RobotPy WPILiIb Documentation

Release master

RobotPy development team

February 02, 2016

Contents

1 Contents 3
1.1 Getting Started L L e e e e e e e e e e e e e e 3
[.1.1 Automated installation L 3
Upgrading o e e e e e e e e 4

1.1.2 Manual installation e e e e 4

1.2 Programmer’s Guide e e 5
1.2.1 Anatomyofarobot e 5
Create your Robotcode e e 5

Importing necessary modules e e e e 5
Robotobject e e 5

Adding motors and SENSOTS L L 6

Robot Operating Modes (IterativeRobot) 7

Mainblock 7

Puttingitall together e 8

Next SepS . . o o v o e e e e e e 8

1.22 RunningRobotCode 8

On the robot (using pyfrc) L 9

Ontherobot (manual) e e e e 9

ON your COMPULET . . v v v v v v v e 9

Gazebo simulationo e 10

NEXESIEPS .« ¢ v v o e e e e e e e e e e e e 10

1.2.3 Simulation and Testing L 10
Adding tests to your robot L. L. e e e 10

Customized teStS e e e e e 10

NexXt SePS . v v v v o e e e e e e e e e e 10

1.2.4 BestPractices e 10

Make sure you’re running the latest version of RobotPy! 11

Don’t use the print statement/logger excessively oL 11

Don’t die during the competition! e 11

125 NeXtSEPS . . v v v v e 12

1.3 Hardware & Sensors e e e 12
1.4 wpilibPackage 13
141 CameraServer i i e e e e e e 14

142 USBCamerao vt ittt e e e e e 16

143 ADXL345_I2C e e e e e e 17

1.44 ADXL345_SPI e e 19

145 ADXL362 o o e e e e e e 20

146 ADXRS450_Gyro o e e e e 22

1.4.7

1.4.8

1.4.9

1.4.10
1.4.11
1.4.12
1.4.13
1.4.14
1.4.15
1.4.16
1.4.17
1.4.18
1.4.19
1.4.20
1.4.21
1.4.22
1.4.23
1.4.24
1.4.25
1.4.26
1.4.27
1.4.28
1.4.29
1.4.30
1.4.31
1.4.32
1.4.33
1.4.34
1.4.35
1.4.36
1.4.37
1.4.38
1.4.39
1.4.40
1.4.41
1.4.42
1.4.43
1.4.44
1.4.45
1.4.46
1.4.47
1.4.48
1.4.49
1.4.50
1.4.51
1.4.52
1.4.53
1.4.54
1.4.55
1.4.56
1.4.57
1.4.58
1.4.59
1.4.60

AnalogAccelerometer e e e e e e e e e e 23

AnalogGyro e e e e e e e e e 24
AnalogInput e e e e e e 25
AnalogOutput e e e 28
AnalogPotentiometer oL 28
AnalogTrigger e e e 29
AnalogTriggerOutput e e e e e e e e e e 31
BuiltlnAccelerometer e e e e e e 32
CANJaguar e e e e e e 32
CANTalon e e e e 42
Compressor L e 49
ControllerPower. e e 51
COUNLET . . . v e 52
DigitalGlitchFilter 57
Digitallnput 58
DigitalOutput e e 59
DigitalSource e e e 60
DoubleSolenoid e e e e e e e 60
DriverStation e e e e e e e e e e e e 61
Encoder e e e e e 65
Filter e e e e e e e 69
GearTooth e e e 69
GyroBase i e e e e e e e e e e 70
I2C e e 70
InterruptableSensorBase oL 72
IterativeRobot e e e e 73
Jaguaro L e 75
Joystick L e e e e e e e 76
LinearDigitalFilter e e e e e 80
LiveWindow L e e e e e e e 83
LiveWindowSendable e 84
MotorSafety e e e 85
PIDController e e e e e e e e e e 86
PowerDistributionPanel e 89
Preferences L e e e e e 90
PWM . e e e e e 93
Relay e 96
Resource e e e e e e e e 97
RobotBase e e e e e 98
RobotDrive e e e 99
RobotState e e e e e e e e e 104
SafePWM e 104
SampleRobot L 104
SD540 . . . e s e 106
Sendable e e 107
SendableChooser e e e e 107
SensorBase e e e e 108
SEIVO . . . e e e 110
SmartDashboard 111
Solenoid L. e 113
SolenoidBase e 114
Spark . . L e e e 115
SPL . e e 116
Talon L e e e e 118

1.5

1.6

1.7

1.8

1.9

1.10

1.4.61 TalonSRX L . e e e
14.62 TIMEr o ot e e e e e e e e e
1.4.63 Ultrasonic o o o i e e e e e e e e e
1.4.64 ULty e e e e
1.4.65 VICIOT o o e e e e e e e e e e e e e e e
1.4.66 VIctorSP e e e e e e e e
wpilib.buttons Package L e e e e
L5 BUtton o e e e e e e e
1.5.2 InternalButton L e e e e e e e e
1.5.3 JoystickButton L e e e e e
1.54 NetworkButton e e e e
1.5.5 TrigEEr . . o v o e e e e e e e e e e e e e e e e e e e
wpilib.command Package L e e e
1.6.1 Command e e
1.6.2 CommandGroup i i e e e e e e e e e e
1.6.3 PIDCommand e e e e e e e e e e e e
1.6.4 PIDSubsystem e e e e e e e e e e e e e e e
1.6.5 PrintCommand e e
1.6.6 Scheduler e
1.6.7 StartCommand e e e e e e e e e e
1.6.8 Subsystem e e e e e e e
1.6.9 WaitCommand e e e e e e e e e e e e e
1.6.10 WaitForChildren e
1.6.11 WaitUntilCommand e
wpilib.interfaces Package oL L
1.7.1 Accelerometer. e
1.7.2 Controller o o e e e e e e e e e e e e e e
1.7.3 CounterBase e e e
1.74 GenericHID e
L7.5 GYro . . o o o e e e e e e e e e
1.7.6 NamedSendable e e e e e e e e
1.7.7 PIDInterface e e e e e e e e e e e e
1.7.8 PIDOUtput. o e e e e e e e e e e e e e
1.7.9 PIDSOUICE o v i it e e e e e e e e e e e e e
1.7.10 Potentiometer o it e e e e e e e e e e e e
1.7.11 SpeedController e
RobotPy Installer o e e e e
1.8.1 imstall-robotpy L e
1.8.2 download-tobotpy o . e e e e e e e e e e e e e
1.8.3 download e e
1.8.4 install
Implementation Details e e
1.9.1 DesignGoals e
1.9.2 HALLoading o e e e e e e e e e e e
1.9.3 Adding options to TObDOL.PY v o i L e e e e e e e e e e e e
SUPPOTt . . o o o e e e e e e e e e e e e
1.10.1 Reporting Bugs L e e e e
1.10.2 Contributing new fixes or features L.
1.10.3 IRC . . o e

2 Indices and tables

Python Module Index

RobotPy WPILib Documentation, Release master

Welcome to RobotPy! RobotPy is a community of FIRST mentors and students dedicated to developing python-related
projects for the FIRST Robotics Competition.

This documentation site describes how to use the python version of WPILib. It is a pure python implementation of
WPILIb, so that teams can use to write their robot code in Python, a powerful dynamic programming language.

There is a lot of good documentation, but there’s still room for improvement. We welcome contributions from others!

Contents 1

RobotPy WPILib Documentation, Release master

2 Contents

CHAPTER 1

Contents

1.1 Getting Started

Welcome to RobotPy! RobotPy is a community of FIRST mentors and students dedicated to developing python-related
projects for the FIRST Robotics Competition.

RobotPy WPILIb is a set of libraries that are used on your roboRIO to enable you to use Python as your main pro-
gramming language for FIRST Robotics robot development. It includes support for all components that are supported
by WPILib’s Java implementation. The following instructions tell you how to install RobotPy on your robot.

If you want to run your python code on your computer (of course you do!), then you need to install our python
development support tools, which is a separate project of ours called pyfrc. For more information, check out the pyfrc
documentation site.

Note: Once you’ve got robotpy installed on your robot, check out Anatomy of a robot to learn how to write robot
code using python and RobotPy.

1.1.1 Automated installation
RobotPy is truly cross platform, and can be installed from Windows, most Linux distributions, and from Mac OSX
also. Here’s how you do it:

e Download RobotPy from github

* Make sure Python 3.4 is installed

Unzip the RobotPy zipfile somewhere on your computer (not on the RoboRIO), and there should be an installer.py
there. Open up a command line, change directory to the installer location, and run this:

Windows: py installer.py install-robotpy

Linux/0SX: python3 installer.py install-robotpy

It will ask you a few questions, and copy the right files over to your robot and set things up for you.

Next, you’ll want to create some code (or maybe use one of our examples), and upload it to your robot! Refer to our
Programmer’s Guide for more information.

http://pyfrc.readthedocs.org/
http://pyfrc.readthedocs.org/
https://github.com/robotpy/robotpy-wpilib/releases
https://www.python.org/downloads/

RobotPy WPILib Documentation, Release master

Upgrading

From the same directory that you unzipped previously, you can run the same installer script to upgrade your robotpy
installation. You need to do it in two phases, one while connected to the internet to download the new release, and one
while connected to the Robot’s network.

When connected to the internet:

Windows: py installer.py download-robotpy

Linux/0SX: python3 installer.py download-robotpy

Then connect to the Robot’s network:

Windows: py installer.py install-robotpy

Linux/0SX: python3 installer.py install-robotpy

If you want to use a beta version of RobotPy (if available, you can add the —pre argument to the download/install
command listed above.

1.1.2 Manual installation

Warning: This isn’t recommended, so you’re on your own if you go this route.

If you really want to do this, it’s not so bad, but then you lose out on the benefits of the automated installer — in
particular, this method requires internet access to install the files on the RoboRIO in case you need to reimage your
RoboRIO.

* Connect your RoboRIO to the internet

* SSH in, and copy the following to /etc/opkg/robotpy.conf:

src/gz robotpy http://www.tortall.net/~robotpy/feeds/2014

¢ Run this:

opkg install python3

¢ Then run this:

pip3 install pynivision robotpy-hal-roborio wpilib

Note: When powered off, your RoboRIO does not keep track of the correct date, and as a result pip may fail with an
SSL related error message. To set the date, you can either:

¢ Set the date via the web interface

* You can login to your roboRIO via SSH, and set the date via the date command:

date -s "2015-01-03 00:00:00"

Upgrading requires you to run the same commands, but with the appropriate flags set to tell pip3/opkg to upgrade the
packages for you.

4 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

1.2 Programmer’s Guide

1.2.1 Anatomy of a robot

Note: The following assumes you have some familiarity with python, and is meant as a primer to creating robot code
using the python version of wpilib. If you’re not familiar with python, you might try these resources:

e CodeAcademy
» Wikibooks python tutorial
e Python 3.4 Tutorial

This tutorial will go over the things necessary for very basic robot code that can run on an FRC robot using the python
version of WPILib. Code that is written for RobotPy can be ran on your PC using various simulation tools that are
available.

Create your Robot code

Your robot code must start within a file called robot.py. Your code can do anything a normal python program can, such
as importing other python modules & packages. Here are the basic things you need to know to get your robot code
working!

Importing necessary modules

All of the code that actually interacts with your robot’s hardware is contained in a library called WPILib. This library
was originally implemented in C++ and Java. Your robot code must import this library module, and create various
objects that can be used to interface with the robot hardware.

To import wpilib, it’s just as simple as this:

import wpilib

Note: Because RobotPy implements the same WPILib as C++/Java, you can learn a lot about how to write robot code
from the many C++/Java focused WPILib resources that already exist, including FIRST’s official documentation. Just
translate the code into python.

Robot object

Every valid robot program must define a robot object that inherits from either wpilib.IterativeRobot or
wpilib.SampleRobot. These objects define a number of functions that you need to override, which get called at
various times.

e wpilib.IterativeRobot functions

e wpilib.SampleRobot functions

Note: Itis recommended that inexperienced programmers use the IterativeRobot framework, which is what this guide
will discuss.

1.2. Programmer’s Guide 5

http://www.codecademy.com/tracks/python
https://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_3
https://docs.python.org/3.4/tutorial/

RobotPy WPILib Documentation, Release master

An incomplete version of your robot object might look like this:

class MyRobot (wpilib.IterativeRobot) :

def robotInit (self):
self.motor = wpilib.Jaguar (1)

The robotInit function is where you initialize data that needs to be initialized when your robot first starts. Examples of
this data includes:

* Variables that are used in multiple functions
¢ Creating various wpilib objects for devices and sensors
* Creating instances of other objects for your robot

In python, the constructor for an object is the ___init__ function. Instead of defining a constructor for your main
robot object, you can override robotlnit instead. If you do decide that you want to override ___init__, then you must
call super () .__init__ () inyour __init___ method, or an exception will be thrown.

Adding motors and sensors

Everything that interacts with the robot hardware directly must use the wpilib library to do so. Starting in 2015, full
documentation for the python version of WPILib is published online. Check out the API documentation (wpi11ib)
for details on all the objects available in WPILib.

Note: You should only create instances of your motors and other WPILib hardware devices (Gyros, Joysticks,
Sensors, etc) either during or after robotlnit is called on your main robot object. If you don’t, there are a lot of things
that will fail.

Creating individual devices

Let’s say you wanted to create an object that interacted with a Jaguar motor controller via PWM. First, you would read
through the table (wpi 11b) and see that there is a Jaguar object. Looking further, you can see that the constructor
takes a single argument that indicates which PWM port to connect to. You could create the Jaguar object that is using
port 4 using the following python code in your robotlnit method:

self.motor = wpilib.Jaguar (4)

Looking through the documentation some more, you would notice that to set the PWM value of the motor, you need to
call the Jaguar. set () function. The docs say that the value needs to be between -1.0 and 1.0, so to set the motor
full speed forward you could do this:

self.motor.set (1)

Other motors and sensors have similar conventions.

Robot drivetrain control

For standard types of drivetrains (2 or 4 wheel, and mecanum), you’ll want to use the RobotDrive class to control
the motors instead of writing your own code to do it. When you create a RobotDrive object, you either specify which
PWM channels to automatically create a motor for:

6 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

self.robot_drive = wpilib.RobotDrive (0, 1)

Or you can pass in motor controller instances:

1_motor = wpilib.Talon(0)
r_motor = wpilib.Talon (1)
self.robot_drive = wpilib.RobotDrive (1_motor, r_motor)

Once you have one of these objects, it has various methods that you can use to control the robot via joystick, or you
can specify the control inputs manually.

See also:

Documentation for the wpilib.RobotDrive object, and the FIRST WPILib Programming Guide.

Robot Operating Modes (lterativeRobot)
During a competition, the robot transitions into various modes depending on the state of the game. During each mode,
functions on your robot class are called. The name of the function varies based on which mode the robot is in:

¢ disabledXXX - Called when robot is disabled

* autonomousXXX - Called when robot is in autonomous mode

* teleopXXX - Called when the robot is in teleoperated mode

¢ testXXX - Called when the robot is in test mode

Each mode has two functions associated with it. xxxInit is called when the robot first switches over to the mode, and
xxxPeriodic is called 50 times a second (approximately — it’s actually called as packets are received from the driver
station).

For example, a simple robot that just drives the robot using a single joystick might have a teleopPeriodic function that
looks like this:

def teleopPeriodic(self):
self.robot_drive.arcadeDrive (self.stick)

This function gets called over and over again (about 50 times per second) while the robot remains in teleoperated
mode.

Warning: When using the IterativeRobot as your Robot class, you should avoid doing the following operations
in the xxxPeriodic functions or functions that have xxxPeriodic in the call stack:
* Never use Timer.delay (), as you will momentarily lose control of your robot during the delay, and it
will not be as responsive.
* Avoid using loops, as unexpected conditions may cause you to lose control of your robot.

Main block

Languages such as Java require you to define a ‘static main’ function. In python, because every .py file is usable from
other python programs, you need to define a code block which checks for __main__. Inside your main block, you tell
WPILIb to launch your robot’s code using the following invocation:

if _ _name_ == '__main_ ':
wpilib. run (MyRobot)

This simple invocation is sufficient for launching your robot code on the robot, and also provides access to various
RobotPy-enabled extensions that may be available for testing your robot code, such as pyfrc and robotpy-frcsim.

1.2. Programmer’s Guide 7

http://effbot.org/pyfaq/tutor-what-is-if-name-main-for.htm

RobotPy WPILib Documentation, Release master

Putting it all together

If you combine all the pieces above, you end up with something like this below, taken from one of the samples in our
github repository.

#!/usr/bin/env python3

mmn

This is a good foundation to build your robot code on

mmwn

import wpilib

class MyRobot (wpilib.IterativeRobot) :

def robotInit (self):
mmn
This function is called upon program startup and
should be used for any initialization code.
mmrn
self.robot_drive = wpilib.RobotDrive (0, 1)
self.stick = wpilib.Joystick (1)

def autonomousInit (self):
"""This function is run once each time the robot enters autonomous mode."""
self.auto_loop_counter = 0

def autonomousPeriodic(self):
"""This function is called periodically during autonomous."""

Check if we've completed 100 loops (approximately 2 seconds)

if self.auto_loop_counter < 100:
self.robot_drive.drive (-0.5, 0) # Drive forwards at half speed
self.auto_loop_counter += 1

else:
self.robot_drive.drive (0, 0) #Stop robot

def teleopPeriodic (self):
"""This function is called periodically during operator control."""
self.robot_drive.arcadeDrive (self.stick)

def testPeriodic(self):
"""This function is called periodically during test mode."""
wpilib.LiveWindow.run ()
if _ name_ == "_ _main__
wpilib.run (MyRobot)

".

There are a few different python-based robot samples available, and you can find them at our github site.

Next Steps

This is a good foundation for building your robot, next you will probably want to know about Running Robot Code.

1.2.2 Running Robot Code

Now that you’ve created your first Python robot program, you probably want to know how to run the code.

8 Chapter 1. Contents

https://github.com/robotpy/robotpy-wpilib/tree/master/examples

RobotPy WPILib Documentation, Release master

On the robot (using pyfrc)

The easiest way to install code on the robot is to use pyfrc.
1. Make sure you have RobotPy installed on the robot
2. Make sure you have pyfrc installed (see the installation guide).

3. Once that is done, you can just run the following command and it will upload the code and start it immediately.

Windows: py robot.py deploy

Linux/0SX: python3 robot.py deploy

Note that when you run this command like that, you won’t get any feedback from the robot whether your code actually
worked or not. If you want to see the feedback from your robot, a really useful option is ——nc. This will cause the
deploy command to show your program’s console output, by launching a netconsole listener.

Windows: py robot.py deploy —--nc

Linux/0SX: python3 robot.py deploy —--nc

You can watch your robot code’s output (and see any problems) by using the netconsole program (you can either use
NI’s tool, or pynetconsole. You can use netconsole and the normal FRC tools to interact with the running robot code.

If you’re having problems deploying code to the robot, check out the troubleshooting section at
http://pyfrc.readthedocs.org/en/latest/deploy.html

On the robot (manual)

If you don’t have (or don’t want) to install pyfrc, running code manually is pretty simple too.
1. Make sure you have RobotPy installed on the robot
2. Use scp or sftp (Filezilla is a great GUI product to use for this) to copy your robot code to the RoboRIO

3. ssh into the RoboRIO, and run your robot code manually

python3 robot.py run

Your driver station should be able to connect to your code, and it will be able to operate your robot!

Note: This is good for running experimental code, but it won’t start the code when the robot starts up. Use pyfrc to
do that.

On your computer

Once installed, pyfrc provides a number of commands to interact with your robot code. For example, to launch the
tk-based simulator, run the following command on your code:

Windows: py robot.py sim

Linux/0SX: python3 robot.py sim

Check out the pyfrc documentation for more usage details.

1.2. Programmer’s Guide 9

http://pyfrc.readthedocs.org/en/latest/install.html
https://github.com/robotpy/pynetconsole
http://pyfrc.readthedocs.org/en/latest/deploy.html
http://pyfrc.readthedocs.org/en/latest/usage.html

RobotPy WPILib Documentation, Release master

Gazebo simulation

This is currently experimental, and will be updated in the coming weeks. If you want to play with it now (and help us
fix the bugs!), check out the robotpy-frcsim github repository.

Next steps

The next section discusses a very important part of writing robot code — Simulation and Testing.

1.2.3 Simulation and Testing
An important (but often neglected) part of developing your robot code is to test it! Because we feel strongly about

testing and simulation, the RobotPy project provides tools to make those types of things easier through the pyfrc
project.

Adding tests to your robot

pyfrc comes with builtin tests that you can add to your robot code that will test basic functionality of most robots. As
of pyfrc 2016.1.1, you can add these tests to your robot by executing this:

Windows: py robot.py add-tests

Linux/0SX: python3 robot.py add-tests

Customized tests

For more detailed information, check out the pyfrc documentation.

Next Steps

Learn more about some Best Practices when creating robot code.

1.2.4 Best Practices

This section has a selection of things that other teams have found to be good things to keep in mind to build robot code
that works consistently, and to eliminate possible failures.

Contents

* Best Practices
— Make sure you're running the latest version of RobotPy!
— Don’t use the print statement/logger excessively
— Don'’t die during the competition!

» Next Steps

If you have things to add to this section, feel free to submit a pull request!

10 Chapter 1. Contents

https://github.com/robotpy/robotpy-frcsim
https://github.com/robotpy/pyfrc
http://pyfrc.readthedocs.org

RobotPy WPILib Documentation, Release master

Make sure you’re running the latest version of RobotPy!

Seriously. We try to fix bugs as we find them, and if you haven’t updated recently, check to see if you’re out of date!
This is particularly true this year.

Don’t use the print statement/logger excessively

Printing output can easily take up a large proportion of your robot code CPU usage if you do it often enough. Try to
limit the amount of things that you print, and your robot will perform better.

Instead, you may want to use this pattern to only print once every half second (or whatever arbitrary period):

Put this in robotInit
self.printTimer = wpilib.Timer ()
self.printTimer.start ()

Put this where you want to print
if self.printTimer.hasPeriodPassed(0.5):
self.logger.info ("Something happened")

Remember, during a competition you can’t actually see the output of Netconsole (it gets blocked by the field network),
so there’s not much point in using these except for diagnostics off the field. In a competition, disable it.

Don’t die during the competition!

If you’ve done any amount of programming in python, you’ll notice that it’s really easy to crash your robot code — all
you need to do is mistype something and BOOM you’re done. When python encounters errors (or components such
as WPILib or HAL), then what happens is an exception is raised.

Note: If you don’t know what exceptions are and how to deal with them, you should read this

There’s a lot of things that can cause your program to crash, and generally the best way to make sure that it doesn’t
crash is test your code. RobotPy provides some great tools to allow you to simulate your code, and to write unit tests
that make sure your code actually works. Whenever you deploy your code using pyfrc, it tries to run your robot code’s
tests — and this is to try and prevent you from uploading code that will fail on the robot.

However, invariably even with all of the testing you do, something will go wrong during that really critical match, and
your code will crash. No fun. Luckily, there’s a good technique you can use to help prevent that!

What you need to do is set up a generic exception handler that will catch exceptions, and then if you detect that the
FMS is attached (which is only true when you’re in an actual match), just continue on instead of crashing the code.

Note: Most of the time when you write code, you never want to create generic exception handlers, but you should try
to catch specific exceptions. However, this is a special case and we actually do want to catch all exceptions.

Here’s what I mean:

try:
some code goes here
except:
if not self.isFmsAttached():
raise

1.2. Programmer’s Guide 11

https://docs.python.org/2/tutorial/errors.html

RobotPy WPILib Documentation, Release master

What this does is run some code, and if an exception occurs in that code block, and the FMS is connected, then
execution just continues and hopefully everything continues working. However (and this is important), if the FMS is
not attached (like in a practice match), then the raise keyword tells python to raise the exception anyways, which
will most likely crash your robot. But this is good in practice mode — if your driver station is attached, the error and a
stack trace should show up in the driver station log, so you can debug the problem.

Now, a naive implementation would just put all of your code inside of a single exception handler — but that’s a bad idea.
What we’re trying to do is make sure that failures in a single part of your robot don’t cause the rest of your robot code
to not function. What we generally try to do is put each logical piece of code in the main robot loop (teleopPeriodic)
in its own exception handler, so that failures are localized to specific subsystems of the robot.

With these thoughts in mind, here’s an example of what [mean:

def teleopPeriodic(self):

try:
if self.joystick.getTrigger () :
self.arm.raise_arm{()
except:
if not self.isFmsAttached():
raise

try:
if self.joystick.getRawButton (2) :
self.ball_intake. ()
except:
if not self.isFmsAttached() :
raise

and so on...

try:
self.robot_drive.arcadeDrive (self. joystick)
except:
if not self.isFmsAttached():

raise

Note: In particular, I always recommend making sure that the call to your robot’s drive function is in it’s own
exception handler, so even if everything else in the robot dies, at least you can still drive around.

1.2.5 Next Steps

Next we’ll discuss some topic that will be decided upon in the future, if someone writes more documentation here.
Until then, remember that the FIRST documentation and our example programs are great resources to learn more about
programming with WPILib.

1.3 Hardware & Sensors

FIRST has put together a lot of great documentation that can tell you how to connect hardware devices and interact
with it from robot code.

» Using actuators (motors, servos, and relays)

* Using CAN Devices

12 Chapter 1. Contents

http://wpilib.screenstepslive.com/s/4485/m/13809/c/88897
http://wpilib.screenstepslive.com/s/4485/m/13809/c/88896

RobotPy WPILib Documentation, Release master

* WPILib Sensors
* Driver Station Inputs and Feedback

While their documentation code samples are in C++ and Java, it’s fairly straightforward to translate them to python —
RobotPy includes support for all components that are supported by WPILib’s Java implementation, and generally the
objects have the same name and method names.

If you have problems translating their code samples into Python, you can use our support resources to get help (see
Support).

1.4 wpilib Package

The WPI Robotics library (WPILib) is a set of classes that interfaces to the hardware in the FRC control system and
your robot. There are classes to handle sensors, motors, the driver station, and a number of other utility functions like
timing and field management. The library is designed to:

* Deal with all the low level interfacing to these components so you can concentrate on solving this year’s “robot
problem”. This is a philosophical decision to let you focus on the higher-level design of your robot rather than
deal with the details of the processor and the operating system.

» Understand everything at all levels by making the full source code of the library available. You can study (and
modify) the algorithms used by the gyro class for oversampling and integration of the input signal or just ask
the class for the current robot heading. You can work at any level.

wpilib._impl.CameraServer()

wpilib._ impl.USBCamera([name])

wpilib.ADXL345_TI2C(port, range) ADXIL.345 accelerometer device via i2¢
wpilib.ADXL345_SPI(port, range) ADXL345 accelerometer device via spi
wpilib.ADXL362(range[, port]) ADXIL362 SPI Accelerometer.
wpilib.ADXRS450_Gyro([port]) Use a rate gyro to return the robots heading relative to a starting position.
wpilib.AnalogAccelerometer(channel) Analog Accelerometer

wpilib.AnalogGyro(channell, ...]) Interface to a gyro device via an AnalogInput
wpilib.AnalogInput(channel) Analog input

wpilib.AnalogOutput(channel) Analog output
wpilib.AnalogPotentiometer(channel) Reads a potentiometer via an AnalogInput
wpilib.AnalogTrigger(channel) Converts an analog signal into a digital signal
wpilib.AnalogTriggerOutput(...) Represents a specific output from an AnalogTrigger
wpilib.BuiltInAccelerometer([range]) Built-in accelerometer device
wpilib.CANJaguar(deviceNumber) Texas Instruments Jaguar Speed Controller as a CAN device.
wpilib.CANTalon(deviceNumber], ...]) Talon SRX device as a CAN device
wpilib.Compressor([pcmld]) Operates the PCM (Pneumatics compressor module)
wpilib.ControllerPower Provides access to power levels on the RoboRIO
wpilib.Counter(*args, **kwargs) Counts the number of ticks on a Digital Input channel.
wpilib.DigitalGlitchFilter() Class to enable glitch filtering on a set of digital inputs.
wpilib.DigitalInput(channel) Reads a digital input.

wpilib.DigitalOutput(channel) Writes to a digital output
wpilib.DigitalSource(channel, ...) DigitalSource Interface.
wpilib.DoubleSolenoid(¥args, ...) Controls 2 channels of high voltage Digital Output.
wpilib.DriverStation() Provide access to the network communication data to / from the Driver Station.
wpilib.Encoder(*args, **kwargs) Reads from quadrature encoders.

wpilib.Filter(source) Superclass for filters

wpilib.GearTooth(channell, ...]) Interface to the gear tooth sensor supplied by FIRST

1.4. wpilib Package 13

http://wpilib.screenstepslive.com/s/4485/m/13809/c/88895
http://wpilib.screenstepslive.com/s/4485/m/13809/c/88894

RobotPy WPILib Documentation, Release master

Table 1.1 — continued from previous page

wpilib.GyroBase() GyroBase is the common base class for Gyro implementations such as AnalogG
wpilib.I2C(port, deviceAddress[, simPort]) 12C bus interface class.

wpilib.InterruptableSensorBase() Base for sensors to be used with interrupts

wpilib.IterativeRobot() IterativeRobot implements a specific type of Robot Program framework, extendin
wpilib.Jaguar(channel) Texas Instruments / Vex Robotics Jaguar Speed Controller as a PWM device.
wpilib.Joystick(port], ...]) Handle input from standard Joysticks connected to the Driver Station.
wpilib.LinearDigitalFilter(...) This class implements a linear, digital filter.

wpilib.LiveWindow The public interface for putting sensors and actuators on the LiveWindow.

wpilib.LiveWindowSendable A special type of object that can be displayed on the live window.
wpilib.MotorSarfety() Provides mechanisms to safely shutdown motors if they aren’t updated often enou
wpilib.PIDController(*args, ...) Can be used to control devices via a PID Control Loop.
wpilib.PowerDistributionPanel([...]) Use to obtain voltage, current, temperature, power, and energy from the CAN PD!
wpilib.Preferences() Provides a relatively simple way to save important values to the RoboRIO to acce
wpilib.PwM(channel) Raw interface to PWM generation in the FPGA.

wpilib.Relay(channell, direction]) Controls VEX Robotics Spike style relay outputs.

wpilib.Resource(size) Tracks resources in the program.

wpilib.RobotBase() Implement a Robot Program framework.

wpilib.RobotDrive(*args, **kwargs) Operations on a robot drivetrain based on a definition of the motor configuration.
wpilib.RobotState Provides an interface to determine the current operating state of the robot code.
wpilib.SafePWM(channel) A raw PWM interface that implements the MotorSafety interface
wpilib.SampleRobot() A simple robot base class that knows the standard FRC competition states (disabl
wpilib.SD540(channel) Mindsensors SD540 Speed Controller

wpilib.Sendable The base interface for objects that can be sent over the network
wpilib.SendableChooser() A useful tool for presenting a selection of options to be displayed on
wpilib.SensorBase Base class for all sensors

wpilib.Servo(channel) Standard hobby style servo

wpilib.SmartDashboard The bridge between robot programs and the SmartDashboard on the laptop
wpilib.Solenoid(*args, **kwargs) Solenoid class for running high voltage Digital Output.
wpilib.SolenoidBase(moduleNumber) SolenoidBase class is the common base class for the Solenoid and DoubleSoleno;
wpilib.Spark(channel) REV Robotics SPARK Speed Controller

wpilib.SPI(port[, simPort]) Represents a SPI bus port

wpilib. Talon(channel) Cross the Road Electronics (CTRE) Talon and Talon SR Speed Controller via PW
wpilib. TalonSRX(channel) Cross the Road Electronics (CTRE) Talon SRX Speed Controller via PWM
wpilib. Timer() Provides time-related functionality for the robot
wpilib.Ultrasonic(pingChannel, ...) Ultrasonic rangefinder control

wpilib.Utility Contains global utility functions

wpilib.Victor(channel) VEX Robotics Victor 888 Speed Controller via PWM
wpilib.VictorSP(channel) VEX Robotics Victor SP Speed Controller via PWM

1.4.1 CameraServer

class wpilib._impl.USBCamera (name=None)

Bases: object

class WhiteBalance

Bases: object
kFixedFlourescent2 = 5200
kFixedFluorescentl = 5100
kFixedIndoor = 3000

14

Chapter 1. Contents

RobotPy WPILib Documentation, Release master

kFixedOutdoorl = 4000
kFixedOutdoor2 = 5000
USBCamera.closeCamera ()

USBCamera.getBrightness ()
Get the brightness, as a percentage (0-100).

USBCamera .getImage (image)

USBCamera .getImageData (data, maxsize)
USBCamera .kDefaultCameraName = b’cam(’
USBCamera.openCamera ()

USBCamera.setBrightness (brightness)
Set the brightness, as a percentage (0-100).

USBCamera.setExposureAuto ()
Set the exposure to auto aperature.

USBCamera.setExposureHoldCurrent ()
Set the exposure to hold current.

USBCamera.setExposureManual (value)
Set the exposure to manual, as a percentage (0-100).

USBCamera.setFPS (fps)
USBCamera.setSize (width, height)

USBCamera.setWhiteBalanceAuto ()
Set the white balance to auto.

USBCamera.setWhiteBalanceHoldCurrent ()
Set the white balance to hold current.

USBCamera.setWhiteBalanceManual (value)
Set the white balance to manual, with specified color temperature.

USBCamera.startCapture ()
USBCamera.stopCapture ()
USBCamera.updateSettings ()

class wpilib._impl.CameraServer
Bases: object

static get Instance ()

getQuality ()
Get the quality of the compressed image sent to the dashboard

Returns The quality, from 0 to 100

isAutoCaptureStarted()
check if auto capture is started

kPort =1180

kSizel60x120=2
kSize320x240=1
kSize640x480=10

1.4. wpilib Package 15

RobotPy WPILib Documentation, Release master

server = None
setImage (image)

setQuality (quality)

Set the quality of the compressed image sent to the dashboard

Parameters quality — The quality of the JPEG image, from 0 to 100

setSize (size)

startAutomaticCapture (camera)

Start automatically capturing images to send to the dashboard.

You should call this method to just see a camera feed on the dashboard without doing any vision processing

on the roboRIO. { @link #setImage} shouldn’t be called after this is called.

Parameters camera — The camera interface (e.g. a USBCamera instance)

1.4.2 USBCamera

class wpilib._impl.USBCamera (name=None)
Bases: object

class WhiteBalance
Bases: object

kFixedFlourescent2 = 5200
kFixedFluorescentl = 5100
kFixedIndoor = 3000
kFixedOutdoorl = 4000
kFixedOutdoor2 = 5000
USBCamera.closeCamera ()

USBCamera.getBrightness ()
Get the brightness, as a percentage (0-100).

USBCamera .getImage (image)

USBCamera .getImageData (data, maxsize)

USBCamera .kDefaultCameraName = b’cam(’

USBCamera .openCamera ()

USBCamera.setBrightness (brightness)
Set the brightness, as a percentage (0-100).

USBCamera.setExposureAuto ()
Set the exposure to auto aperature.

USBCamera.setExposureHoldCurrent ()
Set the exposure to hold current.

USBCamera .setExposureManual (value)

Set the exposure to manual, as a percentage (0-100).

USBCamera.setFPS (fps)

USBCamera.setSize (width, height)

16

Chapter 1. Contents

mailto:\protect \T1\textbraceleft @link

RobotPy WPILib Documentation, Release master

USBCamera.setWhiteBalanceAuto ()
Set the white balance to auto.

USBCamera.setWhiteBalanceHoldCurrent ()
Set the white balance to hold current.

USBCamera.setWhiteBalanceManual (value)
Set the white balance to manual, with specified color temperature.

USBCamera.startCapture ()
USBCamera.stopCapture ()
USBCamera.updateSettings ()

class wpilib._impl.CameraServer
Bases: object

static getInstance ()

getQuality ()
Get the quality of the compressed image sent to the dashboard

Returns The quality, from O to 100

isAutoCaptureStarted()
check if auto capture is started

kPort = 1180
kSizel60x120=2
kSize320x240=1
kSize640x480=10
server = None
setImage (image)

setQuality (quality)
Set the quality of the compressed image sent to the dashboard

Parameters quality — The quality of the JPEG image, from 0 to 100
setSize (size)

startAutomaticCapture (camera)
Start automatically capturing images to send to the dashboard.

You should call this method to just see a camera feed on the dashboard without doing any vision processing
on the roboRIO. { @link #setlmage} shouldn’t be called after this is called.

Parameters camera — The camera interface (e.g. a USBCamera instance)

1.4.3 ADXL345_I2C

class wpilib.ADXL345_1I2C (port, range, address=None)
Bases: wpilib.SensorBase

ADXI1.345 accelerometer device via i2¢
Constructor.

Parameters

1.4. wpilib Package 17

mailto:\protect \T1\textbraceleft @link

RobotPy WPILib Documentation, Release master

* port (72C.Port)—The I2C port the accelerometer is attached to.

* range (ADXL345_T12C.Range)—Therange (+ or -) that the accelerometer will measure.

* address — the [2C address of the accelerometer (0x1D or 0x53)

class Axes

Bases: object

kx=0
ky=2
kz=4

class ADXL345_I2C.Range
Bases: object

k16G=3
k2G =0
k4G =1
k8G=2

ADXL345_1I2C.

ADXL345_TI2C.

free ()

getAcceleration (axis)

Get the acceleration of one axis in Gs.

Parameters axis — The axis to read from.

Returns An object containing the acceleration measured on each axis of the ADXL345 in Gs.

ADXL345_1I2C.

getAccelerations ()

Get the acceleration of all axes in Gs.

Returns X,Y,Z tuple of acceleration measured on all axes of the ADXL345 in Gs.

ADXL345_1I2C.

getX ()

Get the x axis acceleration

Returns The acceleration along the x axis in g-forces

ADXL345_1I2C.

getY ()

Get the y axis acceleration

Returns The acceleration along the y axis in g-forces

ADXL345_TI2C.

getZ ()

Get the z axis acceleration

Returns The acceleration along the z axis in g-forces
ADXL345_TI2C.

ADXL345_TI2C.

ADXL345_1I2C

ADXL345_1I2C.
ADXL345_TI2C.

ADXL345_1I2C.

ADXL345_1I2C

kAddress =29

kDataFormatRegister =49

.kDataFormat_FullRes =8

kDataFormat_ IntInvert =32
kDataFormat_Justify =4

kDataFormat_SPI = 64

.kDataFormat_SelfTest =128

18

Chapter 1. Contents

RobotPy WPILib Documentation, Release master

ADXL345_I2C.kDataRegister =50
ADXL345_1I2C.kGsPerLSB = 0.00390625
ADXL345_I2C.kPowerCtlRegister =45
ADXL345_T12C.kPowerCtl_AutoSleep =16
ADXL345_I2C.kPowerCtl Link =32
ADXL345_TI2C.kPowerCtl Measure =8
ADXL345_I2C.kPowerCtl_Sleep=4

ADXL345_I2C.setRange (range)
Set the measuring range of the accelerometer.

Parameters range (ADXL345_ I2C.Range)— The maximum acceleration, positive or nega-
tive, that the accelerometer will measure.

1.4.4 ADXL345_SPI

class wpilib.ADXL345_SPI (port, range)
Bases: wpilib.SensorBase

ADXIL.345 accelerometer device via spi
Constructor. Use this when the device is the first/only device on the bus
Parameters
* port (SPI.Port)—The SPI port that the accelerometer is connected to
* range (ADXL345_SPI.Range)—Therange (+ or -) that the accelerometer will measure.

class Axes
Bases: object

kx=0
ky=2
kz=4

class ADXL345_SPI.Range
Bases: object

k1l6G=3

k2G =0

k4G=1

k8G =2
ADXL345_SPI.free()

ADXL345_SPI.getAcceleration (axis)
Get the acceleration of one axis in Gs.

Parameters axis — The axis to read from.
Returns An object containing the acceleration measured on each axis of the ADXL345 in Gs.

ADXL345_SPI.getAccelerations ()
Get the acceleration of all axes in Gs.

1.4. wpilib Package 19

RobotPy WPILib Documentation, Release master

Returns X,Y,Z tuple of acceleration measured on all axes of the ADXL.345 in Gs.

ADXL345_SPI.

getX ()

Get the x axis acceleration

Returns The acceleration along the x axis in g-forces

ADXL345_SPT.

getY ()

Get the y axis acceleration

Returns The acceleration along the y axis in g-forces

ADXL345_SPTI.

getz ()

Get the z axis acceleration

Returns The acceleration along the z axis in g-forces

ADXL345_SPI
ADXL345_SPI.
ADXL345_SPI
ADXL345_SPI
ADXL345_SPI
ADXL345_SPI
ADXL345_SPI
ADXL345_SPI
ADXL345_SPI
ADXL345_SPI
ADXL345_SPI
ADXL345_SPI
ADXL345_SPI.
ADXL345_SPI
ADXL345_SPI

ADXL345_SPTI.

.kAddress_MultiByte = 64

kAddress Read =128

.kDataFormatRegister =49
.kDataFormat_FullRes =8
.kDataFormat_IntInvert =32
.kDataFormat_Justify =4
.kDataFormat_SPI =64
.kDataFormat_SelfTest =128
.kDataRegister =50
.kGsPerLsSB = 0.00390625
.kPowerCtlRegister =45
.kPowerCtl_AutoSleep =16

kPowerCtl_ Link =32

.kPowerCtl Measure =8

.kPowerCtl_Sleep =4

setRange (range)

Set the measuring range of the accelerometer.

Parameters range (ADX1.345_SPTI.Range)— The maximum acceleration, positive or nega-

tive, that the accelerometer will measure.

1.4.5 ADXL362

class wpilib .ADXL362 (range, port=None)

Bases: wpilib.

SensorBase

ADXIL362 SPI Accelerometer.

This class allows access to an Analog Devices ADXIL.362 3-axis accelerometer.

Constructor.

Parameters

* range (ADXL362.Range) — The range (+ or -) that the accelerometer will measure.

20

Chapter 1. Contents

RobotPy WPILib Documentation, Release master

* port (SPI.Port)— The SPI port that the accelerometer is connected to

class Axes
Bases: object

kX=0
ky=2
kz=4

class ADXL362 .Range
Bases: object

kl16G=3
k2G =0
k4G=1
k8G=2
ADXL362.free ()

ADXL362.getAcceleration (axis)
Get the acceleration of one axis in Gs.

Parameters axis — The axis to read from.
Returns An object containing the acceleration measured on each axis in Gs.

ADXL362.getAccelerations ()
Get the acceleration of all axes in Gs.

Returns X,Y,Z tuple of acceleration measured on all axes in Gs.

ADXL362.getX ()
Get the x axis acceleration

Returns The acceleration along the x axis in g-forces

ADXL362.getY ()
Get the y axis acceleration

Returns The acceleration along the y axis in g-forces

ADXL362.getZ ()
Get the z axis acceleration

Returns The acceleration along the z axis in g-forces
ADXL362.kDataRegister =14
ADXL362.kFilterCtlRegister =44
ADXL362.kFilterCtl_ODR_100Hz =3
ADXL362.kFilterCtl_Range2G =0
ADXL362.kFilterCtl_RangedG =64
ADXL362.kFilterCtl_Range8G =128
ADXL362.kPartIdRegister =2
ADXL362.kPowerCtlRegister =45

ADXL362.kPowerCtl_AutoSleep=4

1.4. wpilib Package 21

RobotPy WPILib Documentation, Release master

ADXL362 .kPowerCtl Measure =2
ADXL362.kPowerCtl_UltraLowNoise = 32
ADXL362.kRegRead =11
ADXL362.kRegWrite =10

ADXL362.setRange (range)
Set the measuring range of the accelerometer.

Parameters range (ADXL362.Range) — The maximum acceleration, positive or negative,
that the accelerometer will measure.

1.4.6 ADXRS450_Gyro

class wpilib.ADXRS450_Gyro (port=None)

Bases: wpilib.GyroBase

Use a rate gyro to return the robots heading relative to a starting position. The Gyro class tracks the robots
heading based on the starting position. As the robot rotates the new heading is computed by integrating the rate
of rotation returned by the sensor. When the class is instantiated, it does a short calibration routine where it
samples the gyro while at rest to determine the default offset. This is subtracted from each sample to determine
the heading.

This class is for the digital ADXRS450 gyro sensor that connects via SPI.
Constructor.

Parameters port (SPI.Port)— The SPI port that the gyro is connected to
calibrate()

free ()
Delete (free) the spi port used for the gyro and stop accumulating.

getAngle ()

getRate ()
kCalibrationSampleTime = 5.0
kDegreePerSecondPerLSB = (.0125
kFaultRegister =10
kHiCSTRegister =6
kLoCSTRegister =4
kPIDRegister =12
kQuadRegister =8
kRateRegister =10
kSNHighRegister = 14
kSNLowRegister =16
kSamplePeriod = 0.001
kTemRegister =2

reset ()

22

Chapter 1. Contents

RobotPy WPILib Documentation, Release master

1.4.7 AnalogAccelerometer

class wpilib.AnalogAccelerometer (channel)
Bases: wpilib.LiveWindowSendable
Analog Accelerometer

The accelerometer reads acceleration directly through the sensor. Many sensors have multiple axis and can be
treated as multiple devices. Each is calibrated by finding the center value over a period of time.

Constructor. Create a new instance of Accelerometer from either an existing AnalogChannel or from an analog
channel port index.

Parameters channel — port index or an already initialized AnalogInput

class PIDSourceType
Bases: object

A description for the type of output value to provide to a PTDController
kDisplacement =0
kRate =1

AnalogAccelerometer. free ()

AnalogAccelerometer.getAcceleration ()
Return the acceleration in Gs.

The acceleration is returned units of Gs.
Returns The current acceleration of the sensor in Gs.
Return type float
AnalogAccelerometer.getPIDSourceType ()

AnalogAccelerometer.pidGet ()
Get the Acceleration for the PID Source parent.

Returns The current acceleration in Gs.
Return type float

AnalogAccelerometer.setPIDSourceType (pidSource)
Set which parameter you are using as a process control variable.

Parameters pidSource (PIDSource.PIDSourceType)— An enum to select the param-
eter.

AnalogAccelerometer.setSensitivity (sensitivity)
Set the accelerometer sensitivity.

This sets the sensitivity of the accelerometer used for calculating the acceleration. The sensitivity varies
by accelerometer model. There are constants defined for various models.

Parameters sensitivity (float) - The sensitivity of accelerometer in Volts per G.

AnalogAccelerometer.setZero (zero)
Set the voltage that corresponds to 0 G.

The zero G voltage varies by accelerometer model. There are constants defined for various models.

Parameters zero (float)— The zero G voltage.

1.4. wpilib Package 23

RobotPy WPILib Documentation, Release master

1.4.8 AnalogGyro

class wpilib.AnalogGyro (channel, center=None, offset=None)

Bases: wpilib.GyroBase
Interface to a gyro device via an AnalogInput

Use a rate gyro to return the robots heading relative to a starting position. The Gyro class tracks the robots
heading based on the starting position. As the robot rotates the new heading is computed by integrating the rate
of rotation returned by the sensor. When the class is instantiated, it does a short calibration routine where it
samples the gyro while at rest to determine the default offset. This is subtracted from each sample to determine
the heading.

Gyro constructor.

Also initializes the gyro. Calibrate the gyro by running for a number of samples and computing the center value.
Then use the center value as the Accumulator center value for subsequent measurements. It’s important to make
sure that the robot is not moving while the centering calculations are in progress, this is typically done when the
robot is first turned on while it’s sitting at rest before the competition starts.

Parameters

* channel - The analog channel index or AnalogInput object that the gyro is connected to.
Gyros can only be used on on-board channels 0-1.

