	The id of a node that shall be searched.

	
Map<String, String[]> org.roboy.memory.models.Get.relations

	Contains the relationship type as key and an array of node IDs as value.

	
Map<String, String> org.roboy.memory.models.Get.properties

	Contains the node properties.

	
class Header

	Data model for JSON parser.

Creates objects, that contain the elements of the Header.

Public Functions

	
LocalDateTime org.roboy.memory.models.Header.getDateTime()

	

	
String org.roboy.memory.models.Header.getUser()

	

Private Members

	
String org.roboy.memory.models.Header.user

	Contains the module which is sending the query, for example “vision”.

	
String org.roboy.memory.models.Header.datetime

	Contains a timestamp in seconds since 1.1.1970.

	
class Main

	
Public Static Functions

	
static void org.roboy.memory.Main.main(String[] args)

	

	
class Neo4j

	Contains the methods for running GET, CREATE, UPDATE, REMOVE and Cypher queries.

Talks to the Neo4j and Redis databases. Handles the result retrieved from Neo4j.

Inherits from AutoCloseable

Public Functions

	
void org.roboy.memory.util.Neo4j.close()

	

Public Static Functions

	
static Driver org.roboy.memory.util.Neo4j.getInstance()

	Singleton for the Neo4j class.

	Return

	Neo4J Driver instance if the object of Neo4j class is initialized

	
static Value org.roboy.memory.util.Neo4j.parameters(Object... keysAndValues)

	Wrapper for the Neo4j query parameters.

	Return

	Set of keys and values for parameters

	
static String org.roboy.memory.util.Neo4j.run(String query)

	Method to channel a plain Cypher query to Neo4j.

	Return

	plain response from Neo4j

	Parameters

	
	query: formed in Cypher

	
static String org.roboy.memory.util.Neo4j.createNode(String label, String[] faceVector, Map< String, String > properties)

	Method accepting JSON Create queries.

	Return

	result obtained by createNode method

	Parameters

	
	label: is denoting a type of the node to be created

	faceVector: contains face features for a node of label “Person”. OPTIONAL

	properties: is a dictionary containing properties of the node

	
static String org.roboy.memory.util.Neo4j.updateNode(int id, Map< String, String[]> relations, Map< String, String > properties)

	Method accepting JSON Update queries.

	Return

	result obtained by update method

	Parameters

	
	id: is a unique pointer to the node in Neo4j DB

	relations: is a dictionary containing relationships of the node with other nodes

	properties: is a dictionary containing properties of the node

	
static String org.roboy.memory.util.Neo4j.getNodeById(int id)

	Method accepting JSON Get by ID queries.

	Return

	result obtained by matchNodeById method

	Parameters

	
	id: is a unique pointer to the node in Neo4j DB

	
static String org.roboy.memory.util.Neo4j.getNode(String label, Map< String, String[]> relations, Map< String, String > properties)

	Method accepting JSON Get IDs of nodes queries.

	Return

	result obtained by matchNode method

	Parameters

	
	label: is denoting a type of the nodes to be included

	relations: is a dictionary containing relationships of the nodes with other nodes

	properties: is a dictionary containing properties of the nodes

	
static String org.roboy.memory.util.Neo4j.remove(int id, Map< String, String[]> relations, String[] properties)

	Method accepting JSON Remove queries.

	Return

	result obtained by removeRelsProps method

	Parameters

	
	id: of the node which relations and properties need to be removed

	relations: is a dictionary containing relationships of the node with other nodes

	properties: is a dictionary containing properties of the node

Private Functions

	
org.roboy.memory.util.Neo4j.Neo4j()

	

	
Driver org.roboy.memory.util.Neo4j.getDriver()

	Getter for the Neo4j driver instance.

	Return

	Neo4J Driver instance

Private Static Functions

	
static String org.roboy.memory.util.Neo4j.createNode(Session session, Map< String, String > properties, String[] faceVector, String label)

	Method processing JSON Create queries.

