

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	RobotPy WPILib master documentation

RobotPy Documentation

Welcome to RobotPy! RobotPy is a community of FIRST mentors and students
dedicated to developing python-related projects for the FIRST Robotics
Competition.

This documentation site describes how to use the python version of WPILib. It
is a pure python implementation of WPILib, so that teams can use to write their
robot code in Python, a powerful dynamic programming language.

There is a lot of good documentation, but there’s still room for improvement.
We welcome contributions from others!

Contents

	Getting Started
	Automated installation
	Upgrading

	Manual installation

	Programmer’s Guide
	Anatomy of a robot
	Create your Robot code

	Importing necessary modules

	Robot object

	Adding motors and sensors
	Creating individual devices

	Robot drivetrain control

	Robot Operating Modes (IterativeRobot)

	Main block

	Putting it all together

	Next Steps

	Running Robot Code
	On the robot (using pyfrc)

	On the robot (manual)

	On your computer

	Gazebo simulation

	Next steps

	Simulation and Testing

	wpilib Package

	wpilib.buttons Package

	wpilib.command Package

	wpilib.interfaces Package

	RobotPy Installer
	install-robotpy

	download-robotpy

	download

	install

	Implementation Details
	Design Goals

	HAL Loading

	Adding options to robot.py

	Support
	Reporting Bugs

	Contributing new fixes or features

	IRC

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

Getting Started

Welcome to RobotPy! RobotPy is a community of FIRST mentors and students
dedicated to developing python-related projects for the FIRST Robotics
Competition.

RobotPy WPILib is a set of libraries that are used on your roboRIO to
enable you to use Python as your main programming language for FIRST Robotics
robot development. It includes support for all components that are supported by
WPILib’s Java implementation. The following instructions tell you how to
install RobotPy on your robot.

If you want to run your python code on your computer (of course you do!),
then you need to install our python development support tools, which is a
separate project of ours called pyfrc. For more information, check out the
pyfrc documentation site [http://pyfrc.readthedocs.org/].

Note

Once you’ve got robotpy installed on your robot, check out
Anatomy of a robot to learn how to write robot code using python and
RobotPy.

Automated installation

RobotPy is truly cross platform, and can be installed from Windows, most Linux
distributions, and from Mac OSX also. Here’s how you do it:

	Download RobotPy from github [https://github.com/robotpy/robotpy-wpilib/releases]

	Make sure Python 3.4 is installed [https://www.python.org/downloads/]

Unzip the RobotPy zipfile somewhere on your computer (not on the RoboRIO),
and there should be an installer.py there. Open up a command line, change
directory to the installer location, and run this:

Windows: py installer.py install-robotpy

Linux/OSX: python3 installer.py install-robotpy

It will ask you a few questions, and copy the right files over to your robot
and set things up for you.

Next, you’ll want to create some code (or maybe use one of our examples),
and upload it to your robot! Refer to our Programmer’s Guide for more
information.

Upgrading

From the same directory that you unzipped previously, you can run the same
installer script to upgrade your robotpy installation. You need to do it in
two phases, one while connected to the internet to download the new release,
and one while connected to the Robot’s network.

When connected to the internet:

Windows: py installer.py download-robotpy

Linux/OSX: python3 installer.py download-robotpy

Then connect to the Robot’s network:

Windows: py installer.py install-robotpy

Linux/OSX: python3 installer.py install-robotpy

If you want to use a beta version of RobotPy (if available, you can add the
–pre argument to the download/install command listed above.

Manual installation

Warning

This isn’t recommended, so you’re on your own if you go this route.

If you really want to do this, it’s not so bad, but then you lose out on
the benefits of the automated installer – in particular, this method requires
internet access to install the files on the RoboRIO in case you need to reimage
your RoboRIO.

	Connect your RoboRIO to the internet

	SSH in, and copy the following to /etc/opkg/robotpy.conf:

src/gz robotpy http://www.tortall.net/~robotpy/feeds/2014

	Run this:

opkg install python3

	Then run this:

pip3 install pynivision robotpy-hal-roborio wpilib

Note

When powered off, your RoboRIO does not keep track of the correct
date, and as a result pip may fail with an SSL related error message.
To set the date, you can either:

	Set the date via the web interface

	You can login to your roboRIO via SSH, and set the date via the
date command:

date -s "2015-01-03 00:00:00"

Upgrading requires you to run the same commands, but with the appropriate
flags set to tell pip3/opkg to upgrade the packages for you.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

Programmer’s Guide

	Anatomy of a robot
	Create your Robot code

	Importing necessary modules

	Robot object

	Adding motors and sensors

	Robot Operating Modes (IterativeRobot)

	Main block

	Putting it all together

	Next Steps

	Running Robot Code
	On the robot (using pyfrc)

	On the robot (manual)

	On your computer

	Gazebo simulation

	Next steps

	Simulation and Testing

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	Programmer’s Guide

Anatomy of a robot

Note

The following assumes you have some familiarity with python, and
is meant as a primer to creating robot code using the python version
of wpilib. If you’re not familiar with python, you might try these
resources:

	CodeAcademy [http://www.codecademy.com/tracks/python]

	Wikibooks python tutorial [https://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_3]

	Python 3.4 Tutorial [https://docs.python.org/3.4/tutorial/]

This tutorial will go over the things necessary for very basic robot
code that can run on an FRC robot using the python version of WPILib.
Code that is written for RobotPy can be ran on your PC using various
simulation tools that are available.

Create your Robot code

Your robot code must start within a file called robot.py. Your code
can do anything a normal python program can, such as importing other
python modules & packages. Here are the basic things you need to know to
get your robot code working!

Importing necessary modules

All of the code that actually interacts with your robot’s hardware is
contained in a library called WPILib. This library was originally implemented
in C++ and Java. Your robot code must import this library module, and create
various objects that can be used to interface with the robot hardware.

To import wpilib, it’s just as simple as this:

import wpilib

Note

Because RobotPy implements the same WPILib as C++/Java, you can learn
a lot about how to write robot code from the many C++/Java focused
WPILib resources that already exist, including FIRST’s official
documentation. Just translate the code into python.

Robot object

Every valid robot program must define a robot object that inherits from either
wpilib.IterativeRobot or wpilib.SampleRobot. These
objects define a number of functions that you need to override, which get
called at various times.

	wpilib.IterativeRobot functions

	wpilib.SampleRobot functions

Note

It is recommended that inexperienced programmers use the
IterativeRobot framework, which is what this guide will
discuss.

An incomplete version of your robot object might look like this:

class MyRobot(wpilib.IterativeRobot):

 def robotInit(self):
 self.motor = wpilib.Jaguar(1)

The robotInit function is where you initialize data that needs to be
initialized when your robot first starts. Examples of this data includes:

	Variables that are used in multiple functions

	Creating various wpilib objects for devices and sensors

	Creating instances of other objects for your robot

In python, the constructor for an object is the __init__ function. Instead
of defining a constructor for your main robot object, you can override
robotInit instead. If you do decide that you want to override __init__, then
you must call super().__init__() in your __init__ method, or an exception
will be thrown.

Adding motors and sensors

Everything that interacts with the robot hardware directly must use the wpilib
library to do so. Starting in 2015, full documentation for the python version
of WPILib is published online. Check out the API documentation (wpilib)
for details on all the objects available in WPILib.

Note

You should only create instances of your motors and other WPILib hardware
devices (Gyros, Joysticks, Sensors, etc) either during or after robotInit is
called on your main robot object. If you don’t, there are a lot of things
that will fail.