* center (int)— Preset uncalibrated value to use as the accumulator center value
* offset (float) - Preset uncalibrated value to use as the gyro offset

class PIDSourceType
Bases: object

A description for the type of output value to provide to a PTDController
kDisplacement =0
kRate=1
AnalogGyro.calibrate ()
See Gyro.calibrate ()
AnalogGyro.free ()
See Gyro.free()
AnalogGyro.getAngle ()
See Gyro.getAngle ()

AnalogGyro.getCenter ()
Return the gyro center value set during calibration to use as a future preset

Returns the current center value

AnalogGyro.getOffset ()
Return the gyro offset value set during calibration to use as a future preset

Returns the current offset value
AnalogGyro.getRate ()

See Gyro.getRate ()
AnalogGyro.kAverageBits =0

AnalogGyro.kCalibrationSampleTime = 5.0

24

Chapter 1. Contents

RobotPy WPILib Documentation, Release master

AnalogGyro.kDefaultVoltsPerDegreePerSecond = (.007
AnalogGyro.kOversampleBits =10
AnalogGyro.kSamplesPerSecond = 50.0
AnalogGyro.reset ()

See Gyro.reset ()

AnalogGyro.setDeadband (volts)
Set the size of the neutral zone. Any voltage from the gyro less than this amount from the center is
considered stationary. Setting a deadband will decrease the amount of drift when the gyro isn’t rotating,
but will make it less accurate.

Parameters volts (f1oat)— The size of the deadband in volts

AnalogGyro.setSensitivity (voltsPerDegreePerSecond)
Set the gyro sensitivity. This takes the number of volts/degree/second sensitivity of the gyro and uses it in
subsequent calculations to allow the code to work with multiple gyros. This value is typically found in the
gyro datasheet.

Parameters voltsPerDegreePerSecond (float) - The sensitivity in
Volts/degree/second

1.4.9 Analoginput
class wpilib.AnalogInput (channel)
Bases: wpilib.SensorBase
Analog input
Each analog channel is read from hardware as a 12-bit number representing OV to 5V.

Connected to each analog channel is an averaging and oversampling engine. This engine accumulates the
specified (by setAverageBits () and setOversampleBits ()) number of samples before returning a
new value. This is not a sliding window average. The only difference between the oversampled samples and the
averaged samples is that the oversampled samples are simply accumulated effectively increasing the resolution,
while the averaged samples are divided by the number of samples to retain the resolution, but get more stable
values.

Construct an analog channel. :param channel: The channel number to represent. 0-3 are on-board 4-7 are on the
MXP port.

class PIDSourceType
Bases: object

A description for the type of output value to provide to a PTDController
kDisplacement =0
kRate =1
AnalogInput.channels = <wpilib.resource.Resource object>
AnalogInput.free ()

AnalogInput.getAccumulatorCount ()
Read the number of accumulated values.

Read the count of the accumulated values since the accumulator was last reset ().

Returns The number of times samples from the channel were accumulated.

1.4. wpilib Package 25

RobotPy WPILib Documentation, Release master

AnalogInput.getAccumulatorOutput ()
Read the accumulated value and the number of accumulated values atomically.

This function reads the value and count from the FPGA atomically. This can be used for averaging.
Returns tuple of (value, count)

AnalogInput.getAccumulatorValue ()
Read the accumulated value.

Read the value that has been accumulating. The accumulator is attached after the oversample and average
engine.

Returns The 64-bit value accumulated since the last reset ().

AnalogInput.getAverageBits ()
Get the number of averaging bits. This gets the number of averaging bits from the FPGA. The actual
number of averaged samples is 2bits. The averaging is done automatically in the FPGA.

Returns The number of averaging bits.

AnaloglInput .getAverageValue ()
Get a sample from the output of the oversample and average engine for this channel. The sample is 12-bit
+ the bits configured in setOversampleBits (). The value configured in setAverageBits () will
cause this value to be averaged 2**bits number of samples. This is not a sliding window. The sample will
not change until 2*(OversampleBits + AverageBits) samples have been acquired from this channel. Use
getAverageVoltage () to get the analog value in calibrated units.

Returns A sample from the oversample and average engine for this channel.

AnalogInput.getAverageVoltage ()
Get a scaled sample from the output of the oversample and average engine for this channel. The value is
scaled to units of Volts using the calibrated scaling data from get LSBWeight () and getOffset ().
Using oversampling will cause this value to be higher resolution, but it will update more slowly. Using
averaging will cause this value to be more stable, but it will update more slowly.

Returns A scaled sample from the output of the oversample and average engine for this channel.

AnalogInput.getChannel ()
Get the channel number.

Returns The channel number.

static AnalogInput .getGlobalSampleRate ()
Get the current sample rate.

This assumes one entry in the scan list. This is a global setting for all channels.
Returns Sample rate.

AnalogInput.getLSBWeight ()
Get the factory scaling least significant bit weight constant. The least significant bit weight constant for
the channel that was calibrated in manufacturing and stored in an eeprom.

Volts = ((LSB_Weight * 1e-9) * raw) - (Offset * 1e-9)
Returns Least significant bit weight.

AnalogInput.getOffset ()
Get the factory scaling offset constant. The offset constant for the channel that was calibrated in manufac-
turing and stored in an eeprom.

Volts = ((LSB_Weight * 1e-9) * raw) - (Offset * 1e-9)

Returns Offset constant.

26

Chapter 1. Contents

RobotPy WPILib Documentation, Release master

AnalogInput.getOversampleBits ()
Get the number of oversample bits. This gets the number of oversample bits from the FPGA. The actual
number of oversampled values is 2”bits. The oversampling is done automatically in the FPGA.

Returns The number of oversample bits.
AnalogInput.getPIDSourceType ()
See PIDSource.getPIDSourceType ()

AnalogInput.getValue ()
Get a sample straight from this channel. The sample is a 12-bit value representing the OV to 5V range of
the A/D converter. The units are in A/D converter codes. Use getVoltage () to get the analog value in
calibrated units.

Returns A sample straight from this channel.

AnalogInput.getVoltage ()
Get a scaled sample straight from this channel. The value is scaled to units of Volts using the calibrated
scaling data from get LSBWeight () and getOffset ().

Returns A scaled sample straight from this channel.

AnalogInput.initAccumulator ()
Initialize the accumulator.

AnalogInput.isAccumulatorChannel ()
Is the channel attached to an accumulator.

Returns The analog channel is attached to an accumulator.
AnalogInput.kAccumulatorChannels =(0,1)
AnalogInput.kAccumulatorSlot =1

AnaloglInput.pidGet ()
Get the average voltage for use with PIDController

Returns the average voltage
AnalogInput.port

AnalogInput.resetAccumulator ()
Resets the accumulator to the initial value.

AnalogInput.setAccumulatorCenter (center)
Set the center value of the accumulator.

The center value is subtracted from each A/D value before it is added to the accumulator. This is used for
the center value of devices like gyros and accelerometers to make integration work and to take the device
offset into account when integrating.

This center value is based on the output of the oversampled and averaged source from channel 1. Because
of this, any non-zero oversample bits will affect the size of the value for this field.

AnalogInput.setAccumulatorDeadband (deadband)
Set the accumulator’s deadband.

AnalogInput.setAccumulatorInitialValue (initialValue)
Set an initial value for the accumulator.

This will be added to all values returned to the user.

Parameters initialValue — The value that the accumulator should start from when reset.

1.4. wpilib Package 27

RobotPy WPILib Documentation, Release master

AnalogInput.setAverageBits (bits)
Set the number of averaging bits. This sets the number of averaging bits. The actual number of averaged
samples is 2bits. The averaging is done automatically in the FPGA.

Parameters bits — The number of averaging bits.

static AnalogInput .setGlobalSampleRate (samplesPerSecond)
Set the sample rate per channel.

This is a global setting for all channels. The maximum rate is 5S00kS/s divided by the number of channels
in use. This is 62500 samples/s per channel if all 8§ channels are used.

Parameters samplesPerSecond — The number of samples per second.

AnalogInput.setOversampleBits (bits)
Set the number of oversample bits. This sets the number of oversample bits. The actual number of
oversampled values is 2”bits. The oversampling is done automatically in the FPGA.

Parameters bits — The number of oversample bits.
AnalogInput.setPIDSourceType (pidSource)

See PIDSource.setPIDSourceType ()

1.4.10 AnalogOutput

class wpilib.AnalogOutput (channel)

Bases: wpilib.SensorBase

Analog output

Construct an analog output on a specified MXP channel.
Parameters channel — The channel number to represent.

channels = <wpilib.resource.Resource object>

free ()
Channel destructor.

getVoltage ()
port

setVoltage (voltage)

1.4.11 AnalogPotentiometer

class wpilib.AnalogPotentiometer (channel, fullRange=1.0, offset=0.0)

Bases: wpilib.LiveWindowSendable
Reads a potentiometer via an AnalogInput

Analog potentiometers read in an analog voltage that corresponds to a position. The position is in whichever
units you choose, by way of the scaling and offset constants passed to the constructor.

AnalogPotentiometer constructor.

Use the fullRange and offset values so that the output produces meaningful values. .E: you have a 270 degree
potentiometer and you want the output to be degrees with the halfway point as 0 degrees. The fullRange value
is 270.0(degrees) and the offset is -135.0 since the halfway point after scaling is 135 degrees.

Parameters

28

Chapter 1. Contents

RobotPy WPILib Documentation, Release master

* channel (intor AnalogInput)—The analog channel this potentiometer is plugged into.

* fullRange (float) — The scaling to multiply the fraction by to get a meaningful unit.
Defaults to 1.0 if unspecified.

* offset (float) — The offset to add to the scaled value for controlling the zero value.
Defaults to 0.0 if unspecified.

class PIDSourceType
Bases: object

A description for the type of output value to provide to a PTDController
kDisplacement =0
kRate =1

AnalogPotentiometer. free ()

AnalogPotentiometer.get ()
Get the current reading of the potentiometer.

Returns The current position of the potentiometer.
Return type float
AnalogPotentiometer.getPIDSourceType ()

AnalogPotentiometer.pidGet ()
Implement the PIDSource interface.

Returns The current reading.
Return type float

AnalogPotentiometer.setPIDSourceType (pidSource)
Set which parameter you are using as a process control variable.

Parameters pidSource (PIDSource.PIDSourceType)— An enum to select the param-
eter.

1.4.12 AnalogTrigger

class wpilib.AnalogTrigger (channel)
Bases: object
Converts an analog signal into a digital signal

An analog trigger is a way to convert an analog signal into a digital signal using resources built into the FPGA.
The resulting digital signal can then be used directly or fed into other digital components of the FPGA such as
the counter or encoder modules. The analog trigger module works by comparing analog signals to a voltage
range set by the code. The specific return types and meanings depend on the analog trigger mode in use.

Constructor for an analog trigger given a channel number or analog input.

Parameters channel — the port index or AnalogInput to use for the analog trigger. Treated as
an Analoglnput if the provided object has a getChannel function.

class AnalogTriggerType
Bases: object

Defines the state in which the AnalogTrigger triggers

kFallingPulse =3

1.4. wpilib Package 29

RobotPy WPILib Documentation, Release master

kInWindow=10
kRisingPulse =2
kState=1

AnalogTrigger.createOutput (fype)
Creates an AnalogTriggerOutput object. Gets an output object that can be used for routing. Caller
is responsible for deleting the AnalogTriggerOutput object.

Parameters type — An enum of the type of output object to create.
Returns An AnalogTriggerOutput object.

AnalogTrigger.free ()
Release the resources used by this object

AnalogTrigger.getInWindow ()
Return the InWindow output of the analog trigger. True if the analog input is between the upper and lower
limits.

Returns The InWindow output of the analog trigger.

AnalogTrigger.getIndex ()
Return the index of the analog trigger. This is the FPGA index of this analog trigger instance.

Returns The index of the analog trigger.

AnalogTrigger.getTriggerState ()
Return the TriggerState output of the analog trigger. True if above upper limit. False if below lower limit.
If in Hysteresis, maintain previous state.

Returns The TriggerState output of the analog trigger.
AnalogTrigger.port

AnalogTrigger.setAveraged (useAveragedValue)
Configure the analog trigger to use the averaged vs. raw values. If the value is true, then the averaged
value is selected for the analog trigger, otherwise the immediate value is used.

Parameters useAveragedValue — True to use an averaged value, False otherwise

AnalogTrigger.setFiltered (useFilteredValue)
Configure the analog trigger to use a filtered value. The analog trigger will operate with a 3 point average
rejection filter. This is designed to help with 360 degree pot applications for the period where the pot
crosses through zero.

Parameters useFilteredValue - True to use a filterd value, False otherwise

AnalogTrigger.setLimitsRaw (lower, upper)
Set the upper and lower limits of the analog trigger. The limits are given in ADC codes. If oversampling
is used, the units must be scaled appropriately.

Parameters
¢ lower — the lower raw limit
* upper — the upper raw limit

AnalogTrigger.setLimitsVoltage (lower, upper)
Set the upper and lower limits of the analog trigger. The limits are given as floating point voltage values.

Parameters

* lower — the lower voltage limit

30

Chapter 1. Contents

RobotPy WPILib Documentation, Release master

* upper — the upper voltage limit

1.4.13 AnalogTriggerOutput

class wpilib.AnalogTriggerOutput (trigger, outputType)
Bases: object
Represents a specific output from an AnalogTrigger

This class is used to get the current output value and also as a DigitalSource to provide routing of an output
to digital subsystems on the FPGA such as Counter, Encoder:, and :class:.Interrupt.

The TriggerState output indicates the primary output value of the trigger. If the analog signal is less than the
lower limit, the output is False. If the analog value is greater than the upper limit, then the output is True. If the
analog value is in between, then the trigger output state maintains its most recent value.

The InWindow output indicates whether or not the analog signal is inside the range defined by the limits.

The RisingPulse and FallingPulse outputs detect an instantaneous transition from above the upper limit to below
the lower limit, and vise versa. These pulses represent a rollover condition of a sensor and can be routed to an
up / down couter or to interrupts. Because the outputs generate a pulse, they cannot be read directly. To help
ensure that a rollover condition is not missed, there is an average rejection filter available that operates on the
upper 8 bits of a 12 bit number and selects the nearest outlyer of 3 samples. This will reject a sample that is
(due to averaging or sampling) errantly between the two limits. This filter will fail if more than one sample in
a row is errantly in between the two limits. You may see this problem if attempting to use this feature with a
mechanical rollover sensor, such as a 360 degree no-stop potentiometer without signal conditioning, because
the rollover transition is not sharp / clean enough. Using the averaging engine may help with this, but rotational
speeds of the sensor will then be limited.

Create an object that represents one of the four outputs from an analog trigger.
Because this class derives from DigitalSource, it can be passed into routing functions for Counter, Encoder, etc.
Parameters
* trigger — The trigger for which this is an output.
* outputType — An enum that specifies the output on the trigger to represent.

class AnalogTriggerType
Bases: object

Defines the state in which the AnalogTrigger triggers
kFallingPulse =3
kInWindow =10
kRisingPulse =2
kState=1
AnalogTriggerOutput. free ()

AnalogTriggerOutput.get ()
Get the state of the analog trigger output.

Returns The state of the analog trigger output.
Return type AnalogTriggerType
AnalogTriggerOutput .getAnalogTriggerForRouting ()

AnalogTriggerOutput .getChannelForRouting ()

1.4. wpilib Package 31

RobotPy WPILib Documentation, Release master

AnalogTriggerOutput .getModuleForRouting ()

1.4.14 BuiltinAccelerometer

class wpilib.BuiltInAccelerometer (range=2)

Bases: wpilib.LiveWindowSendable

Built-in accelerometer device

This class allows access to the RoboRIO’s internal accelerometer.
Constructor.

Parameters range (Accelerometer.Range)— The range the accelerometer will measure. De-
faults to +/-8g if unspecified.

class Range
Bases: object

k1l6G=3
k2G=0
k4G =1
k8G =2

BuiltInAccelerometer.free ()

BuiltInAccelerometer.getX()
Returns The acceleration of the RoboRIO along the X axis in g-forces
Return type float

BuiltInAccelerometer.getY ()
Returns The acceleration of the RoboRIO along the Y axis in g-forces
Return type float

BuiltInAccelerometer.getZ ()
Returns The acceleration of the RoboRIO along the Z axis in g-forces
Return type float

BuiltInAccelerometer.setRange (range)
Set the measuring range of the accelerometer.

Parameters range (BuiltInAccelerometer.Range) — The maximum acceleration,
positive or negative, that the accelerometer will measure.

1.4.15 CANJaguar

class wpilib.CANJaguar (deviceNumber)

Bases: wpilib.LiveWindowSendable, woilib.MotorSafety
Texas Instruments Jaguar Speed Controller as a CAN device.
Constructor for the CANJaguar device.

By default the device is configured in Percent mode. The control mode can be changed by calling one of the
control mode functions.

32

Chapter 1. Contents

RobotPy WPILib Documentation, Release master

Parameters deviceNumber — The address of the Jaguar on the CAN bus.

class Cont rolMode
Bases: object

Determines how the Jaguar is controlled, used internally.
Current =1

PercentVbus =0

Position=3

Speed =2

Voltage =4

class CANJaguar .LimitMode
Bases: object

Determines which sensor to use for position reference. Limit switches will always be used to limit the
rotation. This can not be disabled.

SoftPositionLimits =1
Enables the soft position limits on the Jaguar. These will be used in addition to the limit switches. This
does not disable the behavior of the limit switch input. See configSoftPositionLimits ().

SwitchInputsOnly =0
Disables the soft position limits and only uses the limit switches to limit rotation. See
getForwardLimitOK () and getReverseLimitOK ().

class CANJaguar .Mode
Bases: object

Control Mode.

kEncoder =0
Sets an encoder as the speed reference only.

kPotentiometer =2
Sets a potentiometer as the position reference only.

kQuadEncoder =1
Sets a quadrature encoder as the position and speed reference.

class CANJaguar .NeutralMode
Bases: object

Determines how the Jaguar behaves when sending a zero signal.

Brake=1
Stop the motor’s rotation by applying a force.

Coast =2
Do not attempt to stop the motor. Instead allow it to coast to a stop without applying resistance.

Jumper = (
Use the NeutralMode that is set by the jumper wire on the CAN device

CANJaguar .allocated = <wpilib.resource.Resource object>

CANJaguar .changeControlMode (controlMode)
Used internally. In order to set the control mode see the methods listed below.

Change the control mode of this Jaguar object.

1.4. wpilib Package 33

RobotPy WPILib Documentation, Release master

After changing modes, configure any PID constants or other settings needed and then EnableControl() to
actually change the mode on the Jaguar.

Parameters controlMode — The new mode.

CANJaguar .configEncoderCodesPerRev (codesPerRev)
Configure how many codes per revolution are generated by your encoder.

Parameters codesPerRev — The number of counts per revolution in 1X mode.

CANJaguar.configFaultTime (faultTime)
Configure how long the Jaguar waits in the case of a fault before resuming operation.

Faults include over temerature, over current, and bus under voltage. The default is 3.0 seconds, but can be
reduced to as low as 0.5 seconds.

Parameters faultTime — The time to wait before resuming operation, in seconds.

CANJaguar.configForwardLimit (forwardLimitPosition)
Set the position that, if exceeded, will disable the forward direction.

Use configSoftPositionLimits () to setthis and the LimitMode automatically.

Parameters forwardLimitPosition — The position that, if exceeded, will disable the for-
ward direction.

CANJaguar .configLimitMode (mode)
Set the limit mode for position control mode.

Use configSoftPositionLimits () or disableSoftPositionLimits () to set this auto-
matically.

Parameters mode — The LimitMode to use to limit the rotation of the device.

CANJaguar .configMaxOutputVoltage (voltage)
Configure the maximum voltage that the Jaguar will ever output.

This can be used to limit the maximum output voltage in all modes so that motors which cannot withstand
full bus voltage can be used safely.

Parameters voltage — The maximum voltage output by the Jaguar.

CANJaguar .configNeutralMode (mode)
Configure what the controller does to the H-Bridge when neutral (not driving the output).

This allows you to override the jumper configuration for brake or coast.

Parameters mode — Select to use the jumper setting or to override it to coast or brake (see
NeutralMode).

CANJaguar.configPotentiometerTurns (furns)
Configure the number of turns on the potentiometer.

There is no special support for continuous turn potentiometers. Only integer numbers of turns are sup-
ported.

Parameters turns — The number of turns of the potentiometer

CANJaguar .configReverseLimit (reverseLimitPosition)
Set the position that, if exceeded, will disable the reverse direction.

Use configSoftPositionLimits () to setthis and the LimitMode automatically.

Parameters reverseLimitPosition — The position that, if exceeded, will disable the re-
verse direction.

34 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

CANJaguar.configSoftPositionLimits (forwardLimitPosition, reverseLimitPosition)
Configure Soft Position Limits when in Position Controller mode.

When controlling position, you can add additional limits on top of the limit switch inputs that are based
on the position feedback. If the position limit is reached or the switch is opened, that direction will be
disabled.

Parameters

* forwardLimitPosition — The position that, if exceeded, will disable the forward
direction.

* reverseLimitPosition — The position that, if exceeded, will disable the reverse
direction.

CANJaguar .disable ()
Common interface for disabling a motor.

Deprecated since version 2015: Use disableControl () instead.

CANJaguar .disableControl ()
Disable the closed loop controller.

Stop driving the output based on the feedback.

CANJaguar .disableSoftPositionLimits ()
Disable Soft Position Limits if previously enabled.

Soft Position Limits are disabled by default.

CANJaguar .enableControl (encoderlnitial Position=0.0)
Enable the closed loop controller.

Start actually controlling the output based on the feedback. If starting a position controller with an encoder
reference, use the encoderlnitialPosition parameter to initialize the encoder state.

Parameters encoderInitialPosition — Encoder position to set if position with encoder
reference (default of 0.0). Ignored otherwise.

CANJaguar. free ()
Cancel periodic messages to the Jaguar, effectively disabling it. No other methods should be called after
this is called.

CANJaguar.get ()
Get the recently set outputValue set point.

The scale and the units depend on the mode the Jaguar is in.
*In percentVbus mode, the outputValue is from -1.0 to 1.0 (same as PWM Jaguar).
*In voltage mode, the outputValue is in volts.
*In current mode, the outputValue is in amps.
*In speed mode, the outputValue is in rotations/minute.

*In position mode, the outputValue is in rotations.
Returns The most recently set outputValue set point.

CANJaguar .getBusVoltage ()
Get the voltage at the battery input terminals of the Jaguar.

Returns The bus voltage in Volts.

1.4. wpilib Package 35

RobotPy WPILib Documentation, Release master

CANJaguar.getControlMode ()
Get the active control mode from the Jaguar.

Ask the Jaguar what mode it is in.
Return ControlMode that the Jag is in.

CANJaguar.getD ()
Get the Derivative gain of the controller.

Returns The derivative gain.
CANJaguar .getDescription ()
CANJaguar.getDevicelD ()
CANJaguar .getDeviceNumber ()

Returns The CAN ID passed in the constructor

CANJaguar .getError ()
Get the difference between the setpoint and goal in closed loop modes.

Outside of position and velocity modes the return value of getError() has relatively little meaning.
Returns The difference between the setpoint and the current position.

CANJaguar.getFaults ()
Get the status of any faults the Jaguar has detected.

Returns
A bit-mask of faults defined by the “Faults” constants.
* kCurrentFault
* kBusVoltageFault
* kTemperatureFault
* GateDriverFault

CANJaguar.getFirmwareVersion ()
Get the version of the firmware running on the Jaguar.

Returns The firmware version. O if the device did not respond.

CANJaguar.getForwardLimitOK ()
Get the status of the forward limit switch.

Returns True if the motor is allowed to turn in the forward direction.

CANJaguar.getHardwareVersion ()
Get the version of the Jaguar hardware.

Returns The hardware version. 1: Jaguar, 2: Black Jaguar

CANJaguar.getI ()
Get the Integral gain of the controller.

Returns The integral gain.

CANJaguar .getInverted ()
Common interface for the inverting direction of a speed controller.

Returns The state of inversion (True is inverted).

36 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

CANJaguar .getMessage (messagelD, messageMask)
Get a previously requested message.

Jaguar always generates a message with the same message ID when replying.

Parameters messageID — The messagelD to read from the CAN bus (device number is added
internally)

Returns The up to 8 bytes of data that was received with the message

CANJaguar.getOutputCurrent ()
Get the current through the motor terminals of the Jaguar.

Returns The output current in Amps.

CANJaguar .getOutputVoltage ()
Get the voltage being output from the motor terminals of the Jaguar.

Returns The output voltage in Volts.

CANJaguar.getP ()
Get the Proportional gain of the controller.

Returns The proportional gain.

CANJaguar.getPosition ()
Get the position of the encoder or potentiometer.

Returns The position of the motor in rotations based on the configured feedback. See
configPotentiometerTurns () and configEncoderCodesPerRev ().

CANJaguar.getReverseLimitOK ()
Get the status of the reverse limit switch.

Returns True if the motor is allowed to turn in the reverse direction.

CANJaguar .getSetpoint ()
Equivalent to get()

CANJaguar .getSpeed ()
Get the speed of the encoder.

Returns The speed of the motor in RPM based on the configured feedback.

CANJaguar .getTemperature ()
Get the internal temperature of the Jaguar.

Returns The temperature of the Jaguar in degrees Celsius.

CANJaguar.isEnabled ()
Return whether the controller is enabled.

Returns True if enabled
CANJaguar . kApproxBusVoltage = 12.0
CANJaguar .kBusVoltageFault =4
CANJaguar .kControllerRate = 1000
CANJaguar .kCurrentFault =1
CANJaguar .kForwardLimit =1
CANJaguar .kFullMessageIDMask = 536870848

CANJaguar.kGateDriverFault =8

1.4. wpilib Package 37

RobotPy WPILib Documentation, Release master

CANJaguar .kMaxMessageDataSize =8
CANJaguar .kReceiveStatusAttempts =50
CANJaguar .kReverseLimit =2

CANJaguar .kSendMessagePeriod =20

CANJaguar .kTemperatureFault =2

CANJaguar .kTrustedMessages = {33685760, 33685824, 33686976, 33687040, 33687872, 33687936, 33689024, 336890:

CANJaguar.pidWrite (output)

CANJaguar .requestMessage (messagelD, period=0)
Request a message from the Jaguar, but don’t wait for it to arrive.

Parameters
* messagelID - The message to request

* periodic — If positive, tell Network Communications to request the message every
“period” milliseconds.

CANJaguar.reset ()

CANJaguar .sendMessage (messagelD, data, period=0)
Send a message to the Jaguar.

Parameters

* messageID - The messagelD to be used on the CAN bus (device number is added inter-
nally)

* data — The up to 8 bytes of data to be sent with the message

* period - If positive, tell Network Communications to send the message every “period”
milliseconds.

CANJaguar . set (outputValue, syncGroup=0)
Sets the output set-point value.

The scale and the units depend on the mode the Jaguar is in.
*In percentVbus Mode, the outputValue is from -1.0 to 1.0 (same as PWM Jaguar).
*In voltage Mode, the outputValue is in volts.
*In current Mode, the outputValue is in amps.
*In speed mode, the outputValue is in rotations/minute.

*In position Mode, the outputValue is in rotations.

Parameters
* outputValue — The set-point to sent to the motor controller.
* syncGroup — The update group to add this set() to, pending UpdateSyncGroup(). If 0
(default), update immediately.

CANJaguar .setCurrentModeEncoder (codesPerRev, p, i, d)
Enable controlling the motor current with a PID loop, and enable speed sensing from a non-quadrature
encoder.

After calling this you must call enableControl () to enable the device.

38 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

Parameters
* p — The proportional gain of the Jaguar’s PID controller.
* i — The integral gain of the Jaguar’s PID controller.
¢ d - The differential gain of the Jaguar’s PID controller.

CANJaguar .setCurrentModePID (p, i, d)
Enable controlling the motor current with a PID loop.

After calling this you must call enableControl () to enable the device.
Parameters
* p — The proportional gain of the Jaguar’s PID controller.
* i — The integral gain of the Jaguar’s PID controller.
¢ d - The differential gain of the Jaguar’s PID controller.

CANJaguar .setCurrentModePotentiometer (p, i, d)
Enable controlling the motor current with a PID loop, and enable position sensing from a potentiometer.

After calling this you must call enableControl () to enable the device.
Parameters
* p — The proportional gain of the Jaguar’s PID controller.
* i —The integral gain of the Jaguar’s PID controller.
* d - The differential gain of the Jaguar’s PID controller.

CANJaguar .setCurrentModeQuadEncoder (codesPerRev, p, i, d)
Enable controlling the motor current with a PID loop, and enable speed and position sensing from a
quadrature encoder.

After calling this you must call enableControl () to enable the device.
Parameters
* codesPerRev — The counts per revolution on the encoder
* p — The proportional gain of the Jaguar’s PID controller.
¢ i — The integral gain of the Jaguar’s PID controller.
* d - The differential gain of the Jaguar’s PID controller.

CANJaguar.setD (d)
Set the D constant for the closed loop modes.

Parameters d — The derivative gain of the Jaguar’s PID controller.

CANJaguar.setI (i)
Set the I constant for the closed loop modes.

Parameters i — The integral gain of the Jaguar’s PID controller.

CANJaguar .setInverted (islnverted)
Inverts the direction of rotation of the motor. Only works in percentVbus, Speed, and Voltage modes.

Parameters isInverted — The state of inversion (True is inverted).

CANJaguar.setP (p)
Set the P constant for the closed loop modes.

Parameters p — The proportional gain of the Jaguar’s PID controller.

1.4. wpilib Package 39

RobotPy WPILib Documentation, Release master

CANJaguar.setPID (p, i, d)
Set the P, I, and D constants for the closed loop modes.

Parameters
* p — The proportional gain of the Jaguar’s PID controller.
* i —The integral gain of the Jaguar’s PID controller.
* d - The differential gain of the Jaguar’s PID controller.

CANJaguar.setPercentMode ()
Enable controlling the motor voltage as a percentage of the bus voltage without any position or speed
feedback.

After calling this you must call enableControl () to enable the device.

CANJaguar . setPercentModeEncoder (codesPerRev)
Enable controlling the motor voltage as a percentage of the bus voltage, and enable speed sensing from a
non-quadrature encoder.

After calling this you must call enableControl () to enable the device.
Parameters codesPerRev — The counts per revolution on the encoder

CANJaguar.setPercentModePotentiometer ()
Enable controlling the motor voltage as a percentage of the bus voltage, and enable position sensing from
a potentiometer and no speed feedback.

After calling this you must call enableControl () to enable the device.
Parameters tag — The constant { @link CANJaguar#kPotentiometer}

CANJaguar . setPercentModeQuadEncoder (codesPerRev)
Enable controlling the motor voltage as a percentage of the bus voltage, and enable position and speed
sensing from a quadrature encoder.

After calling this you must call enableControl () to enable the device.
Parameters
* tag — The constant { @link CANJaguar#kQuadEncoder}
* codesPerRev — The counts per revolution on the encoder

CANJaguar .setPositionModePotentiometer (p, i, d)
Enable controlling the position with a feedback loop using a potentiometer.

After calling this you must call enableControl () to enable the device.
Parameters
e p — The proportional gain of the Jaguar’s PID controller.
* i —The integral gain of the Jaguar’s PID controller.
* d - The differential gain of the Jaguar’s PID controller.

CANJaguar . setPositionModeQuadEncoder (codesPerRev, p, i, d)
Enable controlling the position with a feedback loop using an encoder.

After calling this you must call enableControl () to enable the device.
Parameters
* codesPerRev — The counts per revolution on the encoder

* p — The proportional gain of the Jaguar’s PID controller.

40 Chapter 1. Contents

mailto:\protect \T1\textbraceleft @link
mailto:\protect \T1\textbraceleft @link

RobotPy WPILib Documentation, Release master

* i —The integral gain of the Jaguar’s PID controller.
* d - The differential gain of the Jaguar’s PID controller.

CANJaguar.setPositionReference (reference)
Set the reference source device for position controller mode.

Choose between using and encoder and using a potentiometer as the source of position feedback when in
position control mode.

Parameters reference — Specify a position reference.

CANJaguar .setSetpoint (value)
Equivalent to set(). Implements PIDInterface.

CANJaguar .setSpeedModeEncoder (codesPerRev, p, i, d)
Enable controlling the speed with a feedback loop from a non-quadrature encoder.

After calling this you must call enableControl () to enable the device.
Parameters
* codesPerRev — The counts per revolution on the encoder
* p — The proportional gain of the Jaguar’s PID controller.
e i — The integral gain of the Jaguar’s PID controller.
* d - The differential gain of the Jaguar’s PID controller.

CANJaguar .setSpeedModeQuadEncoder (codesPerRev, p, i, d)
Enable controlling the speed with a feedback loop from a quadrature encoder.

After calling this you must call enableControl () to enable the device.
Parameters
* codesPerRev — The counts per revolution on the encoder
¢ p — The proportional gain of the Jaguar’s PID controller.
* i —The integral gain of the Jaguar’s PID controller.
* d - The differential gain of the Jaguar’s PID controller.

CANJaguar .setSpeedReference (reference)
Set the reference source device for speed controller mode.

Choose encoder as the source of speed feedback when in speed control mode.
Parameters reference — Specify a speed reference.

CANJaguar.setVoltageMode ()
Enable controlling the motor voltage without any position or speed feedback.

After calling this you must call enableControl () to enable the device.

CANJaguar .setVoltageModeEncoder (codesPerRev)
Enable controlling the motor voltage with speed feedback from a non-quadrature encoder and no position
feedback.

After calling this you must call enableControl () to enable the device.
Parameters codesPerRev — The counts per revolution on the encoder

CANJaguar.setVoltageModePotentiometer ()
Enable controlling the motor voltage with position feedback from a potentiometer and no speed feedback.

1.4. wpilib Package 41

RobotPy WPILib Documentation, Release master

After calling this you must call enableControl () to enable the device.

CANJaguar .setVoltageModeQuadEncoder (codesPerRev)
Enable controlling the motor voltage with position and speed feedback from a quadrature encoder.

After calling this you must call enableControl () to enable the device.
Parameters
* tag — The constant { @link CANJaguar#kQuadEncoder}
* codesPerRev — The counts per revolution on the encoder

CANJaguar .setVoltageRampRate (rampRate)
Set the maximum voltage change rate.

When in PercentVbus or Voltage output mode, the rate at which the voltage changes can be limited to
reduce current spikes. set this to 0.0 to disable rate limiting.

Parameters rampRate — The maximum rate of voltage change in Percent Voltage mode in
Vis.

CANJaguar .setupPeriodicStatus ()
Enables periodic status updates from the Jaguar

CANJaguar.stopMotor ()
Common interface for stopping a motor.

CANJaguar .updatePeriodicStatus ()
Check for new periodic status updates and unpack them into local variables.

static CANJaguar . updateSyncGroup (syncGroup)
Update all the motors that have pending sets in the syncGroup.

Parameters syncGroup — A bitmask of groups to generate synchronous output.

CANJaguar.verify ()
Check all unverified params and make sure they’re equal to their local cached versions. If a value isn’t
available, it gets requested. If a value doesn’t match up, it gets set again.

1.4.16 CANTalon

class wpilib.CANTalon (deviceNumber, controlPeriodMs=10)
Bases: wpilib.LiveWindowSendable, woilib.MotorSafety

Talon SRX device as a CAN device

The TALON SRX is designed to instrument all runtime signals periodically. The default periods are chosen to
support 16 TALONSs with 10ms update rate for control (throttle or setpoint). However these can be overridden
with setStatusFrameRate ().

Likewise most control signals are sent periodically using the fire-and-forget CAN APIL.

Signals that are not available in an unsolicited fashion are the Close Loop gains. For teams that have a single
profile for their TALON close loop they can use either the webpage to configure their TALONs once or set the
PIDE]Izone,CloseLoopRampRate,etc... once in the robot application. These parameters are saved to flash so
once they are loaded in the TALON, they will persist through power cycles and mode changes.

For teams that have one or two profiles to switch between, they can use the same strategy since there are two
slots to choose from and the ProfileSlotSelect is periodically sent in the 10 ms control frame.

42 Chapter 1. Contents

mailto:\protect \T1\textbraceleft @link

RobotPy WPILib Documentation, Release master

For teams that require changing gains frequently, they can use the soliciting API to get and set those parameters.
Most likely they will only need to set them in a periodic fashion as a function of what motion the application is
attempting. If this API is used, be mindful of the CAN utilization reported in the driver station.

Encoder position is measured in encoder edges. Every edge is counted (similar to roboRIO 4X mode).
Analog position is 10 bits, meaning 1024 ticks per rotation (OV => 3.3V). Use setFeedbackDevice ()
to select which sensor type you need. Once you do that you can use getSensorPosition () and
getSensorVelocity (). These signals are updated on CANBus every 20ms (by default). If a relative
sensor is selected, you can zero (or change the current value) using set SensorPosition ().

Analog Input and quadrature position (and velocity) are also explicitly reported in
getEncPosition(), getEncVelocity (), getAnalogInPosition (), getAnalogInRaw/(),
getAnalogInVelocity (). These signals are available all the time, regardless of what sensor is selected
at a rate of 100ms. This allows easy instrumentation for “in the pits” checking of all sensors regardless of
modeselect. The 100ms rate is overridable for teams who want to acquire sensor data for processing, not just
instrumentation. Or just select the sensor using set FeedbackDevice () to getit at 20ms.

Velocity is in position ticks / 100ms.

All output units are in respect to duty cycle (throttle) which is -1023(full reverse) to +1023 (full forward). This
includes demand (which specifies duty cycle when in duty cycle mode) and rampRamp, which is in throttle units
per 10ms (if nonzero).

When in (default) PercentVBus mode, set() and get() are automatically scaled to a -1.0 to +1.0 range to match
other motor controllers.

Pos and velocity close loops are calc’d as:

err = target - posOrvVel
iErr += err

if IZone != 0 and abs(err) > IZone:

ClearIaccum{()
output = P » err + I » iErr + D » dErr + F % target
dErr = err - lastErr

P, I, and D gains are always positive. F can be negative.

Motor direction can be reversed using reverseOutput () if sensor and motor are out of phase. Similarly
feedback sensor can also be reversed (multiplied by -1) using reverseSensor () if you prefer the sensor to
be inverted.

P gain is specified in throttle per error tick. For example, a value of 102 is ~9.9% (which is 102/1023) throttle
per 1 ADC unit(10bit) or 1 quadrature encoder edge depending on selected sensor.

I gain is specified in throttle per integrated error. For example, a value of 10 equates to ~0.99% (which is
10/1023) for each accumulated ADC unit(10bit) or 1 quadrature encoder edge depending on selected sensor.
Close loop and integral accumulator runs every 1ms.

D gain is specified in throttle per derivative error. For example a value of 102 equates to ~9.9% (which is
102/1023) per change of 1 unit (ADC or encoder) per ms.

I Zone is specified in the same units as sensor position (ADC units or quadrature edges). If pos/vel error is
outside of this value, the integrated error will auto-clear:

if IZone != 0 and abs(err) > IZone:
ClearIaccum{()

This is very useful in preventing integral windup and is highly recommended if using full PID to keep stability
low.

CloseLoopRampRate is in throttle units per 1ms. Set to zero to disable ramping. Works the same as RampThrot-
tle but only is in effect when a close loop mode and profile slot is selected.

1.4. wpilib Package 43

RobotPy WPILib Documentation, Release master

class ControlMode

Bases: object
Current =3
Disabled =15
Follower =5
PercentVbus =(
Position=1
Speed =2
Voltage =4

class CANTalon.FeedbackDevice

Bases: object
AnalogEncoder =3
AnalogPot =2
EncFalling=>5
EncRising =4

QuadEncoder =0

class CANTalon.StatusFrameRate

Bases: object

enumerated types for frame rate ms
AnalogTempVbat =3
Feedback =1

General =0

QuadEncoder =2

CANTalon.changeControlMode (controlMode)

CANTalon.clearIaccum/()

Clear the accumulator for I gain.

CANTalon.clearStickyFaults ()

CANTalon.configFwdLimitSwitchNormallyOpen (normallyOpen)

Configure the fwd limit switch to be normally open or normally closed. Talon will disable momentarilly

if the Talon’s current setting is dissimilar to the caller’s requested setting.

Since Talon saves setting to flash this should only affect a given Talon initially during robot install.

Parameters normallyOpen — True for normally open. False for normally closed.

CANTalon.configRevLimitSwitchNormallyOpen (normallyOpen)
*Configure the rev limit switch to be normally open or normally closed.
*Talon will disable momentarilly if the Talon’s current setting

*is dissimilar to the caller’s requested setting.

*Since Talon saves setting to flash this should only affect

44

Chapter 1. Contents

RobotPy WPILib Documentation, Release master

*a given Talon initially during robot install.

*@param normallyOpen true for normally open. false for normally closed.
CANTalon.disable ()
CANTalon.disableControl ()
CANTalon.enableBrakeMode (brake)
CANTalon.enableControl ()
CANTalon.enableForwardSoftLimit (enable)
CANTalon.enableLimitSwitch (forward, reverse)
CANTalon.enableReverseSoftLimit (enable)
CANTalon.free ()

CANTalon.get ()
Gets the current status of the Talon (usually a sensor value).

In Current mode: returns output current.

In Speed mode: returns current speed.

In Position omde: returns current sensor position.

In Throttle and Follower modes: returns current applied throttle.
Returns The current sensor value of the Talon.

CANTalon.getAnalogInPosition ()
Get the current analog in position, regardless of whether it is the current feedback device.

Returns The 24bit analog position. The bottom ten bits is the ADC (0 - 1023) on the analog pin
of the Talon. The upper 14 bits tracks the overflows and underflows (continuous sensor).

CANTalon.getAnalogInRaw ()
Get the current analog in position, regardless of whether it is the current feedback device. :returns: The
ADC (0 - 1023) on analog pin of the Talon.

CANTalon.getAnalogInVelocity ()
Get the current encoder velocity, regardless of whether it is the current feedback device.

Returns The current speed of the analog in device.

CANTalon.getBrakeEnableDuringNeutral ()
Returns True if break is enabled during neutral. False if coast.

CANTalon.getBusVoltage ()
Returns The voltage at the battery terminals of the Talon, in Volts.

CANTalon.getCloselLoopRampRate ()
Get the closed loop ramp rate for the current profile.

Limits the rate at which the throttle will change. Only affects position and speed closed loop modes.
Returns rampRate Maximum change in voltage, in volts / sec.
See #setProfile For selecting a certain profile.

CANTalon.getClosedLoopError ()
Get the current difference between the setpoint and the sensor value.

1.4. wpilib Package 45

RobotPy WPILib Documentation, Release master

Returns The error, in whatever units are appropriate.
CANTalon.getControlMode ()
CANTalon.getD ()
CANTalon.getDescription ()
CANTalon.getDevicelID ()

CANTalon.getEncPosition ()
Get the current encoder position, regardless of whether it is the current feedback device.

Returns The current position of the encoder.

CANTalon.getEncVelocity ()
Get the current encoder velocity, regardless of whether it is the current feedback device.

Returns The current speed of the encoder.
CANTalon.getF ()
CANTalon.getFaultForLim()
CANTalon.getFaultForSoftLim ()
CANTalon.getFaultHardwareFailure ()
CANTalon.getFaultOverTemp ()
CANTalon.getFaultRevLim ()
CANTalon.getFaultRevSoftLim()
CANTalon.getFaultUnderVoltage ()
CANTalon.getFirmwareVersion ()

Returns The version of the firmware running on the Talon
CANTalon.getI()

CANTalon.getIZone ()
CANTalon.getIaccum ()

CANTalon.getInverted()
Common interface for the inverting direction of a speed controller.

Returns The state of inversion (True is inverted).

CANTalon.getNumberOfQuadIdxRises ()
Get the number of of rising edges seen on the index pin.

Returns number of rising edges on idx pin.

CANTalon.getOutputCurrent ()
Returns the current going through the Talon, in Amperes.

CANTalon.getOutputVoltage ()
Returns The voltage being output by the Talon, in Volts.

CANTalon.getP ()
Get the current proportional constant.

Returns double proportional constant for current profile.

CANTalon.getPinStateQuadaA ()

46

Chapter 1

. Contents

RobotPy WPILib Documentation, Release master

Returns IO level of QUADA pin.
CANTalon.getPinStateQuadB ()

Returns IO level of QUADB pin.
CANTalon.getPinStateQuadIdx ()

Returns 10 level of QUAD Index pin.
CANTalon.getPosition ()
CANTalon.getSensorPosition ()
CANTalon.getSensorVelocity ()
CANTalon.getSetpoint ()

Returns The latest value set using set().
CANTalon.getSpeed ()
CANTalon.getStickyFaultForLim ()
CANTalon.getStickyFaultForSoftLim ()
CANTalon.getStickyFaultOverTemp ()
CANTalon.getStickyFaultRevLim ()
CANTalon.getStickyFaultRevSoftLim ()
CANTalon.getStickyFaultUnderVoltage ()

CANTalon.getTemp ()
Returns temperature of Talon, in degrees Celsius.

CANTalon.handle
CANTalon.isControlEnabled ()

CANTalon.isFwdLimitSwitchClosed ()
Returns True if limit switch is closed. False if open.

CANTalon.isRevLimitSwitchClosed()
Returns True if limit switch is closed. False if open.

CANTalon.kDelayForSolicitedSignals = (.004
CANTalon.pidWrite (output)

CANTalon.reverseOutput (flip)
Flips the sign (multiplies by negative one) the throttle values going into the motor on the talon in closed
loop modes.

Parameters £1ip — True if motor output should be flipped; False if not.

CANTalon.reverseSensor (flip)
Flips the sign (multiplies by negative one) the sensor values going into the talon.

This only affects position and velocity closed loop control. Allows for situations where you may have
a sensor flipped and going in the wrong direction.

Parameters £1ip — True if sensor input should be flipped; False if not.

1.4. wpilib Package 47

RobotPy WPILib Documentation, Release master

CANTalon. set (outputValue, syncGroup=0)
Sets the appropriate output on the talon, depending on the mode.

In PercentVbus, the output is between -1.0 and 1.0, with 0.0 as stopped.

In Follower mode, the output is the integer device ID of the talon to duplicate.

In Voltage mode, outputValue is in volts.

In Current mode, outputValue is in amperes.

In Speed mode, outputValue is in position change / 10ms.

In Position mode, outputValue is in encoder ticks or an analog value, depending on the sensor.
Parameters outputValue — The setpoint value, as described above.

CANTalon.setCloseLoopRampRate (rampRate)

Set the closed loop ramp rate for the current profile.

Limits the rate at which the throttle will change. Only affects position and speed closed loop modes.
Parameters rampRate — Maximum change in voltage, in volts / sec.
See #setProfile For selecting a certain profile.

CANTalon.setD (d)
Set the derivative constant of the currently selected profile.

Parameters d — Derivative constant for the currently selected PID profile.
See #setProfile For selecting a certain profile.

CANTalon.setF (f)
Set the feedforward value of the currently selected profile.

Parameters £ — Feedforward constant for the currently selected PID profile.

See #setProfile For selecting a certain profile.
CANTalon.setFeedbackDevice (device)
CANTalon.setForwardSoftLimit (forwardLimit)

CANTalon.setI (i)
Set the integration constant of the currently selected profile.

Parameters i — Integration constant for the currently selected PID profile.
See #setProfile For selecting a certain profile.

CANTalon.setIZone (izone)
Set the integration zone of the current Closed Loop profile.

Whenever the error is larger than the izone value, the accumulated integration error is cleared so that high
errors aren’t racked up when at high errors.

An izone value of 0 means no difference from a standard PIDF loop.
Parameters izone — Width of the integration zone.
See #setProfile For selecting a certain profile.

CANTalon.setInverted (islnverted)
Common interface for inverting direction of a speed controller.

Parameters isInverted — The state of inversion (True is inverted).

48 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

CANTalon.setP (p)
Set the proportional value of the currently selected profile.

Parameters p — Proportional constant for the currently selected PID profile.
See #setProfile For selecting a certain profile.

CANTalon.setPID (p, i, d, f=0, izone=0, closeLoopRampRate=0, profile=None)
Sets control values for closed loop control.

Parameters
¢ p — Proportional constant.
e i — Integration constant.
» d - Differential constant.
* f — Feedforward constant.

* izone - Integration zone — prevents accumulation of integration error with large errors.
Setting this to zero will ignore any izone stuff.

* closeLoopRampRate — Closed loop ramp rate. Maximum change in voltage, in volts
/ sec.

* profile — which profile to set the pid constants for. You can have two profiles, with
values of 0 or 1, allowing you to keep a second set of values on hand in the talon. In order
to switch profiles without recalling setPID, you must call setProfile().