	Return

	ID of the node that was created in Neo4j DB

	Parameters

	
	session: is a session handler for transaction handling to query Neo4j DB

	label: is denoting a type of the node to be created

	faceVector: contains face features for a node of label “Person”. OPTIONAL

	properties: is a dictionary containing properties of the node

	
static String org.roboy.memory.util.Neo4j.update(Transaction tx, int id, Map< String, String[]> relations, Map< String, String > properties)

	Method processing JSON Update queries.

	Return

	response from Neo4j upon updating the node

	Parameters

	
	tx: is a transaction handler to query Neo4j DB

	id: is a unique pointer to the node in Neo4j DB

	relations: is a dictionary containing relationships of the node with other nodes

	properties: is a dictionary containing properties of the node

	
static String org.roboy.memory.util.Neo4j.matchNodeById(Transaction tx, int id)

	Method processing JSON Get by ID queries.

	Return

	a JSON object containing node labels, properties and relationships

	Parameters

	
	tx: is a transaction handler to query Neo4j DB

	id: is a unique pointer to the node in Neo4j DB

	
static String org.roboy.memory.util.Neo4j.matchNode(Transaction tx, String label, Map< String, String[]> relations, Map< String, String > properties)

	Method processing JSON Get IDs of nodes queries.

	Return

	JSON array of nodes’ IDs

	Parameters

	
	tx: is a transaction handler to query Neo4j DB

	label: is denoting a type of the nodes to be included

	relations: is a dictionary containing relationships of the nodes with other nodes

	properties: is a dictionary containing properties of the nodes

	
static String org.roboy.memory.util.Neo4j.removeRelsProps(Transaction tx, int id, Map< String, String[]> relations, String[] properties)

	Method processing JSON Remove queries.

	Return

	response from Neo4j upon removing the specified relations and properties

	Parameters

	
	tx: is a transaction handler to query Neo4j DB

	id: of the node which relations and properties need to be removed

	relations: is a dictionary containing relationships of the node with other nodes

	properties: is a dictionary containing properties of the node

Private Static Attributes

	
Neo4j org.roboy.memory.util.Neo4j._instance

	An instance of the class.

	
Driver org.roboy.memory.util.Neo4j._driver

	An instance of Neo4j driver.

	
Jedis org.roboy.memory.util.Neo4j.jedis

	An instance of Jedis for Redis handling.

	
Gson org.roboy.memory.util.Neo4j.parser = new Gson()

	An instance of Gson parser for creating JSON response.

	
Logger org.roboy.memory.util.Neo4j.logger = Logger.getLogger(Neo4j.class.toString())

	An instance of the logger.

	
class Remove

	Data model for JSON parser.

Creates objects, that contain the elements of the Remove queries.

Public Functions

	
int org.roboy.memory.models.Remove.getId()

	

	
String [] org.roboy.memory.models.Remove.getProperties()

	

	
Map<String, String[]> org.roboy.memory.models.Remove.getRelations()

	

Private Members

	
int org.roboy.memory.models.Remove.id

	The id of a node that shall be modified.

	
String org.roboy.memory.models.Remove.type

	Currently only used to specify the type “node”.

	
String org.roboy.memory.models.Remove.label

	Specifies the type of node that shall be removes, like “Person”.

	
Map<String, String[]> org.roboy.memory.models.Remove.relations

	Contains the relationship type as key and an array of node IDs as value.

	
String [] org.roboy.memory.models.Remove.properties

	Contains the node properties.

	
class RosNode

	ROS Service for saving data object to DB.

Data is received as JSON object. JSON object is parsed using Parser and saved to neo4j.

Inherits from AbstractNodeMain

Public Functions

	
GraphName org.roboy.memory.ros.RosNode.getDefaultNodeName()

	

	
void org.roboy.memory.ros.RosNode.onStart(ConnectedNode connectedNode)

	Initialising the ROS services and setting ROS services URIs.

	Parameters

	
	connectedNode: is the ROS node carrying the services.

Package Static Functions

	
static void org.roboy.memory.ros.RosNode.register(NodeConfiguration nodeConfiguration, NodeMainExecutor nodeMainExecutor)

	Registers the ROS node.