Creating individual devices

Let’s say you wanted to create an object that interacted with a Jaguar motor
controller via PWM. First, you would read through the table (wpilib) and
see that there is a Jaguar object. Looking further, you can see that
the constructor takes a single argument that indicates which PWM port to
connect to. You could create the Jaguar object that is using port 4 using the
following python code in your robotInit method:

self.motor = wpilib.Jaguar(4)

Looking through the documentation some more, you would notice that to set
the PWM value of the motor, you need to call the Jaguar.set() function. The docs
say that the value needs to be between -1.0 and 1.0, so to set the motor
full speed forward you could do this:

self.motor.set(1)

Other motors and sensors have similar conventions.

Robot drivetrain control

For standard types of drivetrains (2 or 4 wheel, and mecanum), you’ll want to
use the RobotDrive class to control the motors instead of writing
your own code to do it. When you create a RobotDrive object, you either specify
which PWM channels to automatically create a motor for:

self.robot_drive = wpilib.RobotDrive(0,1)

Or you can pass in motor controller instances:

l_motor = wpilib.Talon(0)
r_motor = wpilib.Talon(1)
self.robot_drive = wpilib.RobotDrive(l_motor, r_motor)

Once you have one of these objects, it has various methods that you can use
to control the robot via joystick, or you can specify the control inputs
manually.

See also

Documentation for the wpilib.RobotDrive
object, and the FIRST WPILib Programming Guide.

Robot Operating Modes (IterativeRobot)

During a competition, the robot transitions into various modes depending on
the state of the game. During each mode, functions on your robot class
are called. The name of the function varies based on which mode the robot is
in:

	disabledXXX - Called when robot is disabled

	autonomousXXX - Called when robot is in autonomous mode

	teleopXXX - Called when the robot is in teleoperated mode

	testXXX - Called when the robot is in test mode

Each mode has two functions associated with it. xxxInit is called when the
robot first switches over to the mode, and xxxPeriodic is called 50 times
a second (approximately – it’s actually called as packets are received
from the driver station).

For example, a simple robot that just drives the robot using a single
joystick might have a teleopPeriodic function that looks like this:

def teleopPeriodic(self):
 self.robot_drive.arcadeDrive(self.stick)

This function gets called over and over again (about 50 times per second)
while the robot remains in teleoperated mode.

Warning

When using the IterativeRobot as your Robot class, you should
avoid doing the following operations in the xxxPeriodic functions
or functions that have xxxPeriodic in the call stack:

	Never use Timer.delay(), as you will momentarily lose
control of your robot during the delay, and it will not be
as responsive.

	Avoid using loops, as unexpected conditions may cause you to
lose control of your robot.

Main block

Languages such as Java require you to define a ‘static main’ function. In
python, because every .py file is usable from other python programs, you
need to define a code block which checks for __main__ [http://effbot.org/pyfaq/tutor-what-is-if-name-main-for.htm].
Inside your main block, you tell WPILib to launch your robot’s code using
the following invocation:

if __name__ == '__main__':
 wpilib.run(MyRobot)

This simple invocation is sufficient for launching your robot code on the
robot, and also provides access to various RobotPy-enabled extensions that
may be available for testing your robot code, such as pyfrc and robotpy-frcsim.

Putting it all together

If you combine all the pieces above, you end up with something like this
below, taken from one of the samples in our github repository.

#!/usr/bin/env python3
"""
 This is a good foundation to build your robot code on
"""

import wpilib

class MyRobot(wpilib.IterativeRobot):

 def robotInit(self):
 """
 This function is called upon program startup and
 should be used for any initialization code.
 """
 self.robot_drive = wpilib.RobotDrive(0,1)
 self.stick = wpilib.Joystick(1)

 def autonomousInit(self):
 """This function is run once each time the robot enters autonomous mode."""
 self.auto_loop_counter = 0

 def autonomousPeriodic(self):
 """This function is called periodically during autonomous."""

 # Check if we've completed 100 loops (approximately 2 seconds)
 if self.auto_loop_counter < 100:
 self.robot_drive.drive(-0.5, 0) # Drive forwards at half speed
 self.auto_loop_counter += 1
 else:
 self.robot_drive.drive(0, 0) #Stop robot

 def teleopPeriodic(self):
 """This function is called periodically during operator control."""
 self.robot_drive.arcadeDrive(self.stick)

 def testPeriodic(self):
 """This function is called periodically during test mode."""
 wpilib.LiveWindow.run()

if __name__ == "__main__":
 wpilib.run(MyRobot)

There are a few different python-based robot samples available, and you
can find them at our github site [https://github.com/robotpy/robotpy/tree/master/examples].

Next Steps

This is a good foundation for building your robot, next you will probably want to know about Running Robot Code.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	Programmer’s Guide

Running Robot Code

Now that you’ve created your first Python robot program, you probably want to know how to run the code.

On the robot (using pyfrc)

The easiest way to install code on the robot is to use pyfrc.

	Make sure you have RobotPy installed on the robot

	Make sure you have pyfrc installed (see the installation guide [http://pyfrc.readthedocs.org/en/latest/install.html]).

	Once that is done, you can just run the following command and it will upload the code and start it immediately.

Windows: py robot.py deploy

Linux/OSX: python3 robot.py deploy

Note that when you run this command like that, you won’t get any feedback from the robot whether your code actually worked or not. If you want to see the feedback from your robot, a really useful option is --nc. This will cause the deploy command to show your program’s console output, by launching a netconsole listener.

Windows: py robot.py deploy --nc

Linux/OSX: python3 robot.py deploy --nc

You can watch your robot code’s output (and see any problems) by using the netconsole program (you can either use NI’s tool, or pynetconsole [https://github.com/robotpy/pynetconsole]. You can use netconsole and the normal FRC tools to interact with the running robot code.

If you’re having problems deploying code to the robot, check out the troubleshooting section at http://pyfrc.readthedocs.org/en/latest/deploy.html

On the robot (manual)

If you don’t have (or don’t want) to install pyfrc, running code manually is pretty simple too.

	Make sure you have RobotPy installed on the robot

	Use scp or sftp (Filezilla is a great GUI product to use for this) to copy your robot code to the RoboRIO

	ssh into the RoboRIO, and run your robot code manually

python3 robot.py run

Your driver station should be able to connect to your code, and it will be able to operate your robot!

Note

This is good for running experimental code, but it won’t start the code when the robot starts up. Use pyfrc to do that.

On your computer

Once installed, pyfrc provides a number of commands to interact with your robot code. For example, to launch the tk-based simulator, run the following command on your code:

Windows: py robot.py sim

Linux/OSX: python3 robot.py sim

Check out the pyfrc documentation for more usage details [http://pyfrc.readthedocs.org/en/latest/usage.html].

Gazebo simulation

This is currently experimental, and will be updated in the coming weeks. If you want to play with it now (and help us fix the bugs!), check out the robotpy-frcsim github repository [https://github.com/robotpy/robotpy-frcsim].

Next steps

Next we’ll discuss some topic that will be decided upon in the future, if someone writes more documentation here. Until then, remember that the FIRST documentation and our example programs are great resources to learn more about programming with WPILib.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	Programmer’s Guide

Simulation and Testing

An important (but often neglected) part of developing your robot code is to
test it! Because we feel strongly about testing and simulation, the RobotPy
project provides tools to make those types of things easier through the
pyfrc [https://github.com/robotpy/pyfrc] project.

To get started, check out the pyfrc documentation [http://pyfrc.readthedocs.org].

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

wpilib Package

The WPI Robotics library (WPILib) is a set of classes that interfaces to the hardware in the FRC
control system and your robot. There are classes to handle sensors, motors, the driver
station, and a number of other utility functions like timing and field management.
The library is designed to:

	Deal with all the low level interfacing to these components so you can concentrate on
solving this year’s “robot problem”. This is a philosophical decision to let you focus
on the higher-level design of your robot rather than deal with the details of the
processor and the operating system.