CANTalon.setPosition (pos)

CANTalon.setProfile (profile)
Select which closed loop profile to use, and uses whatever PIDF gains and the such that are already there.

CANTalon.setReverseSoftLimit (reverseLimit)
CANTalon.setSensorPosition (pos)

CANTalon.setStatusFrameRateMs (stateFrame, periodMs)
Change the periodMs of a TALON’s status frame. See StatusFrameRate enum for what’s available.

CANTalon.setVoltageRampRate (rampRate)
Set the voltage ramp rate for the current profile.

Limits the rate at which the throttle will change. Affects all modes.
Parameters rampRate — Maximum change in voltage, in volts / sec.

CANTalon.stopMotor ()
Common interface for stopping a motor.

1.4.17 Compressor

class wpilib.Compressor (pcmld=None)
Bases: wpilib.SensorBase

Operates the PCM (Pneumatics compressor module)

The PCM automatically will run in close-loop mode by default whenever a Solenoid object is created. For most
cases the Compressor object does not need to be instantiated or used in a robot program.

This class is only required in cases where more detailed status or to enable/disable closed loop control. Note:
you cannot operate the compressor directly from this class as doing so would circumvent the safety provided in

1.4. wpilib Package 49

RobotPy WPILib Documentation, Release master

using the pressure switch and closed loop control. You can only turn off closed loop control, thereby stopping
the compressor from operating.

Create an instance of the Compressor

Parameters pcmID — The PCM CAN device ID. Most robots that use PCM will have a single
module. Use this for supporting a second module other than the default.

clearAllPCMStickyFaults ()

enabled ()
Get the enabled status of the compressor.

Returns True if the compressor is on
Return type bool

getClosedLoopControl ()
Gets the current operating mode of the PCM.

Returns True if compressor is operating on closed-loop mode, otherwise return False.
Return type bool

getCompressorCurrent ()
Get the current being used by the compressor.

Returns Current consumed in amps for the compressor motor
Return type float
getCompressorCurrentTooHighFault ()

Returns True if PCM is in fault state : Compressor Drive is disabled due to compressor current
being too high

getCompressorCurrentTooHighStickyFault ()

Returns True if PCM sticky fault is set : Compressor Drive is disabled due to compressor current
being too high

getCompressorNotConnectedFault ()

Returns True if PCM is in fault state : Compressor does not appear to be wired, i.e. compressor
is not drawing enough current.

getCompressorNotConnectedStickyFault ()

Returns True if PCM sticky fault is set : Compressor does not appear to be wired, i.e. compres-
sor is not drawing enough current.

getCompressorShortedFault ()

Returns True if PCM is in fault state : Compressor Output appears to be shorted
getCompressorShortedStickyFault ()

Returns True if PCM sticky fault is set : Compressor Output appears to be shorted

getPressureSwitchValue ()
Get the current pressure switch value.

Returns True if the pressure is low by reading the pressure switch that is plugged into the PCM
Return type bool

setClosedLoopControl (on)
Set the PCM in closed loop control mode.

50

Chapter 1. Contents

RobotPy WPILib Documentation, Release master

Parameters on (bool) —If True sets the compressor to be in closed loop control mode other-
wise normal operation of the compressor is disabled.

start ()
Start the compressor running in closed loop control mode. Use the method in cases where you would like
to manually stop and start the compressor for applications such as conserving battery or making sure that
the compressor motor doesn’t start during critical operations.

stop ()
Stop the compressor from running in closed loop control mode. Use the method in cases where you would
like to manually stop and start the compressor for applications such as conserving battery or making sure
that the compressor motor doesn’t start during critical operations.

1.4.18 ControllerPower
class wpilib.ControllerPower
Bases: object
Provides access to power levels on the RoboRIO

static getCurrent3V3 ()
Get the current output of the 3.3V rail

Returns The controller 3.3V rail output current value in Amps
Return type float

static getCurrent5V ()
Get the current output of the 5V rail

Returns The controller 5V rail output current value in Amps
Return type float

static getCurrent6V ()
Get the current output of the 6V rail

Returns The controller 6V rail output current value in Amps
Return type float

static getEnabled3V3 ()
Get the enabled state of the 3.3V rail. The rail may be disabled due to a controller brownout, a short circuit
on the rail, or controller over-voltage

Returns True if enabled, False otherwise
Return type bool

static getEnabled5V ()
Get the enabled state of the 5V rail. The rail may be disabled due to a controller brownout, a short circuit
on the rail, or controller over-voltage

Returns True if enabled, False otherwise
Return type bool

static getEnabled6V ()
Get the enabled state of the 6V rail. The rail may be disabled due to a controller brownout, a short circuit
on the rail, or controller over-voltage

Returns True if enabled, False otherwise

Return type bool

1.4. wpilib Package 51

RobotPy WPILib Documentation, Release master

static getFaultCount3V3 ()
Get the count of the total current faults on the 3.3V rail since the controller has booted

Returns The number of faults
Return type int

static getFaultCount5V ()
Get the count of the total current faults on the 5V rail since the controller has booted

Returns The number of faults
Return type int

static getFaultCount6V ()
Get the count of the total current faults on the 6V rail since the controller has booted

Returns The number of faults
Return type int

static get InputCurrent ()
Get the input current to the robot controller

Returns The controller input current value in Amps
Return type float

static get InputVoltage ()
Get the input voltage to the robot controller

Returns The controller input voltage value in Volts
Return type float

static getVoltage3V3 ()
Get the voltage of the 3.3V rail

Returns The controller 3.3V rail voltage value in Volts
Return type float

static getVoltage5V ()
Get the voltage of the 5V rail

Returns The controller 5V rail voltage value in Volts
Return type float

static getVoltage6V ()
Get the voltage of the 6V rail

Returns The controller 6V rail voltage value in Volts

Return type float

1.4.19 Counter

class wpilib.Counter (*args, **kwargs)
Bases: wpilib.SensorBase

Counts the number of ticks on a DigitalInput channel.

This is a general purpose class for counting repetitive events. It can return the number of counts, the period of
the most recent cycle, and detect when the signal being counted has stopped by supplying a maximum cycle
time.

52 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

All counters will immediately start counting - reset () them if you need them to be zeroed before use.
Counter constructor.
The counter will start counting immediately.

Positional arguments may be either channel numbers, DigitalSource sources, or AnalogTrigger
sources in the following order:

A “source” is any valid single-argument input to set UpSource () and setDownSource ()
¢(none)
eupSource
eupSource, down source

And, to keep consistency with Java wpilib. - encodingType, up source, down source, inverted

If the passed object has a gerChannelForRouting function, it is assumed to be a DigitalSource. If the passed
object has a createOutput function, it is assumed to be an AnalogTrigger.

In addition, extra keyword parameters may be provided for mode, inverted, and encodingType.
Parameters

* upSource - The source (channel num, Digitallnput, or AnalogTrigger) that should be used
for up counting.

* downSource — The source (channel num, Digitallnput, or AnalogTrigger) that should be
used for down counting or direction control.

* mode — How and what the counter counts (see Mode). Defaults to Mode.kTwoPulse for
zero or one source, and Mode.kExternalDirection for two sources.

* inverted - Flips the direction of counting. Defaults to False if unspecified. Only used
when two sources are specified.

* encodingType (Counter.EncodingType) — Either k1X or k2X to indicate 1X or
2X decoding. 4X decoding is not supported by Counter; use Encoder instead. Defaults to
k1X if unspecified. Only used when two sources are specified.

class EncodingType
Bases: object

The number of edges for the counterbase to increment or decrement on

k1xX=0
k2x=1
k4x=2

class Counter .Mode
Bases: object

Mode determines how and what the counter counts

kExternalDirection=3
external direction mode

kPulseLength =2
pulse length mode

kSemiperiod=1
semi period mode

1.4. wpilib Package 53

RobotPy WPILib Documentation, Release master

kTwoPulse =0
two pulse mode

class Counter .PIDSourceType
Bases: object

A description for the type of output value to provide to a PTDController
kDisplacement =0
kRate =1
Counter.allocatedDownSource = False
Counter.allocatedUpSource = False

Counter.clearDownSource ()
Disable the down counting source to the counter.

Counter.clearUpSource ()
Disable the up counting source to the counter.

Counter.counter
Counter. free ()

Counter.get ()
Read the current counter value. Read the value at this instant. It may still be running, so it reflects the
current value. Next time it is read, it might have a different value.

Counter.getDirection ()
The last direction the counter value changed.

Returns The last direction the counter value changed.
Return type bool

Counter.getDistance ()
Read the current scaled counter value. Read the value at this instant, scaled by the distance per pulse
(defaults to 1).

Returns Scaled value

Return type float
Counter.getFPGAIndex ()

Returns The Counter’s FPGA index.
Counter.getPIDSourceType ()

Counter.getPeriod ()
Get the Period of the most recent count. Returns the time interval of the most recent count. This can be
used for velocity calculations to determine shaft speed.

Returns The period of the last two pulses in units of seconds.
Return type float

Counter.getRate ()
Get the current rate of the Counter. Read the current rate of the counter accounting for the distance per
pulse value. The default value for distance per pulse (1) yields units of pulses per second.

Returns The rate in units/sec

Return type float

54 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

Counter.getSamplesToAverage ()
Get the Samples to Average which specifies the number of samples of the timer to average when calculating

the period. Perform averaging to account for mechanical imperfections or as oversampling to increase
resolution.

Returns The number of samples being averaged (from 1 to 127)
Return type int

Counter.getStopped ()
Determine if the clock is stopped. Determine if the clocked input is stopped based on the MaxPeriod
value set using the set MaxPeriod () method. If the clock exceeds the MaxPeriod, then the device (and
counter) are assumed to be stopped and it returns True.

Returns Returns True if the most recent counter period exceeds the MaxPeriod value set by
SetMaxPeriod.

Return type bool
Counter.pidGet ()

Counter.reset ()

Reset the Counter to zero. Set the counter value to zero. This doesn’t effect the running state of the counter,
just sets the current value to zero.

Counter.setDistancePerPulse (distancePerPulse)
Set the distance per pulse for this counter. This sets the multiplier used to determine the distance driven
based on the count value from the encoder. Set this value based on the Pulses per Revolution and factor in
any gearing reductions. This distance can be in any units you like, linear or angular.

Parameters distancePerPulse (float) — The scale factor that will be used to convert
pulses to useful units.

Counter.setDownSource (*args, **kwargs)
Set the down counting source for the counter.

This function accepts either a digital channel index, a DigitalSource, or an AnalogTrigger as positional
arguments:

ssource

echannel

eanalogTrigger
eanalogTrigger, triggerType

For positional arguments, if the passed object has a getChannelForRouting function, it is assumed to be a
DigitalSource. If the passed object has a createOutput function, it is assumed to be an AnalogTrigger.

Alternatively, sources and/or channels may be passed as keyword arguments. The behavior of specifying
both a source and a number for the same channel is undefined, as is passing both a positional and a keyword
argument for the same channel.

Parameters

* channel (int) — the DIO channel to use as the down source. 0-9 are on-board, 10-25
are on the MXP

e source (DigitalInput)— The digital source to count

* analogTrigger (AnalogTrigger) — The analog trigger object that is used for the
Up Source

1.4.

wpilib Package 55

RobotPy WPILib Documentation, Release master

* triggerType (AnalogTriggerType) — The analog trigger output that will trigger
the counter. Defaults to kState if not specified.

Counter.setDownSourceEdge (risingEdge, fallingEdge)
Set the edge sensitivity on an down counting source. Set the down source to either detect rising edges or
falling edges.

Parameters
* risingEdge (bool)— True to count rising edge
e fallingEdge (bool) — True to count falling edge

Counter.setExternalDirectionMode ()
Set external direction mode on this counter. Counts are sourced on the Up counter input. The Down
counter input represents the direction to count.

Counter.setMaxPeriod (maxPeriod)
Set the maximum period where the device is still considered “moving”. Sets the maximum period where
the device is considered moving. This value is used to determine the “stopped” state of the counter using
the get Stopped () method.

Parameters maxPeriod(float or int)-The maximum period where the counted device
is considered moving in seconds.

Counter.setPIDSourceType (pidSource)
Set which parameter of the encoder you are using as a process control variable. The counter class supports
the rate and distance parameters.

Parameters pidSource (Counter.PIDSourceType)— An enum to select the parameter.

Counter.setPulseLengthMode (threshold)
Configure the counter to count in up or down based on the length of the input pulse. This mode is most
useful for direction sensitive gear tooth sensors.

Parameters threshold (float, int)- The pulselength beyond which the counter counts
the opposite direction. Units are seconds.

Counter.setReverseDirection (reverseDirection)
Set the Counter to return reversed sensing on the direction. This allows counters to change the direction
they are counting in the case of 1X and 2X quadrature encoding only. Any other counter mode isn’t
supported.

Parameters reverseDirection (bool)— True if the value counted should be negated.

Counter.setSamplesToAverage (samplesToAverage)
Set the Samples to Average which specifies the number of samples of the timer to average when calculating
the period. Perform averaging to account for mechanical imperfections or as oversampling to increase
resolution.

Parameters samplesToAverage (int)— The number of samples to average from 1 to 127.

Counter.setSemiPeriodMode (highSemiPeriod)
Set Semi-period mode on this counter. Counts up on both rising and falling edges.

Parameters highSemiPeriod (bool) - True to count up on both rising and falling

Counter.setUpDownCounterMode ()
Set standard up / down counting mode on this counter. Up and down counts are sourced independently
from two inputs.

Counter.setUpSource (*args, **kwargs)
Set the up counting source for the counter.

56 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

This function accepts either a digital channel index, a DigitalSource, or an AnalogTrigger as positional
arguments:

esource
echannel

eanalogTrigger
eanalogTrigger, triggerType

For positional arguments, if the passed object has a getChannelForRouting function, it is assumed to be a
DigitalSource. If the passed object has a createOutput function, it is assumed to be an AnalogTrigger.

Alternatively, sources and/or channels may be passed as keyword arguments. The behavior of specifying
both a source and a number for the same channel is undefined, as is passing both a positional and a keyword
argument for the same channel.

Parameters

* channel (int) — the DIO channel to use as the up source. 0-9 are on-board, 10-25 are
on the MXP

* source (DigitalInput)— The digital source to count

* analogTrigger (AnalogTrigger) — The analog trigger object that is used for the
Up Source

* triggerType (AnalogTriggerType) — The analog trigger output that will trigger
the counter. Defaults to kState if not specified.

Counter.setUpSourceEdge (risingEdge, fallingEdge)
Set the edge sensitivity on an up counting source. Set the up source to either detect rising edges or falling
edges.

Parameters
* risingEdge (bool)— True to count rising edge
e fallingEdge (bool) — True to count falling edge

Counter.setUpdateWhenEmpty (enabled)

Select whether you want to continue updating the event timer output when there are no samples captured.
The output of the event timer has a buffer of periods that are averaged and posted to a register on the FPGA.
When the timer detects that the event source has stopped (based on the MaxPeriod) the buffer of samples
to be averaged is emptied. If you enable update when empty, you will be notified of the stopped source
and the event time will report O samples. If you disable update when empty, the most recent average will
remain on the output until a new sample is acquired. You will never see 0 samples output (except when
there have been no events since an FPGA reset) and you will likely not see the stopped bit become true
(since it is updated at the end of an average and there are no samples to average).

Parameters enabled (bool)— True to continue updating

1.4.20 DigitalGlitchFilter

classwpilib.DigitalGlitchFilter
Bases: wpilib.SensorBase

Class to enable glitch filtering on a set of digital inputs. This class will manage adding and removing digital
inputs from a FPGA glitch filter. The filter lets the user configure the time that an input must remain high or low
before it is classified as high or low.

1.4. wpilib Package 57

RobotPy WPILib Documentation, Release master

add (input)
Assigns the DigitalSource, Encoder, or Counter to this glitch filter.

Parameters input — Object to add
filterAllocated = [False, False, False]
free ()

getPeriodCycles ()
Gets the number of FPGA cycles that the input must hold steady to pass through this glitch filter.

Returns The number of cycles.

getPeriodNanoSeconds ()
Gets the number of nanoseconds that the input must hold steady to pass through this glitch filter.

Returns The number of nanoseconds.
mutex = <_thread.lock object>

remove (input)
Removes this filter from the given input object

setPeriodCycles (fpga_cycles)
Sets the number of FPGA cycles that the input must hold steady to pass through this glitch filter.

Parameters fpga_cycles — The number of FPGA cycles.

setPeriodNanoSeconds (nanoseconds)
Sets the number of nanoseconds that the input must hold steady to pass through this glitch filter.

Parameters nanoseconds — The number of nanoseconds.

1.4.21 Digitallnput

class wpilib.DigitalInput (channel)

Bases: wpilib.DigitalSource
Reads a digital input.

This class will read digital inputs and return the current value on the channel. Other devices such as encoders,
gear tooth sensors, etc. that are implemented elsewhere will automatically allocate digital inputs and outputs as
required. This class is only for devices like switches etc. that aren’t implemented anywhere else.

Create an instance of a Digital Input class. Creates a digital input given a channel.

Parameters channel (int) — the DIO channel for the digital input. 0-9 are on-board, 10-25 are
on the MXP

free ()

get ()
Get the value from a digital input channel. Retrieve the value of a single digital input channel from the
FPGA.

Returns the state of the digital input
Return type bool
getAnalogTriggerForRouting ()

getChannel ()
Get the channel of the digital input

58

Chapter 1. Contents

RobotPy WPILib Documentation, Release master

Returns The GPIO channel number that this object represents.

Return type int

1.4.22 DigitalOutput

class wpilib.DigitalOutput (channel)
Bases: wpilib.DigitalSource

Writes to a digital output
Other devices that are implemented elsewhere will automatically allocate digital inputs and outputs as required.
Create an instance of a digital output.

Parameters channel — the DIO channel for the digital output. 0-9 are on-board, 10-25 are on the
MXP

disablePWM ()
Change this line from a PWM output back to a static Digital Output line.

Free up one of the 6 DO PWM generator resources that were in use.

enablePWM (initialDutyCycle)
Enable a PWM Output on this line.

Allocate one of the 6 DO PWM generator resources.
Supply the initial duty-cycle to output so as to avoid a glitch when first starting.

The resolution of the duty cycle is 8-bit for low frequencies (1kHz or less) but is reduced the higher the
frequency of the PWM signal is.

Parameters initialDutyCycle (float)— The duty-cycle to start generating. [0..1]

free ()
Free the resources associated with a digital output.

getChannel ()
Returns The GPIO channel number that this object represents.

isPulsing ()
Determine if the pulse is still going. Determine if a previously started pulse is still going.

Returns True if pulsing
Return type bool

pulse (channel, pulseLength)
Generate a single pulse. Write a pulse to the specified digital output channel. There can only be a single

pulse going at any time.
Parameters
* channel - The channel to pulse.
* pulseLength (f1oat) — The length of the pulse.
pwmGenerator

set (value)
Set the value of a digital output.

Parameters value (bool) — True is on, off is False

1.4. wpilib Package 59

RobotPy WPILib Documentation, Release master

setPWMRate (rate)
Change the PWM frequency of the PWM output on a Digital Output line.

The valid range is from 0.6 Hz to 19 kHz. The frequency resolution is logarithmic.
There is only one PWM frequency for all channnels.
Parameters rate (f1oat)— The frequency to output all digital output PWM signals.

updateDutyCycle (dutyCycle)
Change the duty-cycle that is being generated on the line.

The resolution of the duty cycle is 8-bit for low frequencies (1kHz or less) but is reduced the higher the
frequency of the PWM signal is.

Parameters dutyCycle (f1oat)— The duty-cycle to change to. [0..1]

1.4.23 DigitalSource

class wpilib.DigitalSource (channel, input)
Bases: wpilib.InterruptableSensorBase

DigitalSource Interface. The DigitalSource represents all the possible inputs for a counter or a quadrature
encoder. The source may be either a digital input or an analog input. If the caller just provides a channel, then a
digital input will be constructed and freed when finished for the source. The source can either be a digital input
or analog trigger but not both.

Parameters
* channel (int) — Port for the digital input
* input (int) - True if input, False otherwise
channels = <wpilib.resource.Resource object>
free ()

getAnalogTriggerForRouting ()
Is this an analog trigger

Returns True if this is an analog trigger

getChannelForRouting ()
Get the channel routing number

Returns channel routing number

getModuleForRouting ()
Get the module routing number

Returns 0

port

1.4.24 DoubleSolenoid

class wpilib.DoubleSolenoid (*args, **kwargs)
Bases: wpilib.SolenoidBase

Controls 2 channels of high voltage Digital Output.

The DoubleSolenoid class is typically used for pneumatics solenoids that have two positions controlled by two
separate channels.

60 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

Constructor.
Arguments can be supplied as positional or keyword. Acceptable positional argument combinations are:
eforwardChannel, reverseChannel
emoduleNumber, forwardChannel, reverseChannel
Alternatively, the above names can be used as keyword arguments.
Parameters
* moduleNumber — The module number of the solenoid module to use.
¢ forwardChannel — The forward channel number on the PCM (0..7)
e reverseChannel — The reverse channel number on the PCM (0..7)

class Value
Bases: object

Possible values for a DoubleSolenoid.
kForward=1

kOff =0

kReverse =2

DoubleSolenoid. free ()
Mark the solenoid as freed.

DoubleSolenoid.get ()
Read the current value of the solenoid.

Returns The current value of the solenoid.
Return type DoubleSolenoid.Value
DoubleSolenoid.isFwdSolenoidBlackListed ()
Check if the forward solenoid is blacklisted. If a solenoid is shorted, it is added to the blacklist and
disabled until power cycle, or until faults are cleared. See clearAl1PCMStickyFaults ()

Returns If solenoid is disabled due to short.

DoubleSolenoid.isRevSolenoidBlackListed ()
Check if the reverse solenoid is blacklisted. If a solenoid is shorted, it is added to the blacklist and dis-
abled until power cycle, or until faults are cleared. See clearA11PCMStickyFaults ()
Returns If solenoid is disabled due to short.
DoubleSolenoid. set (value)
Set the value of a solenoid.

Parameters value (DoubleSolenoid. Value)— The value to set (Off, Forward, Reverse)

1.4.25 DriverStation

class wpilib.DriverStation

Bases: object

Provide access to the network communication data to / from the Driver Station.

1.4. wpilib Package 61

RobotPy WPILib Documentation, Release master

DriverStation constructor.

The single DriverStation instance is created statically with the instance static member variable, you should never
create a DriverStation instance.

classAlliance
Bases: object

The robot alliance that the robot is a part of
Blue=1

Invalid=2

Red =0

DriverStation.InAutonomous (enfering)
Only to be used to tell the Driver Station what code you claim to be executing for diagnostic purposes only.

Parameters entering - If True, starting autonomous code; if False, leaving autonomous code

DriverStation.InDisabled (entering)
Only to be used to tell the Driver Station what code you claim to be executing for diagnostic purposes only.

Parameters entering - If True, starting disabled code; if False, leaving disabled code

DriverStation.InOperatorControl (entering)
Only to be used to tell the Driver Station what code you claim to be executing for diagnostic purposes only.

Parameters entering — If True, starting teleop code; if False, leaving teleop code

DriverStation.InTest (entering)
Only to be used to tell the Driver Station what code you claim to be executing for diagnostic purposes only.

Parameters entering — If True, starting test code; if False, leaving test code

DriverStation.getAlliance ()
Get the current alliance from the FMS.

Returns The current alliance
Return type DriverStation.Alliance

DriverStation.getBatteryVoltage ()
Read the battery voltage.

Returns The battery voltage in Volts.

DriverStation.getData ()
Copy data from the DS task for the user. If no new data exists, it will just be returned, otherwise the data
will be copied from the DS polling loop.

static DriverStation.getInstance ()
Gets the global instance of the DriverStation

Returns DriverStation

DriverStation.getJoystickIsXbox (stick)
Gets the value of isXbox on a joystick

Parameters stick — The joystick port number
:returns A boolean that returns the value of isXbox

DriverStation.getJoystickName (stick)
Gets the name of a joystick

62

Chapter 1. Contents

RobotPy WPILib Documentation, Release master

Parameters stick — The joystick port number
:returns The joystick name.

DriverStation.getJoystickType (stick)
Gets the value of type on a joystick

Parameters stick — The joystick port number
:returns An integer that returns the value of type.

DriverStation.getLocation ()
Gets the location of the team’s driver station controls.

Returns The location of the team’s driver station controls: 1, 2, or 3

DriverStation.getMatchTime ()
Return the approximate match time. The FMS does not currently send the official match time to the robots,
but does send an approximate match time. The value will count down the time remaining in the current
period (auto or teleop).

Warning: This is not an official time (so it cannot be used to argue with referees or guarantee that a
function will trigger before a match ends).

The Practice Match function of the DS approximates the behaviour seen on the field.
Returns Time remaining in current match period (auto or teleop) in seconds

DriverStation.getStickAxis (stick, axis)
Get the value of the axis on a joystick. This depends on the mapping of the joystick connected to the
specified port.

Parameters

* stick - The joystick port number

* axis — The analog axis value to read from the joystick.
Returns The value of the axis on the joystick.

DriverStation.getStickAxisCount (stick)
Returns the number of axes on a given joystick port

Parameters stick — The joystick port number
Returns The number of axes on the indicated joystick

DriverStation.getStickButton (stick, button)
The state of a button on the joystick.

Parameters

* stick - The joystick port number

* button — The button number to be read.
Returns The state of the button.

DriverStation.getStickButtonCount (stick)
Gets the number of buttons on a joystick

Parameters stick — The joystick port number

Returns The number of buttons on the indicated joystick.

1.4. wpilib Package 63

RobotPy WPILib Documentation, Release master

DriverStation.getStickButtons (stick)
The state of all the buttons on the joystick.

Parameters stick — The joystick port number
Returns The state of all buttons, as a bit array.

DriverStation.getStickPOV (stick, pov)
Get the state of a POV on the joystick.

Parameters
¢ stick — The joystick port number
e pov — which POV
Returns The angle of the POV in degrees, or -1 if the POV is not pressed.

DriverStation.getStickPOVCount (stick)
Returns the number of POVs on a given joystick port

Parameters stick — The joystick port number
Returns The number of POVs on the indicated joystick

DriverStation.isAutonomous ()
Gets a value indicating whether the Driver Station requires the robot to be running in autonomous mode.

Returns True if autonomous mode should be enabled, False otherwise.

DriverStation.isBrownedOut ()
Check if the system is browned out.

Returns True if the system is browned out.

DriverStation.isDSAttached ()
Is the driver station attached to the robot?

Returns True if the robot is being controlled by a driver station.

DriverStation.isDisabled ()
Gets a value indicating whether the Driver Station requires the robot to be disabled.

Returns True if the robot should be disabled, False otherwise.

DriverStation.isEnabled ()
Gets a value indicating whether the Driver Station requires the robot to be enabled.

Returns True if the robot is enabled, False otherwise.

DriverStation.isFMSAttached ()
Is the driver station attached to a Field Management System?

Returns True if the robot is competing on a field being controlled by a Field Management Sys-
tem

DriverStation.isNewControlData ()
Has a new control packet from the driver station arrived since the last time this function was called?

Returns True if the control data has been updated since the last call.

DriverStation.isOperatorControl ()
Gets a value indicating whether the Driver Station requires the robot to be running in operator-controlled
mode.

Returns True if operator-controlled mode should be enabled, False otherwise.

64 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

DriverStation.isSysActive ()
Gets a value indicating whether the FPGA outputs are enabled. The outputs may be disabled if the robot
is disabled or e-stopped, the watdhog has expired, or if the roboRIO browns out.

Returns True if the FPGA outputs are enabled.

DriverStation.isTest ()
Gets a value indicating whether the Driver Station requires the robot to be running in test mode.

Returns True if test mode should be enabled, False otherwise.

DriverStation.kJoystickPorts =6
The number of joystick ports

DriverStation.release ()
Kill the thread

static DriverStation.reportError (error, printTrace)
Report error to Driver Station, and also prints error to sys.stderr. Optionally appends stack trace to error
message.

Parameters printTrace — If True, append stack trace to error string

DriverStation.task()
Provides the service routine for the DS polling thread.

DriverStation.waitForData (timeout=None)
Wait for new data or for timeout, which ever comes first. If timeout is None, wait for new data only.

Parameters timeout — The maximum time in milliseconds to wait.

1.4.26 Encoder

class wpilib.Encoder (*args, **kwargs)
Bases: wpilib.SensorBase

Reads from quadrature encoders.

Quadrature encoders are devices that count shaft rotation and can sense direction. The output of the QuadEn-
coder class is an integer that can count either up or down, and can go negative for reverse direction counting.
When creating QuadEncoders, a direction is supplied that changes the sense of the output to make code more
readable if the encoder is mounted such that forward movement generates negative values. Quadrature encoders
have two digital outputs, an A Channel and a B Channel that are out of phase with each other to allow the FPGA
to do direction sensing.

All encoders will immediately start counting - reset() them if you need them to be zeroed before use.
Instance variables:

*aSource: The A phase of the quad encoder

*bSource: The B phase of the quad encoder

eindexSource: The index source (available on some encoders)
Encoder constructor. Construct a Encoder given a and b channels and optionally an index channel.
The encoder will start counting immediately.

The a, b, and optional index channel arguments may be either channel numbers or DigitalSource sources. There
may also be a boolean reverseDirection, and an encodingType according to the following list.

*aSource, bSource

1.4. wpilib Package 65

RobotPy WPILib Documentation, Release master

*aSource, bSource, reverseDirection

eaSource, bSource, reverseDirection, encodingType
*aSource, bSource, indexSource, reverseDirection
*aSource, bSource, indexSource

*aChannel, bChannel

*aChannel, bChannel, reverseDirection

*aChannel, bChannel, reverseDirection, encodingType
*aChannel, bChannel, indexChannel, reverseDirection
*aChannel, bChannel, indexChannel

For positional arguments, if the passed object has a getChannelForRouting function, it is assumed to be a
DigitalSource.

Alternatively, sources and/or channels may be passed as keyword arguments. The behavior of specifying both a
source and a number for the same channel is undefined, as is passing both a positional and a keyword argument
for the same channel.

In addition, keyword parameters may be provided for reverseDirection and inputType.
Parameters

* aSource - The source that should be used for the a channel.
* bSource - The source that should be used for the b channel.
* indexSource — The source that should be used for the index channel.
* aChannel - The digital input index that should be used for the a channel.
* bChannel - The digital input index that should be used for the b channel.
* indexChannel - The digital input index that should be used for the index channel.

* reverseDirection — Represents the orientation of the encoder and inverts the output
values if necessary so forward represents positive values. Defaults to False if unspecified.

* encodingType (Encoder.EncodingType) — Either k1X, k2X, or k4X to indicate
1X, 2X or 4X decoding. If 4X is selected, then an encoder FPGA object is used and the
returned counts will be 4x the encoder spec’d value since all rising and falling edges are
counted. If 1X or 2X are selected then a counter object will be used and the returned value
will either exactly match the spec’d count or be double (2x) the spec’d count. Defaults to
k4X if unspecified.

class EncodingType
Bases: object

The number of edges for the counterbase to increment or decrement on

k1x=0
k2x=1
k4xX =2

class Encoder.IndexingType
Bases: object

kResetOnFallingEdge =2

kResetOnRisingEdge =3

66 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

kResetWhileHigh =0
kResetWhileLow=1

class Encoder .PIDSourceType
Bases: object

A description for the type of output value to provide to a PTDController
kDisplacement =0
kRate =1

Encoder.decodingScaleFactor ()
The scale needed to convert a raw counter value into a number of encoder pulses.

Encoder.encoder
Encoder. free ()

Encoder.get ()
Gets the current count. Returns the current count on the Encoder. This method compensates for the
decoding type.

Returns Current count from the Encoder adjusted for the 1x, 2x, or 4x scale factor.

Encoder.getDirection ()
The last direction the encoder value changed.

Returns The last direction the encoder value changed.

Encoder.getDistance ()
Get the distance the robot has driven since the last reset.

Returns The distance driven since the last reset as scaled by the value from
setDistancePerPulse ().

Encoder.getEncodingScale ()

Returns The encoding scale factor 1x, 2x, or 4x, per the requested encodingType. Used to divide
raw edge counts down to spec’d counts.

Encoder.getFPGAIndex ()
Returns The Encoder’s FPGA index
Encoder.getPIDSourceType ()

Encoder.getPeriod ()
Returns the period of the most recent pulse. Returns the period of the most recent Encoder pulse in seconds.
This method compensates for the decoding type.

Deprecated since version Use: getRate () in favor of this method. This returns unscaled periods and
getRate () scales using value from getDistancePerPulse ().

Returns Period in seconds of the most recent pulse.

Encoder.getRate ()
Get the current rate of the encoder. Units are distance per second as scaled by the value from
setDistancePerPulse ().

returns The current rate of the encoder.

Encoder.getRaw ()
Gets the raw value from the encoder. The raw value is the actual count unscaled by the 1x, 2x, or 4x scale
factor.

1.4.

wpilib Package 67

RobotPy WPILib Documentation, Release master

Returns Current raw count from the encoder

Encoder.getSamplesToAverage ()
Get the Samples to Average which specifies the number of samples of the timer to average when calculating
the period. Perform averaging to account for mechanical imperfections or as oversampling to increase
resolution.

Returns The number of samples being averaged (from 1 to 127)

Encoder.getStopped ()
Determine if the encoder is stopped. Using the MaxPeriod value, a boolean is returned that is True if the
encoder is considered stopped and False if it is still moving. A stopped encoder is one where the most
recent pulse width exceeds the MaxPeriod.

Returns True if the encoder is considered stopped.

Encoder.pidGet ()
Implement the PIDSource interface.

Returns The current value of the selected source parameter.

Encoder.reset ()
Reset the Encoder distance to zero. Resets the current count to zero on the encoder.

Encoder.setDistancePerPulse (distancePerPulse)
Set the distance per pulse for this encoder. This sets the multiplier used to determine the distance driven
based on the count value from the encoder. Do not include the decoding type in this scale. The library
already compensates for the decoding type. Set this value based on the encoder’s rated Pulses per Revo-
Iution and factor in gearing reductions following the encoder shaft. This distance can be in any units you
like, linear or angular.

Parameters distancePerPulse — The scale factor that will be used to convert pulses to
useful units.

Encoder.setIndexSource (source, indexing_type=3)
Set the index source for the encoder. When this source rises, the encoder count automatically resets.

Parameters
* source — Either an initialized DigitalSource or a DIO channel number
* indexing_type - The state that will cause the encoder to reset
Type Either aDigitalInput or number
Type A value from wpilib.IndexingType

Encoder.setMaxPeriod (maxPeriod)
Sets the maximum period for stopped detection. Sets the value that represents the maximum period of the
Encoder before it will assume that the attached device is stopped. This timeout allows users to determine
if the wheels or other shaft has stopped rotating. This method compensates for the decoding type.

Parameters maxPeriod — The maximum time between rising and falling edges before the
FPGA will report the device stopped. This is expressed in seconds.

Encoder.setMinRate (minRate)
Set the minimum rate of the device before the hardware reports it stopped.

Parameters minRate — The minimum rate. The units are in distance per second as scaled by
the value from setDistancePerPulse ().

Encoder.setPIDSourceType (pidSource)
Set which parameter of the encoder you are using as a process control variable. The encoder class supports
the rate and distance parameters.

68 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

Parameters pidSource — An enum to select the parameter.

Encoder.setReverseDirection (reverseDirection)
Set the direction sensing for this encoder. This sets the direction sensing on the encoder so that it could
count in the correct software direction regardless of the mounting.

Parameters reverseDirection — True if the encoder direction should be reversed

Encoder.setSamplesToAverage (samplesToAverage)
Set the Samples to Average which specifies the number of samples of the timer to average when calculating
the period. Perform averaging to account for mechanical imperfections or as oversampling to increase
resolution.

TODO: Should this raise an exception, so that the user has to deal with giving an incorrect value?

Parameters samplesToAverage — The number of samples to average from 1 to 127.

1.4.27 Filter

class wpilib.Filter (source)
Bases: object

Superclass for filters
Constructor.

Parameters source (PIDSource, callable) —

get ()
Returns the current filter estimate without also inserting new data as pidGet () would do.

Returns The current filter estimate
getPIDSourceType ()
pidGet ()

pidGetSource ()
Calls PIDGet() of source

Returns Current value of source

reset ()
Reset the filter state

setPIDSourceType (pidSourcelype)

1.4.28 GearTooth

class wpilib.GearTooth (channel, directionSensitive=Fualse)
Bases: wpilib.Counter

Interface to the gear tooth sensor supplied by FIRST

Currently there is no reverse sensing on the gear tooth sensor, but in future versions we might implement the
necessary timing in the FPGA to sense direction.

Construct a GearTooth sensor.
Parameters

* channel (int)- The DIO channel index or DigitalSource that the sensor is connected to.

1.4. wpilib Package 69

RobotPy WPILib Documentation, Release master

* directionSensitive (bool)— True to enable the pulse length decoding in hardware
to specify count direction. Defaults to False.

enableDirectionSensing (directionSensitive)
free ()

kGearToothThreshold = 5.5¢-05

1.4.29 GyroBase

class wpilib.GyroBase
Bases: wpilib.SensorBase

GyroBase is the common base class for Gyro implementations such as AnalogGyro.

class PIDSourceType
Bases: object

A description for the type of output value to provide to a PIDController
kDisplacement =0
kRate =1

GyroBase.calibrate ()

GyroBase.getAngle ()

GyroBase.getPIDSourceType ()

GyroBase.getRate ()

GyroBase.pidGet ()
Get the output of the gyro for use with PIDControllers. May be the angle or rate depending on the set
PIDSourceType

Returns the current angle according to the gyro
Return type float
GyroBase.reset ()

GyroBase.setPIDSourceType (pidSource)
Set which parameter of the gyro you are using as a process control variable. The Gyro class supports the
rate and angle parameters.

Parameters pidSource (PIDSource.PIDSourceType)— An enum to select the param-
eter.

1.4.30 12C

class wpilib.I2C (port, deviceAddress, simPort=None)
Bases: object

12C bus interface class.
This class is intended to be used by sensor (and other I2C device) drivers. It probably should not be used directly.
Constructor.

Parameters

» port — The I12C port the device is connected to.

70 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

¢ deviceAddress — The address of the device on the 12C bus.

* simPort — This must be an object that implements all of the i2c* functions from hal_impl
that you use. See test_i2c.py for an example.

class Port
Bases: object

kMXP =1
kOnboard =0

I2C.addressOnly ()
Attempt to address a device on the 12C bus.

This allows you to figure out if there is a device on the I2C bus that responds to the address specified in
the constructor.

Returns Transfer Aborted... False for success, True for aborted.

I2C.broadcast (registerAddress, data)
Send a broadcast write to all devices on the 12C bus.

Warning: This is not currently implemented!

Parameters
* registerAddress — The register to write on all devices on the bus.
* data — The value to write to the devices.
I2C.free()
I2C.port

I12C.read (registerAddress, count)
Execute a read transaction with the device.

Read bytes from a device. Most I2C devices will auto-increment the register pointer internally allowing
you to read consecutive registers on a device in a single transaction.

Parameters
* registerAddress — The register to read first in the transaction.
* count — The number of bytes to read in the transaction.

Returns The data read from the device.

I2C.readOnly (count)
Execute a read only transaction with the device.

Read bytes from a device. This method does not write any data to prompt the device.
Parameters count — The number of bytes to read in the transaction.
Returns The data read from the device.

I2C.transaction (dataToSend, receiveSize)
Generic transaction.

This is a lower-level interface to the I2C hardware giving you more control over each transaction.
Parameters
* dataToSend — Data to send as part of the transaction.

* receiveSize — Number of bytes to read from the device. [0..7]

1.4. wpilib Package 71

RobotPy WPILib Documentation, Release master

Returns Data received from the device.

I2C.verifySensor (registerAddress, expected)
Verify that a device’s registers contain expected values.

Most devices will have a set of registers that contain a known value that can be used to identify them. This
allows an I2C device driver to easily verify that the device contains the expected value.

The device must support and be configured to use register auto-increment.
Parameters
* registerAddress — The base register to start reading from the device.
* expected — The values expected from the device.
Returns True if the sensor was verified to be connected

I2C.write (registerAddress, data)
Execute a write transaction with the device.

Write a single byte to a register on a device and wait until the transaction is complete.
Parameters
* registerAddress — The address of the register on the device to be written.
* data — The byte to write to the register on the device.

Returns Transfer Aborted... False for success, True for aborted.

I2C.writeBulk (data)
Execute a write transaction with the device.

Write multiple bytes to a register on a device and wait until the transaction is complete.
Parameters data — The data to write to the device.

Returns Transfer Aborted... False for success, True for aborted.

1.4.31 InterruptableSensorBase

class wpilib.InterruptableSensorBase
Bases: wpilib.SensorBase

Base for sensors to be used with interrupts
Create a new InterrupatableSensorBase

allocateInterrupts (watcher)
Allocate the interrupt

Parameters watcher — True if the interrupt should be in synchronous mode where the user

program will have to explicitly wait for the interrupt to occur.

cancelInterrupts ()
Cancel interrupts on this device. This deallocates all the chipobject structures and disables any interrupts.

disableInterrupts ()
Disable Interrupts without without deallocating structures.

enableInterrupts ()
Enable interrupts to occur on this input. Interrupts are disabled when the RequestInterrupt call is made.

This gives time to do the setup of the other options before starting to field interrupts.

getAnalogTriggerForRouting ()

72 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

getChannelForRouting ()
getModuleForRouting ()

interrupt

interrupts = <wpilib.resource.Resource object>

readFallingTimestamp ()
Return the timestamp for the falling interrupt that occurred most recently. This is in the same time domain
as getClock(). The falling-edge interrupt should be enabled with setUpSourceEdge.

Returns Timestamp in seconds since boot.

readRisingTimestamp ()
Return the timestamp for the rising interrupt that occurred most recently. This is in the same time domain
as getClock(). The rising-edge interrupt should be enabled with setUpSourceEdge.

Returns Timestamp in seconds since boot.

requestInterrupts (handler=None)
Request one of the 8 interrupts asynchronously on this digital input.

Parameters handler — (optional) The function that will be called whenever there is an inter-
rupt on this device. Request interrupts in synchronous mode where the user program interrupt
handler will be called when an interrupt occurs. The default is interrupt on rising edges only.
If not specified, the user program will have to explicitly wait for the interrupt to occur using
waitForInterrupt.

setUpSourceEdge (risingEdge, fallingEdge)
Set which edge to trigger interrupts on

Parameters
* risingEdge — True to interrupt on rising edge
* fallingEdge — True to interrupt on falling edge

waitForInterrupt (timeout, ignorePrevious=True)
In synchronous mode, wait for the defined interrupt to occur. You should NOT attempt to read the sensor
from another thread while waiting for an interrupt. This is not threadsafe, and can cause memory corruption

Parameters
¢ timeout — Timeout in seconds

* ignorePrevious - If True (default), ignore interrupts that happened before waitForIn-
terrupt was called.

1.4.32 IterativeRobot

class wpilib.IterativeRobot
Bases: wpilib.RobotBase

IterativeRobot implements a specific type of Robot Program framework, extending the RobotBase class.
The IterativeRobot class is intended to be subclassed by a user creating a robot program.

This class is intended to implement the “old style” default code, by providing the following functions which are
called by the main loop, startCompetition (), at the appropriate times:

erobotInit () —provide for initialization at robot power-on

init() functions — each of the following functions is called once when the appropriate mode is entered:

1.4. wpilib Package 73

RobotPy WPILib Documentation, Release master

edisabledInit () — called only when first disabled

cautonomousInit () — called each and every time autonomous is entered from another mode
eteleopInit () — called each and every time teleop is entered from another mode
etestInit () — called each and every time test mode is entered from another mode

Periodic() functions — each of these functions is called iteratively at the appropriate periodic rate (aka the “slow
loop”). The period of the iterative robot is synced to the driver station control packets, giving a periodic fre-
quency of about 50Hz (50 times per second).

sdisabledPeriodic ()
sautonomousPeriodic ()
steleopPeriodic ()
stestPeriodic ()
Constructor for RobotlterativeBase.

The constructor initializes the instance variables for the robot to indicate the status of initialization for disabled,
autonomous, and teleop code.

Warning: If you override __init___ in your robot class, you must call the base class constructor. This
must be used to ensure that the communications code starts.

autonomousInit ()
Initialization code for autonomous mode should go here.

Users should override this method for initialization code which will be called each time the robot enters
autonomous mode.

autonomousPeriodic ()
Periodic code for autonomous mode should go here.

Users should override this method for code which will be called periodically at a regular rate while the
robot is in autonomous mode.

disabledInit ()
Initialization code for disabled mode should go here.

Users should override this method for initialization code which will be called each time the robot enters
disabled mode.

disabledPeriodic ()
Periodic code for disabled mode should go here.

Users should override this method for code which will be called periodically at a regular rate while the
robot is in disabled mode.

logger = <logging.Logger object>
A python logging object that you can use to send messages to the log. It is recommended to use this instead
of print statements.

nextPeriodReady ()
Determine if the appropriate next periodic function should be called. Call the periodic functions whenever
a packet is received from the Driver Station, or about every 20ms.

Return type bool

robotInit ()
Robot-wide initialization code should go here.

74

Chapter 1. Contents

RobotPy WPILib Documentation, Release master

Users should override this method for default Robot-wide initialization which will be called when the robot
is first powered on. It will be called exactly 1 time.

Note: It is simpler to override this function instead of defining a constructor for your robot class

startCompetition ()
Provide an alternate “main loop” via startCompetition().

teleopInit ()
Initialization code for teleop mode should go here.

Users should override this method for initialization code which will be called each time the robot enters
teleop mode.

teleopPeriodic ()
Periodic code for teleop mode should go here.

Users should override this method for code which will be called periodically at a regular rate while the
robot is in teleop mode.

testInit ()
Initialization code for test mode should go here.

Users should override this method for initialization code which will be called each time the robot enters
test mode.

testPeriodic()
Periodic code for test mode should go here.

Users should override this method for code which will be called periodically at a regular rate while the
robot is in test mode.

1.4.33 Jaguar

class wpilib.Jaguar (channel)

Bases: wpilib.SafePWM

Texas Instruments / Vex Robotics Jaguar Speed Controller as a PWM device.
See also:

CANJaguar for CAN control of a Jaguar

Constructor.

Parameters channel — The PWM channel that the Jaguar is attached to. 0-9 are on-board, 10-19
are on the MXP port

free ()

get ()
Get the recently set value of the PWM.

Returns The most recently set value for the PWM between -1.0 and 1.0.
Return type float

getInverted()
Common interface for inverting the direction of a speed controller.

Returns The state of inversion (True is inverted)

1.4. wpilib Package 75

RobotPy WPILib Documentation, Release master

pidWrite (output)
Write out the PID value as seen in the PIDOutput base object.

Parameters output (float) — Write out the PWM value as was found in the
PIDController.

set (speed, syncGroup=0)
Set the PWM value.

The PWM value is set using a range of -1.0 to 1.0, appropriately scaling the value for the FPGA.
Parameters
* speed (float)— The speed to set. Value should be between -1.0 and 1.0.

* syncGroup — The update group to add this set() to, pending updateSyncGroup(). If O,
update immediately.

setInverted (islnverted)
Common interface for inverting the direction of a speed controller.

Parameters isInverted — The state of inversion (True is inverted).

1.4.34 Joystick

class wpilib. Joystick (port, numAxisTypes=None, numButtonTypes=None)
Bases: object

Handle input from standard Joysticks connected to the Driver Station.

This class handles standard input that comes from the Driver Station. Each time a value is requested the most
recent value is returned. There is a single class instance for each joystick and the mapping of ports to hardware
buttons depends on the code in the driver station.