	Parameters

	
	nodeConfiguration: is the ROS node configurator

	nodeMainExecutor: is the ROS node executor

Private Static Attributes

	
String org.roboy.memory.ros.RosNode.name = "/roboy/cognition/memory"

	URI for the ROS node.

	
class RosRun

	This server is responsible for starting ros services.

Public Functions

	
org.roboy.memory.ros.RosRun.RosRun()

	Constructor.

Initializes the ROS node.

	
void org.roboy.memory.ros.RosRun.start()

	Registers the ROS node with services in the network.

	
void org.roboy.memory.ros.RosRun.stop()

	Shutdowns the ROS node and terminates the services.

Private Members

	
NodeMainExecutor org.roboy.memory.ros.RosRun.nodeMainExecutor

	ROS executor.

	
NodeConfiguration org.roboy.memory.ros.RosRun.nodeConfiguration

	ROS node configurator.

	
class ServiceLogic

	Contains service handlers to talk with ROS.

They parse the header and payload and check for invalid elements in the query. Then the functions to construct the cypher queries are excecuted and the answer returned.

Package Static Attributes

	
ServiceResponseBuilder<DataQueryRequest, DataQueryResponse> org.roboy.memory.ros.ServiceLogic.createServiceHandler = (request, response) -> {
 Header header = parser.fromJson(request.getHeader(), Header.class);
 Create create = parser.fromJson(request.getPayload(), Create.class);

 if (create.getFace() != null) {
 System.out.println("FaceVector: " + create.getFace().toString());
 }

 if (create.getProperties() == null) {
 response.setAnswer(error("no properties"));
 return;
 } else if (!create.getProperties().containsKey("name")){
 response.setAnswer(error("no name specified in properties : name required"));
 return;
 } else if (create.getLabel() != null && !labels.contains(create.getLabel().substring(0,1).toUpperCase() + create.getLabel().substring(1).toLowerCase())) {
 response.setAnswer(error("Label '" + create.getLabel() + "' doesn't exist in the DB"));
 return;
 } else {
 response.setAnswer(Neo4j.createNode(create.getLabel(), create.getFace(), create.getProperties()));
 }

 }

	Create Service Handler.

Parses the header and payload into a create object with Gson and checks for invalid elements in the query. Calls createNode() method to query Neo4j and the answer is returned.

	
ServiceResponseBuilder<DataQueryRequest, DataQueryResponse> org.roboy.memory.ros.ServiceLogic.updateServiceHandler = (request, response) -> {
 Header header = parser.fromJson(request.getHeader(), Header.class);
 Update update = parser.fromJson(request.getPayload(), Update.class);

 if(update.getRelations() != null) {
 for (String rel : update.getRelations().keySet()) {
 if (!relations.contains(rel.toUpperCase())) {
 response.setAnswer(error("The relationship type '" + rel + "' doesn't exist in the DB"));
 return;
 }
 }
 }

 Neo4j.updateNode(update.getId(), update.getRelations(), update.getProperties());

 response.setAnswer(ok());
 }

	Update Service Handler.

Parses the header and payload into an update object with Gson and checks for invalid relationship types in the query. Calls updateNode() method to query Neo4j and the answer is returned.

	
ServiceResponseBuilder<DataQueryRequest, DataQueryResponse> org.roboy.memory.ros.ServiceLogic.getServiceHandler = (request, response) -> {
 Header header = parser.fromJson(request.getHeader(), Header.class);
 Get get = parser.fromJson(request.getPayload(), Get.class);
 Gson gson = new GsonBuilder().setPrettyPrinting().create();
 logger.info(gson.toJson(get));

 if (get.getId() != 0) {
 response.setAnswer(Neo4j.getNodeById(get.getId()));
 } else {
 response.setAnswer(Neo4j.getNode(get.getLabel(), get.getRelations(), get.getProperties()));
 }
 }

	Get Service Handler.