	Understand everything at all levels by making the full source code of the library
available. You can study (and modify) the algorithms used by the gyro class for
oversampling and integration of the input signal or just ask the class for the current
robot heading. You can work at any level.

	wpilib._impl.CameraServer()
	

	wpilib._impl.USBCamera([name])
	

	wpilib.ADXL345_I2C(port,range)
	ADXL345 accelerometer device via i2c

	wpilib.ADXL345_SPI(port,range)
	ADXL345 accelerometer device via spi

	wpilib.AnalogAccelerometer(channel)
	Analog Accelerometer

	wpilib.AnalogInput(channel)
	Analog input

	wpilib.AnalogOutput(channel)
	Analog output

	wpilib.AnalogPotentiometer(channel)
	Reads a potentiometer via an AnalogInput

	wpilib.AnalogTrigger(channel)
	Converts an analog signal into a digital signal

	wpilib.AnalogTriggerOutput(...)
	Represents a specific output from an AnalogTrigger

	wpilib.BuiltInAccelerometer([range])
	Built-in accelerometer device

	wpilib.CANJaguar(deviceNumber)
	Texas Instruments Jaguar Speed Controller as a CAN device.

	wpilib.CANTalon(deviceNumber[,...])
	Talon SRX device as a CAN device

	wpilib.Compressor([pcmId])
	Operates the PCM (Pneumatics compressor module)

	wpilib.ControllerPower
	Provides access to power levels on the RoboRIO

	wpilib.Counter(*args,**kwargs)
	Counts the number of ticks on a DigitalInput channel.

	wpilib.DigitalInput(channel)
	Reads a digital input.

	wpilib.DigitalOutput(channel)
	Writes to a digital output

	wpilib.DigitalSource(channel,...)
	DigitalSource Interface.

	wpilib.DoubleSolenoid(*args,...)
	Controls 2 channels of high voltage Digital Output.

	wpilib.DriverStation()
	Provide access to the network communication data to / from the Driver Station.

	wpilib.Encoder(*args,**kwargs)
	Reads from quadrature encoders.

	wpilib.GearTooth(channel[,...])
	Interface to the gear tooth sensor supplied by FIRST

	wpilib.Gyro(channel)
	Interface to a gyro device via an AnalogInput

	wpilib.I2C(port,deviceAddress)
	I2C bus interface class.

	wpilib.InterruptableSensorBase()
	Base for sensors to be used with interrupts

	wpilib.IterativeRobot()
	IterativeRobot implements a specific type of Robot Program framework, extending the RobotBase class.

	wpilib.Jaguar(channel)
	Texas Instruments / Vex Robotics Jaguar Speed Controller as a PWM device.

	wpilib.Joystick(port[,...])
	Handle input from standard Joysticks connected to the Driver Station.

	wpilib.LiveWindow
	The public interface for putting sensors and actuators on the LiveWindow.

	wpilib.LiveWindowSendable
	A special type of object that can be displayed on the live window.

	wpilib.MotorSafety()
	Provides mechanisms to safely shutdown motors if they aren’t updated often enough.

	wpilib.PIDController(*args,...)
	Can be used to control devices via a PID Control Loop.

	wpilib.PowerDistributionPanel
	Use to obtain voltage, current, temperature, power, and energy from the CAN PDP

	wpilib.Preferences()
	Provides a relatively simple way to save important values to the RoboRIO to access the next time the RoboRIO is booted.

	wpilib.PWM(channel)
	Raw interface to PWM generation in the FPGA.

	wpilib.Relay(channel[,direction])
	Controls VEX Robotics Spike style relay outputs.

	wpilib.Resource(size)
	Tracks resources in the program.

	wpilib.RobotBase()
	Implement a Robot Program framework.

	wpilib.RobotDrive(*args,**kwargs)
	Operations on a robot drivetrain based on a definition of the motor configuration.

	wpilib.RobotState
	Provides an interface to determine the current operating state of the robot code.

	wpilib.SafePWM(channel)
	A raw PWM interface that implements the MotorSafety interface

	wpilib.SampleRobot()
	A simple robot base class that knows the standard FRC competition states (disabled, autonomous, or operator controlled).

	wpilib.Sendable
	The base interface for objects that can be sent over the network

	wpilib.SendableChooser()
	A useful tool for presenting a selection of options to be displayed on

	wpilib.SensorBase
	Base class for all sensors

	wpilib.Servo(channel)
	Standard hobby style servo

	wpilib.SmartDashboard
	The bridge between robot programs and the SmartDashboard on the laptop

	wpilib.Solenoid(*args,**kwargs)
	Solenoid class for running high voltage Digital Output.

	wpilib.SolenoidBase(moduleNumber)
	SolenoidBase class is the common base class for the Solenoid and DoubleSolenoid classes.

	wpilib.SPI(port)
	Represents a SPI bus port

	wpilib.Talon(channel)
	Cross the Road Electronics (CTRE) Talon and Talon SR Speed Controller via PWM

	wpilib.TalonSRX(channel)
	Cross the Road Electronics (CTRE) Talon SRX Speed Controller via PWM

	wpilib.Timer()
	Provides time-related functionality for the robot

	wpilib.Ultrasonic(pingChannel,...)
	Ultrasonic rangefinder control

	wpilib.Utility
	Contains global utility functions

	wpilib.Victor(channel)
	VEX Robotics Victor 888 Speed Controller via PWM

	wpilib.VictorSP(channel)
	VEX Robotics Victor SP Speed Controller via PWM

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

CameraServer

	
class wpilib._impl.USBCamera(name=None)[source]

	Bases: builtins.object

	
class WhiteBalance[source]

	Bases: builtins.object

	
kFixedFlourescent2 = 5200

	

	
kFixedFluorescent1 = 5100

	

	
kFixedIndoor = 3000

	

	
kFixedOutdoor1 = 4000

	

	
kFixedOutdoor2 = 5000

	

	
USBCamera.closeCamera()[source]

	

	
USBCamera.getBrightness()[source]

	Get the brightness, as a percentage (0-100).

	
USBCamera.getImage(image)[source]

	

	
USBCamera.getImageData(data, maxsize)[source]

	

	
USBCamera.kDefaultCameraName = b'cam0'

	

	
USBCamera.openCamera()[source]

	

	
USBCamera.setBrightness(brightness)[source]

	Set the brightness, as a percentage (0-100).

	
USBCamera.setExposureAuto()[source]

	Set the exposure to auto aperature.

	
USBCamera.setExposureHoldCurrent()[source]

	Set the exposure to hold current.

	
USBCamera.setExposureManual(value)[source]

	Set the exposure to manual, as a percentage (0-100).

	
USBCamera.setFPS(fps)[source]

	

	
USBCamera.setSize(width, height)[source]

	

	
USBCamera.setWhiteBalanceAuto()[source]

	Set the white balance to auto.

	
USBCamera.setWhiteBalanceHoldCurrent()[source]

	Set the white balance to hold current.

	
USBCamera.setWhiteBalanceManual(value)[source]

	Set the white balance to manual, with specified color temperature.

	
USBCamera.startCapture()[source]

	

	
USBCamera.stopCapture()[source]

	

	
USBCamera.updateSettings()[source]

	

	
class wpilib._impl.CameraServer[source]

	Bases: builtins.object

	
static getInstance()[source]

	

	
getQuality()[source]

	Get the quality of the compressed image sent to the dashboard

	Returns:	The quality, from 0 to 100

	
isAutoCaptureStarted()[source]

	check if auto capture is started

	
kPort = 1180

	

	
kSize160x120 = 2

	

	
kSize320x240 = 1

	

	
kSize640x480 = 0

	

	
server = None

	

	
setImage(image)[source]

	

	
setQuality(quality)[source]

	Set the quality of the compressed image sent to the dashboard

	Parameters:	quality – The quality of the JPEG image, from 0 to 100

	
setSize(size)[source]

	

	
startAutomaticCapture(camera)[source]

	Start automatically capturing images to send to the dashboard.