Construct an instance of a joystick.
The joystick index is the usb port on the drivers station.
This constructor is intended for use by subclasses to configure the number of constants for axes and buttons.
Parameters
* port (int)— The port on the driver station that the joystick is plugged into.
* numAxisTypes (int) - The number of axis types.
* numButtonTypes (int) - The number of button types.

class AxisType
Bases: object

Represents an analog axis on a joystick.
kNumAxis =5
kThrottle =4

kTwist =3
kx=0
ky=1
kzZ=2

76 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

class Joystick.ButtonType
Bases: object

Represents a digital button on the Joystick
kNumButton =2

kTop=1

kTrigger =0

class Joystick.RumbleType
Bases: object

Represents a rumble output on the Joystick
kLeftRumble_val =0
kRightRumble_val=1

Joystick.flush_outputs ()
Flush all joystick HID & rumble output values to the HAL

Joystick.getAxis (axis)
For the current joystick, return the axis determined by the argument.

This is for cases where the joystick axis is returned programmatically, otherwise one of the previous
functions would be preferable (for example getX ()).

Parameters axis (Joystick.AxisType)— The axis to read.
Returns The value of the axis.
Return type float

Joystick.getAxisChannel (axis)
Get the channel currently associated with the specified axis.

Parameters axis (int)— The axis to look up the channel for.
Returns The channel for the axis.
Return type int

Joystick.getAxisCount ()
For the current joystick, return the number of axis

Joystick.getBumper (hand=None)
This is not supported for the Joystick.

This method is only here to complete the GenericHID interface.

Parameters hand - This parameter is ignored for the Joystick class and is only here to complete
the GenericHID interface.

Returns The state of the bumper (always False)
Return type bool

Joystick.getButton (button)
Get buttons based on an enumerated type.

The button type will be looked up in the list of buttons and then read.
Parameters button (Joystick.ButtonType)— The type of button to read.

Returns The state of the button.

1.4. wpilib Package 77

RobotPy WPILib Documentation, Release master

Return type bool

Joystick.getButtonCount ()
For the current joystick, return the number of buttons

:rtype int

Joystick.getDirectionDegrees ()
Get the direction of the vector formed by the joystick and its origin in degrees.

Returns The direction of the vector in degrees
Return type float

Joystick.getDirectionRadians ()
Get the direction of the vector formed by the joystick and its origin in radians.

Returns The direction of the vector in radians
Return type float

Joystick.getIsXbox ()
Get the value of isXbox for the current joystick.

Returns A boolean that is true if the controller is an xbox controller.

Joystick.getMagnitude ()
Get the magnitude of the direction vector formed by the joystick’s current position relative to its origin.

Returns The magnitude of the direction vector
Return type float

Joystick.getName ()
Get the name of the current joystick.

Returns The name of the current joystick.

Joystick.getPOV (pov=0)
Get the state of a POV on the joystick.

Parameters pov (int)— which POV (default is 0)
Returns The angle of the POV in degrees, or -1 if the POV is not pressed.
Return type float

Joystick.getPOVCount ()
For the current joystick, return the number of POVs

Return type int

Joystick.getRawAxis (axis)
Get the value of the axis.

Parameters axis (int)— The axis to read, starting at 0.
Returns The value of the axis.
Return type float

Joystick.getRawButton (button)
Get the button value (starting at button 1).

The buttons are returned in a single 16 bit value with one bit representing the state of each button. The
appropriate button is returned as a boolean value.

Parameters button (int)— The button number to be read (starting at 1).

78

Chapter 1. Contents

RobotPy WPILib Documentation, Release master

Returns The state of the button.
Return type bool

Joystick.getThrottle ()
Get the throttle value of the current joystick.

This depends on the mapping of the joystick connected to the current port.
Returns The Throttle value of the joystick.
Return type float

Joystick.getTop (hand=None)
Read the state of the top button on the joystick.

Look up which button has been assigned to the top and read its state.

Parameters hand — This parameter is ignored for the Joystick class and is only here to complete

the GenericHID interface.
Returns The state of the top button.
Return type bool

Joystick.getTrigger (hand=None)
Read the state of the trigger on the joystick.

Look up which button has been assigned to the trigger and read its state.

Parameters hand — This parameter is ignored for the Joystick class and is only here to complete

the GenericHID interface.
Returns The state of the trigger.
Return type bool

Joystick.getTwist ()
Get the twist value of the current joystick.

This depends on the mapping of the joystick connected to the current port.
Returns The Twist value of the joystick.
Return type float

Joystick.getType ()
Get the HID type of the current joystick.

Returns The HID type value of the current joystick.

Joystick.getX (hand=None)
Get the X value of the joystick.

This depends on the mapping of the joystick connected to the current port.
Parameters hand — Unused
Returns The X value of the joystick.
Return type float

Joystick.getY (hand=None)
Get the Y value of the joystick.

This depends on the mapping of the joystick connected to the current port.

Parameters hand — Unused

1.4. wpilib Package

79

RobotPy WPILib Documentation, Release master

Returns The Y value of the joystick.
Return type float

Joystick.getZ (hand=None)
Get the Z value of the joystick.

This depends on the mapping of the joystick connected to the current port.

Parameters hand — Unused

Returns The Z value of the joystick.

Return type float
Joystick.kDefaultThrottleAxis=3
Joystick.kDefaultTopButton =2
Joystick.kDefaultTriggerButton=1
Joystick.kDefaultTwistAxis =2
Joystick.kDefaultXaxis =10
Joystick.kDefaultYAxis=1
Joystick.kDefaultZAxis =2

Joystick.setAxisChannel (axis, channel)
Set the channel associated with a specified axis.

Parameters
e axis (int) - The axis to set the channel for.
* channel (int)— The channel to set the axis to.

Joystick.setOutput (outputNumber, value)
Set a single HID output value for the joystick.

Parameters
* outputNumber — The index of the output to set (1-32)
* value - The value to set the output to.

Joystick.setOutputs (value)
Set all HID output values for the joystick.

Parameters value (int)— The 32 bit output value (1 bit for each output)

Joystick.setRumble (fype, value)
Set the rumble output for the joystick. The DS currently supports 2 rumble values, left rumble and right
rumble

Parameters
* type (Joystick.RumbleType)— Which rumble value to set

¢ value (float)— The normalized value (0 to 1) to set the rumble to

1.4.35 LinearDigitalFilter

class wpilib.LinearDigitalFilter (source, [fGains, fbGains)
Bases: wpilib.Filter

80 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

This class implements a linear, digital filter. All types of FIR and IIR filters are supported. Static factory methods
are provided to create commonly used types of filters.

Filters are of the form:

y[n] = (bOxx[n] + bl*xx[n-1] + ... + bPxx[n-P) - (al0xy[n-1] + a2xy[n-2] + ... + aQ*y‘[n—Q])

Where:

(738 1]

ey [n] is the output at time “n
*x [n] is the input at time “n”

ey [n—-1] is the output from the LAST time step (“n-1")
ex [n—1] is the input from the LAST time step (‘“n-1")
*b0. . .bP are the “feedforward” (FIR) gains

*a0. . .aQ are the “feedback” (IIR) gains

Note: IMPORTANT! Note the “-” sign in front of the feedback term! This is a common convention in signal
processing.

What can linear filters do? Basically, they can filter, or diminish, the effects of undesirable input frequencies.
High frequencies, or rapid changes, can be indicative of sensor noise or be otherwise undesirable. A “low pass”
filter smoothes out the signal, reducing the impact of these high frequency components. Likewise, a “high pass”
filter gets rid of slow-moving signal components, letting you detect large changes more easily.

Example FRC applications of filters:
*Getting rid of noise from an analog sensor input (note: the roboRIO’s FPGA can do this faster in hardware)
*Smoothing out joystick input to prevent the wheels from slipping or the robot from tipping
*Smoothing motor commands so that unnecessary strain isn’t put on electrical or mechanical components
oIf you use clever gains, you can make a PID controller out of this class!
For more on filters, I highly recommend the following articles:
ehttp://en.wikipedia.org/wiki/Linear_filter
ehttp://en.wikipedia.org/wiki/lir_filter
ehttp://en.wikipedia.org/wiki/Fir_filter

Note: pidGet () should be called by the user on a known, regular period. You can set up a Notifier to do this
(look at the PTDController class), or do it “inline” with code in a periodic function.

Note: For ALL filters, gains are necessarily a function of frequency. If you make a filter that works well for you
at, say, 100Hz, you will most definitely need to adjust the gains if you then want to run it at 200Hz! Combining
this with Note 1 - the impetus is on YOU as a developer to make sure pidGet () gets called at the desired,
constant frequency!

There are static methods you can use to build common filters:
*shighPass ()

smovingAverage ()

1.4. wpilib Package 81

http://en.wikipedia.org/wiki/Linear_filter
http://en.wikipedia.org/wiki/Iir_filter
http://en.wikipedia.org/wiki/Fir_filter

RobotPy WPILib Documentation, Release master

esinglePoleIIR()
Constructor. Create a linear FIR or IIR filter
Parameters
* source (PIDSource, callable) — The PIDSource object that is used to get values
» ffGains (1ist, tuple)- The “feed forward” or FIR gains
* fbGains (1ist, tuple)- The “feed back” or IIR gains

get ()
Returns the current filter estimate without also inserting new data as pidGet () would do.

Returns The current filter estimate

static highPass (source, timeConstant, period)
Creates a first-order high-pass filter of the form:

y[n] = gainxx[n] + (-gain)s*x[n-1] + gainxy[n-1]

where gain = e” (-dt / T), T is the time constant in seconds
This filter is stable for time constants greater than zero
Parameters
* source (PIDSource, callable) — The PIDSource object that is used to get values
¢ timeConstant (float) - The discrete-time time constant in seconds
* period (float)— The period in seconds between samples taken by the user
Returns LinearDigitalFilter

static movingAverage (source, taps)
Creates a K-tap FIR moving average filter of the form:

yIn]l = 1/k » (x[k] + x[k-1] + ... + x[0])

This filter is always stable.
Parameters
* source (PIDSource, callable) — The PIDSource object that is used to get values
* taps — The number of samples to average over. Higher = smoother but slower
Raises ValueError if number of taps is less than 1
Returns LinearDigitalFilter

pidGet ()
Calculates the next value of the filter

Returns The filtered value at this step

reset ()
Reset the filter state

static singlePoleIIR (source, timeConstant, period)
Creates a one-pole IIR low-pass filter of the form:

y[n] = (l-gain)+*x[n] + gainxy[n-1]

82

Chapter 1. Contents

RobotPy WPILib Documentation, Release master

Where gain = e~ (-dt / T), T is the time constant in seconds
This filter is stable for time constants greater than zero
Parameters
* source (PIDSource, callable) — The PIDSource object that is used to get values
e timeConstant (float) - The discrete-time time constant in seconds
* period (float) - The period in seconds between samples taken by the user

Returns LinearDigitalFilter

1.4.36 LiveWindow

class wpilib.LiveWindow
Bases: object

The public interface for putting sensors and actuators on the LiveWindow.

static addActuator (subsystem, name, component)
Add an Actuator associated with the subsystem and with call it by the given name.

Parameters
* subsystem - The subsystem this component is part of.
* name — The name of this component.
* component — A LiveWindowSendable component that represents a actuator.

static addActuatorChannel (moduleType, channel, component)
Add Actuator to LiveWindow. The components are shown with the module type, slot and channel like
this: Servo[0,2] for a servo object connected to the first digital module and PWM port 2.

Parameters
* moduleType — A string that defines the module name in the label for the value
* channel - The channel number the device is plugged into (usually PWM)
* component — The reference to the object being added

static addActuatorModuleChannel (moduleType, moduleNumber, channel, component)
Add Actuator to LiveWindow. The components are shown with the module type, slot and channel like
this: Servo[0,2] for a servo object connected to the first digital module and PWM port 2.

Parameters
* moduleType — A string that defines the module name in the label for the value
* moduleNumber — The number of the particular module type
* channel - The channel number the device is plugged into (usually PWM)
* component — The reference to the object being added

static addSensor (subsystem, name, component)
Add a Sensor associated with the subsystem and with call it by the given name.

Parameters
* subsystem - The subsystem this component is part of.

* name — The name of this component.

1.4. wpilib Package 83

RobotPy WPILib Documentation, Release master

* component — A LiveWindowSendable component that represents a sensor.

static addSensorChannel (moduleType, channel, component)
Add Sensor to LiveWindow. The components are shown with the type and channel like this: Gyro[0] for a
gyro object connected to the first analog channel.

Parameters
* moduleType — A string indicating the type of the module used in the naming (above)
* channel - The channel number the device is connected to
* component — A reference to the object being added
components = {}
firstTime = True

static initializeLiveWindowComponents ()
Initialize all the LiveWindow elements the first time we enter LiveWindow mode. By holding off creating
the NetworkTable entries, it allows them to be redefined before the first time in LiveWindow mode. This
allows default sensor and actuator values to be created that are replaced with the custom names from users
calling addActuator and addSensor.

liveWindowEnabled = False
livewindowTable = None

static removeComponent (component)
Removes a component from LiveWindow.

Parameters component — The reference to the object being removed.

static run ()
The run method is called repeatedly to keep the values refreshed on the screen in test mode.

sensors = set()

static setEnabled (enabled)
Set the enabled state of LiveWindow. If it’s being enabled, turn off the scheduler and remove all the
commands from the queue and enable all the components registered for LiveWindow. If it’s being disabled,
stop all the registered components and reenable the scheduler.

TODO: add code to disable PID loops when enabling LiveWindow. The commands should reenable the
PID loops themselves when they get rescheduled. This prevents arms from starting to move around, etc.
after a period of adjusting them in LiveWindow mode.

statusTable = None

static updateValues ()
Puts all sensor values on the live window.

1.4.37 LiveWindowSendable

class wpilib.LiveWindowSendable

Bases: wpilib.Sendable

A special type of object that can be displayed on the live window.

84

Chapter 1. Contents

RobotPy WPILib Documentation, Release master

1.4.38 MotorSafety

class wpilib.MotorSafety
Bases: object

Provides mechanisms to safely shutdown motors if they aren’t updated often enough.

The MotorSafety object is constructed for every object that wants to implement the Motor Safety protocol. The
helper object has the code to actually do the timing and call the motors stop() method when the timeout expires.
The motor object is expected to call the feed() method whenever the motors value is updated.

The constructor for a MotorSafety object. The helper object is constructed for every object that wants to imple-
ment the Motor Safety protocol. The helper object has the code to actually do the timing and call the motors
stop() method when the timeout expires. The motor object is expected to call the feed() method whenever the
motors value is updated.

DEFAULT_SAFETY_EXPIRATION = (.1

check ()
Check if this motor has exceeded its timeout. This method is called periodically to determine if this motor
has exceeded its timeout value. If it has, the stop method is called, and the motor is shut down until its
value is updated again.

static checkMotors ()
Check the motors to see if any have timed out. This static method is called periodically to poll all the
motors and stop any that have timed out.

feed ()
Feed the motor safety object. Resets the timer on this object that is used to do the timeouts.

getExpiration ()
Retrieve the timeout value for the corresponding motor safety object.

Returns the timeout value in seconds.
Return type float
helpers = <_weakrefset.WeakSet object>
helpers_lock = <_thread.lock object>

isAlive ()
Determine of the motor is still operating or has timed out.

Returns True if the motor is still operating normally and hasn’t timed out.
Return type float

isSafetyEnabled ()
Return the state of the motor safety enabled flag. Return if the motor safety is currently enabled for this
device.

Returns True if motor safety is enforced for this device
Return type bool

setExpiration (expirationTime)
Set the expiration time for the corresponding motor safety object.

Parameters expirationTime (f1oat)— The timeout value in seconds.

setSafetyEnabled (enabled)
Enable/disable motor safety for this device. Turn on and off the motor safety option for this PWM object.

Parameters enabled (bool)— True if motor safety is enforced for this object

1.4. wpilib Package 85

RobotPy WPILib Documentation, Release master

1.4.39 PIDController

class wpilib.PIDController (*args, **kwargs)

Bases: wpilib.LiveWindowSendable

Can be used to control devices via a PID Control Loop.

Creates a separate thread which reads the given PTDSource and takes care of the integral calculations, as well

as writing the given PTDOutput.
Allocate a PID object with the given constants for P, I, D, and F
Arguments can be structured as follows:

*Kp, Ki, Kd, Kf, PIDSource, PIDOutput, period

*Kp, Ki, Kd, PIDSource, PIDOutput, period

*Kp, Ki, Kd, PIDSource, PIDOutput

*Kp, Ki, Kd, Kf, PIDSource, PIDOutput

Parameters
* Kp (float or int) - the proportional coefficient
* Ki (float or int)- the integral coefficient
* Kd (float or int) - the derivative coefficient
* Kf (float or int) - the feed forward term
* source (A function, or an object that implements PTDSource) — Called to get values

* output (A function, or an object that implements PTDOutput) — Receives the output
percentage

* period(float or int)-theloop time for doing calculations. This particularly effects
calculations of the integral and differential terms. The default is 50ms.
AbsoluteTolerance_onTarget (value)

class PIDSourceType
Bases: object

A description for the type of output value to provide to a PTDController
kDisplacement =0
kRate =1

PIDController.PercentageTolerance_onTarget (percentage)

PIDController.calculateFeedForward ()
Calculate the feed forward term

Both of the provided feed forward calculations are velocity feed forwards. If a different feed forward
calculation is desired, the user can override this function and provide his or her own. This function does no
synchronization because the PIDController class only calls it in synchronized code, so be careful if calling
it oneself.

If a velocity PID controller is being used, the F term should be set to 1 over the maximum setpoint for the
output. If a position PID controller is being used, the F term should be set to 1 over the maximum speed
for the output measured in setpoint units per this controller’s update period (see the default period in this
class’s constructor).

86

Chapter 1. Contents

RobotPy WPILib Documentation, Release master

PIDController.disable ()
Stop running the PIDController, this sets the output to zero before stopping.

PIDController.enable ()
Begin running the PIDController.

PIDController. free ()
Free the PID object

PIDController.get ()
Return the current PID result. This is always centered on zero and constrained the the max and min outs.

Returns the latest calculated output

PIDController.getAvgError ()
Returns the current difference of the error over the past few iterations. You can specify the number of
iterations to average with set ToleranceBuffer () (defaults to 1). getAvgError() is used for the
onTarget() function.

Returns the current average of the error

PIDController.getD ()
Get the Differential coefficient.

Returns differential coefficient

PIDController.getDeltaSetpoint ()
Returns the change in setpoint over time of the PIDController

Returns the change in setpoint over time

PIDController.getError ()
Returns the current difference of the input from the setpoint.

Returns the current error

PIDController.getF ()
Get the Feed forward coefficient.

Returns feed forward coefficient

PIDController.getI ()
Get the Integral coefficient

Returns integral coefficient

PIDController.getP ()
Get the Proportional coefficient.

Returns proportional coefficient

PIDController.getPIDSourceType (pidSourceType)
Returns the type of input the PID controller is using

Returns the PID controller input type

PIDController.getSetpoint ()
Returns the current setpoint of the PIDController.

Returns the current setpoint
PIDController.instances =10

PIDController.isAvgErrorValid ()
Returns whether or not any values have been collected. If no values have been collected, getAvgError is 0,
which is invalid.

1.4. wpilib Package 87

RobotPy WPILib Documentation, Release master

Returns True if getAvgError () is currently valid.

PIDController.isEnable ()
Return True if PIDController is enabled.

PIDController.kDefaultPeriod =0.05

PIDController.onTarget ()
Return True if the error is within the percentage of the total input range, determined by setTolerance. This
assumes that the maximum and minimum input were set using set Input ().

Returns True if the error is less than the tolerance

PIDController.reset ()
Reset the previous error, the integral term, and disable the controller.

PIDController.setAbsoluteTolerance (absvalue)
Set the absolute error which is considered tolerable for use with onTarget ().

Parameters absvalue — absolute error which is tolerable in the units of the input object

PIDController.setContinuous (continuous=True)
Set the PID controller to consider the input to be continuous. Rather then using the max and min in as
constraints, it considers them to be the same point and automatically calculates the shortest route to the
setpoint.

Parameters continuous — Set to True turns on continuous, False turns off continuous

PIDController.setInputRange (minimumlnput, maximumlnput)
Sets the maximum and minimum values expected from the input.

Parameters
* minimumInput — the minimum percentage expected from the input
* maximumInput — the maximum percentage expected from the output

PIDController.setOutputRange (minimumQutput, maximumQOutput)
Sets the minimum and maximum values to write.

Parameters
* minimumOutput - the minimum percentage to write to the output
* maximumOutput - the maximum percentage to write to the output

PIDController.setPID (p, i, d, f=0.0)
Set the PID Controller gain parameters. Set the proportional, integral, and differential coefficients.

Parameters
¢ p — Proportional coefficient
* i —Integral coefficient
» d - Differential coefficient
o £ — Feed forward coefficient (optional, default is 0.0)

PIDController.setPIDSourceType (pidSourceType)
Sets what type of input the PID controller will use

Parameters pidSourceType - the type of input

PIDController.setPercentTolerance (percentage)
Set the percentage error which is considered tolerable for use with onTarget (). (Input of 15.0 = 15
percent)

88 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

Parameters percentage — percent error which is tolerable

PIDController.setSetpoint (setpoint)
Set the setpoint for the PIDController.

Parameters setpoint — the desired setpoint

PIDController.setTolerance (percent)
Set the percentage error which is considered tolerable for use with onTarget (). (Input of 15.0 = 15
percent)

Parameters percent — error which is tolerable

Deprecated since version 2015.1: Use setPercentTolerance () or setAbsoluteTolerance ()
instead.

PIDController.setToleranceBuffer (bufLength)
Set the number of previous error samples to average for tolerancing. When determining whether a mecha-
nism is on target, the user may want to use a rolling average of previous measurements instead of a precise
position or velocity. This is useful for noisy sensors which return a few erroneous measurements when the
mechanism is on target. However, the mechanism will not register as on target for at least the specified
bufLength cycles.

Parameters bufLength (int)— Number of previous cycles to average.

1.4.40 PowerDistributionPanel
class wpilib.PowerDistributionPanel (module=0)
Bases: wpilib.SensorBase
Use to obtain voltage, current, temperature, power, and energy from the CAN PDP

clearStickyFaults ()
Clear all pdp sticky faults

getCurrent (channel)
Query the current of a single channel of the PDP

Returns The current of one of the PDP channels (channels 0-15) in Amperes
Return type float

getTemperature ()
Query the temperature of the PDP

Returns The temperature of the PDP in degrees Celsius
Return type float

getTotalCurrent ()
Query the current of all monitored PDP channels (0-15)

Returns The total current drawn from the PDP channels in Amperes
Return type float

getTotalEnergy ()
Query the total energy drawn from the monitored PDP channels

Returns The total energy drawn from the PDP channels in Joules

Return type float

1.4. wpilib Package 89

RobotPy WPILib Documentation, Release master

getTotalPower ()
Query the total power drawn from the monitored PDP channels

Returns The total power drawn from the PDP channels in Watts
Return type float

getVoltage ()
Query the input voltage of the PDP

Returns The voltage of the PDP in volts
Return type float

resetTotalEnergy ()
Reset the total energy to 0

1.4.41 Preferences
class wpoilib.Preferences
Bases: object

Provides a relatively simple way to save important values to the RoboRIO to access the next time the RoboRIO
is booted.

This class loads and saves from a file inside the RoboRIO. The user can not access the file directly, but may
modify values at specific fields which will then be saved to the file when save () is called.

This class is thread safe.

This will also interact with networktables.NetworkTable by creating a table called “Preferences” with
all the key-value pairs. To save using NetworkTable, simply set the boolean at position ~S A V E~ to true. Also,
if the value of any variable is ” in the NetworkTable, then that represents non-existence in the Preferences table.

Creates a preference class that will automatically read the file in a different thread. Any call to its methods will
be blocked until the thread is finished reading.

FILE_NAME = ‘‘home/lvuser/wpilib-preferences.ini’
NEW_LINE = ‘\n’

SAVE_FIELD =‘~S A VE-~’

TABLE_NAME = ‘Preferences’

VALUE_PREFIX = ‘="

VALUE_SUFFIX = ‘"\n’

containsKey (key)
Returns whether or not there is a key with the given name.

Parameters key - the key
Returns True if there is a value at the given key

get (key, d=None)
Returns the value at the given key.

Parameters
* key — the key
* d — the return value if the key doesn’t exist (default is None)

Returns the value (or d/None if none exists)

920 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

getBoolean (key, backup)
Returns the boolean at the given key. If this table does not have a value for that position, then the given
backup value will be returned.

Parameters

* key — the key

* backup — the value to return if none exists in the table
Returns either the value in the table, or the backup
Raises ValueError if value cannot be converted to integer

getFloat (key, backup)
Returns the float at the given key. If this table does not have a value for that position, then the given backup
value will be returned.

Parameters

* key — the key

* backup — the value to return if none exists in the table
Returns either the value in the table, or the backup
Raises ValueError if value cannot be converted to integer

static getInstance ()
Returns the preferences instance.

Returns the preferences instance

getInt (key, backup)
Returns the int at the given key. If this table does not have a value for that position, then the given backup
value will be returned.

Parameters
¢ key — the key
* backup — the value to return if none exists in the table
Returns either the value in the table, or the backup
Raises ValueError if value cannot be converted to integer
getKeys ()
Returns a list of the keys

getString (key, backup)
Returns the string at the given key. If this table does not have a value for that position, then the given
backup value will be returned.

Parameters

* key — the key

* backup - the value to return if none exists in the table
Returns either the value in the table, or the backup

has_key (key)
Python style contains key.

keys ()
Python style get list of keys.

1.4. wpilib Package 91

RobotPy WPILib Documentation, Release master

put (key, value)
Puts the given value into the given key position

Parameters
* key — the key
e value — the value

putBoolean (key, value)
Puts the given float into the preferences table.

The key may not have any whitespace nor an equals sign.

This will NOT save the value to memory between power cycles, to do that you must call save () (which
must be used with care) at some point after calling this.

Parameters
* key — the key
e value — the value

putFloat (key, value)
Puts the given float into the preferences table.

The key may not have any whitespace nor an equals sign.

This will NOT save the value to memory between power cycles, to do that you must call save () (which
must be used with care) at some point after calling this.

Parameters
* key — the key
e value — the value

putInt (key, value)
Puts the given int into the preferences table.

The key may not have any whitespace nor an equals sign.

This will NOT save the value to memory between power cycles, to do that you must call save () (which
must be used with care) at some point after calling this.

Parameters
* key — the key
¢ value — the value

putString (key, value)
Puts the given string into the preferences table.

The value may not have quotation marks, nor may the key have any whitespace nor an equals sign.

This will NOT save the value to memory between power cycles, to do that you must call save () (which
must be used with care) at some point after calling this.

Parameters
* key — the key
¢ value - the value

read ()
The internal method to read from a file. This will be called in its own thread when the preferences singleton
is first created.

92 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

remove (key)
Remove a preference

Parameters key — the key

save ()
Saves the preferences to a file on the RoboRIO.

This should NOT be called often. Too many writes can damage the RoboRIO’s flash mem-
ory. While it is ok to save once or twice a match, this should never be called every run of
IterativeRobot.teleopPeriodic ().

The actual writing of the file is done in a separate thread. However, any call to a get or put method will
wait until the table is fully saved before continuing.

1.4.42 PWM

class wpilib .PWM (channel)
Bases: wpilib.LiveWindowSendable

Raw interface to PWM generation in the FPGA.

The values supplied as arguments for PWM outputs range from -1.0 to 1.0. They are mapped to the hardware
dependent values, in this case 0-2000 for the FPGA. Changes are immediately sent to the FPGA, and the update
occurs at the next FPGA cycle. There is no delay.

As of revision 0.1.10 of the FPGA, the FPGA interprets the 0-2000 values as follows:
2000 = full “forward”
*1999 to 1001 = linear scaling from “full forward” to “center”
*1000 = center value
*999 to 2 = linear scaling from “center” to “full reverse”
*] = minimum pulse width (currently .5ms)
() = disabled (i.e. PWM output is held low)

kDefaultPwmPeriod is the 1x period (5.05 ms). In hardware, the period scaling is implemented as an output
squelch to get longer periods for old devices.

*20ms periods (50 Hz) are the “safest” setting in that this works for all devices
*20ms periods seem to be desirable for Vex Motors

*20ms periods are the specified period for HS-322HD servos, but work reliably down to 10.0 ms; starting
at about 8.5ms, the servo sometimes hums and get hot; by 5.0ms the hum is nearly continuous

*10ms periods work well for Victor 884

*5ms periods allows higher update rates for Luminary Micro Jaguar speed controllers. Due to the shipping
firmware on the Jaguar, we can’t run the update period less than 5.05 ms.

Allocate a PWM given a channel.

Parameters channel (int) — The PWM channel number. 0-9 are on-board, 10-19 are on the
MXP port

class PeriodMultiplier
Bases: object

Represents the amount to multiply the minimum servo-pulse pwm period by.

1.4. wpilib Package 93

RobotPy WPILib Documentation, Release master

PWM.

PWM.

PWM.

PWM.

PWM.

PWM.

PWM.

PWM.

PWM

PWM.

PWM.

PWM.

PWM.

kix=1
k2X =2
k4x=4
enableDeadbandElimination (eliminateDeadband)

Optionally eliminate the deadband from a speed controller.

Parameters eliminateDeadband (bool) — If True, set the motor curve on the Jaguar to
eliminate the deadband in the middle of the range. Otherwise, keep the full range without

modifying any values.

free ()
Free the PWM channel.

Free the resource associated with the PWM channel and set the value to 0.

getCenterPwm ()

getChannel ()
Gets the channel number associated with the PWM Object.

Returns The channel number.
Return type int

getFullRangeScaleFactor ()
Get the scale for positions.

getMaxNegativePwm ()
getMaxPositivePwm ()

getMinNegativePwm ()

.getMinPositivePwm ()

getNegativeScaleFactor ()
Get the scale for negative speeds.

getPosition ()
Get the PWM value in terms of a position.

This is intended to be used by servos.

Note: setBounds () must be called first.

Returns The position the servo is set to between 0.0 and 1.0.

Return type float
getPositiveScaleFactor ()
Get the scale for positive speeds.

getRaw ()
Get the PWM value directly from the hardware.

Read a raw value from a PWM channel.
Returns Raw PWM control value. Range: 0 - 255.

Return type int

94

Chapter 1. Contents

RobotPy WPILib Documentation, Release master

PWM.getSpeed ()
Get the PWM value in terms of speed.

This is intended to be used by speed controllers.

Note: setBounds () must be called first.

Returns The most recently set speed between -1.0 and 1.0.
Return type float
PWM.kDefaultPwmCenter = 1.5
the PWM range center in ms

PWM.kDefaultPwmPeriod = 5.05
the default PWM period measured in ms.

PWM.kDefaultPwmStepsDown = 1000
the number of PWM steps below the centerpoint

PWM.kPwmDisabled =0
the value to use to disable

PWM.port

PWM. setBounds (max, deadbandMax, center, deadbandMin, min)
Set the bounds on the PWM pulse widths.

This sets the bounds on the PWM values for a particular type of controller. The values determine the upper
and lower speeds as well as the deadband bracket.

Parameters
* max (float)— The max PWM pulse width in ms
* deadbandMax (f1oat) — The high end of the deadband range pulse width in ms
* center (float)— The center (off) pulse width in ms
* deadbandMin (f1oat)— The low end of the deadband pulse width in ms
* min (f1oat)— The minimum pulse width in ms

PWM.setPeriodMultiplier (mult)
Slow down the PWM signal for old devices.

Parameters mult (PWM.PeriodMultiplier)—The period multiplier to apply to this chan-
nel

PWM.setPosition (pos)
Set the PWM value based on a position.

This is intended to be used by servos.

Note: setBounds () must be called first.

Parameters pos (f1oat)— The position to set the servo between 0.0 and 1.0.

1.4.

wpilib Package 95

RobotPy WPILib Documentation, Release master

PWM. setRaw (value)
Set the PWM value directly to the hardware.

Write a raw value to a PWM channel.
Parameters value (int)—Raw PWM value. Range 0 - 255.

PWM. setSpeed (speed)
Set the PWM value based on a speed.

This is intended to be used by speed controllers.

Note: setBounds () must be called first.

Parameters speed (fl1oat)— The speed to set the speed controller between -1.0 and 1.0.

PWM.setZeroLatch ()

1.4.43 Relay

class wpilib.Relay (channel, direction=None)
Bases: wpilib.SensorBase, woilib.LiveWindowSendable, woilib.MotorSafety

Controls VEX Robotics Spike style relay outputs.

Relays are intended to be connected to Spikes or similar relays. The relay channels controls a pair of pins that
are either both off, one on, the other on, or both on. This translates into two Spike outputs at Ov, one at 12v
and one at Ov, one at Ov and the other at 12v, or two Spike outputs at 12V. This allows off, full forward, or full
reverse control of motors without variable speed. It also allows the two channels (forward and reverse) to be
used independently for something that does not care about voltage polarity (like a solenoid).

Relay constructor given a channel.
Initially the relay is set to both lines at Ov.
Parameters
* channel (int) - The channel number for this relay (0-3)

* direction (Relay.Direction)— The direction that the Relay object will control. If
not specified, defaults to allowing both directions.

class Direction
Bases: object

The Direction(s) that a relay is configured to operate in.

kBoth =0
Both directions are valid

kForward =1
Only forward is valid

kReverse =2
Only reverse is valid

class Relay.Value
Bases: object

The state to drive a Relay to.

96 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

kForward =2
Forward

kOff =0
Off

kon=1
On for relays with defined direction

kReverse =3
Reverse

Relay.free ()

Relay.get ()
Get the Relay State

Gets the current state of the relay.

When set to kForwardOnly or kReverseOnly, value is returned as kOn/kOff not kForward/kReverse (per
the recommendation in Set)

Returns The current state of the relay
Return type Relay.Value

Relay.getChannel ()
Get the channel number.

Returns The channel number.
Relay.getDescription ()
Relay.port
Relay.relayChannels = <wpilib.resource.Resource object>

Relay.set (value)
Set the relay state.

Valid values depend on which directions of the relay are controlled by the object.
When set to kBothDirections, the relay can be set to any of the four states: 0Ov-Ov, 12v-0Qv, Ov-12v, 12v-12v

When set to kForwardOnly or kReverseOnly, you can specify the constant for the direction or you can
simply specify kOff and kOn. Using only kOff and kOn is recommended.

Parameters value (Relay.Value)— The state to set the relay.

Relay.setDirection (direction)
Set the Relay Direction.

Changes which values the relay can be set to depending on which direction is used.
Valid inputs are kBothDirections, kForwardOnly, and kReverseOnly.
Parameters direction (Relay.Direction)— The direction for the relay to operate in

Relay.stopMotor ()

1.4.44 Resource

class wpilib.Resource (size)
Bases: object

Tracks resources in the program.

1.4. wpilib Package 97

RobotPy WPILib Documentation, Release master

The Resource class is a convenient way of keeping track of allocated arbitrary resources in the program. Re-
sources are just indices that have an lower and upper bound that are tracked by this class. In the library they are
used for tracking allocation of hardware channels but this is purely arbitrary. The resource class does not do any
actual allocation, but simply tracks if a given index is currently in use.

Allocate storage for a new instance of Resource. Allocate a bool array of values that will get initialized to
indicate that no resources have been allocated yet. The indicies of the resources are 0..size-1.

Parameters size — The number of blocks to allocate

allocate (0obj, index=None)
Allocate a resource.

When index is None or unspecified, a free resource value within the range is located and returned after it
is marked allocated. Otherwise, it is verified unallocated, then returned.

Parameters
¢ obj - The object requesting the resource.
* index — The resource to allocate
Returns The index of the allocated block.

Raises IndexError — If there are no resources available to be allocated or the specified index
is already used.

free (index)
Force-free an allocated resource. After a resource is no longer needed, for example a destructor is called
for a channel assignment class, free will release the resource value so it can be reused somewhere else in
the program.

Parameters index — The index of the resource to free.

1.4.45 RobotBase

class wpilib.RobotBase

Bases: object
Implement a Robot Program framework.

The RobotBase class is intended to be subclassed by a user creating a robot program. Overridden
autonomous () and operatorControl () methods are called at the appropriate time as the match pro-
ceeds. In the current implementation, the Autonomous code will run to completion before the OperatorControl
code could start. In the future the Autonomous code might be spawned as a task, then killed at the end of the
Autonomous period.

User code should be placed in the constructor that runs before the Autonomous or Operator Control period
starts. The constructor will run to completion before Autonomous is entered.

Warning: If you override __init___ in your robot class, you must call the base class constructor. This
must be used to ensure that the communications code starts.

free ()
Free the resources for a RobotBase class.

static initializeHardwareConfiguration ()
Common initialization for all robot programs.

isAutonomous ()
Determine if the robot is currently in Autonomous mode.

98

Chapter 1. Contents

RobotPy WPILib Documentation, Release master

Returns True if the robot is currently operating Autonomously as determined by the field con-
trols.

Return type bool

isDisabled()
Determine if the Robot is currently disabled.

Returns True if the Robot is currently disabled by the field controls.
Return type bool

isEnabled ()
Determine if the Robot is currently enabled.

Returns True if the Robot is currently enabled by the field controls.
Return type bool

isNewDataAvailable ()
Indicates if new data is available from the driver station.

Returns Has new data arrived over the network since the last time this function was called?
Return type bool

isOperatorControl ()
Determine if the robot is currently in Operator Control mode.

Returns True if the robot is currently operating in Tele-Op mode as determined by the field
controls.

Return type bool

static isReal ()
Returns If the robot is running in the real world.
Return type bool

static isSimulation ()
Returns If the robot is running in simulation.
Return type bool

isTest ()
Determine if the robot is currently in Test mode.

Returns True if the robot is currently operating in Test mode as determined by the driver station.
Return type bool

static main (robot_cls)
Starting point for the applications.

startCompetition ()
Provide an alternate “main loop” via startCompetition().

1.4.46 RobotDrive

class wpilib.RobotDrive (*args, **kwargs)
Bases: wpilib.MotorSafety

Operations on a robot drivetrain based on a definition of the motor configuration.

1.4. wpilib Package 99

RobotPy WPILib Documentation, Release master

The robot drive class handles basic driving for a robot. Currently, 2 and 4 motor tank and mecanum drive trains
are supported. In the future other drive types like swerve might be implemented. Motor channel numbers are
passed supplied on creation of the class. Those are used for either the drive function (intended for hand created
drive code, such as autonomous) or with the Tank/Arcade functions intended to be used for Operator Control
driving.

Constructor for RobotDrive.
Either 2 or 4 motors can be passed to the constructor to implement a two or four wheel drive system, respectively.
When positional arguments are used, these are the two accepted orders:
eleftMotor, rightMotor
frontLeftMotor, rearLeftMotor, frontRightMotor, rearRightMotor
Alternatively, the above names can be used as keyword arguments.

Either channel numbers or motor controllers can be passed (determined by whether the passed object has a
set function). If channel numbers are passed, the motorController keyword argument, if present, is the motor
controller class to use; if unspecified, Talon is used.

class MotorType
Bases: object

The location of a motor on the robot for the purpose of driving.

kFrontLeft =0
Front left

kFrontRight =1
Front right

kRearLeft =2
Rear left

kRearRight =3
Rear right

RobotDrive.arcadeDrive (*args, **kwargs)
Provide tank steering using the stored robot configuration.

Either one or two joysticks (with optional specified axis) or two raw values may be passed positionally,
along with an optional squaredInputs boolean. The valid positional combinations are:

estick

estick, squaredInputs

emoveStick, moveAxis, rotateStick, rotate Axis

*moveStick, moveAxis, rotateStick, rotate Axis, squaredInputs
emoveValue, rotate Value

*moveValue, rotateValue, squaredInputs

Alternatively, the above names can be used as keyword arguments. The behavior of mixes of keyword
arguments in other than the combinations above is undefined.

If specified positionally, the value and joystick versions are disambiguated by looking for a getY function
on the stick.

Parameters

100

Chapter 1. Contents

RobotPy WPILib Documentation, Release master

* stick — The joystick to use for Arcade single-stick driving. The Y-axis will be selected

for forwards/backwards and the X-axis will be selected for rotation rate.

» moveStick — The Joystick object that represents the forward/backward direction.

* moveAxis — The axis on the moveStick object to use for forwards/backwards (typically

Y_AXIS).

* rotateStick — The Joystick object that represents the rotation value.

* rotateAxis — The axis on the rotation object to use for the rotate right/left (typically

X_AXIS).

¢ moveValue — The value to use for forwards/backwards.

* rotateValue - The value to use for the rotate right/left.

* squaredInputs — Setting this parameter to True decreases the sensitivity at lower

RobotDrive
Drive the

speeds. Defaults to True if unspecified.

.drive (outputMagnitude, curve)
motors at “outputMagnitude” and “curve”.

Both outputMagnitude and curve are -1.0 to +1.0 values, where 0.0 represents stopped and not turning.
curve < 0 will turn left and curve > 0 will turn right.

The algorithm for steering provides a constant turn radius for any normal speed range, both forward and
backward. Increasing m_sensitivity causes sharper turns for fixed values of curve.

This func

tion will most likely be used in an autonomous routine.

Parameters

* outputMagnitude — The speed setting for the outside wheel in a turn, forward or

backwards, +1 to -1.

* curve — The rate of turn, constant for different forward speeds. Set curve < 0 for left

turn or curve > O for right turn.

Set curve = e” (—-r/w) to get a turn radius r for wheelbase w of your robot. Conversely, turn radius r
= -In(curve)*w for a given value of curve and wheelbase w.

RobotDrive
RobotDrive
RobotDrive

RobotDrive

.free ()
.getDescription ()
.getNumMotors ()

.holonomicDrive (magnitude, direction, rotation)

Holonomic Drive method for Mecanum wheeled robots.

This is an alias to mecanumDrive Polar () for backward compatibility.

Parameters

* magnitude — The speed that the robot should drive in a given direction. [-1.0..1.0]

* direction - The direction the robot should drive. The direction and magnitude are
independent of the rotation rate.

e rotation - The rate of rotation for the robot that is completely independent of the
magnitude or direction. [-1.0..1.0]

RobotDrive.kArcadeRatioCurve_Reported = False

RobotDrive.kArcadeStandard_Reported = False

1.4. wpilib Package 101

RobotPy WPILib Documentation, Release master

RobotDrive.kDefaultExpirationTime = (.1
RobotDrive.kDefaultMaxOutput = 1.0
RobotDrive.kDefaultSensitivity =0.5
RobotDrive .kMaxNumberOfMotors =4
RobotDrive.kMecanumCartesian_Reported = False
RobotDrive.kMecanumPolar_Reported = False
RobotDrive.kTank_Reported = False

static RobotDrive.limit (num)
Limit motor values to the -1.0 to +1.0 range.

RobotDrive.mecanumDrive_Cartesian (x, Yy, rotation, gyroAngle)
Drive method for Mecanum wheeled robots.

A method for driving with Mecanum wheeled robots. There are 4 wheels on the robot, arranged so that
the front and back wheels are toed in 45 degrees. When looking at the wheels from the top, the roller axles
should form an X across the robot.

This is designed to be directly driven by joystick axes.
Parameters
* x — The speed that the robot should drive in the X direction. [-1.0..1.0]

» y —The speed that the robot should drive in the Y direction. This input is inverted to match
the forward == -1.0 that joysticks produce. [-1.0..1.0]

e rotation — The rate of rotation for the robot that is completely independent of the
translation. [-1.0..1.0]

* gyroAngle - The current angle reading from the gyro. Use this to implement field-
oriented controls.

RobotDrive.mecanumDrive_Polar (magnitude, direction, rotation)
Drive method for Mecanum wheeled robots.

A method for driving with Mecanum wheeled robots. There are 4 wheels on the robot, arranged so that
the front and back wheels are toed in 45 degrees. When looking at the wheels from the top, the roller axles
should form an X across the robot.

Parameters
* magnitude — The speed that the robot should drive in a given direction.

* direction - The direction the robot should drive in degrees. The direction and magini-
tute are independent of the rotation rate.

e rotation - The rate of rotation for the robot that is completely independent of the
magnitute or direction. [-1.0..1.0]

static RobotDrive.normalize (wheelSpeeds)
Normalize all wheel speeds if the magnitude of any wheel is greater than 1.0.

static RobotDrive.rotateVector (x,y, angle)
Rotate a vector in Cartesian space.

RobotDrive.setCANJaguarSyncGroup (syncGroup)
Set the number of the sync group for the motor controllers. If the motor controllers are
:class:*CANJaguar"s, then they will be added to this sync group, causing them to update their values
at the same time.

102

Chapter 1. Contents

RobotPy WPILib Documentation, Release master

Parameters syncGroup — The update group to add the motor controllers to.

RobotDrive.setInvertedMotor (motor, islnverted)
Invert a motor direction.

This is used when a motor should run in the opposite direction as the drive code would normally run it.
Motors that are direct drive would be inverted, the drive code assumes that the motors are geared with one
reversal.

Parameters
¢ motor — The motor index to invert.
* isInverted - True if the motor should be inverted when operated.

RobotDrive.setLeftRightMotorOutputs (leftOutput, rightOutput)
Set the speed of the right and left motors.

This is used once an appropriate drive setup function is called such as twoWheelDrive(). The motors are
set to “leftSpeed” and “rightSpeed” and includes flipping the direction of one side for opposing motors.

Parameters
* leftOutput — The speed to send to the left side of the robot.
e rightOutput — The speed to send to the right side of the robot.

RobotDrive.setMaxOutput (maxOutput)
Configure the scaling factor for using RobotDrive with motor controllers in a mode other than PercentVbus.

Parameters maxOutput — Multiplied with the output percentage computed by the drive func-
tions.

RobotDrive.setSensitivity (sensitivity)
Set the turning sensitivity.

This only impacts the drive() entry-point.

Parameters sensitivity — Effectively sets the turning sensitivity (or turn radius for a given
value)

RobotDrive.stopMotor ()

RobotDrive.tankDrive (*args, **kwargs)
Provide tank steering using the stored robot configuration.

Either two joysticks (with optional specified axis) or two raw values may be passed positionally, along
with an optional squaredInputs boolean. The valid positional combinations are:

eleftStick, rightStick

eleftStick, rightStick, squaredInputs

oleftStick, leftAxis, rightStick, rightAxis

eleftStick, leftAxis, rightStick, rightAxis, squaredInputs
eleftValue, rightValue

eleftValue, rightValue, squaredInputs

Alternatively, the above names can be used as keyword arguments. The behavior of mixes of keyword
arguments in other than the combinations above is undefined.

If specified positionally, the value and joystick versions are disambiguated by looking for a getY function.

Parameters

1.4.

wpilib Package 103

RobotPy WPILib Documentation, Release master

* leftStick — The joystick to control the left side of the robot.

* leftAxis — The axis to select on the left side Joystick object (defaults to the Y axis if
unspecified).

e rightStick — The joystick to control the right side of the robot.

* rightAxis — The axis to select on the right side Joystick object (defaults to the Y axis
if unspecified).

* leftValue — The value to control the left side of the robot.
e rightValue — The value to control the right side of the robot.

* squaredInputs — Setting this parameter to True decreases the sensitivity at lower
speeds. Defaults to True if unspecified.

1.4.47 RobotState

class wpilib.RobotState

Bases: object

Provides an interface to determine the current operating state of the robot code.
impl = None

static isAutonomous ()

static isDisabled ()

static isEnabled ()

static isOperatorControl ()

static isTest ()

1.4.48 SafePWM

class wpilib.SafePWM (channel)

Bases: wpilib.PWM, wpilib.MotorSafety
A raw PWM interface that implements the Mot orSafety interface
Constructor for a SafePWM object taking a channel number.

Parameters channel (int) — The channel number to be used for the underlying PWM object.
0-9 are on-board, 10-19 are on the MXP port.

disable ()
getDescription ()

stopMotor ()

Stop the motor associated with this PWM object. This is called by the MotorSafety object when it has a

timeout for this PWM and needs to stop it from running.

1.4.49 SampleRobot

class wpilib.SampleRobot

Bases: wpilib.RobotBase

104

Chapter 1. Contents

RobotPy WPILib Documentation, Release master

A simple robot base class that knows the standard FRC competition states (disabled, autonomous, or operator
controlled).

You can build a simple robot program off of this by overriding the robotinit (), disabled(),
autonomous () and operatorControl () methods. The startCompetition () method will call
these methods (sometimes repeatedly) depending on the state of the competition.