Parses the header and payload into a get object with Gson and checks whether node IDs or information about a node is queried. Calls getNodeById() or getNode() methods to query Neo4j and the answer is returned.

	
ServiceResponseBuilder<DataQueryRequest, DataQueryResponse> org.roboy.memory.ros.ServiceLogic.cypherServiceHandler = (request, response) -> {
 Header header = parser.fromJson(request.getHeader(), Header.class);
 logger.info(request.getPayload());
 response.setAnswer(Neo4j.run(request.getPayload()));
 }

	Cypher Service Handler.

Directly runs a plain Cypher query which is contained in the payload and returns the response.

	
ServiceResponseBuilder<DataQueryRequest, DataQueryResponse> org.roboy.memory.ros.ServiceLogic.removeServiceHandler = (request, response) -> {
 Header header = parser.fromJson(request.getHeader(), Header.class);
 Remove remove = parser.fromJson(request.getPayload(), Remove.class);

 Neo4j.remove(remove.getId(), remove.getRelations(), remove.getProperties());

 response.setAnswer(ok());
 }

	Remove Service Handler.

Parses the header and payload into a remove object. Calls remove() method to query Neo4j and the answer is returned.

Private Static Attributes

	
Logger org.roboy.memory.ros.ServiceLogic.logger = Logger.getLogger(ServiceLogic.class.toString())

	Logger.

	
Gson org.roboy.memory.ros.ServiceLogic.parser = new Gson()

	Parses the JSON elements of the header and payload.

	
HashSet<String> org.roboy.memory.ros.ServiceLogic.labels = new HashSet<String>(Arrays.asList(LABEL_VALUES))

	Contains available label types.

	
HashSet<String> org.roboy.memory.ros.ServiceLogic.relations = new HashSet<String>(Arrays.asList(RELATION_VALUES))

	Contains available relationship types.

	
class Update

	Data model for JSON parser.

Creates objects, that contain the elements of the Update queries.

Public Functions

	
int org.roboy.memory.models.Update.getId()

	

	
Map<String, String> org.roboy.memory.models.Update.getProperties()

	

	
Map<String, String[]> org.roboy.memory.models.Update.getRelations()

	

Private Members

	
int org.roboy.memory.models.Update.id

	The id of a node that shall be modified.

	
String org.roboy.memory.models.Update.type

	Currently only used to specify the type “node”.

	
String org.roboy.memory.models.Update.label

	Specifies the type of node that shall be updated, like “Person”.

	
Map<String, String[]> org.roboy.memory.models.Update.relations

	Contains the relationship type as key and an array of node IDs as value.

	
Map<String, String> org.roboy.memory.models.Update.properties

	Contains the node properties.

	
namespace util

	

	
namespace org

	

	
namespace v1

	

	
namespace roboy

	

	
namespace memory

	

	
namespace models

	

	
namespace ros

	

	
namespace util

	

	
namespace Answer

	

	
namespace Config

	

	
namespace roboy_communication_cognition

	

	
file Main.java

	

	
file Create.java

	

	
file Get.java

	

	
file Header.java

	

	
file Remove.java

	

	
file Update.java

	

	
file RosNode.java

	

	
file RosRun.java

	

	
file ServiceLogic.java

	

	
file Answer.java

	

	
file Config.java

	

	
file Neo4j.java

	

	
dir /home/docs/checkouts/readthedocs.org/user_builds/roboy-memory/checkouts/docs/src/org/roboy/memory

	

	
dir /home/docs/checkouts/readthedocs.org/user_builds/roboy-memory/checkouts/docs/src/org/roboy/memory/models

	

	
dir /home/docs/checkouts/readthedocs.org/user_builds/roboy-memory/checkouts/docs/src/org

	

	
dir /home/docs/checkouts/readthedocs.org/user_builds/roboy-memory/checkouts/docs/src/org/roboy

	

	
dir /home/docs/checkouts/readthedocs.org/user_builds/roboy-memory/checkouts/docs/src/org/roboy/memory/ros

	

	
dir /home/docs/checkouts/readthedocs.org/user_builds/roboy-memory/checkouts/docs/src

	

	
dir /home/docs/checkouts/readthedocs.org/user_builds/roboy-memory/checkouts/docs/src/org/roboy/memory/util

	

 Solution Strategy

Solution Strategy

Basic decisions for Memory Module:

	Separation of concern through decoupling request processing and a persistence layer.