You should call this method to just see a camera feed on the dashboard
without doing any vision processing on the roboRIO. {@link #setImage}
shouldn’t be called after this is called.

	Parameters:	camera – The camera interface (e.g. a USBCamera instance)

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

USBCamera

	
class wpilib._impl.USBCamera(name=None)[source]

	Bases: builtins.object

	
class WhiteBalance[source]

	Bases: builtins.object

	
kFixedFlourescent2 = 5200

	

	
kFixedFluorescent1 = 5100

	

	
kFixedIndoor = 3000

	

	
kFixedOutdoor1 = 4000

	

	
kFixedOutdoor2 = 5000

	

	
USBCamera.closeCamera()[source]

	

	
USBCamera.getBrightness()[source]

	Get the brightness, as a percentage (0-100).

	
USBCamera.getImage(image)[source]

	

	
USBCamera.getImageData(data, maxsize)[source]

	

	
USBCamera.kDefaultCameraName = b'cam0'

	

	
USBCamera.openCamera()[source]

	

	
USBCamera.setBrightness(brightness)[source]

	Set the brightness, as a percentage (0-100).

	
USBCamera.setExposureAuto()[source]

	Set the exposure to auto aperature.

	
USBCamera.setExposureHoldCurrent()[source]

	Set the exposure to hold current.

	
USBCamera.setExposureManual(value)[source]

	Set the exposure to manual, as a percentage (0-100).

	
USBCamera.setFPS(fps)[source]

	

	
USBCamera.setSize(width, height)[source]

	

	
USBCamera.setWhiteBalanceAuto()[source]

	Set the white balance to auto.

	
USBCamera.setWhiteBalanceHoldCurrent()[source]

	Set the white balance to hold current.

	
USBCamera.setWhiteBalanceManual(value)[source]

	Set the white balance to manual, with specified color temperature.

	
USBCamera.startCapture()[source]

	

	
USBCamera.stopCapture()[source]

	

	
USBCamera.updateSettings()[source]

	

	
class wpilib._impl.CameraServer[source]

	Bases: builtins.object

	
static getInstance()[source]

	

	
getQuality()[source]

	Get the quality of the compressed image sent to the dashboard

	Returns:	The quality, from 0 to 100

	
isAutoCaptureStarted()[source]

	check if auto capture is started

	
kPort = 1180

	

	
kSize160x120 = 2

	

	
kSize320x240 = 1

	

	
kSize640x480 = 0

	

	
server = None

	

	
setImage(image)[source]

	

	
setQuality(quality)[source]

	Set the quality of the compressed image sent to the dashboard

	Parameters:	quality – The quality of the JPEG image, from 0 to 100

	
setSize(size)[source]

	

	
startAutomaticCapture(camera)[source]

	Start automatically capturing images to send to the dashboard.

You should call this method to just see a camera feed on the dashboard
without doing any vision processing on the roboRIO. {@link #setImage}
shouldn’t be called after this is called.

	Parameters:	camera – The camera interface (e.g. a USBCamera instance)

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

ADXL345_I2C

	
class wpilib.ADXL345_I2C(port, range)[source]

	Bases: wpilib.SensorBase

ADXL345 accelerometer device via i2c

Constructor.

	Parameters:	
	port – The I2C port the accelerometer is attached to.

	range – The range (+ or -) that the accelerometer will measure.

	
class Axes[source]

	Bases: builtins.object

	
kX = 0

	

	
kY = 2

	

	
kZ = 4

	

	
class ADXL345_I2C.Range

	Bases: builtins.object

	
k16G = 3

	

	
k2G = 0

	

	
k4G = 1

	

	
k8G = 2

	

	
ADXL345_I2C.getAcceleration(axis)[source]

	Get the acceleration of one axis in Gs.

	Parameters:	axis – The axis to read from.

	Returns:	An object containing the acceleration measured on each axis of the ADXL345 in Gs.

	
ADXL345_I2C.getAccelerations()[source]

	Get the acceleration of all axes in Gs.

	Returns:	X,Y,Z tuple of acceleration measured on all axes of the
ADXL345 in Gs.

	
ADXL345_I2C.getX()[source]

	Get the x axis acceleration

	Returns:	The acceleration along the x axis in g-forces

	
ADXL345_I2C.getY()[source]

	Get the y axis acceleration

	Returns:	The acceleration along the y axis in g-forces

	
ADXL345_I2C.getZ()[source]

	Get the z axis acceleration

	Returns:	The acceleration along the z axis in g-forces

	
ADXL345_I2C.kAddress = 29

	

	
ADXL345_I2C.kDataFormatRegister = 49

	

	
ADXL345_I2C.kDataFormat_FullRes = 8

	

	
ADXL345_I2C.kDataFormat_IntInvert = 32

	

	
ADXL345_I2C.kDataFormat_Justify = 4

	

	
ADXL345_I2C.kDataFormat_SPI = 64

	

	
ADXL345_I2C.kDataFormat_SelfTest = 128

	

	
ADXL345_I2C.kDataRegister = 50

	

	
ADXL345_I2C.kGsPerLSB = 0.00390625

	

	
ADXL345_I2C.kPowerCtlRegister = 45

	

	
ADXL345_I2C.kPowerCtl_AutoSleep = 16

	

	
ADXL345_I2C.kPowerCtl_Link = 32

	

	
ADXL345_I2C.kPowerCtl_Measure = 8

	

	
ADXL345_I2C.kPowerCtl_Sleep = 4

	

	
ADXL345_I2C.setRange(range)[source]

	Set the measuring range of the accelerometer.

	Parameters:	range (ADXL345_I2C.Range) – The maximum acceleration, positive or negative, that
the accelerometer will measure.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

ADXL345_SPI

	
class wpilib.ADXL345_SPI(port, range)[source]

	Bases: wpilib.SensorBase

ADXL345 accelerometer device via spi

Constructor. Use this when the device is the first/only device on
the bus

	Parameters:	
	port – The SPI port that the accelerometer is connected to

	range – The range (+ or -) that the accelerometer will measure.

	
class Axes[source]

	Bases: builtins.object

	
kX = 0

	

	
kY = 2

	

	
kZ = 4

	

	
class ADXL345_SPI.Range

	Bases: builtins.object

	
k16G = 3

	

	
k2G = 0

	

	
k4G = 1

	

	
k8G = 2

	

	
ADXL345_SPI.getAcceleration(axis)[source]

	Get the acceleration of one axis in Gs.

	Parameters:	axis – The axis to read from.

	Returns:	An object containing the acceleration measured on each axis of the ADXL345 in Gs.

	
ADXL345_SPI.getAccelerations()[source]

	Get the acceleration of all axes in Gs.

	Returns:	X,Y,Z tuple of acceleration measured on all axes of the
ADXL345 in Gs.