Alternatively you can override the robotMain () method and manage all aspects of the robot yourself (not
recommended).

Warning: While it may look like a good choice to use for your code if you’re inexperienced, don’t.
Unless you know what you are doing, complex code will be much more difficult under this system. Use
IterativeRobot or command based instead if you’re new.

autonomous ()
Autonomous should go here. Users should add autonomous code to this method that should run while the
field is in the autonomous period.

Called once each time the robot enters the autonomous state.

disabled ()
Disabled should go here. Users should overload this method to run code that should run while the field is
disabled.

Called once each time the robot enters the disabled state.

logger = <logging.Logger object>
A python logging object that you can use to send messages to the log. It is recommended to use this instead
of print statements.

operatorControl ()
Operator control (tele-operated) code should go here. Users should add Operator Control code to this
method that should run while the field is in the Operator Control (tele-operated) period.

Called once each time the robot enters the operator-controlled state.

robotInit ()
Robot-wide initialization code should go here.

Users should override this method for default Robot-wide initialization which will be called when the robot
is first powered on. It will be called exactly 1 time.

Note: It is simpler to override this function instead of defining a constructor for your robot class

Warning: the Driver Station “Robot Code” light and FMS “Robot Ready” indicators will be off until
Robotlnit() exits. Code in robotInit () that waits for enable will cause the robot to never indicate
that the code is ready, causing the robot to be bypassed in a match.

robotMain ()
Robot main program for free-form programs.

This should be overridden by user subclasses if the intent is to not use the autonomous() and operator-
Control() methods. In that case, the program is responsible for sensing when to run the autonomous and
operator control functions in their program.

This method will be called immediately after the constructor is called. If it has not been overridden by a
user subclass (i.e. the default version runs), then the robotlnit(), disabled(), autonomous() and operator-
Control() methods will be called.

1.4. wpilib Package 105

RobotPy WPILib Documentation, Release master

If you override this function, you must call hal . HALNetworkCommunicationObserveUserProgramStarting (|
to indicate that your robot is ready to be enabled, as it will not be called for you.

Warning: Nobody actually wants to override this function. Neither do you.

startCompetition ()
Start a competition. This code tracks the order of the field starting to ensure that everything happens in the
right order. Repeatedly run the correct method, either Autonomous or OperatorControl when the robot is
enabled. After running the correct method, wait for some state to change, either the other mode starts or
the robot is disabled. Then go back and wait for the robot to be enabled again.

test ()
Test code should go here. Users should add test code to this method that should run while the robot is in

test mode.

1.4.50 SD540

class wpilib.SD540 (channel)
Bases: wpilib.SafePWM

Mindsensors SD540 Speed Controller
Constructor.

Parameters channel — The PWM channel that the SD540 is attached to. 0-9 are on-board, 10-19
are on the MXP port

Note: Note that the SD540 uses the following bounds for PWM values. These values should work reasonably
well for most controllers, but if users experience issues such as asymmetric behavior around the deadband or
inability to saturate the controller in either direction, calibration is recommended. The calibration procedure can
be found in the SD540 User Manual available from Mindsensors.

*2.05ms = full “forward”

*1.55ms = the “high end” of the deadband range
*1.50ms = center of the deadband range (off)
*1.44ms = the “low end” of the deadband range

*.94ms = full “reverse”

free ()

get ()
Get the recently set value of the PWM.

Returns The most recently set value for the PWM between -1.0 and 1.0.
Return type float

getInverted()
Common interface for inverting the direction of a speed controller.

Returns The state of inversion (True is inverted)

pidWrite (output)
Write out the PID value as seen in the PIDOutput base object.

106 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

Parameters output (float) — Write out the PWM value as was found in the
PIDController.

set (speed, syncGroup=0)
Set the PWM value.

The PWM value is set using a range of -1.0 to 1.0, appropriately scaling the value for the FPGA.
Parameters
* speed (float)— The speed to set. Value should be between -1.0 and 1.0.

* syncGroup — The update group to add this set() to, pending updateSyncGroup(). If O,
update immediately.

setInverted (islnverted)
Common interface for inverting the direction of a speed controller.

Parameters isInverted — The state of inversion (True is inverted).

1.4.51 Sendable

class wpilib.Sendable
Bases: object

The base interface for objects that can be sent over the network through network tables

1.4.52 SendableChooser

class wpilib.SendableChooser
Bases: wpilib.Sendable

A useful tool for presenting a selection of options to be displayed on the SmartDashboard

For instance, you may wish to be able to select between multiple autonomous modes. You can do this by
putting every possible Command you want to run as an autonomous into a SendableChooser and then put it
into the SmartDashboard to have a list of options appear on the laptop. Once autonomous starts, simply ask the
SendableChooser what the selected value is.

Example:

This shows the user two options on the SmartDashboard
chooser = wpilib.SendableChooser ()

chooser.addObject ('optionl', '1")

chooser.addObject ('option2', '2")

wpilib.SmartDashboard.putData ('Choice', chooser)

.. later, ask to see what the user selected?
value = chooser.getSelected()

Instantiates a SendableChooser.
DEFAULT = ‘default’
OPTIONS = ‘options’

SELECTED = ‘selected’

1.4. wpilib Package 107

RobotPy WPILib Documentation, Release master

addDefault (name, object)
Add the given object to the list of options and marks it as the default. Functionally, this is very close to
addObject(...) except that it will use this as the default option if none other is explicitly selected.

Parameters
* name — the name of the option
* object — the option

addObject (name, object)
Adds the given object to the list of options. On the SmartDashboard on the desktop, the object will appear
as the given name.

Parameters
* name — the name of the option
* object - the option

getSelected()
Returns the object associated with the selected option. If there is none selected, it will return the default.
If there is none selected and no default, then it will return None.

Returns the object associated with the selected option

1.4.53 SensorBase

class wpilib.SensorBase
Bases: wpilib.LiveWindowSendable

Base class for all sensors

Stores most recent status information as well as containing utility functions for checking channels and error
processing.

static checkAnalogInputChannel (channel)
Check that the analog input number is value. Verify that the analog input number is one of the legal channel
numbers. Channel numbers are 0-based.

Parameters channel — The channel number to check.

static checkAnalogOutputChannel (channel)
Check that the analog input number is value. Verify that the analog input number is one of the legal channel
numbers. Channel numbers are 0-based.

Parameters channel — The channel number to check.

static checkDigitalChannel (channel)
Check that the digital channel number is valid. Verify that the channel number is one of the legal channel
numbers. Channel numbers are 0-based.

Parameters channel — The channel number to check.

static checkPDPChannel (channel)
Verify that the power distribution channel number is within limits. Channel numbers are 0-based.

Parameters channel — The channel number to check.

static checkPDPModule (module)
Verify that the power distribution module number is within limits. Module numbers are 0-based.

Parameters module — The module number to check.

108 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

static checkPWMChannel (channel)
Check that the digital channel number is valid. Verify that the channel number is one of the legal channel
numbers. Channel numbers are 0-based.

Parameters channel — The channel number to check.

static checkRelayChannel (channel)
Check that the digital channel number is valid. Verify that the channel number is one of the legal channel
numbers. Channel numbers are 0-based.

Parameters channel — The channel number to check.

static checkSolenoidChannel (channel)
Verify that the solenoid channel number is within limits. Channel numbers are 0-based.

Parameters channel — The channel number to check.

static checkSolenoidModule (moduleNumber)
Verify that the solenoid module is correct.

Parameters moduleNumber — The solenoid module module number to check.

defaultSolenoidModule =0
Default solenoid module

free ()
Free the resources used by this object

static getDefaultSolenoidModule ()
Get the number of the default solenoid module.

Returns The number of the default solenoid module.

kAnalogInputChannels =§
Number of analog input channels

kAnalogOutputChannels =2
Number of analog output channels

kDigitalChannels =26
Number of digital channels per roboRIO

kPDPChannels =16
Number of power distribution channels

kPDPModules = 63
Number of power distribution channels

kPwmChannels =20
Number of PWM channels per roboRIO

kRelayChannels =4
Number of relay channels per roboRIO

kSolenoidChannels =8
Number of solenoid channels per module

kSolenoidModules =2
Number of solenoid modules

kSystemClockTicksPerMicrosecond =40
Ticks per microsecond

static setDefaultSolenoidModule (moduleNumber)
Set the default location for the Solenoid module.

1.4. wpilib Package 109

RobotPy WPILib Documentation, Release master

Parameters moduleNumber — The number of the solenoid module to use.

1.4.54 Servo

class wpilib.Servo (channel)

Bases: wpilib.PWM
Standard hobby style servo

The range parameters default to the appropriate values for the Hitec HS-322HD servo provided in the FIRST
Kit of Parts in 2008.

Constructor.
*By default kDefaultMaxServoPWM ms is used as the maxPWM value
*By default kDefaultMinServoPWM s is used as the minPWM value
Parameters channel (int)- The PWM channel to which the servo is attached. 0-9 are on-board,
10-19 are on the MXP port.
free ()

get ()
Get the servo position.

Servo values range from 0.0 to 1.0 corresponding to the range of full left to full right.
Returns Position from 0.0 to 1.0.
Return type float

getAngle ()
Get the servo angle.

Assume that the servo angle is linear with respect to the PWM value (big assumption, need to test).
Returns The angle in degrees to which the servo is set.
Return type float
getServoAngleRange ()
kDefaultMaxServoPWM = 2.4
kDefaultMinServoPWM = (.6
kMaxServoAngle = 180.0
kMinServoAngle = (.0

set (value)
Set the servo position.

Servo values range from 0.0 to 1.0 corresponding to the range of full left to full right.
Parameters value (float) — Position from 0.0 to 1.0.

setAngle (degrees)
Set the servo angle.

Assumes that the servo angle is linear with respect to the PWM value (big assumption, need to test).

110

Chapter 1. Contents

RobotPy WPILib Documentation, Release master

Servo angles that are out of the supported range of the servo simply “saturate” in that direction In other
words, if the servo has a range of (X degrees to Y degrees) than angles of less than X result in an angle of
X being set and angles of more than Y degrees result in an angle of Y being set.

Parameters degrees (float)— The angle in degrees to set the servo.

1.4.55 SmartDashboard

class wpilib.SmartDashboard
Bases: object

The bridge between robot programs and the SmartDashboard on the laptop

When a value is put into the SmartDashboard, it pops up on the SmartDashboard on the remote host. Users can
put values into and get values from the SmartDashboard.

These values can also be accessed by a NetworkTables client via the ‘SmartDashboard’ table:

from networktables import NetworkTable
sd = NetworkTable.getTable ('SmartDashboard")

sd.putXXX and sd.getXXX work as expected here

static getBoolean (key, defaultValue=<class ‘wpilib.smartdashboard.SmartDashboard._defaultValueSentry’>)
Returns the value at the specified key.

Parameters
* key (str)—the key
* defaultValue —returned if the key doesn’t exist
Returns the value
Raises KeyError if the key doesn’t exist and defaultValue is not provided.

static getData (key)
Returns the value at the specified key.

Parameters key (str) — the key
Returns the value
Raises KeyError if the key doesn’t exist

static getDouble (key, defaultValue=<class ‘wpilib.smartdashboard.SmartDashboard._defaultValueSentry’>)
Returns the value at the specified key.

Parameters
* key (str)—the key
* defaultValue - returned if the key doesn’t exist
Return type float
Raises KeyError if the key doesn’t exist and defaultValue is not provided.

static get Int (key, defaultValue=<class ‘wpilib.smartdashboard.SmartDashboard._defaultValueSentry’>)
Returns the value at the specified key.

Parameters

* key (str) — the key

1.4. wpilib Package 111

RobotPy WPILib Documentation, Release master

* defaultValue - returned if the key doesn’t exist
Return type float
Raises KeyError if the key doesn’t exist and defaultValue is not provided.

static getNumber (key, defaultValue=<class ‘wpilib.smartdashboard.SmartDashboard._defaultValueSentry’>)
Returns the value at the specified key.

Parameters
* key (str) - the key
* defaultValue - returned if the key doesn’t exist
Return type float
Raises KeyError if the key doesn’t exist and defaultValue is not provided.

static get String (key, defaultValue=<class ‘wpilib.smartdashboard.SmartDashboard._defaultValueSentry’>)
Returns the value at the specified key.

Parameters
* key (str)—the key
* defaultValue - returned if the key doesn’t exist
Return type str
Raises KeyError if the key doesn’t exist and defaultValue is not provided.

static putBoolean (key, value)
Maps the specified key to the specified value in this table. The key can not be None.

The value can be retrieved by calling the get method with a key that is equal to the original key.
Parameters
* key (str) - the key
* value - the value

static putData (*args, **kwargs)
Maps the specified key to the specified value in this table. The value can be retrieved by calling the get
method with a key that is equal to the original key.

Two argument formats are supported: key, data:
Parameters
* key (str) - the key (cannot be None)
* data — the value
Or the single argument “value”:
Parameters value — the named value (getName is called to retrieve the value)

static putDouble (key, value)
Maps the specified key to the specified value in this table. The key can not be None. The value can be
retrieved by calling the get method with a key that is equal to the original key.

Parameters
* key (str)—the key

* value (int or float)- the value

112 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

static put Int (key, value)
Maps the specified key to the specified value in this table. The key can not be None. The value can be
retrieved by calling the get method with a key that is equal to the original key.

Parameters
* key (str)—the key
e value (int or float)- the value

static putNumber (key, value)
Maps the specified key to the specified value in this table. The key can not be None. The value can be
retrieved by calling the get method with a key that is equal to the original key.

Parameters
* key (str)—the key
* value (int or float)- the value

static put String (key, value)
Maps the specified key to the specified value in this table. The key can not be None. The value can be
retrieved by calling the get method with a key that is equal to the original key.

Parameters
* key (str)—the key
e value (str) - the value
table = None

tablesToData = {}

1.4.56 Solenoid

class wpilib.Solenoid (*args, **kwargs)
Bases: wpilib.SolenoidBase

Solenoid class for running high voltage Digital Output.

The Solenoid class is typically used for pneumatics solenoids, but could be used for any device within the current
spec of the PCM.

Constructor.
Arguments can be supplied as positional or keyword. Acceptable positional argument combinations are:
echannel
emoduleNumber, channel
Alternatively, the above names can be used as keyword arguments.
Parameters
¢ moduleNumber (int)— The CAN ID of the PCM the solenoid is attached to
e channel (int) - The channel on the PCM to control (0..7)

free ()
Mark the solenoid as freed.

get ()
Read the current value of the solenoid.

1.4. wpilib Package 113

RobotPy WPILib Documentation, Release master

Returns The current value of the solenoid.
Return type bool
isBlackListed ()
Check if the solenoid is blacklisted. If a solenoid is shorted, it is added to the blacklist and disabled until
power cycle, or until faults are cleared. See clearAl11PCMStickyFaults ()

Returns If solenoid is disabled due to short.

port

set (on)
Set the value of a solenoid.

Parameters on (bool) — Turn the solenoid output off or on.

1.4.57 SolenoidBase

class wpilib.SolenoidBase (moduleNumber)
Bases: wpilib.SensorBase

SolenoidBase class is the common base class for the Solenoid and DoubleSolenoid classes.
Constructor.
Parameters moduleNumber — The PCM CAN ID
all_allocated={}
all mutex={}
all_ports={}

clearAllPCMStickyFaults ()
Clear ALL sticky faults inside the PCM that Solenoid is wired to.

If a sticky fault is set, then it will be persistently cleared. Compressor drive maybe momentarily dis-
able while flages are being cleared. Care should be taken to not call this too frequently, otherwise
normal compressor functionality may be prevented.

If no sticky faults are set then this call will have no effect.

getAll ()
Read all 8 solenoids from the module used by this solenoid as a single byte.

Returns The current value of all 8 solenoids on this module.
getPCMSolenoidBlackList ()

Reads complete solenoid blacklist for all 8 solenoids as a single byte. If a solenoid is shorted, it is
added to the blacklist and disabled until power cycle, or until faults are cleared. See
clearAll1PCMStickyFaults ()

Returns The solenoid blacklist of all 8 solenoids on the module.

getPCMSolenoidVoltageFault ()

Returns True if PCM is in fault state : The common highside solenoid voltage rail is too low,
most likely a solenoid channel has been shorted.

getPCMSolenoidVoltageStickyFault ()

114 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

Returns True if PCM Sticky fault is set : The common highside solenoid voltage rail is too low,
most likely a solenoid channel has been shorted.

set (value, mask)
Set the value of a solenoid.

Parameters
* value - The value you want to set on the module.

» mask — The channels you want to be affected.

1.4.58 Spark

class wpilib.Spark (channel)
Bases: wpilib.SafePWM

REV Robotics SPARK Speed Controller
Constructor.

Parameters channel — The PWM channel that the SPARK is attached to. 0-9 are on-board, 10-19
are on the MXP port

Note: Note that the SD540 uses the following bounds for PWM values. These values should work reasonably
well for most controllers, but if users experience issues such as asymmetric behavior around the deadband or
inability to saturate the controller in either direction, calibration is recommended. The calibration procedure can
be found in the SD540 User Manual available from Mindsensors.

2.003ms = full “forward”

*1.55ms = the “high end” of the deadband range
*1.50ms = center of the deadband range (off)
*1.46ms = the “low end” of the deadband range

*.999ms = full “reverse”

free ()

get ()
Get the recently set value of the PWM.

Returns The most recently set value for the PWM between -1.0 and 1.0.
Return type float

getInverted()
Common interface for inverting the direction of a speed controller.

Returns The state of inversion (True is inverted)

pidWrite (output)
Write out the PID value as seen in the PIDOutput base object.

Parameters output (float) — Write out the PWM value as was found in the
PIDController.

set (speed, syncGroup=0)
Set the PWM value.

The PWM value is set using a range of -1.0 to 1.0, appropriately scaling the value for the FPGA.

1.4. wpilib Package 115

RobotPy WPILib Documentation, Release master

Parameters
* speed (float)— The speed to set. Value should be between -1.0 and 1.0.

* syncGroup — The update group to add this set() to, pending updateSyncGroup(). If O,
update immediately.

setInverted (islnverted)
Common interface for inverting the direction of a speed controller.

Parameters isInverted — The state of inversion (True is inverted).

1.4.59 SPI

class wpilib.SPI (port, simPort=None)
Bases: object

Represents a SPI bus port
Constructor
Parameters
* port (SPI.Port)— the physical SPI port

* simPort — This must be an object that implements all of the spi* functions from hal_impl
that you use. See test_spi.py for an example.

class Port
Bases: object

kMXP =4
kOnboardCs0 =0
kOnboardCsl =1
kOnboardCS2 =2
kOnboardCsS3 =3
SPI.devices=0
SPI.free()

SPI.freeAccumulator ()
Frees the accumulator.

SPI.getAccumulatorAverage ()
Read the average of the accumulated value.

Returns The accumulated average value (value / count).

SPI.getAccumulatorCount ()
Read the number of accumulated values.

Read the count of the accumulated values since the accumulator was last Reset().
Returns The number of times samples from the channel were accumulated.

SPI.getAccumulatorLastValue ()
Read the last value read by the accumulator engine.

116 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

SPI.getAccumulatorOutput ()
Read the accumulated value and the number of accumulated values atomically.

This function reads the value and count atomically. This can be used for averaging.
Returns tuple of (value, count)

SPI.getAccumulatorValue ()
Read the accumulated value.

Returns The 64-bit value accumulated since the last Reset().

SPI.initAccumulator (period, cmd, xfer_size, valid _mask, valid_value, data_shift, data_size,
is_signed, big_endian)
Initialize the accumulator.

Parameters
¢ period — Time between reads
* cmd — SPI command to send to request data
» xfer size — SPI transfer size, in bytes
* valid mask — Mask to apply to received data for validity checking
* valid_data — After valid_mask is applied, required matching value for validity check-
ing

@param data_shift: Bit shift to apply to received data to get actual data value

@param data_size: Size (in bits) of data field @param is_signed: Is data field signed? @param

big_endian: Is device big endian?

SPI.port

SP1I.read (initiate, size)
Read a word from the receive FIFO.

Waits for the current transfer to complete if the receive FIFO is empty.
If the receive FIFO is empty, there is no active transfer, and initiate is False, errors.
Parameters

e initiate — If True, this function pushes “0” into the transmit buffer and initiates a
transfer. If False, this function assumes that data is already in the receive FIFO from a
previous write.

* size — Number of bytes to read.
Returns received data bytes

SPI.resetAccumulator ()
Resets the accumulator to zero.

SPI.setAccumulatorCenter (center)
Set the center value of the accumulator.

The center value is subtracted from each value before it is added to the accumulator. This is used for
the center value of devices like gyros and accelerometers to make integration work and to take the device
offset into account when integrating.

SPI.setAccumulatorDeadband (deadband)
Set the accumulator’s deadband.

1.4. wpilib Package 117

RobotPy WPILib Documentation, Release master

SPI

SPI

SPI

SPI

SPI

SPI

SPI

SPI

SPI

SPI

SPI

.setChipSelectActiveHigh ()
Configure the chip select line to be active high.

.setChipSelectActiveLow ()
Configure the chip select line to be active low.

.setClockActiveHigh ()
Configure the clock output line to be active high. This is sometimes called clock polarity low or clock idle
low.

.setClockActiveLlow ()
Configure the clock output line to be active low. This is sometimes called clock polarity high or clock idle
high.

.setClockRate (hz)
Configure the rate of the generated clock signal. The default value is 500,000 Hz. The maximum value is
4,000,000 Hz.

Parameters hz — The clock rate in Hertz.

.setLSBFirst ()
Configure the order that bits are sent and received on the wire to be least significant bit first.

.setMSBFirst ()
Configure the order that bits are sent and received on the wire to be most significant bit first.

.setSampleDataOnFalling ()
Configure that the data is stable on the falling edge and the data changes on the rising edge.

.setSampleDataOnRising ()
Configure that the data is stable on the rising edge and the data changes on the falling edge.

.transaction (dataToSend)
Perform a simultaneous read/write transaction with the device

Parameters dataToSend — The data to be written out to the device
Returns data received from the device

.write (dataToSend)
Write data to the slave device. Blocks until there is space in the output FIFO.

If not running in output only mode, also saves the data received on the MISO input during the transfer into
the receive FIFO.

Parameters dataToSend — Data to send (bytes)

Returns Number of bytes written

1.4.60 Talon

class wpilib.Talon (channel)
Bases: wpilib.SafePWM

Cross the Road Electronics (CTRE) Talon and Talon SR Speed Controller via PWM

Constructor for a Talon (original or Talon SR)

Parameters channel (int) - The PWM channel that the Talon is attached to. 0-9 are on-board,
10-19 are on the MXP port

118

Chapter 1. Contents

RobotPy WPILib Documentation, Release master

Note: The Talon uses the following bounds for PWM values. These values should work reasonably well for
most controllers, but if users experience issues such as asymmetric behavior around the deadband or inability to
saturate the controller in either direction, calibration is recommended. The calibration procedure can be found
in the Talon User Manual available from CTRE.

*2.037ms = full “forward”

*1.539ms = the “high end” of the deadband range
*1.513ms = center of the deadband range (off)
*1.487ms = the “low end” of the deadband range

*0.989ms = full “reverse”

free ()

get ()
Get the recently set value of the PWM.

Returns The most recently set value for the PWM between -1.0 and 1.0.
Return type float

getInverted()
Common interface for inverting the direction of a speed controller.

Returns The state of inversion (True is inverted)

pidWrite (output)
Write out the PID value as seen in the PIDOutput base object.

Parameters output (float) — Write out the PWM value as was found in the
PIDController.

set (speed, syncGroup=0)
Set the PWM value.

The PWM value is set using a range of -1.0 to 1.0, appropriately scaling the value for the FPGA.
Parameters
* speed (float)— The speed to set. Value should be between -1.0 and 1.0.

* syncGroup — The update group to add this set() to, pending updateSyncGroup(). If 0,
update immediately.

setInverted (islnverted)
Common interface for inverting the direction of a speed controller.

Parameters isInverted - The state of inversion (True is inverted).

1.4.61 TalonSRX

class wpilib.TalonSRX (channel)

Bases: wpilib.SafePWM
Cross the Road Electronics (CTRE) Talon SRX Speed Controller via PWM
See also:

See CANTalon for CAN control of Talon SRX.

1.4. wpilib Package 119

RobotPy WPILib Documentation, Release master

Constructor for a TalonSRX connected via PWM.

Parameters channel (int) — The PWM channel that the TalonSRX is attached to. 0-9 are on-
board, 10-19 are on the MXP port.

Note: The TalonSRX uses the following bounds for PWM values. These values should work reasonably well
for most controllers, but if users experience issues such as asymmetric behavior around the deadband or inability
to saturate the controller in either direction, calibration is recommended. The calibration procedure can be found
in the TalonSRX User Manual available from CTRE.

2.004ms = full “forward”

*1.520ms = the “high end” of the deadband range
*1.500ms = center of the deadband range (off)
*1.480ms = the “low end” of the deadband range

*0.997ms = full “reverse”

free ()

get ()
Get the recently set value of the PWM.

Returns The most recently set value for the PWM between -1.0 and 1.0.
Return type float

getInverted()
Common interface for the inverting direction of a speed controller.

Returns The state of inversion (True is inverted).

pidWrite (output)
Write out the PID value as seen in the PIDOutput base object.

Parameters output (float) — Write out the PWM value as was found in the
PIDController.

set (speed, syncGroup=0)
Set the PWM value.

The PWM value is set using a range of -1.0 to 1.0, appropriately scaling the value for the FPGA.
Parameters
* speed (float)— The speed to set. Value should be between -1.0 and 1.0.

* syncGroup — The update group to add this set() to, pending updateSyncGroup(). If 0,
update immediately.

setInverted (islnverted)
Common interface for inverting direction of a speed controller.

Parameters isInverted — The state of inversion (True is inverted).

1.4.62 Timer

class wpilib.Timer
Bases: object

Provides time-related functionality for the robot

120 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

Note: Prefer to use this module for time functions, instead of the t ime module in the standard library. This
will make it easier for your code to work properly in simulation.

static delay (seconds)
Pause the thread for a specified time. Pause the execution of the thread for a specified period of time given
in seconds. Motors will continue to run at their last assigned values, and sensors will continue to update.
Only the thread containing the wait will pause until the wait time is expired.

Parameters seconds (float)— Length of time to pause

Warning: If you’re tempted to use this function for autonomous mode to time transitions between
actions, don’t do it!

Delaying the main robot thread for more than a few milliseconds is generally discouraged, and will
cause problems and possibly leave the robot unresponsive.

get ()
Get the current time from the timer. If the clock is running it is derived from the current system clock
the start time stored in the timer class. If the clock is not running, then return the time when it was last
stopped.

Returns Current time value for this timer in seconds
Return type float

static getFPGATimestamp ()
Return the system clock time in seconds. Return the time from the FPGA hardware clock in seconds since
the FPGA started.

Returns Robot running time in seconds.
Return type float

static getMatchTime ()
Return the approximate match time. The FMS does not currently send the official match time to the robots.
This returns the time since the enable signal sent from the Driver Station. At the beginning of autonomous,
the time is reset to 0.0 seconds. At the beginning of teleop, the time is reset to +15.0 seconds. If the robot
is disabled, this returns 0.0 seconds.

Warning: This is not an official time (so it cannot be used to argue with referees).

Returns Match time in seconds since the beginning of autonomous
Return type float
getMsClock ()
Returns the system clock time in milliseconds.
Return type int

hasPeriodPassed (period)
Check if the period specified has passed and if it has, advance the start time by that period. This is useful
to decide if it’s time to do periodic work without drifting later by the time it took to get around to checking.

Parameters period — The period to check for (in seconds).
Returns If the period has passed.
Return type bool

1.4. wpilib Package 121

RobotPy WPILib Documentation, Release master

reset ()
Reset the timer by setting the time to 0. Make the timer startTime the current time so new requests will be
relative now.

start ()
Start the timer running. Just set the running flag to true indicating that all time requests should be relative
to the system clock.

stop ()
Stop the timer. This computes the time as of now and clears the running flag, causing all subsequent time
requests to be read from the accumulated time rather than looking at the system clock.

1.4.63 Ultrasonic

class wpilib.Ultrasonic (pingChannel, echoChannel, units=0)

Bases: wpilib.SensorBase
Ultrasonic rangefinder control

The Ultrasonic rangefinder measures absolute distance based on the round-trip time of a ping generated by the
controller. These sensors use two transducers, a speaker and a microphone both tuned to the ultrasonic range.
A common ultrasonic sensor, the Daventech SRF04 requires a short pulse to be generated on a digital channel.
This causes the chirp to be emmitted. A second line becomes high as the ping is transmitted and goes low when
the echo is received. The time that the line is high determines the round trip distance (time of flight).

Create an instance of the Ultrasonic Sensor. This is designed to supchannel the Daventech SRF04 and Vex
ultrasonic sensors.

Parameters

* pingChannel - The digital output channel that sends the pulse to initiate the sensor send-
ing the ping.

* echoChannel - The digital input channel that receives the echo. The length of time that
the echo is high represents the round trip time of the ping, and the distance.

e units — The units returned in either kInches or kMillimeters

class PIDSourceType
Bases: object

A description for the type of output value to provide to a PIDController
kDisplacement =0
kRate =1

class Ultrasonic.Unit
Bases: object

The units to return when PIDGet is called
kInches =0
kMillimeters=1

Ultrasonic.automaticEnabled = False
Automatic round robin mode

Ultrasonic. free ()

Ultrasonic.getDistanceUnits ()
Get the current DistanceUnit that is used for the PIDSource interface.

122

Chapter 1. Contents

RobotPy WPILib Documentation, Release master

Returns The type of DistanceUnit that is being used.
Ultrasonic.getPIDSourceType ()

Ultrasonic.getRangeInches ()
Get the range in inches from the ultrasonic sensor.

Returns Range in inches of the target returned from the ultrasonic sensor. If there is no valid
value yet, i.e. at least one measurement hasn’t completed, then return 0.

Return type float

Ultrasonic.getRangeMM ()
Get the range in millimeters from the ultrasonic sensor.

Returns Range in millimeters of the target returned by the ultrasonic sensor. If there is no valid
value yet, i.e. at least one measurement hasn’t complted, then return 0.

Return type float
Ultrasonic.instances =0
static Ultrasonic.isAutomaticMode ()

Ultrasonic.isEnabled ()
Is the ultrasonic enabled.

Returns True if the ultrasonic is enabled

Ultrasonic.isRangeValid ()
Check if there is a valid range measurement. The ranges are accumulated in a counter that will increment
on each edge of the echo (return) signal. If the count is not at least 2, then the range has not yet been
measured, and is invalid.

Returns True if the range is valid
Return type bool

Ultrasonic.kMaxUltrasonicTime = 0.1
Max time (ms) between readings.

Ultrasonic.kPingTime = 9.999999999999999¢-06
Time (sec) for the ping trigger pulse.

Ultrasonic.kPriority =90
Priority that the ultrasonic round robin task runs.

Ultrasonic.kSpeedOfSoundInchesPerSec = 13560.0

Ultrasonic.pidGet ()
Get the range in the current DistanceUnit (PIDSource interface).

Returns The range in DistanceUnit
Return type float

Ultrasonic.ping()
Single ping to ultrasonic sensor. Send out a single ping to the ultrasonic sensor. This only works if
automatic (round robin) mode is disabled. A single ping is sent out, and the counter should count the
semi-period when it comes in. The counter is reset to make the current value invalid.

Ultrasonic.sensors = <_weakrefset. WeakSet object>
ultrasonic sensor list

1.4. wpilib Package 123

RobotPy WPILib Documentation, Release master

Ultrasonic.setAutomaticMode (enabling)

Turn Automatic mode on/off. When in Automatic mode, all sensors will fire in round robin, waiting a set

time between each sensor.

Parameters enabling (bool) — Set to true if round robin scheduling should start for all
the ultrasonic sensors. This scheduling method assures that the sensors are non-interfering
because no two sensors fire at the same time. If another scheduling algorithm is preferred,
it can be implemented by pinging the sensors manually and waiting for the results to come
back.

Ultrasonic.setDistanceUnits (units)
Set the current DistanceUnit that should be used for the PIDSource interface.

Parameters units — The DistanceUnit that should be used.

Ultrasonic.setEnabled (enable)
Set if the ultrasonic is enabled.

Parameters enable (bool) - set to True to enable the ultrasonic

Ultrasonic.setPIDSourceType (pidSource)
Set which parameter you are using as a process control variable.

Parameters pidSource (PIDSource.PIDSourceType)— An enum to select the param-
eter.

static Ultrasonic.ultrasonicChecker ()

Background task that goes through the list of ultrasonic sensors and pings each one in turn. The counter is

configured to read the timing of the returned echo pulse.

certainly break. Make sure to disable automatic mode before changing anything with the sensors!!

Warning: DANGER WILL ROBINSON, DANGER WILL ROBINSON: This code runs as a task and
assumes that none of the ultrasonic sensors will change while it’s running. If one does, then this will

1.4.64 Utility

class wpilib.Utility

Bases: object
Contains global utility functions

static getFPGARevision ()

Return the FPGA Revision number. The format of the revision is 3 numbers. The 12 most significant bits
are the Major Revision. the next 8 bits are the Minor Revision. The 12 least significant bits are the Build

Number.
Returns FPGA Revision number.
Return type int

static getFPGATime ()
Read the microsecond timer from the FPGA.

Returns The current time in microseconds according to the FPGA.
Return type int

static getFPGAVersion ()
Return the FPGA Version number.

Returns FPGA Version number.

124

Chapter 1. Contents

RobotPy WPILib Documentation, Release master

Return type int

static getUserButton ()
Get the state of the “USER” button on the RoboRIO.

Returns True if the button is currently pressed down

Return type bool

1.4.65 Victor
class wpilib.Victor (channel)
Bases: wpilib.SafePWM
VEX Robotics Victor 888 Speed Controller via PWM

The Vex Robotics Victor 884 Speed Controller can also be used with this class but may need to be calibrated
per the Victor 884 user manual.

Note: The Victor uses the following bounds for PWM values. These values were determined empirically and
optimized for the Victor 888. These values should work reasonably well for Victor 884 controllers also but if
users experience issues such as asymmetric behaviour around the deadband or inability to saturate the controller
in either direction, calibration is recommended. The calibration procedure can be found in the Victor 884 User
Manual available from VEX Robotics: http://content.vexrobotics.com/docs/ifi-v884-users-manual-9-25-06.pdf

2.027ms = full “forward”

*1.525ms = the “high end” of the deadband range
*1.507ms = center of the deadband range (off)
*1.49ms = the “low end” of the deadband range

*1.026ms = full “reverse”

Constructor.

Parameters channel (int) - The PWM channel that the Victor is attached to. 0-9 are on-board,
10-19 are on the MXP port

free ()

get ()
Get the recently set value of the PWM.

Returns The most recently set value for the PWM between -1.0 and 1.0.
Return type float

getInverted()
Common interface for the inverting direction of a speed controller.

Returns The state of inversion (True is inverted).

pidWrite (output)
Write out the PID value as seen in the PIDOutput base object.

Parameters output (float) — Write out the PWM value as was found in the
PIDController.

1.4. wpilib Package 125

http://content.vexrobotics.com/docs/ifi-v884-users-manual-9-25-06.pdf

RobotPy WPILib Documentation, Release master

set (speed, syncGroup=0)
Set the PWM value.

The PWM value is set using a range of -1.0 to 1.0, appropriately scaling the value for the FPGA.
Parameters
* speed (float)— The speed to set. Value should be between -1.0 and 1.0.

* syncGroup — The update group to add this set to, pending updateSyncGroup(). If O,
update immediately.

setInverted (islnverted)
Common interface for inverting direction of a speed controller.

Parameters isInverted — The state of inversion (True is inverted).

1.4.66 VictorSP

class wpilib.VictoxrSP (channel)
Bases: wpilib.SafePWM
VEX Robotics Victor SP Speed Controller via PWM
Constructor.

Parameters channel (int) — The PWM channel that the VictorSP is attached to. 0-9 are on-
board, 10-19 are on the MXP port.

Note: The Talon uses the following bounds for PWM values. These values should work reasonably well for
most controllers, but if users experience issues such as asymmetric behavior around the deadband or inability to
saturate the controller in either direction, calibration is recommended. The calibration procedure can be found
in the VictorSP User Manual.

*2.004ms = full “forward”

*1.520ms = the “high end” of the deadband range
*1.500ms = center of the deadband range (off)
*1.480ms = the “low end” of the deadband range

*0.997ms = full “reverse”

free ()

get ()
Get the recently set value of the PWM.

Returns The most recently set value for the PWM between -1.0 and 1.0.
Return type float

getInverted()
Common interface for the inverting direction of a speed controller.

Returns The state of inversion (True is inverted).

pidWrite (output)
Write out the PID value as seen in the PIDOutput base object.

Parameters output (float) — Write out the PWM value as was found in the
PIDController.

126 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

set (speed, syncGroup=0)

Set the PWM value.

Parameters

The PWM value is set using a range of -1.0 to 1.0, appropriately scaling the value for the FPGA.

* speed (float)— The speed to set. Value should be between -1.0 and 1.0.

* syncGroup — The update group to add this set() to, pending updateSyncGroup(). If 0,

update immediately.

setInverted (islnverted)

Common interface for inverting direction of a speed controller.

Parameters isInverted — The state of inversion (True is inverted).

1.5 wpilib.buttons Package

Classes in this package are used to interface various types of buttons to a command-based robot.

If you are not using the Command framework, you can ignore these classes.

wpilib.buttons.Button This class provides an easy way to link commands to OI inputs.
wpilib.buttons.InternalButton([...]) This class is intended to be used within a program.
wpilib.buttons.JoystickButton(...) Create a joystick button for triggering commands.
wpilib.buttons.NetworkButton(...)

wpilib.buttons.Trigger This class provides an easy way to link commands to inputs.

1.5.1 Button

class wpilib.buttons.Button

Bases: wpilib.buttons.Trigger
This class provides an easy way to link commands to OI inputs.

It is very easy to link a button to a command. For instance, you could link the trigger button of a joystick to a
“score” command.

This class represents a subclass of Trigger that is specifically aimed at buttons on an operator interface as a
common use case of the more generalized Trigger objects. This is a simple wrapper around Trigger with the
method names renamed to fit the Button object use.

cancelWhenPressed (command)
Cancel the command when the button is pressed.

Parameters command —

toggleWhenPressed (command)
Toggles the command whenever the button is pressed (on then off then on).

Parameters command —

whenPressed (command)
Starts the given command whenever the button is newly pressed.

Parameters command — the command to start

whenReleased (command)
Starts the command when the button is released.

1.5. wpilib.buttons Package 127

RobotPy WPILib Documentation, Release master

Parameters command — the command to start

whileHeld (command)
Constantly starts the given command while the button is held.

Command. start () will be called repeatedly while the button is held, and will be canceled when the
button is released.

Parameters command — the command to start

1.5.2 InternalButton
class wpilib.buttons.InternalButton (inverted=False)
Bases: wpilib.buttons.Button

This class is intended to be used within a program. The programmer can manually set its value. Includes a
setting for whether or not it should invert its value.

Creates an InternalButton which is inverted depending on the input.

Parameters inverted — If False, then this button is pressed when set to True, otherwise it is
pressed when set to False.

get ()
setInverted (inverted)

setPressed (pressed)

1.5.3 JoystickButton
class wpilib.buttons.JoystickButton (joystick, buttonNumber)
Bases: wpilib.buttons.Button
Create a joystick button for triggering commands.
Parameters

* joystick — The GenericHID object that has the button (e.g. Joystick,
KinectStick, etc)

* buttonNumber — The button number (see GenericHID.getRawButton ())

get ()
Gets the value of the joystick button.

Returns The value of the joystick button

1.5.4 NetworkButton

class wpilib.buttons.NetworkButton (fable, field)
Bases: wpilib.buttons.Button

get ()

128 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

1.5.5 Trigger
class wpilib.buttons.Trigger
Bases: object
This class provides an easy way to link commands to inputs.

It is very easy to link a button to a command. For instance, you could link the trigger button of a joystick to a
“score” command.

It is encouraged that teams write a subclass of Trigger if they want to have something unusual (for instance, if
they want to react to the user holding a button while the robot is reading a certain sensor input). For this, they
only have to write the get () method to get the full functionality of the Trigger class.

cancelWhenActive (command)
Cancels a command when the trigger becomes active.

Parameters command — the command to cancel

get ()
Returns whether or not the trigger is active

This method will be called repeatedly a command is linked to the Trigger.
Returns whether or not the trigger condition is active.

grab ()
Returns whether get () returns True or the internal table for SmartDashboard use is pressed.

toggleWhenActive (command)
Toggles a command when the trigger becomes active.

Parameters command — the command to toggle

whenActive (command)
Starts the given command whenever the trigger just becomes active.

Parameters command — the command to start

whenInactive (command)
Starts the command when the trigger becomes inactive.

Parameters command — the command to start

whileActive (command)
Constantly starts the given command while the button is held.

Command.start () will be called repeatedly while the trigger is active, and will be canceled when the
trigger becomes inactive.

Parameters command — the command to start

1.6 wpilib.command Package

Objects in this package allow you to implement a robot using Command-based programming. Command based pro-
gramming is a design pattern to help you organize your robot programs, by organizing your robot program into
components based on Command and Subsystem

The python implementation of the Command framework closely follows the Java language implementation. RobotPy
has several examples of command based robots available.

1.6. wpilib.command Package 129

RobotPy WPILib Documentation, Release master

Each one of the objects in the Command framework has detailed documentation available. If you need more infor-
mation, for examples, tutorials, and other detailed information on programming your robot using this pattern, we
recommend that you consult the Java version of the FRC Control System documentation

wpilib.command.Command([name, timeout]) The Command class is at the very core of the entire command framework.
wpilib.command.CommandGroup([name]) A CommandGroup is a list of commands which are executed in sequence.
wpilib.command.PIDCommand(p, i, d) This class defines a Command which interacts heavily with a PID loop.
wpilib.command.PIDSubsystem(p, i, d) This class is designed to handle the case where there is a Subsystem which use
wpilib.command.PrintCommand(message) A PrintCommand is a command which prints out a string when it is initialized
wpilib.command.Scheduler() The Scheduler is a singleton which holds the top-level running commands.
wpilib.command. StartCommand(...) A StartCommand will call the start() method of another command when it is i1
wpilib.command. Subsystem([name]) This class defines a major component of the robot.
wpilib.command.WaitCommand(timeout) A WaitCommand will wait for a certain amount of time before finishing.
wpilib.command.WaitForChildren(]...]) This command will only finish if whatever CommandGroup it is in has no act
wpilib.command.WaitUntilCommand(time) This will wait until the game clock reaches some value, then continue to the ng

1.6.1 Command

class wpilib.command.Command (name=None, timeout=None)
Bases: wpilib.Sendable

The Command class is at the very core of the entire command framework. Every command can be started
with a call to start(). Once a command is started it will call initialize (), and then will repeatedly call
execute () until 1sFinished () returns True. Once it does, end () will be called.

However, if at any point while it is running cancel () is called, then the command will be stopped and
interrupted () will be called.

If a command uses a Subsystem, then it should specify that it does so by calling the requires () method
in its constructor. Note that a Command may have multiple requirements, and requires () should be called
for each one.

If a command is running and a new command with shared requirements is started, then one of two things
will happen. If the active command is interruptible, then cancel () will be called and the command will be
removed to make way for the new one. If the active command is not interruptible, the other one will not even be
started, and the active one will continue functioning.

See also:

Subsystem, CommandGroup

Creates a new command.
Parameters

* name — The name for this command; if unspecified or None, The name of this command
will be set to its class name.

¢ timeout — The time (in seconds) before this command “times out”. Default is no timeout.
See isTimedOut().

cancel ()
This will cancel the current command.

This will cancel the current command eventually. It can be called multiple times. And it can be called
when the command is not running. If the command is running though, then the command will be marked
as canceled and eventually removed.

130

Chapter 1. Contents

http://wpilib.screenstepslive.com/s/4485/m/13809/c/88893
mailto:\protect \T1\textbraceleft @link

RobotPy WPILib Documentation, Release master

Warning: A command can not be canceled if it is a part of a CommandGroup, you must cancel the
CommandGroup instead.

doesRequire (system)
Checks if the command requires the given Subsystem.

Parameters system — the system
Returns whether or not the subsystem is required, or False if given None.

end ()
Called when the command ended peacefully. This is where you may want to wrap up loose ends, like
shutting off a motor that was being used in the command.

execute ()
The execute method is called repeatedly until this Command either finishes or is canceled.

getGroup ()
Returns the CommandGroup that this command is a part of. Will return None if this Command is not in
a group.

Returns the CommandGroup that this command is a part of (or None if not in group)

getName ()
Returns the name of this command. If no name was specified in the constructor, then the default is the
name of the class.

Returns the name of this command

getRequirements ()
Returns the requirements (as a set of Subsystems) of this command

initialize()
The initialize method is called the first time this Command is run after being started.

interrupted ()
Called when the command ends because somebody called cancel() or another command shared the same
requirements as this one, and booted it out.

This is where you may want to wrap up loose ends, like shutting off a motor that was being used in the
command.

Generally, it is useful to simply call the end() method within this method.

isCanceled ()
Returns whether or not this has been canceled.

Returns whether or not this has been canceled

isFinished ()
Returns whether this command is finished. If it is, then the command will be removed and end() will be
called.

It may be useful for a team to reference the isTimedOut() method for time-sensitive commands.
Returns whether this command is finished.
See isTimedOut ()

isInterruptible ()
Returns whether or not this command can be interrupted.

Returns whether or not this command can be interrupted

1.6.

wpilib.command Package 131

RobotPy WPILib Documentation, Release master

isRunning ()
Returns whether or not the command is running. This may return true even if the command has just been
canceled, as it may not have yet called interrupted ().

Returns whether or not the command is running

isTimedOut ()
Returns whether or not the t imeSinceInitialized () method returns a number which is greater
than or equal to the timeout for the command. If there is no timeout, this will always return false.

Returns whether the time has expired

lockChanges ()
Prevents further changes from being made

removed ()
Called when the command has been removed. This will call interrupted () or end ().

requires (subsystem)
This method specifies that the given Subsystem is used by this command. This method is crucial to the
functioning of the Command System in general.

Note that the recommended way to call this method is in the constructor.
Parameters subsystem —the Subsystemrequired

run ()
The run method is used internally to actually run the commands.

Returns whether or not the command should stay within the Scheduler.

setInterruptible (interruptible)
Sets whether or not this command can be interrupted.

Parameters interruptible — whether or not this command can be interrupted

setParent (parent)
Sets the parent of this command. No actual change is made to the group.

Parameters parent — the parent

setRunWhenDisabled (run)
Sets whether or not this { @link Command} should run when the robot is disabled.

By default a command will not run when the robot is disabled, and will in fact be canceled.
Parameters run — whether or not this command should run when the robot is disabled

setTimeout (seconds)
Sets the timeout of this command.

Parameters seconds - the timeout (in seconds)
See isTimedOut ()

start ()
Starts up the command. Gets the command ready to start. Note that the command will eventually start,

however it will not necessarily do so immediately, and may in fact be canceled before initialize is even
called.

startRunning ()
This is used internally to mark that the command has been started. The lifecycle of a command is:

estartRunning () is called.

erun () is called (multiple times potentially)

132

Chapter 1. Contents

mailto:\protect \T1\textbraceleft @link

RobotPy WPILib Documentation, Release master

eremoved () is called

It is very important that startRunning () and removed () be called in order or some assumptions of
the code will be broken.

startTiming ()
Called to indicate that the timer should start. This is called right before initialize() is, inside the run()
method.

timeSinceInitialized()
Returns the time since this command was initialized (in seconds). This function will work even if there is
no specified timeout.

Returns the time since this command was initialized (in seconds).

willRunWhenDisabled ()
Returns whether or not this Command will run when the robot is disabled, or if it will cancel itself.

1.6.2 CommandGroup
class wpilib.command.CommandGroup (name=None)
Bases: wpilib.command.Command
A CommandGroup is a list of commands which are executed in sequence.