	Iterative and incremental development is adopted.

	Highest priority is Knowledge Representation implementation to satisfy the requirements and abilities for Dialog. Roboy Communication Standard is of the second priority as it follows the KR structure. The following priority is providing other modules with actual client and interfaces for the usage.

	For Knowledge Representation, a graph-based approach was chosen. Thus the persistency layer is presented by Neo4j graph database.

	Client for request processing is implemented on top of rosjava.

Current implementation:

	Graph-based Knowledge Representation ver. 1.1 on remote server.

	Redis for face features storage on remote server.

	Roboy Communication Standard commands pool.

	Java client software.

Motivation

The motivation to use a graph-based approach was easier (and probably more obvious) maintenance of relations and basic inference contained in graph-models by definition.

Java was the choice for development because it is Neo4j native language, thus has better support.

Redis was chosen as a simple yet powerful and fast (which is important for online face recognition) key-value storage.

Choice of rosjava was forced by both the usage of Java and ros as means of communication between Roboy parts.

Roboy Communication Standard was introduced to make querying more human-readable and graceful.

 Java Client Flowchart

Java Client Flowchart

Overview

The flowchart shows the process of parsing and processing the queries within the java client.
Query elements that pass the validation are documented on the following page: Neo4j Memory Architecture.

[image: Java client overview]
Java client overview

 Building Block View

Building Block View

Overview

The white box view of the first level of the code.
This is a white box view of the system as shown within the in Context in figure: UML System Context.
External libraries and software are clearly marked.

[image: Bulding blocks overview]
Building blocks overview

 Runtime View

Runtime View

UML-type sequence diagram - Shows how components interact with each other during runtime.

Runtime Scenario 1 - Read person’s name by id

[image: Demo Sequence diagram]

Runtime Scenario 2 - Write person’s birthday by id

[image: Demo Sequence diagram]

General Sequence Workflow

[image: Sequence Workflow diagram]

 Deployment View

Deployment View

[image: Deployment diagram shows which part of software runs on which machine or device]

 Libraries and external Software

Libraries and external Software

Contains a list of the libraries and external software used by this system.

Libraries and external Software

	Name
	URL/Author
	License
	Description

	junit
	http://junit.org/junit4/
	Eclipse Public License - v 1.0
	a simple framework to write repeatable tests

	Neo4j driver
	https://neo4j.com/download/other-releases/#drivers
	Apache License, v. 2.0
	access to the Neo4j graph database through Java

	rosjava
	https://github.com/rosjava/rosjava_core
	Apache License, v. 2.0
	a client library for ros communications in java as well as growing list of core tools (e.g. tf, geometry) and drivers (e.g. hokuyo)

	Jedis
	https://github.com/xetorthio/jedis
	MIT License
	a small and sane Redis java client

	Gson
	https://github.com/google/gson
	Apache License, v. 2.0
	a Java serialization/deserialization library to convert Java Objects into JSON and back

 About arc42

About arc42

This information should stay in every repository as per their license: http://www.arc42.de/template/licence.html

arc42, the Template for documentation of software and system
architecture.

By Dr. Gernot Starke, Dr. Peter Hruschka and contributors.

Template Revision: 6.5 EN (based on asciidoc), Juni 2014

© We acknowledge that this document uses material from the arc 42
architecture template, http://www.arc42.de. Created by Dr. Peter
Hruschka & Dr. Gernot Starke. For additional contributors see
http://arc42.de/sonstiges/contributors.html

Note

This version of the template contains some help and explanations. It
is used for familiarization with arc42 and the understanding of the
concepts. For documentation of your own system you use better the
plain version.