	
ADXL345_SPI.getX()[source]

	Get the x axis acceleration

	Returns:	The acceleration along the x axis in g-forces

	
ADXL345_SPI.getY()[source]

	Get the y axis acceleration

	Returns:	The acceleration along the y axis in g-forces

	
ADXL345_SPI.getZ()[source]

	Get the z axis acceleration

	Returns:	The acceleration along the z axis in g-forces

	
ADXL345_SPI.kAddress_MultiByte = 64

	

	
ADXL345_SPI.kAddress_Read = 128

	

	
ADXL345_SPI.kDataFormatRegister = 49

	

	
ADXL345_SPI.kDataFormat_FullRes = 8

	

	
ADXL345_SPI.kDataFormat_IntInvert = 32

	

	
ADXL345_SPI.kDataFormat_Justify = 4

	

	
ADXL345_SPI.kDataFormat_SPI = 64

	

	
ADXL345_SPI.kDataFormat_SelfTest = 128

	

	
ADXL345_SPI.kDataRegister = 50

	

	
ADXL345_SPI.kGsPerLSB = 0.00390625

	

	
ADXL345_SPI.kPowerCtlRegister = 45

	

	
ADXL345_SPI.kPowerCtl_AutoSleep = 16

	

	
ADXL345_SPI.kPowerCtl_Link = 32

	

	
ADXL345_SPI.kPowerCtl_Measure = 8

	

	
ADXL345_SPI.kPowerCtl_Sleep = 4

	

	
ADXL345_SPI.setRange(range)[source]

	Set the measuring range of the accelerometer.

	Parameters:	range (ADXL345_SPI.Range) – The maximum acceleration, positive or negative, that
the accelerometer will measure.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

AnalogAccelerometer

	
class wpilib.AnalogAccelerometer(channel)[source]

	Bases: wpilib.LiveWindowSendable

Analog Accelerometer

The accelerometer reads acceleration directly through the sensor. Many
sensors have multiple axis and can be treated as multiple devices. Each
is calibrated by finding the center value over a period of time.

Create a new instance of Accelerometer from either an existing
AnalogChannel or from an analog channel port index.

	Parameters:	channel – port index or an already initialized AnalogInput

	
getAcceleration()[source]

	Return the acceleration in Gs.

The acceleration is returned units of Gs.

	Returns:	The current acceleration of the sensor in Gs.

	Return type:	float

	
pidGet()[source]

	Get the Acceleration for the PID Source parent.

	Returns:	The current acceleration in Gs.

	Return type:	float

	
setSensitivity(sensitivity)[source]

	Set the accelerometer sensitivity.

This sets the sensitivity of the accelerometer used for calculating
the acceleration. The sensitivity varies by accelerometer model.
There are constants defined for various models.

	Parameters:	sensitivity (float) – The sensitivity of accelerometer in Volts per G.

	
setZero(zero)[source]

	Set the voltage that corresponds to 0 G.

The zero G voltage varies by accelerometer model. There are constants
defined for various models.

	Parameters:	zero (float) – The zero G voltage.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

AnalogInput

	
class wpilib.AnalogInput(channel)[source]

	Bases: wpilib.SensorBase

Analog input

Each analog channel is read from hardware as a 12-bit number representing
0V to 5V.

Connected to each analog channel is an averaging and oversampling engine.
This engine accumulates the specified (by setAverageBits() and
setOversampleBits()) number of samples before returning a new value.
This is not a sliding window average. The only difference between the
oversampled samples and the averaged samples is that the oversampled
samples are simply accumulated effectively increasing the resolution,
while the averaged samples are divided by the number of samples to retain
the resolution, but get more stable values.

Construct an analog channel.
:param channel: The channel number to represent. 0-3 are on-board 4-7 are on the MXP port.

	
channels = <wpilib.resource.Resource object at 0x7fb8e74a5fd0>

	

	
free()[source]

	

	
getAccumulatorCount()[source]

	Read the number of accumulated values.

Read the count of the accumulated values since the accumulator was
last reset().

	Returns:	The number of times samples from the channel were
accumulated.

	
getAccumulatorOutput()[source]

	Read the accumulated value and the number of accumulated values
atomically.

This function reads the value and count from the FPGA atomically. This
can be used for averaging.

	Returns:	tuple of (value, count)

	
getAccumulatorValue()[source]

	Read the accumulated value.

Read the value that has been accumulating. The accumulator
is attached after the oversample and average engine.

	Returns:	The 64-bit value accumulated since the last reset().

	
getAverageBits()[source]

	Get the number of averaging bits. This gets the number of averaging
bits from the FPGA. The actual number of averaged samples is 2^bits.
The averaging is done automatically in the FPGA.

	Returns:	The number of averaging bits.

	
getAverageValue()[source]

	Get a sample from the output of the oversample and average engine
for this channel. The sample is 12-bit + the bits configured in
setOversampleBits(). The value configured in
setAverageBits() will cause this value to be averaged 2**bits
number of samples. This is not a sliding window. The sample will not
change until 2^(OversampleBits + AverageBits) samples have been
acquired from this channel. Use getAverageVoltage() to get the
analog value in calibrated units.

	Returns:	A sample from the oversample and average engine for this
channel.

	
getAverageVoltage()[source]

	Get a scaled sample from the output of the oversample and average
engine for this channel. The value is scaled to units of Volts using
the calibrated scaling data from getLSBWeight() and
getOffset(). Using oversampling will cause this value to be
higher resolution, but it will update more slowly. Using averaging
will cause this value to be more stable, but it will update more
slowly.

	Returns:	A scaled sample from the output of the oversample and average
engine for this channel.

	
getChannel()[source]

	Get the channel number.

	Returns:	The channel number.

	
static getGlobalSampleRate()[source]

	Get the current sample rate.

This assumes one entry in the scan list. This is a global setting for
all channels.

	Returns:	Sample rate.

	
getLSBWeight()[source]

	Get the factory scaling least significant bit weight constant. The
least significant bit weight constant for the channel that was
calibrated in manufacturing and stored in an eeprom.

Volts = ((LSB_Weight * 1e-9) * raw) - (Offset * 1e-9)

	Returns:	Least significant bit weight.

	
getOffset()[source]

	Get the factory scaling offset constant. The offset constant for the
channel that was calibrated in manufacturing and stored in an eeprom.

Volts = ((LSB_Weight * 1e-9) * raw) - (Offset * 1e-9)

	Returns:	Offset constant.

	
getOversampleBits()[source]

	Get the number of oversample bits. This gets the number of
oversample bits from the FPGA. The actual number of oversampled values
is 2^bits. The oversampling is done automatically in the FPGA.

	Returns:	The number of oversample bits.

	
getValue()[source]

	Get a sample straight from this channel. The sample is a 12-bit
value representing the 0V to 5V range of the A/D converter. The units
are in A/D converter codes. Use getVoltage() to get the analog
value in calibrated units.

	Returns:	A sample straight from this channel.

	
getVoltage()[source]

	Get a scaled sample straight from this channel. The value is scaled
to units of Volts using the calibrated scaling data from
getLSBWeight() and getOffset().

	Returns:	A scaled sample straight from this channel.

	
initAccumulator()[source]

	Initialize the accumulator.

	
isAccumulatorChannel()[source]

	Is the channel attached to an accumulator.

	Returns:	The analog channel is attached to an accumulator.

	
kAccumulatorChannels = (0, 1)

	

	
kAccumulatorSlot = 1

	

	
pidGet()[source]

	Get the average voltage for use with PIDController

	Returns:	the average voltage

	
resetAccumulator()[source]

	Resets the accumulator to the initial value.

	
setAccumulatorCenter(center)[source]

	Set the center value of the accumulator.

The center value is subtracted from each A/D value before it is added
to the accumulator. This is used for the center value of devices like
gyros and accelerometers to make integration work and to take the
device offset into account when integrating.

This center value is based on the output of the oversampled and
averaged source from channel 1. Because of this, any non-zero
oversample bits will affect the size of the value for this field.

	
setAccumulatorDeadband(deadband)[source]

	Set the accumulator’s deadband.

	
setAccumulatorInitialValue(initialValue)[source]

	Set an initial value for the accumulator.

This will be added to all values returned to the user.

	Parameters:	initialValue – The value that the accumulator should start from when reset.

	
setAverageBits(bits)[source]

	Set the number of averaging bits. This sets the number of
averaging bits. The actual number of averaged samples is 2^bits.
The averaging is done automatically in the FPGA.