Commands in a CommandGroup are added using the addSequential () method and are called sequentially.
CommandGroups are themselves Commands and can be given to other CommandGroups.

CommandGroups will carry all of the requirements of their subcommands. Additional requirements can be
specified by calling requires () normally in the constructor.

CommandGroups can also execute commands in parallel, simply by adding them using addParallel(...).
See also:

Command, Subsystem

Creates a new CommandGroup with the given name.

Parameters name — the name for this command group (optional). If None, the name of this com-
mand will be set to its class name.

class Entry (command, state, timeout)
Bases: object

BRANCH_CHILD =2
BRANCH_PEER =1
IN_SEQUENCE =(
isTimedOut ()

CommandGroup .addParallel (command, timeout=None)
Adds a new child Command to the group (with an optional timeout). The Command will be started after
all the previously added Commands.

Once the Command is started, it will run until it finishes, is interrupted, or the time expires (if a timeout is
provided), whichever is sooner. Note that the given Command will have no knowledge that it is on a timer.

Instead of waiting for the child to finish, a CommandGroup will have it run at the same time as the
subsequent Commands. The child will run until either it finishes, the timeout expires, a new child with
conflicting requirements is started, or the main sequence runs a Command with conflicting requirements.
In the latter two cases, the child will be canceled even if it says it can’t be interrupted.

1.6. wpilib.command Package 133

RobotPy WPILib Documentation, Release master

Note that any requirements the given Command has will be added to the group. For this reason, a Com-
mand’s requirements can not be changed after being added to a group.

It is recommended that this method be called in the constructor.
Parameters
* command — The command to be added
* timeout — The timeout (in seconds) (optional)

CommandGroup .addSequential (command, timeout=None)
Adds a new Command to the group (with an optional timeout). The Command will be started after all the
previously added Commands.

Once the Command is started, it will be run until it finishes or the time expires, whichever is sooner (if a
timeout is provided). Note that the given Command will have no knowledge that it is on a timer.

Note that any requirements the given Command has will be added to the group. For this reason, a Com-
mand’s requirements can not be changed after being added to a group.

It is recommended that this method be called in the constructor.
Parameters

¢ command — The Command to be added

* timeout — The timeout (in seconds) (optional)
CommandGroup.cancelConflicts (command)
CommandGroup.end ()
CommandGroup .execute ()
CommandGroup.initialize ()
CommandGroup.interrupted ()

CommandGroup.isFinished()
Returns True if all the Commands in this group have been started and have finished.

Teams may override this method, although they should probably reference super().isFinished() if they do.
Returns whether this CommandGroup is finished

CommandGroup.isInterruptible ()
Returns whether or not this group is interruptible. A command group will be uninterruptible if setInter-
ruptable(False) was called or if it is currently running an uninterruptible command or child.

Returns whether or not this CommandGroup is interruptible.

1.6.3 PIDCommand

class wpilib.command.PIDCommand (p, i, d, period=None, f=0.0, name=None)
Bases: wpilib.command.Command

This class defines a Command which interacts heavily with a PID loop.

It provides some convenience methods to run an internal PIDController. It will also start and stop said PIDCon-
troller when the PIDCommand is first initialized and ended/interrupted.

Instantiates a PIDCommand that will use the given p, i and d values. It will use the class name as its name unless
otherwise specified. It will also space the time between PID loop calculations to be equal to the given period.

Parameters

134 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

* p — the proportional value

* i —the integral value

* d - the derivative value

* period - the time (in seconds) between calculations (optional)
» f — the feed forward value

* name - the name (optional)

getPIDController ()
Returns the PIDController used by this PIDCommand. Use this if you would like to fine tune the pid loop.

Notice that calling setSetpoint(...) on the controller will not result in the setpoint being trimmed to be in
the range defined by setSetpointRange(...).

Returns the PIDController used by this PIDCommand

getPosition ()
Returns the current position

Returns the current position

getSetpoint ()
Returns the setpoint.

Returns the setpoint

returnPIDInput ()
Returns the input for the pid loop.

It returns the input for the pid loop, so if this command was based off of a gyro, then it should return the
angle of the gyro

All subclasses of PIDCommand must override this method.
This method will be called in a different thread then the Scheduler thread.
Returns the value the pid loop should use as input

setSetpoint (setpoint)
Sets the setpoint to the given value. If setRange () was called, then the given setpoint will be trimmed
to fit within the range.

Parameters setpoint — the new setpoint

setSetpointRelative (deltaSetpoint)
Adds the given value to the setpoint. If setRange () was used, then the bounds will still be honored by
this method.

Parameters deltaSetpoint — the change in the setpoint

usePIDOutput (output)
Uses the value that the pid loop calculated. The calculated value is the “output” parameter. This method is
a good time to set motor values, maybe something along the lines of driveline.tankDrive(output, -output).

All subclasses of PIDCommand should override this method.
This method will be called in a different thread then the Scheduler thread.

Parameters output — the value the pid loop calculated

1.6.

wpilib.command Package 135

RobotPy WPILib Documentation, Release master

1.6.4 PIDSubsystem

class wpilib.command.PIDSubsystem (p, i, d, period=None, =0.0, name=None)

Bases: wpilib.command. Subsystem

This class is designed to handle the case where there is a Subsystem which uses a single { @link PIDController}
almost constantly (for instance, an elevator which attempts to stay at a constant height).

It provides some convenience methods to run an internal PIDController. It also allows access to the internal
PIDController in order to give total control to the programmer.

Instantiates a PIDSubsystem that will use the given p, i and d values. It will use the class name as its name
unless otherwise specified. It will also space the time between PID loop calculations to be equal to the given
period.

Parameters
* p — the proportional value
* i —the integral value
* d - the derivative value
* period - the time (in seconds) between calculations (optional)
» f — the feed forward value
* name — the name (optional)

disable ()
Disables the internal PTDController

enable ()
Enables the internal PTDController

getPIDController ()
Returns the PIDController used by this PIDSubsystem. Use this if you would like to fine tune the pid loop.

Notice that calling set Setpoint () on the controller will not result in the setpoint being trimmed to be
in the range defined by set SetpointRange ().

Returns the PTDController used by this PIDSubsystem

getPosition ()
Returns the current position

Returns the current position

getSetpoint ()
Returns the setpoint.

Returns the setpoint

onTarget ()
Return True if the error is within the percentage of the total input range, determined by setAbsoluteToler-
ance or setPercentTolerance. This assumes that the maximum and minimum input were set using setInput.

Returns True if the error is less than the tolerance

returnPIDInput ()
Returns the input for the pid loop.

It returns the input for the pid loop, so if this command was based off of a gyro, then it should return the
angle of the gyro

All subclasses of PIDSubsystem must override this method.

136

Chapter 1. Contents

mailto:\protect \T1\textbraceleft @link

RobotPy WPILib Documentation, Release master

This method will be called in a different thread then the Scheduler thread.
Returns the value the pid loop should use as input

setAbsoluteTolerance (f)
Set the absolute error which is considered tolerable for use with OnTarget.

Parameters t — The absolute tolerance (same range as the PIDInput values)

setInputRange (minimumlnput, maximumlinput)
Sets the maximum and minimum values expected from the input.

Parameters
* minimumInput — the minimum value expected from the input
* maximumInput — the maximum value expected from the output

setOutputRange (minimumQutput, maximumQutput)
Sets the maximum and minimum values to write.

Parameters
* minimumOutput — the minimum value to write to the output
* maximumOutput — the maximum value to write to the output

setPercentTolerance (p)
Set the percentage error which is considered tolerable for use with OnTarget.

Parameters p — The percentage tolerance (value of 15.0 == 15 percent)

setSetpoint (setpoint)
Sets the setpoint to the given value. If setRange () was called, then the given setpoint will be trimmed
to fit within the range.

Parameters setpoint — the new setpoint

setSetpointRelative (deltaSetpoint)
Adds the given value to the setpoint. If setRange () was used, then the bounds will still be honored by
this method.

Parameters deltaSetpoint — the change in the setpoint

usePIDOutput (output)
Uses the value that the pid loop calculated. The calculated value is the “output” parameter. This method is
a good time to set motor values, maybe something along the lines of driveline.tankDrive(output, -output).

All subclasses of PIDSubsystem should override this method.
This method will be called in a different thread then the Scheduler thread.

Parameters output — the value the pid loop calculated

1.6.5 PrintCommand

class wpilib.command.PrintCommand (message)
Bases: wpilib.command.Command

A PrintCommand is a command which prints out a string when it is initialized, and then immediately finishes.
It is useful if you want a CommandGroup to print out a string when it reaches a certain point.
Instantiates a PrintCommand which will print the given message when it is run.

Parameters message — the message to print

1.6. wpilib.command Package 137

RobotPy WPILib Documentation, Release master

initialize()

isFinished ()

1.6.6 Scheduler

class wpilib.command.Scheduler

Bases: wpilib.Sendable

The Scheduler is a singleton which holds the top-level running commands. It is in charge of both calling
the command’s run() method and to make sure that there are no two commands with conflicting requirements
running.

It is fine if teams wish to take control of the Scheduler themselves, all that needs to be done is to call Sched-
uler.getInstance().run() often to have Commands function correctly. However, this is already done for you if you
use the CommandBased Robot template.

See also:
Command
Instantiates a Scheduler.

add (command)
Adds the command to the Scheduler. This will not add the Command immediately, but will instead wait for
the proper time in the run () loop before doing so. The command returns immediately and does nothing
if given null.

Adding a Command to the Scheduler involves the Scheduler removing any Command which has shared
requirements.

Parameters command — the command to add

addButton (button)
Adds a button to the Scheduler. The Scheduler will poll the button during its run ().

Parameters button — the button to add

disable ()
Disable the command scheduler.

enable ()
Enable the command scheduler.

static get Instance ()
Returns the Scheduler, creating it if one does not exist.

Returns the Scheduler
getName ()
getType ()

registerSubsystem (system)
Registers a Subsystemto this Scheduler, so that the Scheduler might know if a default Command needs
to be run. All Subsystem objects should call this.

Parameters system — the system

remove (command)
Removes the Command from the Scheduler.

Parameters command — the command to remove

138

Chapter 1. Contents

RobotPy WPILib Documentation, Release master

removeAll ()
Removes all commands

run ()
Runs a single iteration of the loop. This method should be called often in order to have a functioning
Command system. The loop has five stages:

*Poll the Buttons
*Execute/Remove the Commands
*Send values to SmartDashboard
*Add Commands

*Add Defaults

1.6.7 StartCommand

class wpilib.command.StartCommand (commandToStart)
Bases: wpilib.command.Command

A StartCommand will call the start() method of another command when it is initialized and will finish immedi-
ately.

Instantiates a StartCommand which will start the given command whenever its initialize() is called.
Parameters commandToStart —the Command to start
initialize ()

isFinished ()

1.6.8 Subsystem
class wpilib.command. Subsystem (name=None)
Bases: wpilib.Sendable
This class defines a major component of the robot.
A good example of a subsystem is the driveline, or a claw if the robot has one.

All motors should be a part of a subsystem. For instance, all the wheel motors should be a part of some kind of
“Driveline” subsystem.

Subsystems are used within the command system as requirements for Command. Only one command which
requires a subsystem can run at a time. Also, subsystems can have default commands which are started if there
is no command running which requires this subsystem.

See also:
Command
Creates a subsystem.

Parameters name — the name of the subsystem; if None, it will be set to the name to the name of
the class.

confirmCommand ()
Call this to alert Subsystem that the current command is actually the command. Sometimes, the Subsystem
is told that it has no command while the Scheduler is going through the loop, only to be soon after given a
new one. This will avoid that situation.

1.6. wpilib.command Package 139

RobotPy WPILib Documentation, Release master

getCurrentCommand ()
Returns the command which currently claims this subsystem.

Returns the command which currently claims this subsystem

getDefaultCommand ()
Returns the default command (or None if there is none).

Returns the default command

getName ()
Returns the name of this subsystem, which is by default the class name.

Returns the name of this subsystem

initDefaultCommand ()
Initialize the default command for a subsystem By default subsystems have no default command, but if
they do, the default command is set with this method. It is called on all Subsystems by CommandBase in
the users program after all the Subsystems are created.

setCurrentCommand (command)
Sets the current command

Parameters command - the new current command

setDefaultCommand (command)

Sets the default command. If this is not called or is called with None, then there will be no default command
for the subsystem.

Parameters command - the default command (or None if there should be none)

Warning: This should NOT be called in a constructor if the subsystem is a singleton.

1.6.9 WaitCommand

class wpilib.command.WaitCommand (timeout, name=None)
Bases: wpilib.command.Command

A WaitCommand will wait for a certain amount of time before finishing. It is useful if you want a
CommandGroup to pause for a moment.

See also:
CommandGroup
Instantiates a WaitCommand with the given timeout.
Parameters
* timeout - the time the command takes to run
* name — the name of the command (optional)

isFinished()

1.6.10 WaitForChildren

class wpilib.command.WaitForChildren (name=None, timeout=None)
Bases: wpilib.command.Command

140 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

This command will only finish if whatever CommandGroup it is in has no active children. If it is not a part of
a CommandGroup, then it will finish immediately. If it is itself an active child, then the CommandGroup will
never end.

This class is useful for the situation where you want to allow anything running in parallel to finish, before
continuing in the main CommandGroup sequence.

Creates a new command.

Parameters

* name — The name for this command; if unspecified or None, The name of this command
will be set to its class name.

¢ timeout — The time (in seconds) before this command “times out”. Default is no timeout.
See isTimedOut().

isFinished ()

1.6.11 WaitUntilCommand

class wpilib.command.WaitUntilCommand (time)
Bases: wpilib.command.Command

This will wait until the game clock reaches some value, then continue to the next command.

isFinished()

1.7 wpilib.interfaces Package

This package contains objects that can be used to determine the requirements of various interfaces used in WPILIib.

Generally, the python version of WPILib does not require that you inherit from any of these interfaces, but instead will
allow you to use custom objects as long as they have the same methods.

wpilib.interfaces.Accelerometer Interface for 3-axis accelerometers

wpilib.interfaces.Controller An interface for controllers.

wpilib.interfaces.CounterBase Interface for counting the number of ticks on a digital input channel.
wpilib.interfaces.GenericHID GenericHID Interface

wpilib.interfaces.Gyro Interface for yaw rate gyros

wpilib.interfaces.NamedSendable The interface for sendable objects that gives the sendable a default name in the St
wpilib.interfaces.PIDInterface

wpilib.interfaces.PIDOutput This interface allows PTDController to write its results to its output.
wpilib.interfaces.PIDSource This interface allows for PTDController to automatically read from this obje
wpilib.interfaces.Potentiometer

wpilib.interfaces.SpeedController Interface for speed controlling devices.

1.7.1 Accelerometer

class wpilib.interfaces.Accelerometer
Bases: object

Interface for 3-axis accelerometers

class Range

1.7. wpilib.interfaces Package

141

RobotPy WPILib Documentation, Release master

Bases: object

kl6G=3
k2G6=0
k4G =1
k8G=2

Accelerometer.getX()
Common interface for getting the x axis acceleration

Returns The acceleration along the x axis in g-forces

Accelerometer.get¥ ()
Common interface for getting the y axis acceleration

Returns The acceleration along the y axis in g-forces

Accelerometer.getZ ()
Common interface for getting the z axis acceleration

Returns The acceleration along the z axis in g-forces

Accelerometer.setRange (range)
Common interface for setting the measuring range of an accelerometer.

Parameters range — The maximum acceleration, positive or negative, that the accelerometer
will measure. Not all accelerometers support all ranges.

1.7.2 Controller

class wpilib.interfaces.Controller
Bases: object

An interface for controllers. Controllers run control loops, the most command are PID controllers and there
variants, but this includes anything that is controlling an actuator in a separate thread.

disable ()
Stops the control loop from running until explicitly re-enabled by calling enable ().

enable ()
Allows the control loop to run.

1.7.3 CounterBase
class wpilib.interfaces.CounterBase
Bases: object

Interface for counting the number of ticks on a digital input channel. Encoders, Gear tooth sensors, and counters
should all subclass this so it can be used to build more advanced classes for control and driving.

All counters will immediately start counting - reset () them if you need them to be zeroed before use.

class EncodingType
Bases: object

The number of edges for the counterbase to increment or decrement on

k1x=0
Count only the rising edge

142 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

k2x=1
Count both the rising and falling edge

k4x=2
Count rising and falling on both channels

CounterBase.get ()
Get the count

Returns the count

CounterBase.getDirection ()
Determine which direction the counter is going

Returns True for one direction, False for the other

CounterBase.getPeriod ()
Get the time between the last two edges counted

Returns the time beteween the last two ticks in seconds

CounterBase.getStopped ()
Determine if the counter is not moving

Returns True if the counter has not changed for the max period

CounterBase.reset ()
Reset the count to zero

CounterBase.setMaxPeriod (maxPeriod)
Set the maximum time between edges to be considered stalled

Parameters maxPeriod — the maximum period in seconds

1.7.4 GenericHID

class wpilib.interfaces.GenericHID
Bases: object

GenericHID Interface

class Hand
Bases: object

Which hand the Human Interface Device is associated with.

kLeft =0
Left hand

kRight =1
Right hand

GenericHID.getBumper (hand=None)
Is the bumper pressed?

Parameters hand — which hand (default right)
Returns True if the bumper is pressed

GenericHID.getPOV (pov=0)
Get the state of a POV.

Parameters pov — which POV (default is 0)

Returns The angle of the POV in degrees, or -1 if the POV is not pressed.

1.7. wpilib.interfaces Package

143

RobotPy WPILib Documentation, Release master

GenericHID.getRawAxis (which)
Get the raw axis.

Parameters which — index of the axis
Returns the raw value of the selected axis

GenericHID.getRawButton (button)
Is the given button pressed?

Parameters button — which button number
Returns True if the button is pressed

GenericHID.getThrottle ()
Get the throttle.

Returns the throttle value

GenericHID.getTop (hand=None)
Is the top button pressed

Parameters hand — which hand (default right)
Returns True if the top button for the given hand is pressed

GenericHID.getTrigger (hand=None)
Is the trigger pressed

Parameters hand — which hand (default right)
Returns True if the trigger for the given hand is pressed

GenericHID.getTwist ()
Get the twist value.

Returns the twist value

GenericHID.getX (hand=None)
Get the x position of HID.

Parameters hand — which hand, left or right (default right)
Returns the x position

GenericHID.getY (hand=None)
Get the y position of the HID.

Parameters hand — which hand, left or right (default right)
Returns the y position

GenericHID.getZ (hand=None)
Get the z position of the HID.

Parameters hand — which hand, left or right (default right)

Returns the z position

1.7.5 Gyro

class wpilib.interfaces.Gyro
Bases: object

Interface for yaw rate gyros

144 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

calibrate ()
Calibrate the gyro by running for a number of samples and computing the center value. Then use the center
value as the Accumulator center value for subsequent measurements.

Note: It’s important to make sure that the robot is not moving while the centering calculations are
in progress, this is typically done when the robot is first turned on while it’s sitting at rest before the
competition starts.

free ()
Free the resources used by the gyro

getAngle ()
Return the actual angle in degrees that the robot is currently facing.

The angle is based on the current accumulator value corrected by the oversampling rate, the gyro type and
the A/D calibration values. The angle is continuous, that is it will continue from 360 to 361 degrees. This
allows algorithms that wouldn’t want to see a discontinuity in the gyro output as it sweeps past from 360
to 0 on the second time around.

Returns the current heading of the robot in degrees. This heading is based on integration of the
returned rate from the gyro.

getRate ()
Return the rate of rotation of the gyro

The rate is based on the most recent reading of the gyro analog value
Returns the current rate in degrees per second

reset ()
Reset the gyro. Resets the gyro to a heading of zero. This can be used if there is significant drift in the
gyro and it needs to be recalibrated after it has been running.

1.7.6 NamedSendable

class wpilib.interfaces.NamedSendable
Bases: wpilib.Sendable

The interface for sendable objects that gives the sendable a default name in the Smart Dashboard.
getName ()

Returns The name of the subtable of SmartDashboard that the Sendab e object will use

1.7.7 PIDInterface

classwpilib.interfaces.PIDInterface
Bases: wpilib.interfaces.Controller

disable ()
enable ()
getD ()
getError ()
getI ()

1.7. wpilib.interfaces Package 145

RobotPy WPILib Documentation, Release master

getP ()
getSetpoint ()
isEnabled ()
reset ()
setPID (p,i,d)

setSetpoint (setpoint)

1.7.8 PIDOutput

class wpilib.interfaces.PIDOutput

Bases: object
This interface allows PTDController to write its results to its output.

pidWrite (output)
Set the output to the value calculated by PTDController.

Parameters output — the value calculated by PIDController

1.7.9 PIDSource

classwpilib.interfaces.PIDSource

Bases: object
This interface allows for PTDCont roller to automatically read from this object.

class PIDSourceType
Bases: object

A description for the type of output value to provide to a PIDController
kDisplacement =0
kRate =1

static PIDSource.from_obj_or_callable (objc)
Utility method that gets a PIDSource object

Parameters objc — An object that implements the PIDSource interface, or a callable
Returns an object that implements the PIDSource interface
PIDSource.getPIDSourceType ()
Get which parameter of the device you are using as a process control variable.
Returns the currently selected PID source parameter
PIDSource.pidGet ()
Get the result to use in PIDController

Returns the result to use in PIDController

PIDSource.setPIDSourceType (pidSource)
Set which parameter of the device you are using as a process control variable.

Parameters pidSource (PIDSourceType)— An enum to select the parameter.

146

Chapter 1

. Contents

RobotPy WPILib Documentation, Release master

1.7.10 Potentiometer
classwpilib.interfaces.Potentiometer
Bases: wpilib.interfaces.PIDSource

get ()

1.7.11 SpeedController

classwpilib.interfaces.SpeedController
Bases: wpilib.interfaces.PIDOutput

Interface for speed controlling devices.

disable ()
Disable the speed controller.

get ()
Common interface for getting the current set speed of a speed controller.

Returns The current set speed. Value is between -1.0 and 1.0.

getInverted()
Common interface for determining if a speed controller is in the inverted state or not.

Returns True if in inverted state

set (speed, syncGroup=0)
Common interface for setting the speed of a speed controller.

Parameters
* speed - The speed to set. Value should be between -1.0 and 1.0.

* syncGroup — The update group to add this set() to, pending updateSyncGroup(). If O (or
unspecified), update immediately.

setInverted (islnverted)
Common interface for inverting direction of a speed controller.

Parameters isInverted — The state of inversion

1.8 RobotPy Installer

Note: This is not the RobotPy installation guide, see Getting Started if you’re looking for that!

Most FRC robots are not placed on networks that have access to the internet, particularly at competition arenas. The
RobotPy installer is designed for this type of ‘two-phase’ operation — with individual steps for downloading and
installing packages separately.

As of 2015, the RobotPy installer now supports downloading external packages from the python package repository
(pypi) via pip, and installing those packages onto the robot. We cannot make any guarantees about the quality of
external packages, so use them at your own risk.

Note: If your robot is on a network that has internet access, then you can manually install packages via opkg or pip.
However, if you use the RobotPy installer to install packages, then you can easily reinstall them on your robot in the
case you need to reimage it.

1.8. RobotPy Installer 147

RobotPy WPILib Documentation, Release master

If you choose to install packages manually via pip, keep in mind that when powered off, your RoboRIO does not keep
track of the correct date, and as a result pip may fail with an SSL related error message. To set the date, you can either:

¢ Set the date via the web interface

* You can login to your roboRIO via SSH, and set the date via the date command:

] date -s "2015-01-03 00:00:00"

Each of the commands supports various options, which you can read about by invoking the —help command.

1.8.1 install-robotpy

’python3 installer.py install-robotpy

This will copy the appropriate RobotPy components to the robot, and install them. If the components are already
installed on the robot, then they will be reinstalled.

1.8.2 download-robotpy

‘pythonB installer.py download-robotpy

This will update the cached RobotPy packages to the newest versions available.

1.8.3 download

|python3 installer.py download PACKAGE [PACKAGE ..]

Specify python package(s) to download, similar to what you would pass the ‘pip install’ command. This command
does not install files on the robot, and must be executed from a computer with internet access.

You can run this command multiple times, and files will not be removed from the download cache.

You can also use a requirements.txt file to specify which packages should be downloaded.

’python3 installer.py download -r requirements.txt

1.8.4 install

’python3 installer.py install PACKAGE [PACKAGE ..]

Copies python packages over to the roboRIO, and installs them. If the package already has been installed, it will be
reinstalled.

You can also use a requirements.txt file to specify which packages should be downloaded.

python3 installer.py download -r requirements.txt

Warning: The ‘install’ command will only install packages that have been downloaded using the ‘download’
command, or packages that are on the robot’s pypi cache.

Warning: If your robot does not have a python3 interpeter installed, this command will fail. Run the install-
robotpy command first.

148 Chapter 1. Contents

RobotPy WPILib Documentation, Release master

1.9 Implementation Details

This page contains various design/implementation notes that are useful to people that are peering at the internals of
WPILib/HAL. We will try to keep this document up to date...

1.9.1 Design Goals

The python implementation of WPILib/HAL is derived from the Java implementation of WPILib. In particular, we
strive to keep the python implementation of WPILib as close to the spirit of the original WPILib java libraries as we
can, only adding language-specific features where it makes sense.

Things that you won’t find in the original WPILib can be found in the _impl package.

If you have a suggestion for things to add to WPILib, we suggest adding it to the robotpy_ext package, which is a
separate package for “high quality code of things that should be in WPILib, but aren’t”. This package is installed by
the RobotPy installer by default.

1.9.2 HAL Loading

Currently, the HAL is split into two python packages:
* hal - Provided by the robotpy-hal-base package
* hal_impl - Provided by either robotpy-hal-roborio or robotpy-hal-sim
You can only have a single hal_impl package installed in a particular python installation.
The hal package provides the definition of the functions and various types & required constants.

The hal_impl package provides the actual implementation of the HAL functions, or links them to a shared DLL via
ctypes.

1.9.3 Adding options to robot.py
When run () is called, that function determines available commands that can be run, and parses command line
arguments to pass to the commands. Examples of commands include:

* Running the robot code

* Running the robot code, connected to a simulator

* Running unit tests on the robot code

* And lots more!

python setuptools has a feature that allows you to extend the commands available to robot.py without needing to
modify WPILib’s code. To add your own command, do the following:

 Define a setuptools entrypoint in your package’s setup.py (see below)

* The entrypoint name is the command to add

¢ The entrypoint must point at an object that has the following properties:
— Must have a docstring (shown when —help is given)

— Constructor must take a single argument (it is an argparse parser which options can be added to)

1.9. Implementation Details 149

https://github.com/robotpy/robotpy-wpilib-utilities

RobotPy WPILib Documentation, Release master

— Must have a ‘run’ function which takes two arguments: options, and robot_class. It must also take
arbitrary keyword arguments via the **kwargs mechanism. If it receives arguments that it does not
recognize, the entry point must ignore any such options.

If your command’s run function is called, it is your command’s responsibility to execute the robot code (if that is
desired). This sample command demonstrates how to do this:

class SampleCommand:
"'"'"Help text shown to user'''

def _ _init__ (self, parser):
pass

def run(self, options, robot_class, +*+*static_options):
runs the robot code main loop
robot_class.main (robot_class)

To register your command as a robotpy extension, you must add the following to your setup.py setup() invocation:

from setuptools import setup
setup (
entry_points={'robot_py': ['name_of_command = package.module:CommandClassName']},

)

1.10 Support

The RobotPy project was started in 2010, and since then the community surrounding RobotPy has continued to grow!
If you have questions about how to do something with RobotPy, you can ask questions in the following locations:

* RobotPy mailing list
¢ ChiefDelphi Python Forums

‘We have found that most problems users have are actually questions generic to WPILib-based languages like C++/Java,
so searching around the ChiefDelphi forums could be useful if you don’t have a python-specific question.

During the FRC build season, you can probably expect answers to your questions within a day or two if you send
messages to the mailing list. As community members are also members of FRC teams, you can expect that the closer
we get to the end of the build season, the harder it will be for community members to respond to your questions!

1.10.1 Reporting Bugs

If you run into a problem with RobotPy that you think is a bug, or perhaps there is something wrong with the docu-
mentation or just too difficult to do, please feel free to file bug reports on the github issue tracker. Someone should
respond within a day or two, especially during the FIRST build season.

1.10.2 Contributing new fixes or features

RobotPy is intended to be a project that all members of the FIRST community can quickly and easily contribute to. If
you find a bug, or have an idea that you think others can use:

1. Fork this git repository to your github account

150 Chapter 1. Contents

https://groups.google.com/forum/#!forum/robotpy
http://www.chiefdelphi.com/forums/forumdisplay.php?f=187
https://github.com/robotpy/robotpy-wpilib/issues
https://github.com/robotpy/robotpy-wpilib/fork

RobotPy WPILib Documentation, Release master

2. Create your feature branch (git checkout -b my-new-feature)
3. Commit your changes (git commit -am ‘Add some feature’)
4. Push to the branch (git push -u origin my-new-feature)

5. Create new Pull Request on github

Github has a lot of documentation about forking repositories and pull requests, so be sure to check out those resources.

1.10.3 IRC

During the FRC Build Season, some RobotPy developers may be able to be reached on #robotpy channel on Freenode.

Note: the channel is not very active, but if you stick around for a day or two someone will probably answer your
question — think in terms of email response time

The channel tends to be most active between 11pm and lam EST.

1.10. Support 151

https://help.github.com/articles/fork-a-repo
https://help.github.com/articles/using-pull-requests
http://freenode.net/irc_servers.shtml

RobotPy WPILib Documentation, Release master

152 Chapter 1. Contents

CHAPTER 2

Indices and tables

¢ genindex
* modindex

e search

153

RobotPy WPILib Documentation, Release master

154 Chapter 2. Indices and tables

Python Module Index

w

wpilib,

wpilib

wpilib.
.adx1345_spi, 19

wpilib

wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
.analogtriggeroutput, 31
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
.cantalon, 42
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.

wpilib

wpilib

13

._impl.dummycamera, 16

adx1345_1i2c, 17

adx1362, 20
adxrs450_gyro, 22
analogaccelerometer, 23
analoggyro, 24
analoginput, 25
analogoutput, 28
analogpotentiometer, 28
analogtrigger, 29

builtinaccelerometer, 32
buttons, 127
buttons.button, 127
buttons.internalbutton, 128
buttons. joystickbutton, 128
buttons.networkbutton, 128
buttons.trigger, 129
canjaguar, 32

command, 129
command . command, 130
command . commandgroup, 133
command.pidcommand, 134
command.pidsubsystem, 136
command.printcommand, 137
command.scheduler, 138
command. startcommand, 139
command. subsystem, 139
command.wailtcommand, 140
command.waitforchildren, 140
command.waituntilcommand, 141
compressor, 49
controllerpower, 51
counter, 52
digitalglitchfilter, 57
digitalinput, 58

wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
.interfaces.accelerometer, 141
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
.interfaces.potentiometer, 147
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
.motorsafety, 85
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
.robotstate, 104
wpilib.
wpilib.
wpilib.

wpilib

wpilib

wpilib

wpilib

digitaloutput, 59
digitalsource, 60
doublesolenoid, 60
driverstation, 61
encoder, 65
filter, 69
geartooth, 69
gyrobase, 70
i2¢,70
interfaces, 141

interfaces.controller, 142
interfaces.counterbase, 142
interfaces.generichid, 143
interfaces.gyro, 144
interfaces.namedsendable, 145
interfaces.pidinterface, 145
interfaces.pidoutput, 146
interfaces.pidsource, 146

interfaces.speedcontroller, 147
interruptablesensorbase, 72
iterativerobot, 73

jaguar, 75

joystick, 76
lineardigitalfilter, 80
livewindow, 83
livewindowsendable, 84

pidcontroller, 86
powerdistributionpanel, 89
preferences, 90

pwm, 93

relay, 96

resource, 97

robotbase, 98
robotdrive, 99

safepwm, 104
samplerobot, 104
sd540, 106

155

RobotPy WPILib Documentation, Release master

wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.
wpilib.

sendable, 107
sendablechooser, 107
sensorbase, 108
servo, 110
smartdashboard, 111
solenoid, 113
solenoidbase, 114
spark, 115

spi, 116

talon, 118
talonsrx, 119
timer, 120
ultrasonic, 122
utility, 124
victor, 125
victorsp, 126

156

Python Module Index

Index

A

AbsoluteTolerance_onTarget()

(wpilib.pidcontroller.PIDController = method),
86

Accelerometer (class in wpilib.interfaces.accelerometer),
141

Accelerometer.Range (class in
wpilib.interfaces.accelerometer), 141

add() (wpilib.command.scheduler.Scheduler method),
138

add() (wpilib.digitalglitchfilter.DigitalGlitchFilter
method), 57

addActuator() (wpilib.livewindow.LiveWindow static
method), 83

addActuatorChannel() (wpilib.livewindow.LiveWindow
static method), 83

addActuatorModuleChannel()
(wpilib.livewindow.LiveWindow
method), 83

addButton() (wpilib.command.scheduler.Scheduler
method), 138

addDefault() (wpilib.sendablechooser.SendableChooser
method), 107

addObject() (wpilib.sendablechooser.SendableChooser
method), 108

static

addParallel() (wpilib.command.commandgroup.CommandGroup

method), 133
addressOnly() (wpilib.i2¢c.12C method), 71

addSensor() (wpilib.livewindow.LiveWindow static
method), 83
addSensorChannel() (wpilib.livewindow.LiveWindow

static method), 84

addSequential() (wpilib.command.commandgroup.Command@lggPotentiometer

method), 134
ADXL345_12C (class in wpilib.adx1345_i2c), 17
ADXL345_12C.Axes (class in wpilib.adx1345_i2c), 18
ADXL345_I2C.Range (class in wpilib.adx1345_i2c), 18
ADXIL.345_SPI (class in wpilib.adx1345_spi), 19
ADXL345_SPI. Axes (class in wpilib.adx1345_spi), 19
ADXL345_SPI.Range (class in wpilib.adx1345_spi), 19

ADXL362 (class in wpilib.adx1362), 20

ADXL362.Axes (class in wpilib.adx1362), 21

ADXL362.Range (class in wpilib.adx1362), 21

ADXRS450_Gyro (class in wpilib.adxrs450_gyro), 22

all_allocated (wpilib.solenoidbase.SolenoidBase at-
tribute), 114

all_mutex (wpilib.solenoidbase.SolenoidBase attribute),
114

all_ports (wpilib.solenoidbase.SolenoidBase attribute),
114

allocate() (wpilib.resource.Resource method), 98

allocated (wpilib.canjaguar. CANJaguar attribute), 33

allocatedDownSource (wpilib.counter.Counter attribute),
54

allocatedUpSource (wpilib.counter.Counter attribute), 54

allocatelnterrupts() (wpilib.interruptablesensorbase.InterruptableSensorBasc

method), 72

AnalogAccelerometer (class in
wpilib.analogaccelerometer), 23

AnalogAccelerometer.PIDSourceType
wpilib.analogaccelerometer), 23

AnalogEncoder (wpilib.cantalon.CANTalon.FeedbackDevice
attribute), 44

AnalogGyro (class in wpilib.analoggyro), 24

AnalogGyro.PIDSourceType (class in

wpilib.analoggyro), 24

AnaloglInput (class in wpilib.analoginput), 25

AnalogInput.PIDSourceType (class in
wpilib.analoginput), 25

AnalogOutput (class in wpilib.analogoutput), 28

AnalogPot (wpilib.cantalon.CANTalon.FeedbackDevice
attribute), 44

(class in

(class in
wpilib.analogpotentiometer), 28

AnalogPotentiometer.PIDSourceType
wpilib.analogpotentiometer), 29

AnalogTempVbat (wpilib.cantalon. CANTalon.StatusFrameRate
attribute), 44

AnalogTrigger (class in wpilib.analogtrigger), 29

AnalogTrigger.AnalogTriggerType (class in
wpilib.analogtrigger), 29

(class in

157

RobotPy WPILib Documentation, Release master

AnalogTriggerOutput (class in
wpilib.analogtriggeroutput), 31
AnalogTriggerOutput.AnalogTriggerType (class in

wpilib.analogtriggeroutput), 31

arcadeDrive() (wpilib.robotdrive.RobotDrive method),
100

automaticEnabled (wpilib.ultrasonic.Ultrasonic attribute),
122

autonomous()
method), 105

autonomouslnit() (wpilib.iterativerobot.IterativeRobot
method), 74

autonomousPeriodic() (wpilib.iterativerobot.IterativeRobot
method), 74

(wpilib.samplerobot.SampleRobot

B

Blue (wpilib.driverstation.DriverStation.Alliance at-
tribute), 62
Brake (wpilib.canjaguar.CANJaguar.NeutralMode at-

tribute), 33

CANJaguar.Mode (class in wpilib.canjaguar), 33
CANJaguar.NeutralMode (class in wpilib.canjaguar), 33
CANTalon (class in wpilib.cantalon), 42
CANTalon.ControlMode (class in wpilib.cantalon), 43
CANTalon.FeedbackDevice (class in wpilib.cantalon), 44
CANTalon.StatusFrameRate (class in wpilib.cantalon),

44

changeControlMode() (wpilib.canjaguar. CANJaguar
method), 33

changeControlMode() (wpilib.cantalon.CANTalon
method), 44

channels (wpilib.analoginput.AnalogInput attribute), 25

channels (wpilib.analogoutput.AnalogOutput attribute),
28

channels (wpilib.digitalsource.DigitalSource attribute),
60

check() (wpilib.motorsafety.MotorSafety method), 85

checkAnalogInputChannel()
(wpilib.sensorbase.SensorBase static method),
108

BRANCH_CHILD (wpilib.command.commandgroup.ComrhgdchaaipERkputChannel()

attribute), 133

(wpilib.sensorbase.SensorBase static method),

BRANCH_PEER (wpilib.command.commandgroup.CommandGroup.Etitry

attribute), 133
broadcast() (wpilib.i2¢c.I2C method), 71

BuiltInAccelerometer (class in
wpilib.builtinaccelerometer), 32
BuiltInAccelerometer.Range (class in

wpilib.builtinaccelerometer), 32
Button (class in wpilib.buttons.button), 127

C

calculateFeedForward() (wpilib.pidcontroller. PIDController

method), 86
calibrate() (wpilib.adxrs450_gyro.ADXRS450_Gyro
method), 22
calibrate() (wpilib.analoggyro.AnalogGyro method), 24
calibrate() (wpilib.gyrobase.GyroBase method), 70
calibrate() (wpilib.interfaces.gyro.Gyro method), 144
CameraServer (class in wpilib._impl.dummycamera), 15,
17
cancel() (wpilib.command.command.Command method),
130

cancelConflicts() (wpilib.command.commandgroup.CommandGroup 114

method), 134

cancellnterrupts() (wpilib.interruptablesensorbase.Interrupta%ll%%ré%gg&ga%

method), 72

cancelWhenActive() (wpilib.buttons.trigger. Trigger
method), 129

cancelWhenPressed() (wpilib.buttons.button.Button
method), 127

CANlJaguar (class in wpilib.canjaguar), 32
CANlJaguar.ControlMode (class in wpilib.canjaguar), 33
CANJaguar.LimitMode (class in wpilib.canjaguar), 33

checkDigitalChannel() (wpilib.sensorbase.SensorBase
static method), 108

checkMotors() (wpilib.motorsafety.MotorSafety static
method), 85
checkPDPChannel() (wpilib.sensorbase.SensorBase

static method), 108
checkPDPModule() (wpilib.sensorbase.SensorBase static
method), 108

checkPWMChannel() (wpilib.sensorbase.SensorBase
static method), 108
checkRelayChannel() (wpilib.sensorbase.SensorBase

static method), 109

checkSolenoidChannel() (wpilib.sensorbase.SensorBase
static method), 109

checkSolenoidModule() (wpilib.sensorbase.SensorBase
static method), 109

clearAlIPCMStickyFaults()

(wpilib.compressor.Compressor method),
50

clearAlIPCMStickyFaults()
(wpilib.solenoidbase.SolenoidBase method),

1érce() (wpilib.counter.Counter method), 54

clearlaccum() (wpilib.cantalon.CANTalon method), 44

clearStickyFaults() (wpilib.cantalon.CANTalon method),
44

clearStickyFaults() (wpilib.powerdistributionpanel. PowerDistributionPanel

method), 89
clearUpSource() (wpilib.counter.Counter method), 54
closeCamera() (wpilib._impl.dummycamera.USBCamera
method), 15, 16

158

Index

RobotPy WPILib Documentation, Release master

Coast (wpilib.canjaguar. CANJaguar.NeutralMode at-
tribute), 33

Command (class in wpilib.command.command), 130

CommandGroup (class in
wpilib.command.commandgroup), 133

CommandGroup.Entry (class in

wpilib.command.commandgroup), 133
components (wpilib.livewindow.LiveWindow attribute),

84
Compressor (class in wpilib.compressor), 49
configEncoderCodesPerRev()

(wpilib.canjaguar. CANJaguar method), 34

configFaultTime() (wpilib.canjaguar. CANJaguar
method), 34

configForwardLimit() (wpilib.canjaguar. CANJaguar
method), 34

configFwdLimitSwitchNormallyOpen()
(wpilib.cantalon.CANTalon method), 44

configl.imitMode() (wpilib.canjaguar. CANJaguar
method), 34

configMaxOutputVoltage() (wpilib.canjaguar.CANJaguar
method), 34

configNeutralMode() (wpilib.canjaguar. CANJaguar
method), 34

configPotentiometerTurns()
(wpilib.canjaguar. CANJaguar method), 34
configReverseLimit() (wpilib.canjaguar. CANJaguar
method), 34
configRevLimitSwitchNormallyOpen()
(wpilib.cantalon. CANTalon method), 44
configSoftPositionLimits() (wpilib.canjaguar. CANJaguar
method), 34

D

decodingScaleFactor() (wpilib.encoder.Encoder method),
67

DEFAULT (wpilib.sendablechooser.SendableChooser at-
tribute), 107

DEFAULT_SAFETY_EXPIRATION
(wpilib.motorsafety.MotorSafety
85

defaultSolenoidModule
attribute), 109

delay() (wpilib.timer.Timer static method), 121

devices (wpilib.spi.SPI attribute), 116

DigitalGlitchFilter (class in wpilib.digitalglitchfilter), 57

Digitallnput (class in wpilib.digitalinput), 58

DigitalOutput (class in wpilib.digitaloutput), 59

DigitalSource (class in wpilib.digitalsource), 60

disable() (wpilib.canjaguar.CANJaguar method), 35

disable() (wpilib.cantalon.CANTalon method), 45

disable() (wpilib.command.pidsubsystem.PIDSubsystem
method), 136

disable() (wpilib.command.scheduler.Scheduler method),
138

disable() (wpilib.interfaces.controller.Controller method),
142

disable() (wpilib.interfaces.pidinterface. PIDInterface
method), 145

disable() (wpilib.interfaces.speedcontroller.SpeedController
method), 147

disable() (wpilib.pidcontroller.PIDController method), 86

disable() (wpilib.safepwm.SafePWM method), 104

disableControl() (wpilib.canjaguar.CANJaguar method),
35

attribute),

(wpilib.sensorbase.SensorBase

confirmCommand() (wpilib.command.subsystem.SubsystenyjsapleControl() (wpilib.cantalon.CANTalon method), 45

method), 139
containsKey() (wpilib.preferences.Preferences method),
90
Controller (class in wpilib.interfaces.controller), 142
ControllerPower (class in wpilib.controllerpower), 51
Counter (class in wpilib.counter), 52
counter (wpilib.counter.Counter attribute), 54
Counter.EncodingType (class in wpilib.counter), 53
Counter.Mode (class in wpilib.counter), 53
Counter.PIDSourceType (class in wpilib.counter), 54
CounterBase (class in wpilib.interfaces.counterbase), 142
CounterBase.EncodingType (class in
wpilib.interfaces.counterbase), 142
createOutput() (wpilib.analogtrigger. AnalogTrigger
method), 30
Current (wpilib.canjaguar. CANJaguar.ControlMode at-
tribute), 33
(wpilib.cantalon.CANTalon.ControlMode
tribute), 44

Current at-

Disabled (wpilib.cantalon.CANTalon.ControlMode at-
tribute), 44

disabled() (wpilib.samplerobot.SampleRobot method),
105

disabledInit() (wpilib.iterativerobot.IterativeRobot
method), 74

disabledPeriodic() (wpilib.iterativerobot.IterativeRobot
method), 74

disablelnterrupts() (wpilib.interruptablesensorbase.InterruptableSensorBase

method), 72
disablePWM()
method), 59
disableSoftPositionLimits()
(wpilib.canjaguar. CANJaguar method), 35
doesRequire() (wpilib.command.command.Command
method), 131
DoubleSolenoid (class in wpilib.doublesolenoid), 60
DoubleSolenoid.Value (class in wpilib.doublesolenoid),
61
drive() (wpilib.robotdrive.RobotDrive method), 101
DriverStation (class in wpilib.driverstation), 61

(wpilib.digitaloutput.DigitalOutput

Index

159

RobotPy WPILib Documentation, Release master

DriverStation.Alliance (class in wpilib.driverstation), 62

E

enable() (wpilib.command.pidsubsystem.PIDSubsystem
method), 136
enable() (wpilib.command.scheduler.Scheduler method),
138
enable() (wpilib.interfaces.controller.Controller method),
142
(wpilib.interfaces.pidinterface. PIDInterface
method), 145
enable() (wpilib.pidcontroller.PIDController method), 87

enable()

enableBrakeMode() (wpilib.cantalon.CANTalon
method), 45

enableControl() (wpilib.canjaguar.CANJaguar method),
35

enableControl() (wpilib.cantalon.CANTalon method), 45
enabled() (wpilib.compressor.Compressor method), 50