Literature and references

	Starke-2014

	Gernot Starke: Effektive Softwarearchitekturen - Ein praktischer
Leitfaden. Carl Hanser Verlag, 6, Auflage 2014.

	Starke-Hruschka-2011

	Gernot Starke und Peter Hruschka: Softwarearchitektur kompakt.
Springer Akademischer Verlag, 2. Auflage 2011.

	Zörner-2013

	Softwarearchitekturen dokumentieren und kommunizieren, Carl Hanser
Verlag, 2012

Examples

	HTML Sanity
Checker [http://aim42.github.io/htmlSanityCheck/hsc_arc42.html]

	DocChess [http://www.dokchess.de/dokchess/arc42/] (german)

	Gradle [http://www.embarc.de/arc42-starschnitt-gradle/] (german)

	MaMa
CRM [http://confluence.arc42.org/display/arc42beispielmamacrm]
(german)

	Financial Data
Migration [http://confluence.arc42.org/display/migrationEg/Financial+Data+Migration]
(german)

Acknowledgements and collaborations

arc42 originally envisioned by Dr. Peter
Hruschka [http://b-agile.de] and Dr. Gernot
Starke [http://gernotstarke.de].

	Sources

	We maintain arc42 in asciidoc format at the moment, hosted in
GitHub under the
aim42-Organisation [https://github.com/aim42/aim42].

	Issues

	We maintain a list of open topics and
bugs [https://github.com/arc42/arc42-template/issues].

We are looking forward to your corrections and clarifications! Please
fork the repository mentioned over this lines and send us a pull
request!

Collaborators

We are very thankful and acknowledge the support and help provided by
all active and former collaborators, uncountable (anonymous) advisors,
bug finders and users of this method.

Currently active

	Gernot Starke

	Stefan Zörner

	Markus Schärtel

	Ralf D. Müller

	Peter Hruschka

	Jürgen Krey

Former collaborators

(in alphabetical order)

	Anne Aloysius

	Matthias Bohlen

	Karl Eilebrecht

	Manfred Ferken

	Phillip Ghadir

	Carsten Klein

	Prof. Arne Koschel

	Axel Scheithauer

 Index

Index

 J
 | O
 | R

J

 	
 	java::util (C++ type)

O

 	
 	org (C++ type)

 	org::neo4j::driver::v1 (C++ type)

 	org::roboy (C++ type)

 	org::roboy::memory (C++ type)

 	org::roboy::memory::Main (C++ class)

 	org::roboy::memory::models (C++ type)

 	org::roboy::memory::models::Create (C++ class)

 	org::roboy::memory::models::Get (C++ class)

 	org::roboy::memory::models::Header (C++ class)

 	org::roboy::memory::models::Remove (C++ class)

 	
 	org::roboy::memory::models::Update (C++ class)

 	org::roboy::memory::ros (C++ type)

 	org::roboy::memory::ros::RosNode (C++ class)

 	org::roboy::memory::ros::RosRun (C++ class)

 	org::roboy::memory::ros::ServiceLogic (C++ class)

 	org::roboy::memory::util (C++ type)

 	org::roboy::memory::util::Answer (C++ class)

 	(C++ type)

 	org::roboy::memory::util::Config (C++ class)

 	(C++ type)

 	org::roboy::memory::util::Neo4j (C++ class)

R

 	
 	roboy_communication_cognition (C++ type)

_static/comment.png

_images/java_client_flow_chart.png
Start

hecsavorios| | Pase 50N | ——
‘message. > payload into >\valid elements|
proed
l et oror
vaid
e oo e)
[~

Construct

cypher
queries

information [«

information

query DB and|
retrieve

over ROS

into JSON

information

_static/ajax-loader.gif

_images/uml_system_context.png
rosservice
request

rosservice
response

rosservice
request

rosservice
response

rosservice
request

rosservice
response

ROS

server

JSON query —

JSON object

Parser

£

Face features

Key-value
storage

Client
—
S
Cypher
_ (%/l?ery —
Graph
database
Cypher ___|
esponse
~

_static/down-pressed.png

_static/file.png

_static/plus.png

_images/IS-O_sequence.png
Person's id | |
' |

generateRCSpayload(ID)

read_qr(RCSmsg)