	Parameters:	bits – The number of averaging bits.

	
static setGlobalSampleRate(samplesPerSecond)[source]

	Set the sample rate per channel.

This is a global setting for all channels.
The maximum rate is 500kS/s divided by the number of channels in use.
This is 62500 samples/s per channel if all 8 channels are used.

	Parameters:	samplesPerSecond – The number of samples per second.

	
setOversampleBits(bits)[source]

	Set the number of oversample bits. This sets the number of
oversample bits. The actual number of oversampled values is 2^bits.
The oversampling is done automatically in the FPGA.

	Parameters:	bits – The number of oversample bits.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

AnalogOutput

	
class wpilib.AnalogOutput(channel)[source]

	Bases: wpilib.SensorBase

Analog output

Construct an analog output on a specified MXP channel.

	Parameters:	channel – The channel number to represent.

	
channels = <wpilib.resource.Resource object at 0x7fb8e74b1208>

	

	
free()[source]

	Channel destructor.

	
getVoltage()[source]

	

	
setVoltage(voltage)[source]

	

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

AnalogPotentiometer

	
class wpilib.AnalogPotentiometer(channel, fullRange=1.0, offset=0.0)[source]

	Bases: wpilib.LiveWindowSendable

Reads a potentiometer via an AnalogInput

Analog potentiometers read
in an analog voltage that corresponds to a position. The position is in
whichever units you choose, by way of the scaling and offset constants
passed to the constructor.

AnalogPotentiometer constructor.

Use the fullRange and offset values so that the output produces
meaningful values. I.E: you have a 270 degree potentiometer and
you want the output to be degrees with the halfway point as 0
degrees. The fullRange value is 270.0(degrees) and the offset is
-135.0 since the halfway point after scaling is 135 degrees.

	Parameters:	
	channel (int or AnalogInput) – The analog channel this potentiometer is plugged into.

	fullRange (float) – The scaling to multiply the fraction by to get a
meaningful unit. Defaults to 1.0 if unspecified.

	offset (float) – The offset to add to the scaled value for controlling
the zero value. Defaults to 0.0 if unspecified.

	
free()[source]

	

	
get()[source]

	Get the current reading of the potentiometer.

	Returns:	The current position of the potentiometer.

	Return type:	float

	
pidGet()[source]

	Implement the PIDSource interface.

	Returns:	The current reading.

	Return type:	float

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

AnalogTrigger

	
class wpilib.AnalogTrigger(channel)[source]

	Bases: builtins.object

Converts an analog signal into a digital signal

An analog trigger is a way to convert an analog signal into a digital
signal using resources built into the FPGA. The resulting digital
signal can then be used directly or fed into other digital components
of the FPGA such as the counter or encoder modules. The analog trigger
module works by comparing analog signals to a voltage range set by
the code. The specific return types and meanings depend on the analog
trigger mode in use.

Constructor for an analog trigger given a channel number or analog
input.

	Parameters:	channel – the port index or AnalogInput to use for the analog
trigger. Treated as an AnalogInput if the provided object has a
getChannel function.

	
class AnalogTriggerType

	Bases: builtins.object

Defines the state in which the AnalogTrigger triggers

	
kFallingPulse = 3

	

	
kInWindow = 0

	

	
kRisingPulse = 2

	

	
kState = 1

	

	
AnalogTrigger.createOutput(type)[source]

	Creates an AnalogTriggerOutput object. Gets an output object that
can be used for routing. Caller is responsible for deleting the
AnalogTriggerOutput object.

	Parameters:	type – An enum of the type of output object to create.

	Returns:	An AnalogTriggerOutput object.

	
AnalogTrigger.free()[source]

	Release the resources used by this object

	
AnalogTrigger.getInWindow()[source]

	Return the InWindow output of the analog trigger. True if the
analog input is between the upper and lower limits.

	Returns:	The InWindow output of the analog trigger.

	
AnalogTrigger.getIndex()[source]

	Return the index of the analog trigger. This is the FPGA index of
this analog trigger instance.

	Returns:	The index of the analog trigger.

	
AnalogTrigger.getTriggerState()[source]

	Return the TriggerState output of the analog trigger. True if above
upper limit. False if below lower limit. If in Hysteresis, maintain
previous state.

	Returns:	The TriggerState output of the analog trigger.

	
AnalogTrigger.port[source]

	

	
AnalogTrigger.setAveraged(useAveragedValue)[source]

	Configure the analog trigger to use the averaged vs. raw values. If
the value is true, then the averaged value is selected for the analog
trigger, otherwise the immediate value is used.

	Parameters:	useAveragedValue – True to use an averaged value, False otherwise

	
AnalogTrigger.setFiltered(useFilteredValue)[source]

	Configure the analog trigger to use a filtered value. The analog
trigger will operate with a 3 point average rejection filter. This is
designed to help with 360 degree pot applications for the period where
the pot crosses through zero.

	Parameters:	useFilteredValue – True to use a filterd value, False otherwise

	
AnalogTrigger.setLimitsRaw(lower, upper)[source]

	Set the upper and lower limits of the analog trigger. The limits are
given in ADC codes. If oversampling is used, the units must be scaled
appropriately.

	Parameters:	
	lower – the lower raw limit

	upper – the upper raw limit

	
AnalogTrigger.setLimitsVoltage(lower, upper)[source]

	Set the upper and lower limits of the analog trigger. The limits are
given as floating point voltage values.

	Parameters:	
	lower – the lower voltage limit

	upper – the upper voltage limit

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

AnalogTriggerOutput

	
class wpilib.AnalogTriggerOutput(trigger, outputType)[source]

	Bases: builtins.object

Represents a specific output from an AnalogTrigger

This class is used to get the current output value and also as a
DigitalSource to provide routing of an output to digital
subsystems on the FPGA such as Counter, Encoder:,
and :class:.Interrupt`.

The TriggerState output indicates the primary output value of the trigger.
If the analog signal is less than the lower limit, the output is False. If
the analog value is greater than the upper limit, then the output is True.
If the analog value is in between, then the trigger output state maintains
its most recent value.

The InWindow output indicates whether or not the analog signal is inside
the range defined by the limits.

The RisingPulse and FallingPulse outputs detect an instantaneous transition
from above the upper limit to below the lower limit, and vise versa. These
pulses represent a rollover condition of a sensor and can be routed to an
up / down couter or to interrupts. Because the outputs generate a pulse,
they cannot be read directly. To help ensure that a rollover condition is
not missed, there is an average rejection filter available that operates on
the upper 8 bits of a 12 bit number and selects the nearest outlyer of 3
samples. This will reject a sample that is (due to averaging or sampling)
errantly between the two limits. This filter will fail if more than one
sample in a row is errantly in between the two limits. You may see this
problem if attempting to use this feature with a mechanical rollover
sensor, such as a 360 degree no-stop potentiometer without signal
conditioning, because the rollover transition is not sharp / clean enough.
Using the averaging engine may help with this, but rotational speeds of the
sensor will then be limited.

Create an object that represents one of the four outputs from an
analog trigger.

Because this class derives from DigitalSource, it can be passed into
routing functions for Counter, Encoder, etc.

	Parameters:	
	trigger – The trigger for which this is an output.

	outputType – An enum that specifies the output on the trigger
to represent.

	
class AnalogTriggerType[source]

	Bases: builtins.object

Defines the state in which the AnalogTrigger triggers

	
kFallingPulse = 3

	

	
kInWindow = 0

	

	
kRisingPulse = 2

	

	
kState = 1

	

	
AnalogTriggerOutput.free()[source]

	

	
AnalogTriggerOutput.get()[source]

	Get the state of the analog trigger output.

	Returns:	The state of the analog trigger output.