FILE_NAME (wpilib.preferences.Preferences attribute),
90

Filter (class in wpilib.filter), 69

filterAllocated (wpilib.digitalglitchfilter.DigitalGlitchFilter
attribute), 58

firstTime (wpilib.livewindow.LiveWindow attribute), 84

flush_outputs() (wpilib.joystick.Joystick method), 77

Follower (wpilib.cantalon.CANTalon.ControlMode at-
tribute), 44

free() (wpilib.adx1345_i2c. ADXL345_I2C method), 18

free() (wpilib.adx1345_spi. ADXL345_SPI method), 19

free() (wpilib.adx1362.ADXL362 method), 21

free() (wpilib.adxrs450_gyro.ADXRS450_Gyro method),
22

free() (wpilib.analogaccelerometer.AnalogAccelerometer
method), 23

free() (wpilib.analoggyro.AnalogGyro method), 24

free() (wpilib.analoginput. Analoglnput method), 25

free() (wpilib.analogoutput. AnalogOutput method), 28

free() (wpilib.analogpotentiometer. AnalogPotentiometer
method), 29

free() (wpilib.analogtrigger. AnalogTrigger method), 30

free() (wpilib.analogtriggeroutput.AnalogTriggerOutput
method), 31

enablelnterrupts() (wpilib.interruptablesensorbase. InterruptabReSenswiBlebuiltinaccelerometer. BuiltinAccelerometer

enableDeadbandElimination() (wpilib.pwm.PWM
method), 94

enableDirectionSensing() (wpilib.geartooth.GearTooth
method), 70

enableForwardSoftLimit() (wpilib.cantalon.CANTalon
method), 45
method), 72

enableLimitSwitch() (wpilib.cantalon.CANTalon
method), 45

enablePWM)() (wpilib.digitaloutput.DigitalOutput
method), 59

enableReverseSoftLimit() (wpilib.cantalon.CANTalon
method), 45

EncFalling (wpilib.cantalon.CANTalon.FeedbackDevice
attribute), 44

Encoder (class in wpilib.encoder), 65

encoder (wpilib.encoder.Encoder attribute), 67

Encoder.EncodingType (class in wpilib.encoder), 66

Encoder.IndexingType (class in wpilib.encoder), 66

Encoder.PIDSourceType (class in wpilib.encoder), 67

EncRising (wpilib.cantalon.CANTalon.FeedbackDevice
attribute), 44

end() (wpilib.command.command.Command method),
131

end() (wpilib.command.commandgroup.CommandGroup

method), 134

(wpilib.command.command.Command
method), 131

execute()

method), 32

free() (wpilib.canjaguar. CANJaguar method), 35

free() (wpilib.cantalon.CANTalon method), 45

free() (wpilib.counter.Counter method), 54

free() (wpilib.digitalglitchfilter.DigitalGlitchFilter
method), 58

free() (wpilib.digitalinput.Digitallnput method), 58

free() (wpilib.digitaloutput.DigitalOutput method), 59

free() (wpilib.digitalsource.DigitalSource method), 60

free() (wpilib.doublesolenoid.DoubleSolenoid method),
61

free() (wpilib.encoder.Encoder method), 67

free() (wpilib.geartooth.GearTooth method), 70

free() (wpilib.i2¢.I2C method), 71

free() (wpilib.interfaces.gyro.Gyro method), 145

free() (wpilib.jaguar.Jaguar method), 75

free() (wpilib.pidcontroller.PIDController method), 87

free() (wpilib.pwm.PWM method), 94

free() (wpilib.relay.Relay method), 97

free() (wpilib.resource.Resource method), 98

free() (wpilib.robotbase.RobotBase method), 98

free() (wpilib.robotdrive.RobotDrive method), 101

execute() (wpilib.command.commandgroup.CommandGrougree() (wpilib.sd540.SD540 method), 106

method), 134

F

feed() (wpilib.motorsafety.MotorSafety method), 85
Feedback (wpilib.cantalon.CANTalon.StatusFrameRate
attribute), 44

free() (wpilib.sensorbase.SensorBase method), 109
free() (wpilib.servo.Servo method), 110

free() (wpilib.solenoid.Solenoid method), 113
free() (wpilib.spark.Spark method), 115

free() (wpilib.spi.SPI method), 116

free() (wpilib.talon.Talon method), 119

160

Index

RobotPy WPILib Documentation, Release master

free() (wpilib.talonsrx.TalonSRX method), 120
free() (wpilib.ultrasonic.Ultrasonic method), 122
free() (wpilib.victor.Victor method), 125

free() (wpilib.victorsp.VictorSP method), 126
freeAccumulator() (wpilib.spi.SPI method), 116

get() (wpilib.victorsp. VictorSP method), 126

getAcceleration() (wpilib.adx1345_i2c. ADXL345_I2C
method), 18

getAcceleration() (wpilib.adx1345_spi. ADXL.345_SPI
method), 19

from_obj_or_callable() (wpilib.interfaces.pidsource.PIDSougetAcceleration() (wpilib.adx1362.ADXL.362 method),

static method), 146

G

GearTooth (class in wpilib.geartooth), 69

General (wpilib.cantalon.CANTalon.StatusFrameRate at-
tribute), 44

GenericHID (class in wpilib.interfaces.generichid), 143

GenericHID.Hand (class in wpilib.interfaces.generichid),

143

get() (wpilib.analogpotentiometer. AnalogPotentiometer
method), 29

get() (wpilib.analogtriggeroutput.AnalogTriggerOutput
method), 31

get() (wpilib.buttons.internalbutton.InternalButton
method), 128

get() (wpilib.buttons.joystickbutton.JoystickButton
method), 128

get() (wpilib.buttons.networkbutton.NetworkButton

method), 128

get() (wpilib.buttons.trigger. Trigger method), 129

get() (wpilib.canjaguar. CANJaguar method), 35

get() (wpilib.cantalon.CANTalon method), 45

get() (wpilib.counter.Counter method), 54

get() (wpilib.digitalinput.Digitallnput method), 58

get() (wpilib.doublesolenoid.DoubleSolenoid method),
61

get() (wpilib.encoder.Encoder method), 67

get() (wpilib.filter.Filter method), 69

get() (wpilib.interfaces.counterbase.CounterBase
method), 143
get() (wpilib.interfaces.potentiometer.Potentiometer

method), 147

get() (wpilib.interfaces.speedcontroller.SpeedController
method), 147

get() (wpilib.jaguar.Jaguar method), 75

get() (wpilib.lineardigitalfilter.LinearDigitalFilter
method), 82

get() (wpilib.pidcontroller.PIDController method), 87

get() (wpilib.preferences.Preferences method), 90

get() (wpilib.relay.Relay method), 97

get() (wpilib.sd540.SD540 method), 106

get() (wpilib.servo.Servo method), 110

get() (wpilib.solenoid.Solenoid method), 113

get() (wpilib.spark.Spark method), 115

get() (wpilib.talon.Talon method), 119

get() (wpilib.talonsrx.TalonSRX method), 120

get() (wpilib.timer.Timer method), 121

get() (wpilib.victor. Victor method), 125

21

getAcceleration() (wpilib.analogaccelerometer. AnalogAccelerometer
method), 23

getAccelerations() (wpilib.adx1345_i2c.ADX1.345_I2C
method), 18

getAccelerations() (wpilib.adx1345_spi. ADXL.345_SPI
method), 19

getAccelerations() (wpilib.adx1362.ADXL362 method),
21

getAccumulatorAverage() (wpilib.spi.SPI method), 116

getAccumulatorCount() (wpilib.analoginput. AnalogInput
method), 25

getAccumulatorCount() (wpilib.spi.SPI method), 116

getAccumulatorLastValue() (wpilib.spi.SPI method), 116

getAccumulatorOutput() (wpilib.analoginput. AnalogInput
method), 25

getAccumulatorOutput() (wpilib.spi.SPI method), 116

getAccumulatorValue() (wpilib.analoginput.AnalogInput
method), 26

getAccumulatorValue() (wpilib.spi.SPI method), 117

getAll() (wpilib.solenoidbase.SolenoidBase method), 114

getAlliance() (wpilib.driverstation.DriverStation
method), 62

getAnalogInPosition() (wpilib.cantalon.CANTalon
method), 45

getAnaloglnRaw() (wpilib.cantalon.CANTalon method),
45

getAnalogInVelocity() (wpilib.cantalon.CANTalon
method), 45

getAnalogTriggerForRouting()
(wpilib.analogtriggeroutput. AnalogTriggerOutput
method), 31

getAnalogTriggerForRouting()

(wpilib.digitalinput.Digitallnput method),
58

getAnalogTriggerForRouting()
(wpilib.digitalsource.DigitalSource method),

60

getAnalogTriggerForRouting()
(wpilib.interruptablesensorbase.InterruptableSensorBase
method), 72

getAngle() (wpilib.adxrs450_gyro.ADXRS450_Gyro
method), 22

getAngle() (wpilib.analoggyro.AnalogGyro method), 24

getAngle() (wpilib.gyrobase.GyroBase method), 70

getAngle() (wpilib.interfaces.gyro.Gyro method), 145

getAngle() (wpilib.servo.Servo method), 110

Index

161

RobotPy WPILib Documentation, Release master

getAverageBits() (wpilib.analoginput.AnalogInput
method), 26

getAverageValue() (wpilib.analoginput. AnalogInput
method), 26

getAverageVoltage() (wpilib.analoginput. AnalogInput
method), 26

getAvgError() (wpilib.pidcontroller. PIDController
method), 87

getAxis() (wpilib.joystick.Joystick method), 77

getAxisChannel() (wpilib.joystick.Joystick method), 77

getAxisCount() (wpilib.joystick.Joystick method), 77

getBatteryVoltage() (wpilib.driverstation.DriverStation
method), 62

getBoolean() (wpilib.preferences.Preferences method),
91

getBoolean() (wpilib.smartdashboard.SmartDashboard
static method), 111

getBrakeEnableDuringNeutral()
(wpilib.cantalon.CANTalon method), 45

getBrightness() (wpilib._impl.dummycamera.USBCamera
method), 15, 16

getBumper() (wpilib.interfaces.generichid.GenericHID
method), 143

getBumper() (wpilib.joystick.Joystick method), 77

getBusVoltage() (wpilib.canjaguar.CANJaguar method),
35

getBusVoltage() (wpilib.cantalon.CANTalon method), 45

getButton() (wpilib.joystick.Joystick method), 77

getButtonCount() (wpilib.joystick.Joystick method), 78

getCenter() (wpilib.analoggyro.AnalogGyro method), 24

getCenterPwm() (wpilib.pwm.PWM method), 94

getChannel() (wpilib.analoginput.Analoglnput method),
26

getChannel() (wpilib.digitalinput.Digitallnput method),
58

getChannel()
method), 59

getChannel() (wpilib.pwm.PWM method), 94

getChannel() (wpilib.relay.Relay method), 97

(wpilib.digitaloutput.DigitalOutput

getCompressorCurrentTooHighFault()
(wpilib.compressor.Compressor
50
getCompressorCurrentTooHighStickyFault()
(wpilib.compressor.Compressor
50
getCompressorNotConnectedFault()
(wpilib.compressor.Compressor
50
getCompressorNotConnectedStickyFault()
(wpilib.compressor.Compressor
50
getCompressorShortedFault()
(wpilib.compressor.Compressor
50
getCompressorShortedStickyFault()
(wpilib.compressor.Compressor
50
getControlMode()
method), 35
getControlMode() (wpilib.cantalon.CANTalon method),
46

method),

method),

method),

method),

method),

method),

(wpilib.canjaguar. CANJaguar

getCurrent() (wpilib.powerdistributionpanel.PowerDistributionPanel

method), 89

getCurrent3V3() (wpilib.controllerpower.ControllerPower
static method), 51

getCurrent5V() (wpilib.controllerpower.ControllerPower
static method), 51

getCurrent6 V() (wpilib.controllerpower.ControllerPower
static method), 51

getCurrentCommand() (wpilib.command.subsystem.Subsystem

method), 139
getD() (wpilib.canjaguar. CANJaguar method), 36
getD() (wpilib.cantalon.CANTalon method), 46
getD() (wpilib.interfaces.pidinterface. PIDInterface
method), 145
getD() (wpilib.pidcontroller.PIDController method), 87
getData() (wpilib.driverstation.DriverStation method), 62
getData() (wpilib.smartdashboard.SmartDashboard static

getChannelForRouting() (wpilib.analogtriggeroutput. AnalogTriggerOmptitod), 111

method), 31

getChannelForRouting() (wpilib.digitalsource.DigitalSource

method), 60

getDefaultCommand() (wpilib.command.subsystem.Subsystem

method), 140
getDefaultSolenoidModule()

getChannelForRouting() (wpilib.interruptablesensorbase.InterruptableSepshitBassorbase.SensorBase static method),

method), 73
getClosedLoopControl() (wpilib.compressor.Compressor
method), 50
getClosedLoopError()
method), 45
getCloseLoopRampRate()
method), 45
getCompressorCurrent() (wpilib.compressor.Compressor
method), 50

(wpilib.cantalon.CANTalon

(wpilib.cantalon.CANTalon

109
getDeltaSetpoint()
method), 87
getDescription() (wpilib.canjaguar.CANJaguar method),
36
getDescription() (wpilib.cantalon.CANTalon method), 46
getDescription() (wpilib.relay.Relay method), 97
getDescription() (wpilib.robotdrive.RobotDrive method),
101

(wpilib.pidcontroller.PIDController

162

Index

RobotPy WPILib Documentation, Release master

getDescription() (wpilib.safepwm.SafePWM method),
104

getDevicelD() (wpilib.canjaguar.CANJaguar method), 36

getDevicelD() (wpilib.cantalon.CANTalon method), 46

getDeviceNumber() (wpilib.canjaguar. CANJaguar
method), 36

getDirection() (wpilib.counter.Counter method), 54

getDirection() (wpilib.encoder.Encoder method), 67

getDirection() (wpilib.interfaces.counterbase.CounterBase
method), 143

getDirectionDegrees() (wpilib.joystick.Joystick method),
78

getDirectionRadians() (wpilib.joystick.Joystick method),
78

getDistance() (wpilib.counter.Counter method), 54

getDistance() (wpilib.encoder.Encoder method), 67

getDistanceUnits() (wpilib.ultrasonic.Ultrasonic method),
122

getDouble() (wpilib.smartdashboard.SmartDashboard
static method), 111

getEnabled3V3() (wpilib.controllerpower.ControllerPower
static method), 51

getEnabled5V() (wpilib.controllerpower.ControllerPower
static method), 51

getEnabled6V() (wpilib.controllerpower.ControllerPower
static method), 51

getEncodingScale() (wpilib.encoder.Encoder method), 67

getEncPosition() (wpilib.cantalon.CANTalon method),
46

getEncVelocity() (wpilib.cantalon.CANTalon method),
46

getError() (wpilib.canjaguar. CANJaguar method), 36

getError() (wpilib.interfaces.pidinterface.PIDInterface
method), 145

getError() (wpilib.pidcontroller.PIDController method),
87

getExpiration()
method), 85

getF() (wpilib.cantalon.CANTalon method), 46

getF() (wpilib.pidcontroller.PIDController method), 87

(wpilib.motorsafety.MotorSafety

getFaultCount3V3() (wpilib.controllerpower.ControllerPower

static method), 52

getFaultCount5V() (wpilib.controllerpower.ControllerPower

static method), 52

getFaultCount6 V() (wpilib.controllerpower.ControllerPower

static method), 52
getFaultForLim() (wpilib.cantalon.CANTalon method),

getFaultRevLim() (wpilib.cantalon.CANTalon method),
46
getFaultRevSoftLim()
method), 46
getFaults() (wpilib.canjaguar. CANJaguar method), 36
getFaultUnderVoltage() (wpilib.cantalon.CANTalon

(wpilib.cantalon.CANTalon

method), 46

getFirmwareVersion() (wpilib.canjaguar. CANJaguar
method), 36

getFirmware Version() (wpilib.cantalon.CANTalon
method), 46

getFloat() (wpilib.preferences.Preferences method), 91

getForwardLimitOK() (wpilib.canjaguar. CANJaguar
method), 36

getFPGAIndex() (wpilib.counter.Counter method), 54

getFPGAIndex() (wpilib.encoder.Encoder method), 67

getFPGARevision() (wpilib.utility.Utility static method),
124

getFPGATime() (wpilib.utility. Utility static method), 124

getFPGATimestamp() (wpilib.timer. Timer static method),
121

getFPGAVersion() (wpilib.utility.Utility static method),
124

getFullRangeScaleFactor() (wpilib.pwm.PWM method),
94

getGlobalSampleRate() (wpilib.analoginput.AnalogInput
static method), 26

getGroup() (wpilib.command.command.Command
method), 131

getHardware Version()
method), 36

getl() (wpilib.canjaguar. CANJaguar method), 36

getl() (wpilib.cantalon.CANTalon method), 46

getl() (wpilib.interfaces.pidinterface. PIDInterface
method), 145

getl() (wpilib.pidcontroller.PIDController method), 87

getlaccum() (wpilib.cantalon.CANTalon method), 46

getlmage() (wpilib._impl.dummycamera.USBCamera
method), 15, 16

getlmageData() (wpilib._impl.dummycamera.USBCamera

method), 15, 16

getlndex() (wpilib.analogtrigger.AnalogTrigger method),

30

getInputCurrent() (wpilib.controllerpower.ControllerPower

static method), 52

getInputVoltage() (wpilib.controllerpower.ControllerPower
static method), 52

(wpilib.canjaguar. CANJaguar

46 getlnstance() (wpilib._impl.dummycamera.CameraServer
getFaultForSoftLim() (wpilib.cantalon.CANTalon static method), 15, 17

method), 46 getInstance() (wpilib.command.scheduler.Scheduler
getFaultHardwareFailure() (wpilib.cantalon.CANTalon static method), 138

method), 46 getlnstance() (wpilib.driverstation.DriverStation static
getFaultOverTemp() (wpilib.cantalon.CANTalon method), 62

method), 46
Index 163

RobotPy WPILib Documentation, Release master

getlnstance() (wpilib.preferences.Preferences static
method), 91

getInt() (wpilib.preferences.Preferences method), 91

getInt() (wpilib.smartdashboard.SmartDashboard static
method), 111

getlnverted() (wpilib.canjaguar. CANJaguar method), 36

getInverted() (wpilib.cantalon.CANTalon method), 46

getName() (wpilib.interfaces.namedsendable.NamedSendable
method), 145

getName() (wpilib.joystick.Joystick method), 78

getNegativeScaleFactor() (wpilib.pwm.PWM method),
94

getNumber() (wpilib.smartdashboard.SmartDashboard
static method), 112

getInverted() (wpilib.interfaces.speedcontroller.Speed ContragktNumberOfQuadldxRises()

method), 147
getlnverted() (wpilib.jaguar.Jaguar method), 75
getlnverted() (wpilib.sd540.SD540 method), 106
getlnverted() (wpilib.spark.Spark method), 115
getInverted() (wpilib.talon.Talon method), 119
getInverted() (wpilib.talonsrx.TalonSRX method), 120
getInverted() (wpilib.victor.Victor method), 125
getlnverted() (wpilib.victorsp.VictorSP method), 126
getlnWindow() (wpilib.analogtrigger.AnalogTrigger
method), 30
getIsXbox() (wpilib.joystick.Joystick method), 78
getlZone() (wpilib.cantalon.CANTalon method), 46
getJoystickIsXbox() (wpilib.driverstation.DriverStation
method), 62
getJoystickName()
method), 62
getJoystickType()
method), 63
getKeys() (wpilib.preferences.Preferences method), 91
getLocation() (wpilib.driverstation.DriverStation
method), 63
getLSBWeight()
method), 26
getMagnitude() (wpilib.joystick.Joystick method), 78
getMatchTime() (wpilib.driverstation.DriverStation
method), 63
getMatchTime() (wpilib.timer. Timer static method), 121
getMaxNegativePwm() (wpilib.pwm.PWM method), 94
getMaxPositivePwm() (wpilib.pwm.PWM method), 94
getMessage() (wpilib.canjaguar.CANJaguar method), 36
getMinNegativePwm() (wpilib.pwm.PWM method), 94
getMinPositivePwm() (wpilib.pwm.PWM method), 94

(wpilib.driverstation.DriverStation

(wpilib.driverstation.DriverStation

(wpilib.analoginput. AnalogInput

(wpilib.cantalon.CANTalon method), 46
getNumMotors() (wpilib.robotdrive.RobotDrive method),
101
getOffset() (wpilib.analoggyro.AnalogGyro method), 24
getOffset() (wpilib.analoginput.AnalogInput method), 26

getOutputCurrent() (wpilib.canjaguar. CANJaguar
method), 37

getOutputCurrent() (wpilib.cantalon.CANTalon method),
46

getOutputVoltage() (wpilib.canjaguar. CANJaguar
method), 37

getOutputVoltage() (wpilib.cantalon.CANTalon method),
46

getOversampleBits() (wpilib.analoginput.AnalogInput
method), 26

getP() (wpilib.canjaguar. CANJaguar method), 37

getP() (wpilib.cantalon.CANTalon method), 46

getP() (wpilib.interfaces.pidinterface. PIDInterface
method), 145

getP() (wpilib.pidcontroller.PIDController method), 87

getPCMSolenoidBlackList()
(wpilib.solenoidbase.SolenoidBase
114

getPCMSolenoid VoltageFault()
(wpilib.solenoidbase.SolenoidBase
114

getPCMSolenoid VoltageStickyFault()
(wpilib.solenoidbase.SolenoidBase
114

getPeriod() (wpilib.counter.Counter method), 54

getPeriod() (wpilib.encoder.Encoder method), 67

getPeriod() (wpilib.interfaces.counterbase.CounterBase

method),

method),

method),

getModuleForRouting() (wpilib.analogtriggeroutput. AnalogTriggerOutpethod), 143

method), 31
getModuleForRouting() (wpilib.digitalsource.DigitalSource
method), 60

getPeriodCycles() (wpilib.digitalglitchfilter.DigitalGlitchFilter
method), 58
getPeriodNanoSeconds()

getModuleForRouting() (wpilib.interruptablesensorbase.InterruptableSenpidsgitalglitchfilter. Digital GlitchFilter

method), 73

getMsClock() (wpilib.timer.Timer method), 121

getName() (wpilib.command.command.Command
method), 131

getName() (wpilib.command.scheduler.Scheduler
method), 138

getName() (wpilib.command.subsystem.Subsystem
method), 140

method), 58

getPIDController() (wpilib.command.pidcommand.PIDCommand

method), 135

getPIDController() (wpilib.command.pidsubsystem.PIDSubsystem

method), 136

getPIDSourceType() (wpilib.analogaccelerometer. AnalogAccelerometer

method), 23
getPIDSourceType()
method), 27

(wpilib.analoginput. AnalogInput

164

Index

RobotPy WPILib Documentation, Release master

getPIDSourceType() (wpilib.analogpotentiometer. AnalogPogatRam8uatton() (wpilib.interfaces.generichid.GenericHID

method), 29
getPIDSourceType() (wpilib.counter.Counter method), 54
getPIDSourceType() (wpilib.encoder.Encoder method),
67
getPIDSourceType() (wpilib.filter.Filter method), 69
getPIDSourceType() (wpilib.gyrobase.GyroBase
method), 70

getPIDSourceType() (wpilib.interfaces.pidsource.PIDSource

method), 146
getPIDSourceType() (wpilib.pidcontroller.PIDController
method), 87
getPIDSourceType()
method), 123
getPinStateQuadA()
method), 46
getPinStateQuadB ()
method), 47
getPinStateQuadlIdx()
method), 47
getPosition() (wpilib.canjaguar. CANJaguar method), 37
getPosition() (wpilib.cantalon.CANTalon method), 47

(wpilib.ultrasonic.Ultrasonic
(wpilib.cantalon. CANTalon
(wpilib.cantalon.CANTalon

(wpilib.cantalon.CANTalon

getPosition() (wpilib.command.pidcommand.PIDCommand getSetpoint() (wpilib.command.pidsubsystem.PIDSubsystem

method), 135

method), 144
getRawButton() (wpilib.joystick.Joystick method), 78
getRequirements() (wpilib.command.command.Command
method), 131

getReverseLimitOK() (wpilib.canjaguar. CANJaguar
method), 37

getSamplesToAverage() (wpilib.counter.Counter
method), 54

getSamplesToAverage() (wpilib.encoder.Encoder
method), 68

getSelected() (wpilib.sendablechooser.SendableChooser
method), 108
getSensorPosition() (wpilib.cantalon.CANTalon method),
47
getSensor Velocity()
method), 47
getServoAngleRange() (wpilib.servo.Servo method), 110
getSetpoint() (wpilib.canjaguar.CANJaguar method), 37
getSetpoint() (wpilib.cantalon.CANTalon method), 47
getSetpoint() (wpilib.command.pidcommand.PIDCommand
method), 135

(wpilib.cantalon.CANTalon

method), 136

getPosition() (wpilib.command.pidsubsystem.PIDSubsystengetSetpoint() (wpilib.interfaces.pidinterface.PIDInterface

method), 136

getPosition() (wpilib.pwm.PWM method), 94

getPositiveScaleFactor() (wpilib.pwm.PWM method), 94

getPOV() (wpilib.interfaces.generichid.GenericHID
method), 143

getPOV() (wpilib. joystick.Joystick method), 78

getPOVCount() (wpilib.joystick.Joystick method), 78

getPressureSwitchValue()
(wpilib.compressor.Compressor
50

getQuality() (wpilib._impl.dummycamera.CameraServer
method), 15, 17

getRangelnches() (wpilib.ultrasonic.Ultrasonic method),
123

getRangeMM() (wpilib.ultrasonic.Ultrasonic method),
123

getRate()

method),

(wpilib.adxrs450_gyro.ADXRS450_Gyro
method), 22
getRate() (wpilib.analoggyro.AnalogGyro method), 24
getRate() (wpilib.counter.Counter method), 54
getRate() (wpilib.encoder.Encoder method), 67
getRate() (wpilib.gyrobase.GyroBase method), 70
getRate() (wpilib.interfaces.gyro.Gyro method), 145
getRaw() (wpilib.encoder.Encoder method), 67
getRaw() (wpilib.pwm.PWM method), 94
getRawAxis() (wpilib.interfaces.generichid.GenericHID

method), 144

getRawAxis() (wpilib_joystick.Joystick method), 78

method), 146
getSetpoint() (wpilib.pidcontroller.PIDController
method), 87
getSpeed() (wpilib.canjaguar. CANJaguar method), 37
getSpeed() (wpilib.cantalon.CANTalon method), 47
getSpeed() (wpilib.pwm.PWM method), 94

getStickAxis() (wpilib.driverstation.DriverStation
method), 63

getStickAxisCount() (wpilib.driverstation.DriverStation
method), 63

getStickButton() (wpilib.driverstation.DriverStation
method), 63

getStickButtonCount() (wpilib.driverstation.DriverStation
method), 63

getStickButtons() (wpilib.driverstation.DriverStation
method), 63

getStickPOV () (wpilib.driverstation.DriverStation
method), 64

getStickPOVCount() (wpilib.driverstation.DriverStation
method), 64

getStickyFaultForLim() (wpilib.cantalon.CANTalon
method), 47

getStickyFaultForSoftLim() (wpilib.cantalon.CANTalon
method), 47

getStickyFaultOverTemp() (wpilib.cantalon.CANTalon
method), 47

getStickyFaultRevLim() (wpilib.cantalon.CANTalon
method), 47

Index

165

RobotPy WPILib Documentation, Release master

getStickyFaultRevSoftLim() (wpilib.cantalon.CANTalon
method), 47

getStickyFaultUnderVoltage()
(wpilib.cantalon.CANTalon method), 47

getStopped() (wpilib.counter.Counter method), 55

getStopped() (wpilib.encoder.Encoder method), 68

getStopped() (wpilib.interfaces.counterbase.CounterBase
method), 143

getString() (wpilib.preferences.Preferences method), 91

getString() (wpilib.smartdashboard.SmartDashboard
static method), 112

getTemp() (wpilib.cantalon.CANTalon method), 47

getTemperature() (wpilib.canjaguar. CANJaguar method),

getX() (wpilib.adx1345_spi. ADXL345_SPI method), 20

getX() (wpilib.adx1362.ADXL362 method), 21

getX() (wpilib.builtinaccelerometer.BuiltInAccelerometer
method), 32

getX() (wpilib.interfaces.accelerometer. Accelerometer
method), 142
getX() (wpilib.interfaces.generichid.GenericHID

method), 144
getX() (wpilib.joystick.Joystick method), 79
getY () (wpilib.adx1345_i2c. ADXL345_I2C method), 18
getY () (wpilib.adx1345_spi.ADXL345_SPI method), 20
getY () (wpilib.adx1362.ADX1.362 method), 21
getY () (wpilib.builtinaccelerometer.BuiltInAccelerometer
method), 32

getTemperature() (wpilib.powerdistributionpanel. PowerDistgbtlfionPafwelpilib.interfaces.accelerometer. Accelerometer

37
method), 89
getThrottle() (wpilib.interfaces.generichid.GenericHID

method), 144
getThrottle() (wpilib.joystick.Joystick method), 79
getTop() (wpilib.interfaces.generichid.GenericHID
method), 144
getTop() (wpilib.joystick.Joystick method), 79

method), 142
(wpilib.interfaces.generichid.GenericHID

method), 144

getY () (wpilib.joystick.Joystick method), 79

getZ() (wpilib.adx1345_i2c. ADXL345_12C method), 18

getZ() (wpilib.adx1345_spi. ADXL.345_SPI method), 20

getZ() (wpilib.adx1362.ADXL362 method), 21

getY()

getTotalCurrent() (wpilib.powerdistributionpanel. PowerDistgbtd{piiRapitib.builtinaccelerometer. BuiltinAccelerometer

method), 89

method), 32

getTotalEnergy() (wpilib.powerdistributionpanel. PowerDistrget#iOnParfelpilib.interfaces.accelerometer. Accelerometer

method), 89

getTotalPower() (wpilib.powerdistributionpanel.PowerDistripatZinPanel

method), 89
getTrigger() (wpilib.interfaces.generichid.GenericHID
method), 144
getTrigger() (wpilib.joystick.Joystick method), 79
getTriggerState() (wpilib.analogtrigger. AnalogTrigger
method), 30
getTwist() (wpilib.interfaces.generichid.GenericHID
method), 144
getTwist() (wpilib.joystick.Joystick method), 79
getType() (wpilib.command.scheduler.Scheduler
method), 138
getType() (wpilib.joystick.Joystick method), 79
getUserButton() (wpilib.utility.Utility static method), 125
getValue() (wpilib.analoginput.AnalogInput method), 27
getVoltage() (wpilib.analoginput.Analoglnput method),

27
getVoltage() (wpilib.analogoutput. AnalogOutput
method), 28

method), 142

(wpilib.interfaces.generichid. GenericHID
method), 144

getZ() (wpilib.joystick.Joystick method), 80

grab() (wpilib.buttons.trigger. Trigger method), 129

Gyro (class in wpilib.interfaces.gyro), 144

GyroBase (class in wpilib.gyrobase), 70

GyroBase.PIDSourceType (class in wpilib.gyrobase), 70

H

handle (wpilib.cantalon.CANTalon attribute), 47

has_key() (wpilib.preferences.Preferences method), 91

hasPeriodPassed() (wpilib.timer.Timer method), 121

helpers (wpilib.motorsafety.MotorSafety attribute), 85

helpers_lock (wpilib.motorsafety.MotorSafety attribute),
85

highPass() (wpilib.lineardigitalfilter.LinearDigitalFilter
static method), 82

holonomicDrive() (wpilib.robotdrive.RobotDrive
method), 101

getVoltage() (wpilib.powerdistributionpanel.PowerDistributionPanel

method), 90

getVoltage3V3() (wpilib.controllerpower.ControllerPower
static method), 52

getVoltage5V() (wpilib.controllerpower.ControllerPower
static method), 52

getVoltage6V() (wpilib.controllerpower.ControllerPower
static method), 52

getX() (wpilib.adx1345_i2c. ADXL345_I2C method), 18

12C (class in wpilib.i2c), 70

12C.Port (class in wpilib.i2c), 71

impl (wpilib.robotstate.RobotState attribute), 104

IN_SEQUENCE (wpilib.command.commandgroup.CommandGroup.Entry
attribute), 133

InAutonomous() (wpilib.driverstation.DriverStation
method), 62

166

Index

RobotPy WPILib Documentation, Release master

InDisabled() (wpilib.driverstation.DriverStation method),
62

initAccumulator()
method), 27

initAccumulator() (wpilib.spi.SPI method), 117

(wpilib.analoginput. AnalogInput

initDefaultCommand() (wpilib.command.subsystem.Subsystsfianceled()

method), 140
initialize() (wpilib.command.command.Command
method), 131

isAvgErrorValid()
method), 87

isBlackListed() (wpilib.solenoid.Solenoid method), 114

isBrownedOut() (wpilib.driverstation.DriverStation
method), 64

(wpilib.command.command.Command
method), 131

isControlEnabled() (wpilib.cantalon.CANTalon method),
47

(wpilib.pidcontroller.PIDController

initialize() (wpilib.command.commandgroup.CommandGrowgDisabled() (wpilib.driverstation.DriverStation method),

method), 134

64

initialize() (wpilib.command.printcommand.PrintCommand isDisabled() (wpilib.robotbase.RobotBase method), 99

method), 138

initialize() (wpilib.command.startcommand.StartCommand

method), 139
initializeHardwareConfiguration()
(wpilib.robotbase.RobotBase static method),
98
initializeLiveWindowComponents()

(wpilib.livewindow.LiveWindow static
method), 84

InOperatorControl() (wpilib.driverstation.DriverStation
method), 62

instances (wpilib.pidcontroller.PIDController attribute),
87

instances (wpilib.ultrasonic.Ultrasonic attribute), 123
InternalButton (class in wpilib.buttons.internalbutton),
128

interrupt (wpilib.interruptablesensorbase.InterruptableSensorBase
isFinished() (wpilib.command.commandgroup.CommandGroup

attribute), 73
InterruptableSensorBase (class in
wpilib.interruptablesensorbase), 72
interrupted() (wpilib.command.command.Command
method), 131

method), 134

attribute), 73
InTest() (wpilib.driverstation.DriverStation method), 62
Invalid (wpilib.driverstation.DriverStation.Alliance at-
tribute), 62

isAccumulatorChannel() (wpilib.analoginput. Analoglnput isFMSAttached()

method), 27
isAlive() (wpilib.motorsafety.MotorSafety method), 85

isDisabled() (wpilib.robotstate.RobotState static method),
104

isDSAttached()
method), 64

isEnable() (wpilib.pidcontroller.PIDController method),
88

isEnabled() (wpilib.canjaguar. CANJaguar method), 37

isEnabled() (wpilib.driverstation.DriverStation method),
64

isEnabled() (wpilib.interfaces.pidinterface.PIDInterface
method), 146

isEnabled() (wpilib.robotbase.RobotBase method), 99

isEnabled() (wpilib.robotstate.RobotState static method),
104

isEnabled() (wpilib.ultrasonic.Ultrasonic method), 123

isFinished() (wpilib.command.command.Command

method), 131

(wpilib.driverstation.DriverStation

method), 134

isFinished() (wpilib.command.printcommand.PrintCommand

method), 138

isFinished() (wpilib.command.startcommand.StartCommand
interrupted() (wpilib.command.commandgroup.CommandGroup
isFinished() (wpilib.command.waitcommand. WaitCommand
interrupts (wpilib.interruptablesensorbase.InterruptableSensorBase
isFinished() (wpilib.command.waitforchildren. WaitForChildren

method), 139
method), 140

method), 141

isFinished() (wpilib.command.waituntilcommand. WaitUntilCommand

method), 141

(wpilib.driverstation.DriverStation
method), 64

isFwdLimitSwitchClosed() (wpilib.cantalon.CANTalon

isAutoCaptureStarted() (wpilib._impl.dummycamera.CameraServer method), 47

method), 15, 17
isAutomaticMode() (wpilib.ultrasonic.Ultrasonic static
method), 123

isFwdSolenoidBlackListed()
(wpilib.doublesolenoid.DoubleSolenoid
method), 61

isAutonomous() (wpilib.driverstation.DriverStation isInterruptible() (wpilib.command.command.Command
method), 64 method), 131

isAutonomous() (wpilib.robotbase.RobotBase method), isInterruptible() (wpilib.command.commandgroup.CommandGroup
98 method), 134

isAutonomous() (wpilib.robotstate.RobotState static isNewControlData() (wpilib.driverstation.DriverStation
method), 104 method), 64

Index 167

RobotPy WPILib Documentation, Release master

isNewDataAvailable() (wpilib.robotbase.RobotBase
method), 99

isOperatorControl() (wpilib.driverstation.DriverStation
method), 64

isOperatorControl() (wpilib.robotbase.RobotBase
method), 99

isOperatorControl() (wpilib.robotstate.RobotState static
method), 104

isPulsing() (wpilib.digitaloutput.DigitalOutput method),
59

isRangeValid() (wpilib.ultrasonic.Ultrasonic method),
123

isReal() (wpilib.robotbase.RobotBase static method), 99

isRevLimitSwitchClosed() (wpilib.cantalon.CANTalon
method), 47

isRevSolenoidBlackListed()
(wpilib.doublesolenoid.DoubleSolenoid
method), 61

isRunning() (wpilib.command.command.Command
method), 131

isSafetyEnabled()
method), 85

isSimulation() (wpilib.robotbase.RobotBase
method), 99

isSysActive()
method), 64

isTest() (wpilib.driverstation.DriverStation method), 65

isTest() (wpilib.robotbase.RobotBase method), 99

isTest() (wpilib.robotstate.RobotState static method), 104

isTimedOut() (wpilib.command.command.Command
method), 132

(wpilib.motorsafety.MotorSafety
static

(wpilib.driverstation.DriverStation

k16G (wpilib.interfaces.accelerometer. Accelerometer.Range
attribute), 142

k1X (wpilib.counter.Counter.EncodingType attribute), 53

k1X (wpilib.encoder.Encoder.EncodingType attribute),
66

k1X (wpilib.interfaces.counterbase.CounterBase.EncodingType
attribute), 142

k1X (wpilib.pwm.PWM.PeriodMultiplier attribute), 93

k2G (wpilib.adx1345_i2c.ADXL345_I2C.Range at-
tribute), 18
k2G (wpilib.adx1345_spi.ADXL345_SPI.Range at-

tribute), 19

k2G (wpilib.adx1362.ADXL362.Range attribute), 21

k2G (wpilib.builtinaccelerometer.BuiltInAccelerometer.Range
attribute), 32

k2G (wpilib.interfaces.accelerometer. Accelerometer.Range
attribute), 142

k2X (wpilib.counter.Counter.EncodingType attribute), 53

k2X (wpilib.encoder.Encoder.EncodingType attribute),
66

k2X (wpilib.interfaces.counterbase.CounterBase.EncodingType
attribute), 142

k2X (wpilib.pwm.PWM.PeriodMultiplier attribute), 94

k4G (wpilib.adx1345_i2c.ADXL345_I2C.Range at-
tribute), 18
k4G (wpilib.adx1345_spi.ADXL345_SPI.Range at-

tribute), 19

k4G (wpilib.adx1362. ADXL362.Range attribute), 21

k4G (wpilib.builtinaccelerometer.BuiltInAccelerometer.Range
attribute), 32

k4G (wpilib.interfaces.accelerometer. Accelerometer.Range

isTimedOut() (wpilib.command.commandgroup.CommandGroup.Entmttribute), 142

method), 133
IterativeRobot (class in wpilib.iterativerobot), 73

J

Jaguar (class in wpilib.jaguar), 75

Joystick (class in wpilib.joystick), 76

Joystick.AxisType (class in wpilib.joystick), 76

Joystick.ButtonType (class in wpilib.joystick), 76

Joystick.RumbleType (class in wpilib.joystick), 77

JoystickButton (class in wpilib.buttons.joystickbutton),
128

Jumper (wpilib.canjaguar. CANJaguar.NeutralMode at-
tribute), 33

K

k16G (wpilib.adx1345_i2c.ADXL345_I2C.Range at-
tribute), 18

k16G (wpilib.adx1345_spi. ADXL345_SPI.Range at-

tribute), 19
k16G (wpilib.adx1362.ADXL362.Range attribute), 21

k16G (wpilib.builtinaccelerometer.BuiltInAccelerometer.Range

attribute), 32

k4X (wpilib.counter.Counter.EncodingType attribute), 53

k4X (wpilib.encoder.Encoder.EncodingType attribute),
66

k4X (wpilib.interfaces.counterbase.CounterBase.Encoding Type
attribute), 143

k4X (wpilib.pwm.PWM.PeriodMultiplier attribute), 94

k8G (wpilib.adx1345_i2c.ADXL345_I2C.Range at-
tribute), 18
k8G (wpilib.adx1345_spi. ADXL345_SPI.Range at-

tribute), 19

k8G (wpilib.adx1362.ADXL362.Range attribute), 21

k8G (wpilib.builtinaccelerometer.BuiltInAccelerometer.Range
attribute), 32

k8G (wpilib.interfaces.accelerometer. Accelerometer.Range
attribute), 142

kAccumulatorChannels (wpilib.analoginput.Analoglnput
attribute), 27

kAccumulatorSlot (wpilib.analoginput.Analoglnput at-
tribute), 27

kAddress (wpilib.adx1345_i2c. ADXL345_I2C attribute),

18

168

Index

RobotPy WPILib Documentation, Release master

kAddress_MultiByte (wpilib.adx1345_spi.ADXL.345_SPI
attribute), 20

kAddress_Read (wpilib.adx1345_spi. ADXL345_SPI at-
tribute), 20

kAnalogInputChannels
attribute), 109

kAnalogOutputChannels (wpilib.sensorbase.SensorBase
attribute), 109

kApproxBusVoltage
attribute), 37

kArcadeRatioCurve_Reported

(wpilib.sensorbase.SensorBase

(wpilib.canjaguar. CANJaguar

(wpilib.robotdrive.RobotDrive attribute),
101

kArcadeStandard_Reported
(wpilib.robotdrive.RobotDrive attribute),
101

kAverageBits (wpilib.analoggyro.AnalogGyro attribute),
24

kBoth (wpilib.relay.Relay.Direction attribute), 96

kBusVoltageFault ~ (wpilib.canjaguar. CANJaguar
tribute), 37

kCalibrationSampleTime
(wpilib.adxrs450_gyro.ADXRS450_Gyro
attribute), 22

kCalibrationSampleTime
(wpilib.analoggyro.AnalogGyro
24

kControllerRate (wpilib.canjaguar.CANJaguar attribute),
37

kCurrentFault (wpilib.canjaguar. CANJaguar attribute), 37

at-

attribute),

kDataRegister (wpilib.adx1345_i2c. ADXL345_I2C at-
tribute), 18

kDataRegister (wpilib.adx1345_spi. ADXL345_SPI at-
tribute), 20

kDataRegister (wpilib.adx1362.ADXL362 attribute), 21

kDefaultCameraName (wpilib._impl.dummycamera.USBCamera

attribute), 15, 16

kDefaultExpirationTime
attribute), 101

kDefaultMaxOutput (wpilib.robotdrive.RobotDrive at-
tribute), 102

kDefaultMaxServoPWM (wpilib.servo.Servo attribute),
110

kDefaultMinServoPWM (wpilib.servo.Servo attribute),
110

kDefaultPeriod (wpilib.pidcontroller.PIDController at-
tribute), 88

kDefaultPwmCenter (wpilib.pwm.PWM attribute), 95

kDefaultPwmPeriod (wpilib.pwm.PWM attribute), 95

kDefaultPwmStepsDown (wpilib.pwm.PWM attribute),
95

kDefaultSensitivity
attribute), 102

kDefaultThrottleAxis (wpilib.joystick.Joystick attribute),
80

kDefaultTopButton (wpilib.joystick.Joystick attribute),
80

kDefaultTriggerButton
tribute), 80

kDefaultTwistAxis (wpilib.joystick.Joystick attribute), 80

(wpilib.robotdrive.RobotDrive

(wpilib.robotdrive.RobotDrive

(wpilib.joystick.Joystick at-

kDataFormat_FullRes (wpilib.adx1345_i2c.ADX1.345_I2C kDefaultVoltsPerDegreePerSecond

attribute), 18

kDataFormat_FullRes (wpilib.adx1345_spi.ADXL.345_SPI

attribute), 20

(wpilib.analoggyro.AnalogGyro attribute),
24

kDefaultX Axis (wpilib.joystick.Joystick attribute), 80

kDataFormat_IntInvert (wpilib.adx1345_i2c. ADXL345_I2CkDefaultYAxis (wpilib.joystick.Joystick attribute), 80

attribute), 18

kDefaultZAxis (wpilib.joystick.Joystick attribute), 80

kDataFormat_IntInvert (wpilib.adx1345_spi.ADXL.345_SPIkDegreePerSecondPerLSB

attribute), 20

kDataFormat_Justify (wpilib.adx1345_i2c. ADXL345_I2C

attribute), 18

kDataFormat_Justify (wpilib.adx1345_spi. ADXL345_SPI

attribute), 20

kDataFormat_SelfTest (wpilib.adx1345_i2c. ADXL345_I2C

attribute), 18

kDataFormat_SelfTest (wpilib.adx1345_spi. ADXL345_SPI

attribute), 20

kDataFormat_SPI (wpilib.adx1345_i2c.ADX1L.345_I2C
attribute), 18

kDataFormat_SPI (wpilib.adx1345_spi. ADXL345_SPI
attribute), 20

kDataFormatRegister (wpilib.adx1345_i2c. ADXL345_I2C

attribute), 18

kDataFormatRegister (wpilib.adx1345_spi. ADXL.345_SPI

attribute), 20

(wpilib.adxrs450_gyro. ADXRS450_Gyro
attribute), 22
kDelayForSolicitedSignals
attribute), 47
kDigitalChannels (wpilib.sensorbase.SensorBase
tribute), 109

(wpilib.cantalon.CANTalon

at-

kDisplacement (wpilib.analogaccelerometer. AnalogAccelerometer. PIDSour

attribute), 23

kDisplacement (wpilib.analoggyro.AnalogGyro.PIDSourceType

attribute), 24

kDisplacement (wpilib.analoginput. AnalogInput.PIDSourceType

attribute), 25

kDisplacement (wpilib.analogpotentiometer. AnalogPotentiometer. PIDSourc

attribute), 29
kDisplacement (wpilib.counter.Counter.PIDSourceType
attribute), 54

Index

169

RobotPy WPILib Documentation, Release master

kDisplacement (wpilib.encoder.Encoder.PIDSourceType
attribute), 67

kGateDriverFault
tribute), 37

(wpilib.canjaguar. CANJaguar at-

kDisplacement (wpilib.gyrobase.GyroBase.PIDSourceType kGearToothThreshold (wpilib.geartooth.GearTooth at-

attribute), 70

kDisplacement (wpilib.interfaces.pidsource. PIDSource. PID $€inEeillyS 8

attribute), 146

kDisplacement (wpilib.pidcontroller.PIDController.PIDSourk€Epec.SB

attribute), 86

tribute), 70

(wpilib.adx1345_i2c. ADXL345_12C at-
tribute), 19
(wpilib.adx1345_spi. ADX1L.345_SPI at-

tribute), 20

kDisplacement (wpilib.ultrasonic.Ultrasonic.PIDSource Typ&HiCSTRegister (wpilib.adxrs450_gyro.ADXRS450_Gyro

attribute), 122
kEncoder (wpilib.canjaguar.CANJaguar.Mode attribute),
33
kExternalDirection
tribute), 53
keys() (wpilib.preferences.Preferences method), 91