Cypher query

data

rosmsg(data)

getData(data)

_static/up-pressed.png

_images/neo4j.png
Database Information MATCH (n) RETURN n LIMIT 25

Node Labels
$ CALL db.schema()

(Yo Y corvm Yoo 5 -
22

=
2 [
@ N r

Text
Relationship Types KNow uveN

<S>

Code %, Z | s
s g
[+)| Frieno_or Jf From) % é
T O 0
AS_HOBEY Is
[know J Lve in Jf mEmBER oF

& DS
PART OF | STUDY AT @‘L’ £ sl

§ ge ™
WORK_FOR 5 5’

Property Keys

abilities birthdate color X . .
Displaying 13 nodes, 26 relationships.

conversation_id face_id name

price_euro || sex | | skills $ MATCH (n) RETURN n LIMIT 25

speed_kmh surname @ -
Graph
2]

temperature_celsius usage

A
voice_id ﬁ oq‘,b
9
Table g@
Connected as
A From STUDY_AT
Text ofF
Username: memory % & MEMEEHO eSS
; N4 ~OF =
Roles: admin -~
<>

R_OF
D N
Code < ’
Database e & SR\

_images/IS-O_sequence2.png
Person's birthdate, | |
' |

generateRCSpayload(ID)

write_qr(RCSmsg)

Cypher query

state

rosmsg(success)

getState(success)

_static/down.png

_images/uml_siva_deployment_diagram.png
Deployment Diagram For Roboy Memory Module

<<Device>>
Ros Server

<<Device>>
User Computer (Ubuntu)
rosjava
Java Client g

ROS Services g

bolt

<<Device>>
Database Server

ROS Messages Handling

over ssh

Neo4j Database

2 |

_static/up.png

_images/sequence.png
Connect to
roscore

Send JSON
query

Process error message
messages -

Receive
the response

Dialog Memory

Initialize
configuration

Connect to
roscore

Publish services:
Icreate
lupdate

Iget
Iremove
Ieypher

string with

JSON object Receive JSON

Query.

Parse JSON
query to an object
with GSON

“FAIL™: error

Check validity of
the request

Convert
the request into
Cypher query

Cypher

Send query

Cypher query
to Neodj

Receive
the response
from Neodj

Update
Redis storage

Convert
Statement
Result
to JSON

Send JSON
‘with result

Wait for
the next query

Neo4j

Receive
Cypher query

Generate
result

Send
the result

_images/dbvisual.png
e R D @GEH) D U Robot(1) BN Location(1)
Live_IN@) [l is iN) [l Has HoBBY(1) Jll MEMBER OF(1) Jll woRk FOR(1) Jll sTupy_aT(2) Jll know(1) Ml is(1) Jll From(>) Ml PART OF(2)

Object

_images/05_building_blocks.png
System
ey Java Client
% =
- s |- KR
operator

05 operator
™~ i — KR
3 = Redis
2 msg | >| Parser storge x
9 pipeline 7

=2

auery

creator

nav.xhtml

 Table of Contents

 		Welcome to Roboy Memory Module documentation!

 		Installation

 		Maven

 		Local Neo4j Instance

 		Local Redis Instance

 		Remote Neo4j Instance

 		Remote Redis Instance

 		Installing ROS

 		Roboy Memory Package Installation

 		Getting started

 		Local Neo4j Instance

 		Local Redis Instance

 		Remote Neo4j Instance

 		Remote Redis Instance

 		Configuring the Package

 		ROS Configuration (remote)

 		Running the Package

 		Using Remote

 		Development

 		Using the ROS services

 		Available ROS services

 		Calling the ROS

 		Create queries

 		Update queries

 		Get queries

 		Remove queries

 		Troubleshooting

 		Possible Common Exceptions

 		Context

 		Conventions

 		Architecture Constraints

 		Technical Constraints / Runtime Interface Requirements

 		Public Interfaces (