	Return type:	AnalogTriggerType

	
AnalogTriggerOutput.getAnalogTriggerForRouting()[source]

	

	
AnalogTriggerOutput.getChannelForRouting()[source]

	

	
AnalogTriggerOutput.getModuleForRouting()[source]

	

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

BuiltInAccelerometer

	
class wpilib.BuiltInAccelerometer(range=2)[source]

	Bases: wpilib.LiveWindowSendable

Built-in accelerometer device

This class allows access to the RoboRIO’s internal accelerometer.

Constructor.

	Parameters:	range (Accelerometer.Range) – The range the accelerometer will measure. Defaults to
+/-8g if unspecified.

	
class Range

	Bases: builtins.object

	
k16G = 3

	

	
k2G = 0

	

	
k4G = 1

	

	
k8G = 2

	

	
BuiltInAccelerometer.getX()[source]

	

	Returns:	The acceleration of the RoboRIO along the X axis in
g-forces

	Return type:	float

	
BuiltInAccelerometer.getY()[source]

	

	Returns:	The acceleration of the RoboRIO along the Y axis in
g-forces

	Return type:	float

	
BuiltInAccelerometer.getZ()[source]

	

	Returns:	The acceleration of the RoboRIO along the Z axis in
g-forces

	Return type:	float

	
BuiltInAccelerometer.setRange(range)[source]

	Set the measuring range of the accelerometer.

	Parameters:	range (BuiltInAccelerometer.Range) – The maximum acceleration, positive or negative, that
the accelerometer will measure.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

CANJaguar

	
class wpilib.CANJaguar(deviceNumber)[source]

	Bases: wpilib.LiveWindowSendable, wpilib.MotorSafety

Texas Instruments Jaguar Speed Controller as a CAN device.

Constructor for the CANJaguar device.

By default the device is configured in Percent mode.
The control mode can be changed by calling one of the control modes.

	Parameters:	deviceNumber – The address of the Jaguar on the CAN bus.

	
class ControlMode[source]

	Bases: builtins.object

Determines how the Jaguar is controlled, used internally.

	
Current = 1

	

	
PercentVbus = 0

	

	
Position = 3

	

	
Speed = 2

	

	
Voltage = 4

	

	
class CANJaguar.LimitMode[source]

	Bases: builtins.object

Determines which sensor to use for position reference.
Limit switches will always be used to limit the rotation. This can
not be disabled.

	
SoftPositionLimits = 1

	Enables the soft position limits on the Jaguar.
These will be used in addition to the limit switches. This does
not disable the behavior of the limit switch input.
See configSoftPositionLimits.

	
SwitchInputsOnly = 0

	Disables the soft position limits and only uses
the limit switches to limit rotation. See getForwardLimitOK
and getReverseLimitOK.

	
class CANJaguar.Mode[source]

	Bases: builtins.object

Control Mode.

	
kEncoder = 0

	Sets an encoder as the speed reference only.

	
kPotentiometer = 2

	Sets a potentiometer as the position reference only.

	
kQuadEncoder = 1

	Sets a quadrature encoder as the position and speed reference.

	
class CANJaguar.NeutralMode[source]

	Bases: builtins.object

Determines how the Jaguar behaves when sending a zero signal.

	
Brake = 1

	Stop the motor’s rotation by applying a force.

	
Coast = 2

	Do not attempt to stop the motor. Instead allow it to coast
to a stop without applying resistance.

	
Jumper = 0

	Use the NeutralMode that is set by the jumper wire on the CAN device

	
CANJaguar.allocated = <wpilib.resource.Resource object at 0x7fb8e74c9ba8>

	

	
CANJaguar.changeControlMode(controlMode)[source]

	Used internally. In order to set the control mode see the methods
listed below.

Change the control mode of this Jaguar object.

After changing modes, configure any PID constants or other settings
needed and then EnableControl() to actually change the mode on the
Jaguar.

	Parameters:	controlMode – The new mode.

	
CANJaguar.configEncoderCodesPerRev(codesPerRev)[source]

	Configure how many codes per revolution are generated by your
encoder.

	Parameters:	codesPerRev – The number of counts per revolution in 1X mode.

	
CANJaguar.configFaultTime(faultTime)[source]

	Configure how long the Jaguar waits in the case of a fault before
resuming operation.

Faults include over temerature, over current, and bus under voltage.
The default is 3.0 seconds, but can be reduced to as low as 0.5
seconds.

	Parameters:	faultTime – The time to wait before resuming operation, in
seconds.

	
CANJaguar.configForwardLimit(forwardLimitPosition)[source]

	Set the position that, if exceeded, will disable the forward
direction.

Use configSoftPositionLimits() to set this and the
LimitMode automatically.

	Parameters:	forwardLimitPosition – The position that, if exceeded, will
disable the forward direction.

	
CANJaguar.configLimitMode(mode)[source]

	Set the limit mode for position control mode.

Use configSoftPositionLimits() or
disableSoftPositionLimits() to set this automatically.

	Parameters:	mode – The LimitMode to use to limit the rotation of the device.

	
CANJaguar.configMaxOutputVoltage(voltage)[source]

	Configure the maximum voltage that the Jaguar will ever output.

This can be used to limit the maximum output voltage in all modes so
that motors which cannot withstand full bus voltage can be used safely.

	Parameters:	voltage – The maximum voltage output by the Jaguar.

	
CANJaguar.configNeutralMode(mode)[source]

	Configure what the controller does to the H-Bridge when neutral
(not driving the output).

This allows you to override the jumper configuration for brake or coast.

	Parameters:	mode – Select to use the jumper setting or to override it to
coast or brake (see NeutralMode).

	
CANJaguar.configPotentiometerTurns(turns)[source]

	Configure the number of turns on the potentiometer.

There is no special support for continuous turn potentiometers.
Only integer numbers of turns are supported.

	Parameters:	turns – The number of turns of the potentiometer

	
CANJaguar.configReverseLimit(reverseLimitPosition)[source]

	Set the position that, if exceeded, will disable the reverse
direction.

Use configSoftPositionLimits() to set this and the
LimitMode automatically.

	Parameters:	reverseLimitPosition – The position that, if exceeded, will
disable the reverse direction.

	
CANJaguar.configSoftPositionLimits(forwardLimitPosition, reverseLimitPosition)[source]

	Configure Soft Position Limits when in Position Controller mode.

When controlling position, you can add additional limits on top of
the limit switch inputs that are based on the position feedback.
If the position limit is reached or the switch is opened, that
direction will be disabled.

	Parameters:	
	forwardLimitPosition – The position that, if exceeded, will
disable the forward direction.

	reverseLimitPosition – The position that, if exceeded, will
disable the reverse direction.

	
CANJaguar.disable()[source]

	Common interface for disabling a motor.

Deprecated since version 2015: Use disableControl() instead.

	
CANJaguar.disableControl()[source]

	Disable the closed loop controller.

Stop driving the output based on the feedback.

	
CANJaguar.disableSoftPositionLimits()[source]

	Disable Soft Position Limits if previously enabled.

Soft Position Limits are disabled by default.

	
CANJaguar.enableControl(encoderInitialPosition=0.0)[source]

	Enable the closed loop controller.

Start actually controlling the output based on the feedback.
If starting a position controller with an encoder reference,
use the encoderInitialPosition parameter to initialize the
encoder state.

	Parameters:	encoderInitialPosition – Encoder position to set if position
with encoder reference (default of 0.0). Ignored otherwise.

	
CANJaguar.free()[source]

	Cancel periodic messages to the Jaguar, effectively disabling it.
No other methods should be called after this is called.

	
CANJaguar.get()[source]

	Get the recently set outputValue set point.

The scale and the units depend on the mode the Jaguar is in.

	In percentVbus mode, the outputValue is from -1.0 to 1.0 (same as
PWM Jaguar).