(wpilib.counter.Counter.Mode at-

kFallingPulse (wpilib.analogtrigger. AnalogTrigger. Analog ThijgestighbBorts

attribute), 29

attribute), 22
klInches (wpilib.ultrasonic.Ultrasonic.Unit attribute), 122

kInWindow (wpilib.analogtrigger. AnalogTrigger. AnalogTriggerType

attribute), 29

kInWindow (wpilib.analogtriggeroutput. Analog TriggerOutput.AnalogTrigg

attribute), 31
(wpilib.driverstation.DriverStation
tribute), 65

at-

kFallingPulse (wpilib.analogtriggeroutput. Analog TriggerOukhetf A Galnbriggefdsgre generichid. GenericHID . Hand at-

attribute), 31

kFaultRegister (wpilib.adxrs450_gyro.ADXRS450_Gyro
attribute), 22

kFilterCtl_ODR_100Hz (wpilib.adx1362.ADXL362 at-
tribute), 21

kFilterCtl_Range2G (wpilib.adx1362.ADXL362 at-
tribute), 21

kFilterCtl_Range4G (wpilib.adx1362.ADXL362 at-
tribute), 21

kFilterCtl_Range8G (wpilib.adx1362.ADXL362 at-
tribute), 21

kFilterCtlRegister (wpilib.adx1362.ADXL.362 attribute),
21

kFixedFlourescent2 (wpilib._impl.dummycamera.USBCamera. WhiteBwipilde.robotdrive.RobotDrive

attribute), 14, 16

tribute), 143

kLeftRumble val (wpilib.joystick.Joystick. RumbleType
attribute), 77

kLoCSTRegister (wpilib.adxrs450_gyro.ADXRS450_Gyro
attribute), 22

kMaxMessageDataSize (wpilib.canjaguar. CANJaguar at-
tribute), 37

kMaxNumberOfMotors
attribute), 102

kMaxServoAngle (wpilib.servo.Servo attribute), 110

kMaxUltrasonicTime (wpilib.ultrasonic.Ultrasonic
attribute), 123

kMecanumCartesian_Reported

(wpilib.robotdrive.RobotDrive

attribute),
102

kFixedFluorescent1 (wpilib._impl.dummycamera.USBCam&¥¢hiteBHalare Reported

attribute), 14, 16

(wpilib.robotdrive.RobotDrive attribute),

kFixedIndoor (wpilib._impl.dummycamera.USBCamera.WhiteBalanc¢(02

attribute), 14, 16

kMillimeters (wpilib.ultrasonic.Ultrasonic.Unit attribute),

kFixedOutdoor1 (wpilib._impl.dummycamera.USBCamera. WhiteBalaiit®

attribute), 14, 16

kMinServoAngle (wpilib.servo.Servo attribute), 110

kFixedOutdoor2 (wpilib._impl.dummycamera.USBCamera. MhXdB@lqitib.i2¢c.12C.Port attribute), 71

attribute), 15, 16

kForward (wpilib.doublesolenoid.DoubleSolenoid. Value
attribute), 61

kForward (wpilib.relay.Relay.Direction attribute), 96

kForward (wpilib.relay.Relay. Value attribute), 96

kForwardLimit (wpilib.canjaguar.CANJaguar attribute),
37

kFrontLeft (wpilib.robotdrive.RobotDrive.MotorType at-
tribute), 100

kFrontRight (wpilib.robotdrive.RobotDrive.MotorType
attribute), 100

kFullMessageIDMask (wpilib.canjaguar. CANJaguar at-
tribute), 37

kMXP (wpilib.spi.SPIL.Port attribute), 116

kNumAxis (wpilib.joystick.Joystick.AxisType attribute),
76

kNumButton (wpilib.joystick.Joystick.ButtonType
attribute), 77

kOff (wpilib.doublesolenoid.DoubleSolenoid.Value at-
tribute), 61

kOff (wpilib.relay.Relay. Value attribute), 97

kOn (wpilib.relay.Relay. Value attribute), 97

kOnboard (wpilib.i2¢.I2C.Port attribute), 71

kOnboardCSO0 (wpilib.spi.SPIL.Port attribute), 116

kOnboardCS1 (wpilib.spi.SPIL.Port attribute), 116

kOnboardCS2 (wpilib.spi.SPIL.Port attribute), 116

kOnboardCS3 (wpilib.spi.SPIL.Port attribute), 116

170

Index

RobotPy WPILib Documentation, Release master

kOversampleBits (wpilib.analoggyro.AnalogGyro at-
tribute), 25

kPartldRegister (wpilib.adx1362.ADXL.362 attribute), 21

kPDPChannels (wpilib.sensorbase.SensorBase attribute),
109

kPDPModules (wpilib.sensorbase.SensorBase attribute),
109

kPIDRegister (wpilib.adxrs450_gyro.ADXRS450_Gyro
attribute), 22

kPingTime (wpilib.ultrasonic.Ultrasonic attribute), 123

kPort (wpilib._impl.dummycamera.CameraServer
tribute), 15, 17

kPotentiometer (wpilib.canjaguar.CANJaguar.Mode at-
tribute), 33

at-

kRate (wpilib.analoggyro.AnalogGyro.PIDSourceType
attribute), 24
kRate (wpilib.analoginput.Analoglnput.PIDSourceType
attribute), 25
kRate (wpilib.analogpotentiometer. AnalogPotentiometer.PIDSource Type
attribute), 29
kRate (wpilib.counter.Counter.PIDSourceType attribute),
54
kRate (wpilib.encoder.Encoder.PIDSourceType attribute),
67
(wpilib.gyrobase.GyroBase.PIDSourceType
attribute), 70
kRate (wpilib.interfaces.pidsource.PIDSource.PIDSourceType
attribute), 146

kRate

kPowerCtl_AutoSleep (wpilib.adx1345_i2c.ADXL.345_I2C kRate (wpilib.pidcontroller.PIDController.PIDSourceType

attribute), 19

attribute), 86

kPowerCtl_AutoSleep (wpilib.adx1345_spi. ADXL345_SPI kRate (wpilib.ultrasonic.Ultrasonic.PIDSourceType at-

attribute), 20

kPowerCtl_AutoSleep
attribute), 21

kPowerCtl_Link (wpilib.adx1345_i2c. ADXL345_I2C at-
tribute), 19

kPowerCtl_Link (wpilib.adx1345_spi. ADXL345_SPI at-
tribute), 20

kPowerCtl_Measure (wpilib.adx1345_i2c. ADXL345_12C
attribute), 19

kPowerCtl_Measure (wpilib.adx1345_spi. ADXL345_SPI
attribute), 20

kPowerCtl_Measure
tribute), 21

kPowerCtl_Sleep (wpilib.adx1345_i2c. ADXL.345_12C at-
tribute), 19

kPowerCtl_Sleep (wpilib.adx1345_spi. ADXL345_SPI at-
tribute), 20

kPowerCtl_UltralLowNoise
attribute), 22

kPowerCtlRegister (wpilib.adx1345_i2c.ADXL.345_I2C
attribute), 19

kPowerCtlRegister (wpilib.adx1345_spi. ADXL345_SPI
attribute), 20

kPowerCtlRegister (wpilib.adx1362.ADXL.362 attribute),
21

kPriority (wpilib.ultrasonic.Ultrasonic attribute), 123

kPulseLength (wpilib.counter.Counter.Mode attribute),
53

kPwmChannels (wpilib.sensorbase.SensorBase attribute),
109

kPwmbDisabled (wpilib.pwm.PWM attribute), 95

kQuadEncoder (wpilib.canjaguar.CANJaguar.Mode at-
tribute), 33

kQuadRegister (wpilib.adxrs450_gyro.ADXRS450_Gyro
attribute), 22

(wpilib.adx1362.ADX1.362

(wpilib.adx1362.ADXL362 at-

(wpilib.adx1362.ADX1.362

tribute), 122

kRateRegister (wpilib.adxrs450_gyro.ADXRS450_Gyro
attribute), 22

kRearLeft (wpilib.robotdrive.RobotDrive.MotorType at-
tribute), 100

kRearRight (wpilib.robotdrive.RobotDrive.MotorType at-
tribute), 100

kReceiveStatusAttempts
attribute), 38

kRegRead (wpilib.adx1362.ADXL362 attribute), 22

kRegWrite (wpilib.adx1362.ADXL.362 attribute), 22

kRelayChannels (wpilib.sensorbase.SensorBase
tribute), 109

kResetOnFallingEdge (wpilib.encoder.Encoder.IndexingType
attribute), 66

kResetOnRisingEdge (wpilib.encoder.Encoder.IndexingType
attribute), 66

kResetWhileHigh (wpilib.encoder.Encoder.IndexingType
attribute), 66

kResetWhileLow (wpilib.encoder.Encoder.IndexingType
attribute), 67

kReverse (wpilib.doublesolenoid.DoubleSolenoid.Value
attribute), 61

kReverse (wpilib.relay.Relay.Direction attribute), 96

kReverse (wpilib.relay.Relay. Value attribute), 97

kReverseLimit (wpilib.canjaguar.CANJaguar attribute),

38

(wpilib.interfaces.generichid.GenericHID.Hand

attribute), 143

kRightRumble_val (wpilib.joystick.Joystick. RumbleType
attribute), 77

kRisingPulse (wpilib.analogtrigger.AnalogTrigger.AnalogTriggerType
attribute), 30

(wpilib.canjaguar. CANJaguar

at-

kRight

kRisingPulse (wpilib.analogtriggeroutput. AnalogTriggerOutput. AnalogTrig

attribute), 31

kRate (wpilib.analogaccelerometer. AnalogAccelerometer. PIkStonpiePypiod (wpilib.adxrs450_gyro. ADXRS450_Gyro

attribute), 23

attribute), 22

Index

171

RobotPy WPILib Documentation, Release master

kSamplesPerSecond (wpilib.analoggyro.AnalogGyro at-
tribute), 25

kSemiperiod (wpilib.counter.Counter.Mode attribute), 53

kSendMessagePeriod (wpilib.canjaguar. CANJaguar at-
tribute), 38

kY (wpilib.joystick.Joystick.AxisType attribute), 76

kZ (wpilib.adx1345_i2c. ADXL345_I2C.Axes attribute),
18

kZ (wpilib.adx1345_spi. ADXL345_SPI.Axes attribute),
19

kSize160x120 (wpilib._impl.dummycamera.CameraServer kZ (wpilib.adx1362.ADX1.362.Axes attribute), 21

attribute), 15, 17

kSize320x240 (wpilib._impl.dummycamera.CameraServer

attribute), 15, 17

kZ (wpilib.joystick.Joystick.AxisType attribute), 76

kSize640x480 (wpilib._impl.dummycamera.CameraServer [imit() (wpilib.robotdrive.RobotDrive static method), 102

attribute), 15, 17

LinearDigitalFilter (class in wpilib.lineardigitalfilter), 80

kSNHighRegister (wpilib.adxrs450_gyro. ADXRS450_GyroLjveWindow (class in wpilib.livewindow), 83

attribute), 22

kSNLowRegister (wpilib.adxrs450_gyro.ADXRS450_Gyro

attribute), 22

kSolenoidChannels (wpilib.sensorbase.SensorBase
attribute), 109
kSolenoidModules (wpilib.sensorbase.SensorBase

attribute), 109
kSpeedOfSoundInchesPerSec
(wpilib.ultrasonic.Ultrasonic attribute), 123

liveWindowEnabled (wpilib.livewindow.LiveWindow at-
tribute), 84

LiveWindowSendable (class in
wpilib.livewindowsendable), 84

livewindowTable (wpilib.livewindow.LiveWindow
attribute), 84

lockChanges() (wpilib.command.command.Command
method), 132

logger (wpilib.iterativerobot.IterativeRobot attribute), 74

kState (wpilib.analogtrigger. AnalogTrigger. AnalogTriggerTypgger (wpilib.samplerobot.SampleRobot attribute), 105

attribute), 30

kState (wpilib.analogtriggeroutput. Analog TriggerOutput. An\lg Trigger Type

attribute), 31

kSystemClockTicksPerMicrosecond
(wpilib.sensorbase.SensorBase
109

kTank_Reported (wpilib.robotdrive.RobotDrive at-
tribute), 102

kTemperatureFault (wpilib.canjaguar. CANJaguar at-
tribute), 38

kTemRegister (wpilib.adxrs450_gyro.ADXRS450_Gyro
attribute), 22

kThrottle (wpilib.joystick.Joystick.AxisType attribute),
76

kTop (wpilib.joystick.Joystick.ButtonType attribute), 77

kTrigger (wpilib.joystick.Joystick.ButtonType attribute),
77

kTrustedMessages
tribute), 38

kTwist (wpilib.joystick.Joystick.AxisType attribute), 76

kTwoPulse (wpilib.counter.Counter.Mode attribute), 53

kX (wpilib.adx1345_i2c. ADXL345_I2C.Axes attribute),
18

kX (wpilib.adx1345_spi. ADXL345_SPI.Axes attribute),
19

kX (wpilib.adx1362.ADXL.362.Axes attribute), 21

kX (wpilib.joystick.Joystick.AxisType attribute), 76

kY (wpilib.adx1345_i2c.ADXL345_I2C.Axes attribute),
18

kY (wpilib.adx1345_spi. ADXL345_SPI.Axes attribute),
19

kY (wpilib.adx1362.ADXL.362.Axes attribute), 21

attribute),

(wpilib.canjaguar.CANJaguar at-

main() (wpilib.robotbase.RobotBase static method), 99

mecanumDrive_Cartesian()
(wpilib.robotdrive.RobotDrive
102

mecanumDrive_Polar()
method), 102

MotorSafety (class in wpilib.motorsafety), 85

movingAverage() (wpilib.lineardigitalfilter.LinearDigitalFilter
static method), 82

method),

(wpilib.robotdrive.RobotDrive

mutex (wpilib.digitalglitchfilter.DigitalGlitchFilter
attribute), 58

N

NamedSendable (class in

wpilib.interfaces.namedsendable), 145

NetworkButton (class in wpilib.buttons.networkbutton),
128

NEW_LINE (wpilib.preferences.Preferences attribute),
90

nextPeriodReady() (wpilib.iterativerobot.IterativeRobot
method), 74

normalize() (wpilib.robotdrive.RobotDrive
method), 102

static

O

onTarget() (wpilib.command.pidsubsystem.PIDSubsystem
method), 136

onTarget() (wpilib.pidcontroller.PIDController method),
88

172

Index

RobotPy WPILib Documentation, Release master

openCamera() (wpilib._impl.dummycamera.USBCamera
method), 15, 16

operatorControl() (wpilib.samplerobot.SampleRobot
method), 105

OPTIONS (wpilib.sendablechooser.SendableChooser at-
tribute), 107

P

PercentageTolerance_onTarget()
(wpilib.pidcontroller.PIDController
86

PercentVbus (wpilib.canjaguar.CANJaguar.ControlMode
attribute), 33

PercentVbus (wpilib.cantalon.CANTalon.ControlMode
attribute), 44

PIDCommand (class in wpilib.command.pidcommand),
134

PIDController (class in wpilib.pidcontroller), 86

PIDController.PIDSourceType (class in
wpilib.pidcontroller), 86

method),

port (wpilib.analoginput. AnalogInput attribute), 27

port (wpilib.analogoutput. AnalogOutput attribute), 28

port (wpilib.analogtrigger. AnalogTrigger attribute), 30

port (wpilib.digitalsource.DigitalSource attribute), 60

port (wpilib.i2¢.I2C attribute), 71

port (wpilib.pwm.PWM attribute), 95

port (wpilib.relay.Relay attribute), 97

port (wpilib.solenoid.Solenoid attribute), 114

port (wpilib.spi.SPI attribute), 117

Position (wpilib.canjaguar.CANJaguar.ControlMode at-

tribute), 33

(wpilib.cantalon.CANTalon.ControlMode

attribute), 44

Potentiometer (class in wpilib.interfaces.potentiometer),
147

PowerDistributionPanel (class in
wpilib.powerdistributionpanel), 89

Preferences (class in wpilib.preferences), 90

PrintCommand (class in
wpilib.command.printcommand), 137

Position

pidGet() (wpilib.analogaccelerometer. AnalogAccelerometerpulse() (wpilib.digitaloutput.DigitalOutput method), 59

method), 23
pidGet() (wpilib.analoginput. AnalogInput method), 27

pidGet() (wpilib.analogpotentiometer. AnalogPotentiometer

method), 29
pidGet() (wpilib.counter.Counter method), 55
pidGet() (wpilib.encoder.Encoder method), 68
pidGet() (wpilib.filter.Filter method), 69
pidGet() (wpilib.gyrobase.GyroBase method), 70

pidGet() (wpilib.interfaces.pidsource.PIDSource
method), 146
pidGet() (wpilib.lineardigitalfilter.LinearDigitalFilter

method), 82
pidGet() (wpilib.ultrasonic.Ultrasonic method), 123
pidGetSource() (wpilib.filter.Filter method), 69
PIDInterface (class in wpilib.interfaces.pidinterface), 145
PIDOutput (class in wpilib.interfaces.pidoutput), 146
PIDSource (class in wpilib.interfaces.pidsource), 146
PIDSource.PIDSourceType (class in
wpilib.interfaces.pidsource), 146
PIDSubsystem (class in wpilib.command.pidsubsystem),
136
pidWrite() (wpilib.canjaguar. CANJaguar method), 38
pidWrite() (wpilib.cantalon.CANTalon method), 47
pidWrite() (wpilib.interfaces.pidoutput.PIDOutput
method), 146
pidWrite() (wpilib.jaguar.Jaguar method), 75
pidWrite() (wpilib.sd540.SD540 method), 106
pidWrite() (wpilib.spark.Spark method), 115
pidWrite() (wpilib.talon.Talon method), 119
pidWrite() (wpilib.talonsrx.TalonSRX method), 120
pidWrite() (wpilib.victor. Victor method), 125
pidWrite() (wpilib.victorsp. VictorSP method), 126
ping() (wpilib.ultrasonic.Ultrasonic method), 123

put() (wpilib.preferences.Preferences method), 91

putBoolean() (wpilib.preferences.Preferences method),
92

putBoolean() (wpilib.smartdashboard.SmartDashboard
static method), 112

putData() (wpilib.smartdashboard.SmartDashboard static
method), 112

putDouble() (wpilib.smartdashboard.SmartDashboard
static method), 112

putFloat() (wpilib.preferences.Preferences method), 92

putlnt() (wpilib.preferences.Preferences method), 92

putlnt() (wpilib.smartdashboard.SmartDashboard static
method), 112

putNumber() (wpilib.smartdashboard.SmartDashboard
static method), 113

putString() (wpilib.preferences.Preferences method), 92

putString() (wpilib.smartdashboard.SmartDashboard
static method), 113

PWM (class in wpilib.pwm), 93

PWM.PeriodMultiplier (class in wpilib.pwm), 93

pwmGenerator (wpilib.digitaloutput.DigitalOutput
attribute), 59

Q

QuadEncoder (wpilib.cantalon.CANTalon.FeedbackDevice
attribute), 44
QuadEncoder (wpilib.cantalon. CANTalon.StatusFrameRate
attribute), 44

R

read() (wpilib.i2¢.I2C method), 71
read() (wpilib.preferences.Preferences method), 92
read() (wpilib.spi.SPI method), 117

Index

173

RobotPy WPILib Documentation, Release master

readFallingTimestamp() (wpilib.interruptablesensorbase.IntaasgitibttdFresgyB péwpilib.powerdistributionpanel. PowerDistributionPanel

method), 73
readOnly() (wpilib.i2¢c.I2C method), 71

readRisingTimestamp() (wpilib.interruptablesensorbase.Interetypta BlENmmoxB asgilib.command. pidcommand. PIDCommand

method), 73
(wpilib.driverstation.DriverStation. Alliance
tribute), 62

Red at-

method), 90
Resource (class in wpilib.resource), 97

method), 135

returnPIDInput() (wpilib.command.pidsubsystem.PIDSubsystem

method), 136

registerSubsystem() (wpilib.command.scheduler.Scheduler reverseOutput() (wpilib.cantalon.CANTalon method), 47

method), 138

Relay (class in wpilib.relay), 96

Relay.Direction (class in wpilib.relay), 96

Relay.Value (class in wpilib.relay), 96

relayChannels (wpilib.relay.Relay attribute), 97

release() (wpilib.driverstation.DriverStation method), 65

remove() (wpilib.command.scheduler.Scheduler method),
138

remove() (wpilib.digitalglitchfilter.DigitalGlitchFilter
method), 58

remove() (wpilib.preferences.Preferences method), 92

removeAll() (wpilib.command.scheduler.Scheduler
method), 138

removeComponent() (wpilib.livewindow.LiveWindow
static method), 84

reverseSensor() (wpilib.cantalon.CANTalon method), 47

RobotBase (class in wpilib.robotbase), 98

RobotDrive (class in wpilib.robotdrive), 99

RobotDrive.MotorType (class in wpilib.robotdrive), 100

robotlnit() (wpilib.iterativerobot.IterativeRobot method),
74

robotlnit() (wpilib.samplerobot.SampleRobot method),
105

robotMain() (wpilib.samplerobot.SampleRobot method),
105

RobotState (class in wpilib.robotstate), 104

rotateVector() (wpilib.robotdrive.RobotDrive
method), 102

run() (wpilib.command.command.Command method),
132

run() (wpilib.command.scheduler.Scheduler method), 139

run() (wpilib.livewindow.LiveWindow static method), 84

S

static

requestInterrupts() (wpilib.interruptablesensorbase. InterruptahlepansorRases in wpilib.safepwm), 104

removed() (wpilib.command.command.Command
method), 132

reportError() (wpilib.driverstation.DriverStation static
method), 65
method), 73

requestMessage() (wpilib.canjaguar. CANJaguar method),
38

requires() (wpilib.command.command.Command
method), 132

reset() (wpilib.adxrs450_gyro.ADXRS450_Gyro
method), 22

reset() (wpilib.analoggyro.AnalogGyro method), 25

reset() (wpilib.canjaguar. CANJaguar method), 38

reset() (wpilib.counter.Counter method), 55

reset() (wpilib.encoder.Encoder method), 68

reset() (wpilib.filter.Filter method), 69

reset() (wpilib.gyrobase.GyroBase method), 70

reset() (wpilib.interfaces.counterbase.CounterBase
method), 143

reset() (wpilib.interfaces.gyro.Gyro method), 145

reset() (wpilib.interfaces.pidinterface.PIDInterface
method), 146
reset() (wpilib.lineardigitalfilter.LinearDigitalFilter

method), 82
reset() (wpilib.pidcontroller.PIDController method), 88
reset() (wpilib.timer. Timer method), 121
resetAccumulator() (wpilib.analoginput. AnalogInput
method), 27
resetAccumulator() (wpilib.spi.SPI method), 117

SampleRobot (class in wpilib.samplerobot), 104

save() (wpilib.preferences.Preferences method), 93

SAVE_FIELD (wpilib.preferences.Preferences attribute),
90

Scheduler (class in wpilib.command.scheduler), 138

SD540 (class in wpilib.sd540), 106

SELECTED (wpilib.sendablechooser.SendableChooser
attribute), 107

Sendable (class in wpilib.sendable), 107

SendableChooser (class in wpilib.sendablechooser), 107

sendMessage() (wpilib.canjaguar.CANJaguar method),
38

SensorBase (class in wpilib.sensorbase), 108

sensors (wpilib.livewindow.LiveWindow attribute), 84

sensors (wpilib.ultrasonic.Ultrasonic attribute), 123

server (wpilib._impl.dummycamera.CameraServer
attribute), 15, 17

Servo (class in wpilib.servo), 110

set() (wpilib.canjaguar. CANJaguar method), 38

set() (wpilib.cantalon.CANTalon method), 47

set() (wpilib.digitaloutput.DigitalOutput method), 59

set() (wpilib.doublesolenoid.DoubleSolenoid method), 61

set() (wpilib.interfaces.speedcontroller.SpeedController
method), 147

set() (wpilib.jaguar.Jaguar method), 76

set() (wpilib.relay.Relay method), 97

174

Index

RobotPy WPILib Documentation, Release master

set() (wpilib.sd540.SD540 method), 107

set() (wpilib.servo.Servo method), 110

set() (wpilib.solenoid.Solenoid method), 114

set() (wpilib.solenoidbase.SolenoidBase method), 115
set() (wpilib.spark.Spark method), 115

set() (wpilib.talon.Talon method), 119

set() (wpilib.talonsrx.TalonSRX method), 120

set() (wpilib.victor.Victor method), 125

set() (wpilib.victorsp.VictorSP method), 127

setCurrentModePotentiometer()
(wpilib.canjaguar. CANJaguar method), 39
setCurrentModeQuadEncoder()
(wpilib.canjaguar. CANJaguar method), 39
setD() (wpilib.canjaguar. CANJaguar method), 39
setD() (wpilib.cantalon.CANTalon method), 48
setDeadband() (wpilib.analoggyro.AnalogGyro method),
25
setDefaultCommand() (wpilib.command.subsystem.Subsystem

setAbsoluteTolerance() (wpilib.command.pidsubsystem.PIDSubsystermethod), 140

method), 137

setAbsoluteTolerance() (wpilib.pidcontroller. PIDController

method), 88

setAccumulatorCenter() (wpilib.analoginput. AnalogInput
method), 27

setAccumulatorCenter() (wpilib.spi.SPI method), 117

setAccumulatorDeadband()
(wpilib.analoginput. AnalogInput
27

setAccumulatorDeadband() (wpilib.spi.SPI method), 117

setAccumulatorlnitial Value()
(wpilib.analoginput. AnalogInput
27

setAngle() (wpilib.servo.Servo method), 110

setAutomaticMode() (wpilib.ultrasonic.Ultrasonic
method), 123

method),

method),

setAverageBits() (wpilib.analoginput. AnalogInput
method), 27

setAveraged() (wpilib.analogtrigger.AnalogTrigger
method), 30

setAxisChannel() (wpilib.joystick.Joystick method), 80
setBounds() (wpilib.pwm.PWM method), 95
setBrightness() (wpilib._impl.dummycamera.USBCamera
method), 15, 16
setCANJaguarSyncGroup()
(wpilib.robotdrive.RobotDrive
102
setChipSelectActiveHigh() (wpilib.spi.SPI method), 117
setChipSelectActiveLow() (wpilib.spi.SPI method), 118
setClockActiveHigh() (wpilib.spi.SPI method), 118
setClockActiveLow() (wpilib.spi.SPI method), 118
setClockRate() (wpilib.spi.SPI method), 118
setClosedLoopControl() (wpilib.compressor.Compressor

method),

method), 50

setCloseLoopRampRate() (wpilib.cantalon.CANTalon
method), 48

setContinuous() (wpilib.pidcontroller.PIDController

method), 88

setDefaultSolenoidModule()
(wpilib.sensorbase.SensorBase static method),
109

setDirection() (wpilib.relay.Relay method), 97

setDistancePerPulse() (wpilib.counter.Counter method),
55

setDistancePerPulse() (wpilib.encoder.Encoder method),
68

setDistanceUnits() (wpilib.ultrasonic.Ultrasonic method),
124

setDownSource() (wpilib.counter.Counter method), 55

setDownSourceEdge() (wpilib.counter.Counter method),
56

setEnabled() (wpilib.livewindow.LiveWindow
method), 84

setEnabled() (wpilib.ultrasonic.Ultrasonic method), 124

setExpiration() (wpilib.motorsafety.MotorSafety
method), 85

setExposure Auto() (wpilib._impl.dummycamera.USBCamera
method), 15, 16

setExposureHoldCurrent()
(wpilib._impl.dummycamera.USBCamera
method), 15, 16

setExposureManual() (wpilib._impl.dummycamera.USBCamera
method), 15, 16

setExternalDirectionMode()

static

(wpilib.counter.Counter

method), 56

setF() (wpilib.cantalon.CANTalon method), 48

setFeedbackDevice() (wpilib.cantalon.CANTalon
method), 48

setFiltered() (wpilib.analogtrigger.AnalogTrigger
method), 30

setForwardSoftLimit() (wpilib.cantalon.CANTalon
method), 48

setFPS() (wpilib._impl.dummycamera.USBCamera

method), 15, 16
setGlobalSampleRate() (wpilib.analoginput.AnalogInput
static method), 28

setCurrentCommand() (wpilib.command.subsystem.Subsystsetl() (wpilib.canjaguar. CANJaguar method), 39

method), 140
setCurrentModeEncoder() (wpilib.canjaguar. CANJaguar
method), 38
setCurrentModePID()
method), 39

(wpilib.canjaguar. CANJaguar

setl() (wpilib.cantalon.CANTalon method), 48

setimage() (wpilib._impl.dummycamera.CameraServer
method), 16, 17

setIndexSource() (wpilib.encoder.Encoder method), 68

Index

175

RobotPy WPILib Documentation, Release master

setIlnputRange() (wpilib.command.pidsubsystem.PIDSubsyssetRercentModePotentiometer()

method), 137

setInputRange() (wpilib.pidcontroller. PIDController
method), 88

setInterruptible() (wpilib.command.command.Command
method), 132

(wpilib.canjaguar. CANJaguar method), 40
setPercentModeQuadEncoder()
(wpilib.canjaguar. CANJaguar method), 40

setPercentTolerance() (wpilib.command.pidsubsystem.PIDSubsystem

method), 137

setlnverted() (wpilib.buttons.internalbutton.InternalButton setPercentTolerance() (wpilib.pidcontroller. PIDController

method), 128
setInverted() (wpilib.canjaguar. CANJaguar method), 39
setlnverted() (wpilib.cantalon.CANTalon method), 48

method), 88

setPeriodCycles() (wpilib.digitalglitchfilter.DigitalGlitchFilter

method), 58

setlnverted() (wpilib.interfaces.speedcontroller.SpeedContro$ktPeriodMultiplier() (wpilib.pwm.PWM method), 95

method), 147
setlnverted() (wpilib.jaguar.Jaguar method), 76
setlnverted() (wpilib.sd540.SD540 method), 107
setlnverted() (wpilib.spark.Spark method), 116
setlnverted() (wpilib.talon.Talon method), 119
setlnverted() (wpilib.talonsrx.TalonSRX method), 120
setInverted() (wpilib.victor. Victor method), 126
setlnverted() (wpilib.victorsp.VictorSP method), 127
setInvertedMotor() (wpilib.robotdrive.RobotDrive
method), 103
setlZone() (wpilib.cantalon.CANTalon method), 48
setLeftRightMotorOutputs()

(wpilib.robotdrive.RobotDrive method),
103

setLimitsRaw() (wpilib.analogtrigger. AnalogTrigger
method), 30

setLimitsVoltage() (wpilib.analogtrigger. AnalogTrigger
method), 30

setLSBFirst() (wpilib.spi.SPI method), 118

setMaxOutput() (wpilib.robotdrive.RobotDrive method),
103

setMaxPeriod() (wpilib.counter.Counter method), 56

setMaxPeriod() (wpilib.encoder.Encoder method), 68

setMaxPeriod() (wpilib.interfaces.counterbase.CounterBase setPIDSourceType()

method), 143
setMinRate() (wpilib.encoder.Encoder method), 68
setMSBFirst() (wpilib.spi.SPI method), 118
setOutput() (wpilib.joystick.Joystick method), 80

setOutputRange() (wpilib.command.pidsubsystem.PIDSubsystem

method), 137

setOutputRange() (wpilib.pidcontroller.PIDController
method), 88

setOutputs() (wpilib.joystick.Joystick method), 80

setOversampleBits() (wpilib.analoginput.AnalogInput
method), 28

setP() (wpilib.canjaguar. CANJaguar method), 39

setP() (wpilib.cantalon.CANTalon method), 48

setParent() (wpilib.command.command.Command
method), 132

setPercentMode() (wpilib.canjaguar.CANJaguar method),
40

setPercentModeEncoder() (wpilib.canjaguar. CANJaguar
method), 40

setPeriodNanoSeconds() (wpilib.digitalglitchfilter.DigitalGlitchFilter

method), 58
setPID() (wpilib.canjaguar. CANJaguar method), 39
setPID() (wpilib.cantalon.CANTalon method), 49
setPID() (wpilib.interfaces.pidinterface. PIDInterface
method), 146
setPID() (wpilib.pidcontroller.PIDController method), 88

setPIDSourceType() (wpilib.analogaccelerometer. AnalogAccelerometer

method), 23
setPIDSourceType()
method), 28

(wpilib.analoginput. AnalogInput

setPIDSourceType() (wpilib.analogpotentiometer. AnalogPotentiometer

method), 29
setPIDSourceType() (wpilib.counter.Counter method), 56
setPIDSourceType() (wpilib.encoder.Encoder method),
68
setPIDSourceType() (wpilib.filter.Filter method), 69
setPIDSourceType() (wpilib.gyrobase.GyroBase
method), 70

setPIDSourceType() (wpilib.interfaces.pidsource.PIDSource

method), 146
setPIDSourceType() (wpilib.pidcontroller.PIDController
method), 88
(wpilib.ultrasonic.Ultrasonic
method), 124
setPosition() (wpilib.cantalon.CANTalon method), 49
setPosition() (wpilib.pwm.PWM method), 95
setPositionModePotentiometer()
(wpilib.canjaguar. CANJaguar method), 40
setPositionModeQuadEncoder()
(wpilib.canjaguar. CANJaguar method), 40
setPositionReference() (wpilib.canjaguar. CANJaguar
method), 41
setPressed() (wpilib.buttons.internalbutton.InternalButton
method), 128
setProfile() (wpilib.cantalon.CANTalon method), 49
setPulseLengthMode() (wpilib.counter.Counter method),
56
setPWMRate()
method), 59
setQuality() (wpilib._impl.dummycamera.CameraServer
method), 16, 17

(wpilib.digitaloutput.DigitalOutput

176

Index

RobotPy WPILib Documentation, Release master

setRange() (wpilib.adx1345_i2c.ADXL345_I2C method),
19

setRange() (wpilib.adx1345_spi. ADXL345_SPI method),
20

setRange() (wpilib.adx1362.ADXL362 method), 22

setRange() (wpilib.builtinaccelerometer.BuiltinAccelerometsetSpeedReference()

method), 32
setRange() (wpilib.interfaces.accelerometer. Accelerometer
method), 142
setRaw() (wpilib.pwm.PWM method), 95
setReverseDirection() (wpilib.counter.Counter method),

56

setReverseDirection() (wpilib.encoder.Encoder method),
69

setReverseSoftLimit() (wpilib.cantalon. CANTalon
method), 49

setRumble() (wpilib.joystick.Joystick method), 80

setRunWhenDisabled() (wpilib.command.command.CommaedUpDownCounterMode()

method), 132
setSafetyEnabled()
method), 85
setSampleDataOnFalling() (wpilib.spi.SPI method), 118
setSampleDataOnRising() (wpilib.spi.SPI method), 118
setSamplesToAverage() (wpilib.counter.Counter method),
56
setSamplesToAverage()
method), 69
setSemiPeriodMode() (wpilib.counter.Counter method),
56

(wpilib.motorsafety.MotorSafety

(wpilib.encoder.Encoder

setSpeed() (wpilib.pwm.PWM method), 96
setSpeedModeEncoder() (wpilib.canjaguar.CANJaguar
method), 41
setSpeedModeQuadEncoder()
(wpilib.canjaguar. CANJaguar method), 41
(wpilib.canjaguar. CANJaguar

method), 41

setStatusFrameRateMs() (wpilib.cantalon.CANTalon
method), 49

setTimeout() (wpilib.command.command.Command
method), 132

setTolerance() (wpilib.pidcontroller.PIDController
method), 89

setToleranceBuffer() (wpilib.pidcontroller.PIDController
method), 89

setUpdateWhenEmpty() (wpilib.counter.Counter
method), 57

(wpilib.counter.Counter
method), 56
setupPeriodicStatus()
method), 42
setUpSource() (wpilib.counter.Counter method), 56
setUpSourceEdge() (wpilib.counter.Counter method), 57

(wpilib.canjaguar. CANJaguar

setUpSourceEdge() (wpilib.interruptablesensorbase.InterruptableSensorBas

method), 73

setVoltage() (wpilib.analogoutput. AnalogOutput
method), 28

setVoltageMode() (wpilib.canjaguar. CANJaguar
method), 41

setSensitivity() (wpilib.analogaccelerometer. AnalogAccelersatdleltageModeEncoder() (wpilib.canjaguar. CANJaguar

method), 23
setSensitivity() (wpilib.analoggyro.AnalogGyro method),
setSensitivzify() (wpilib.robotdrive.RobotDrive method),
setSensorIi(()):ition() (wpilib.cantalon.CANTalon method),
setSetpoinT(g) (wpilib.canjaguar. CANJaguar method), 41

setSetpoint() (wpilib.command.pidcommand.PIDCommand

method), 135

method), 137

setSetpoint() (wpilib.interfaces.pidinterface.PIDInterface
method), 146

setSetpoint() (wpilib.pidcontroller. PIDController
method), 89

method), 41
setVoltageModePotentiometer()

(wpilib.canjaguar. CANJaguar method), 41
setVoltageModeQuadEncoder()

(wpilib.canjaguar. CANJaguar method), 42

setVoltageRampRate() (wpilib.canjaguar. CANJaguar
method), 42

setVoltageRampRate() (wpilib.cantalon.CANTalon
method), 49

setWhiteBalanceAuto() (wpilib._impl.dummycamera.USBCamera
setSetpoint() (wpilib.command.pidsubsystem.PIDSubsystem

method), 15, 16
setWhiteBalanceHoldCurrent()
(wpilib._impl.dummycamera.USBCamera
method), 15, 17
setWhiteBalanceManual()
(wpilib._impl.dummycamera.USBCamera

setSetpointRelative() (wpilib.command.pidcommand.PIDCommand method), 15, 17

method), 135

setZero() (wpilib.analogaccelerometer. AnalogAccelerometer

setSetpointRelative() (wpilib.command.pidsubsystem.PIDSubsystem method), 23

method), 137
(wpilib._impl.dummycamera.CameraServer
method), 16, 17
(wpilib._impl.dummycamera.USBCamera
method), 15, 16

setSize()

setSize()

setZeroLatch() (wpilib.pwm.PWM method), 96

singlePolelIR() (wpilib.lineardigitalfilter.LinearDigitalFilter
static method), 82

SmartDashboard (class in wpilib.smartdashboard), 111

Index

177

RobotPy WPILib Documentation, Release master

SoftPositionLimits (wpilib.canjaguar. CANJaguar.LimitModeablesToData

attribute), 33
Solenoid (class in wpilib.solenoid), 113
SolenoidBase (class in wpilib.solenoidbase), 114
Spark (class in wpilib.spark), 115

Speed (wpilib.canjaguar. CANJaguar.ControlMode
attribute), 33

Speed (wpilib.cantalon.CANTalon.ControlMode at-
tribute), 44

SpeedController (class in

wpilib.interfaces.speedcontroller), 147
SPI (class in wpilib.spi), 116
SPI.Port (class in wpilib.spi), 116
start() (wpilib.command.command.Command method),
132
start() (wpilib.compressor.Compressor method), 51
start() (wpilib.timer. Timer method), 122

(wpilib.smartdashboard.SmartDashboard
attribute), 113

Talon (class in wpilib.talon), 118

TalonSRX (class in wpilib.talonsrx), 119

tankDrive() (wpilib.robotdrive.RobotDrive method), 103

task() (wpilib.driverstation.DriverStation method), 65

teleoplnit() (wpilib.iterativerobot.IterativeRobot method),

75
teleopPeriodic() (wpilib.iterativerobot.IterativeRobot
method), 75

test() (wpilib.samplerobot.SampleRobot method), 106
testlnit() (wpilib.iterativerobot.IterativeRobot method),

75
testPeriodic() (wpilib.iterativerobot.IterativeRobot
method), 75

Timer (class in wpilib.timer), 120
timeSincelnitialized() (wpilib.command.command.Command

startAutomaticCapture() (wpilib._impl.dummycamera.CameraServer method), 133

method), 16, 17

startCapture() (wpilib._impl.dummycamera.USBCamera
method), 15, 17

StartCommand (class in wpilib.command.startcommand),

139

startCompetition() (wpilib.iterativerobot.IterativeRobot
method), 75

startCompetition() (wpilib.robotbase.RobotBase method),
99

startCompetition() (wpilib.samplerobot.SampleRobot

method), 106

startRunning() (wpilib.command.command.Command
method), 132

startTiming() (wpilib.command.command.Command
method), 133

statusTable (wpilib.livewindow.LiveWindow attribute),
84

stop() (wpilib.compressor.Compressor method), 51

stop() (wpilib.timer.Timer method), 122

stopCapture() (wpilib._impl.dummycamera.USBCamera
method), 15, 17

stopMotor() (wpilib.canjaguar. CANJaguar method), 42

stopMotor() (wpilib.cantalon.CANTalon method), 49

stopMotor() (wpilib.relay.Relay method), 97

stopMotor() (wpilib.robotdrive.RobotDrive method), 103

stopMotor() (wpilib.safepwm.SafePWM method), 104

Subsystem (class in wpilib.command.subsystem), 139

SwitchInputsOnly (wpilib.canjaguar. CANJaguar.LimitModeJSBCamera. WhiteBalance

attribute), 33

T

table (wpilib.smartdashboard.SmartDashboard attribute),
113

TABLE_NAME (wpilib.preferences.Preferences at-
tribute), 90

toggleWhenActive() (wpilib.buttons.trigger. Trigger
method), 129
toggleWhenPressed() (wpilib.buttons.button.Button

method), 127
transaction() (wpilib.i2¢.I2C method), 71
transaction() (wpilib.spi.SPI method), 118
Trigger (class in wpilib.buttons.trigger), 129

U

Ultrasonic (class in wpilib.ultrasonic), 122

Ultrasonic.PIDSourceType (class in wpilib.ultrasonic),
122

Ultrasonic.Unit (class in wpilib.ultrasonic), 122

ultrasonicChecker() (wpilib.ultrasonic.Ultrasonic static
method), 124

updateDutyCycle() (wpilib.digitaloutput.DigitalOutput
method), 60

updatePeriodicStatus() (wpilib.canjaguar. CANJaguar
method), 42

updateSettings() (wpilib._impl.dummycamera.USBCamera
method), 15, 17

updateSyncGroup() (wpilib.canjaguar. CANJaguar static
method), 42

updateValues() (wpilib.livewindow.LiveWindow static
method), 84

USBCamera (class in wpilib._impl.dummycamera), 14,
16

(class in
wpilib._impl.dummycamera), 14, 16

usePIDOutput() (wpilib.command.pidcommand.PIDCommand
method), 135

usePIDOutput() (wpilib.command.pidsubsystem.PIDSubsystem
method), 137

Utility (class in wpilib.utility), 124

178

Index

RobotPy WPILib Documentation, Release master

V

VALUE_PREFIX
attribute), 90

VALUE_SUFFIX
attribute), 90

verify() (wpilib.canjaguar. CANJaguar method), 42

verifySensor() (wpilib.i2c.I2C method), 72

Victor (class in wpilib.victor), 125

VictorSP (class in wpilib.victorsp), 126

Voltage (wpilib.canjaguar.CANJaguar.ControlMode at-

tribute), 33

(wpilib.cantalon.CANTalon.ControlMode

tribute), 44

(wpilib.preferences.Preferences

(wpilib.preferences.Preferences

Voltage at-

W

WaitCommand (class in wpilib.command.waitcommand),
140

WaitForChildren (class in
wpilib.command.waitforchildren), 140

wpilib.buttons.internalbutton (module), 128
wpilib.buttons.joystickbutton (module), 128
wpilib.buttons.networkbutton (module), 128
wpilib.buttons.trigger (module), 129
wpilib.canjaguar (module), 32

wpilib.cantalon (module), 42

wpilib.command (module), 129
wpilib.command.command (module), 130
wpilib.command.commandgroup (module), 133
wpilib.command.pidcommand (module), 134
wpilib.command.pidsubsystem (module), 136
wpilib.command.printcommand (module), 137
wpilib.command.scheduler (module), 138
wpilib.command.startcommand (module), 139
wpilib.command.subsystem (module), 139
wpilib.command.waitcommand (module), 140
wpilib.command.waitforchildren (module), 140
wpilib.command.waituntilcommand (module), 141
wpilib.compressor (module), 49
wpilib.controllerpower (module), 51
wpilib.counter (module), 52

waitForInterrupt() (Wpilib.interruptablesensorbase.InteHupta‘ﬁpéggn@g%aalgiwhﬁher (module), 57

waitForData() (wpilib.driverstation.DriverStation
method), 65
method), 73

WaitUntilCommand (class in

wpilib.command.waituntilcommand), 141

whenActive() (wpilib.buttons.trigger. Trigger method),

whenInactli\%:() (wpilib.buttons.trigger. Trigger method),

whenPresslezdg() (wpilib.buttons.button.Button method),

WhenReleallsze7d() (wpilib.buttons.button.Button method),

whileActi\fg) (wpilib.buttons.trigger. Trigger method),
129

whileHeld() (wpilib.buttons.button.Button method), 128

willRunWhenDisabled() (wpilib.command.command.Comm‘é{R

method), 133
wpilib (module), 13
wpilib._impl.dummycamera (module), 14, 16
wpilib.adx1345_i2c (module), 17
wpilib.adx1345_spi (module), 19
wpilib.adx1362 (module), 20
wpilib.adxrs450_gyro (module), 22
wpilib.analogaccelerometer (module), 23
wpilib.analoggyro (module), 24
wpilib.analoginput (module), 25
wpilib.analogoutput (module), 28
wpilib.analogpotentiometer (module), 28
wpilib.analogtrigger (module), 29
wpilib.analogtriggeroutput (module), 31
wpilib.builtinaccelerometer (module), 32
wpilib.buttons (module), 127
wpilib.buttons.button (module), 127

wpilib.digitalinput (module), 58
wpilib.digitaloutput (module), 59
wpilib.digitalsource (module), 60
wpilib.doublesolenoid (module), 60
wpilib.driverstation (module), 61
wpilib.encoder (module), 65

wpilib.filter (module), 69

wpilib.geartooth (module), 69
wpilib.gyrobase (module), 70

wpilib.i2¢c (module), 70

wpilib.interfaces (module), 141
wpilib.interfaces.accelerometer (module), 141
wpilib.interfaces.controller (module), 142
wpilib.interfaces.counterbase (module), 142
gib.interfaces. generichid (module), 143
wpilib.interfaces.gyro (module), 144
wpilib.interfaces.namedsendable (module), 145
wpilib.interfaces.pidinterface (module), 145
wpilib.interfaces.pidoutput (module), 146
wpilib.interfaces.pidsource (module), 146
wpilib.interfaces.potentiometer (module), 147
wpilib.interfaces.speedcontroller (module), 147
wpilib.interruptablesensorbase (module), 72
wpilib.iterativerobot (module), 73
wpilib.jaguar (module), 75

wpilib.joystick (module), 76
wpilib.lineardigitalfilter (module), 80
wpilib.livewindow (module), 83
wpilib.livewindowsendable (module), 84
wpilib.motorsafety (module), 85
wpilib.pidcontroller (module), 86
wpilib.powerdistributionpanel (module), 89

Index

179

RobotPy WPILib Documentation, Release master

wpilib.preferences (module), 90
wpilib.pwm (module), 93
wpilib.relay (module), 96
wpilib.resource (module), 97
wpilib.robotbase (module), 98
wpilib.robotdrive (module), 99
wpilib.robotstate (module), 104
wpilib.safepwm (module), 104
wpilib.samplerobot (module), 104
wpilib.sd540 (module), 106
wpilib.sendable (module), 107
wpilib.sendablechooser (module), 107
wpilib.sensorbase (module), 108
wpilib.servo (module), 110
wpilib.smartdashboard (module), 111
wpilib.solenoid (module), 113
wpilib.solenoidbase (module), 114
wpilib.spark (module), 115
wpilib.spi (module), 116
wpilib.talon (module), 118
wpilib.talonsrx (module), 119
wpilib.timer (module), 120
wpilib.ultrasonic (module), 122
wpilib.utility (module), 124
wpilib.victor (module), 125
wpilib.victorsp (module), 126
write() (wpilib.i2¢.12C method), 72
write() (wpilib.spi.SPI method), 118

writeBulk() (wpilib.i2¢.I2C method), 72

180

Index

	Contents
	Getting Started
	Automated installation
	Upgrading

	Manual installation

	Programmer's Guide
	Anatomy of a robot
	Create your Robot code
	Importing necessary modules
	Robot object
	Adding motors and sensors
	Robot Operating Modes (IterativeRobot)
	Main block
	Putting it all together
	Next Steps

	Running Robot Code
	On the robot (using pyfrc)
	On the robot (manual)
	On your computer
	Gazebo simulation
	Next steps

	Simulation and Testing
	Adding tests to your robot
	Customized tests
	Next Steps

	Best Practices
	Make sure you're running the latest version of RobotPy!
	Don't use the print statement/logger excessively
	Don't die during the competition!

	Next Steps

	Hardware & Sensors
	wpilib Package
	CameraServer
	USBCamera
	ADXL345_I2C
	ADXL345_SPI
	ADXL362
	ADXRS450_Gyro
	AnalogAccelerometer
	AnalogGyro
	AnalogInput
	AnalogOutput
	AnalogPotentiometer
	AnalogTrigger
	AnalogTriggerOutput
	BuiltInAccelerometer
	CANJaguar
	CANTalon
	Compressor
	ControllerPower
	Counter
	DigitalGlitchFilter
	DigitalInput
	DigitalOutput
	DigitalSource
	DoubleSolenoid
	DriverStation
	Encoder
	Filter
	GearTooth
	GyroBase
	I2C
	InterruptableSensorBase
	IterativeRobot
	Jaguar
	Joystick
	LinearDigitalFilter
	LiveWindow
	LiveWindowSendable
	MotorSafety
	PIDController
	PowerDistributionPanel
	Preferences
	PWM
	Relay
	Resource
	RobotBase
	RobotDrive
	RobotState
	SafePWM
	SampleRobot
	SD540
	Sendable
	SendableChooser
	SensorBase
	Servo
	SmartDashboard
	Solenoid
	SolenoidBase
	Spark
	SPI
	Talon
	TalonSRX
	Timer
	Ultrasonic
	Utility
	Victor
	VictorSP

	wpilib.buttons Package
	Button
	InternalButton
	JoystickButton
	NetworkButton
	Trigger

	wpilib.command Package
	Command
	CommandGroup
	PIDCommand
	PIDSubsystem
	PrintCommand
	Scheduler
	StartCommand
	Subsystem
	WaitCommand
	WaitForChildren
	WaitUntilCommand

	wpilib.interfaces Package
	Accelerometer
	Controller
	CounterBase
	GenericHID
	Gyro
	NamedSendable
	PIDInterface
	PIDOutput
	PIDSource
	Potentiometer
	SpeedController

	RobotPy Installer
	install-robotpy
	download-robotpy
	download
	install

	Implementation Details
	Design Goals
	HAL Loading
	Adding options to robot.py

	Support
	Reporting Bugs
	Contributing new fixes or features
	IRC

	Indices and tables
	Python Module Index