	In voltage mode, the outputValue is in volts.

	In current mode, the outputValue is in amps.

	In speed mode, the outputValue is in rotations/minute.

	In position mode, the outputValue is in rotations.

	Returns:	The most recently set outputValue set point.

	
CANJaguar.getBusVoltage()[source]

	Get the voltage at the battery input terminals of the Jaguar.

	Returns:	The bus voltage in Volts.

	
CANJaguar.getControlMode()[source]

	Get the active control mode from the Jaguar.

Ask the Jagaur what mode it is in.

	Return ControlMode:

		that the Jag is in.

	
CANJaguar.getD()[source]

	Get the Derivative gain of the controller.

	Returns:	The derivative gain.

	
CANJaguar.getDescription()[source]

	

	
CANJaguar.getDeviceID()[source]

	

	
CANJaguar.getDeviceNumber()[source]

	

	Returns:	The CAN ID passed in the constructor

	
CANJaguar.getFaults()[source]

	Get the status of any faults the Jaguar has detected.

	Returns:	A bit-mask of faults defined by the “Faults” constants.
	kCurrentFault

	kBusVoltageFault

	kTemperatureFault

	GateDriverFault

	
CANJaguar.getFirmwareVersion()[source]

	Get the version of the firmware running on the Jaguar.

	Returns:	The firmware version. 0 if the device did not respond.

	
CANJaguar.getForwardLimitOK()[source]

	Get the status of the forward limit switch.

	Returns:	True if the motor is allowed to turn in the forward direction.

	
CANJaguar.getHardwareVersion()[source]

	Get the version of the Jaguar hardware.

	Returns:	The hardware version. 1: Jaguar, 2: Black Jaguar

	
CANJaguar.getI()[source]

	Get the Integral gain of the controller.

	Returns:	The integral gain.

	
CANJaguar.getMessage(messageID, messageMask)[source]

	Get a previously requested message.

Jaguar always generates a message with the same message ID when
replying.

	Parameters:	messageID – The messageID to read from the CAN bus (device
number is added internally)

	Returns:	The up to 8 bytes of data that was received with the message

	
CANJaguar.getOutputCurrent()[source]

	Get the current through the motor terminals of the Jaguar.

	Returns:	The output current in Amps.

	
CANJaguar.getOutputVoltage()[source]

	Get the voltage being output from the motor terminals of the Jaguar.

	Returns:	The output voltage in Volts.

	
CANJaguar.getP()[source]

	Get the Proportional gain of the controller.

	Returns:	The proportional gain.

	
CANJaguar.getPosition()[source]

	Get the position of the encoder or potentiometer.

	Returns:	The position of the motor in rotations based on the
configured feedback. See configPotentiometerTurns() and
configEncoderCodesPerRev().

	
CANJaguar.getReverseLimitOK()[source]

	Get the status of the reverse limit switch.

	Returns:	True if the motor is allowed to turn in the reverse direction.

	
CANJaguar.getSpeed()[source]

	Get the speed of the encoder.

	Returns:	The speed of the motor in RPM based on the configured
feedback.

	
CANJaguar.getTemperature()[source]

	Get the internal temperature of the Jaguar.

	Returns:	The temperature of the Jaguar in degrees Celsius.

	
CANJaguar.kApproxBusVoltage = 12.0

	

	
CANJaguar.kBusVoltageFault = 4

	

	
CANJaguar.kControllerRate = 1000

	

	
CANJaguar.kCurrentFault = 1

	

	
CANJaguar.kForwardLimit = 1

	

	
CANJaguar.kFullMessageIDMask = 536870848

	

	
CANJaguar.kGateDriverFault = 8

	

	
CANJaguar.kMaxMessageDataSize = 8

	

	
CANJaguar.kReceiveStatusAttempts = 50

	

	
CANJaguar.kReverseLimit = 2

	

	
CANJaguar.kSendMessagePeriod = 20

	

	
CANJaguar.kTemperatureFault = 2

	

	
CANJaguar.kTrustedMessages = {33685760, 33685824, 33686976, 33687040, 33687872, 33687936, 33689024, 33689088, 33689984, 33690048}

	

	
CANJaguar.pidWrite(output)[source]

	

	
CANJaguar.requestMessage(messageID, period=0)[source]

	Request a message from the Jaguar, but don’t wait for it to arrive.

	Parameters:	
	messageID – The message to request

	periodic – If positive, tell Network Communications to request
the message every “period” milliseconds.

	
CANJaguar.sendMessage(messageID, data, period=0)[source]

	Send a message to the Jaguar.

	Parameters:	
	messageID – The messageID to be used on the CAN bus (device
number is added internally)

	data – The up to 8 bytes of data to be sent with the message

	period – If positive, tell Network Communications to send the
message every “period” milliseconds.

	
CANJaguar.set(outputValue, syncGroup=0)[source]

	Sets the output set-point value.

The scale and the units depend on the mode the Jaguar is in.

	In percentVbus Mode, the outputValue is from -1.0 to 1.0 (same as
PWM Jaguar).

	In voltage Mode, the outputValue is in volts.

	In current Mode, the outputValue is in amps.

	In speed mode, the outputValue is in rotations/minute.

	In position Mode, the outputValue is in rotations.

	Parameters:	
	outputValue – The set-point to sent to the motor controller.

	syncGroup – The update group to add this set() to, pending
UpdateSyncGroup(). If 0 (default), update immediately.

	
CANJaguar.setCurrentModeEncoder(codesPerRev, p, i, d)[source]

	Enable controlling the motor current with a PID loop, and enable
speed sensing from a non-quadrature encoder.

After calling this you must call enableControl() to enable
the device.

	Parameters:	
	p – The proportional gain of the Jaguar’s PID controller.

	i – The integral gain of the Jaguar’s PID controller.

	d – The differential gain of the Jaguar’s PID controller.

	
CANJaguar.setCurrentModePID(p, i, d)[source]

	Enable controlling the motor current with a PID loop.

After calling this you must call enableControl() to enable
the device.

	Parameters:	
	p – The proportional gain of the Jaguar’s PID controller.

	i – The integral gain of the Jaguar’s PID controller.

	d – The differential gain of the Jaguar’s PID controller.

	
CANJaguar.setCurrentModePotentiometer(p, i, d)[source]

	Enable controlling the motor current with a PID loop, and enable
position sensing from a potentiometer.

After calling this you must call enableControl() to enable
the device.

	Parameters:	
	p – The proportional gain of the Jaguar’s PID controller.

	i – The integral gain of the Jaguar’s PID controller.

	d – The differential gain of the Jaguar’s PID controller.

	
CANJaguar.setCurrentModeQuadEncoder(codesPerRev, p, i, d)[source]

	Enable controlling the motor current with a PID loop, and enable
speed and position sensing from a quadrature encoder.

After calling this you must call enableControl() to enable
the device.

	Parameters:	
	codesPerRev – The counts per revolution on the encoder

	p – The proportional gain of the Jaguar’s PID controller.

	i – The integral gain of the Jaguar’s PID controller.

	d – The differential gain of the Jaguar’s PID controller.

	
CANJaguar.setD(d)[source]

	Set the D constant for the closed loop modes.

	Parameters:	d – The derivative gain of the Jaguar’s PID controller.

	
CANJaguar.setI(i)[source]

	Set the I constant for the closed loop modes.

	Parameters:	i – The integral gain of the Jaguar’s PID controller.

	
CANJaguar.setP(p)[source]

	Set the P constant for the closed loop modes.

	Parameters:	p – The proportional gain of the Jaguar’s PID controller.

	
CANJaguar.setPID(p, i, d)[source]

	Set the P, I, and D constants for the closed loop modes.

	Parameters:	
	p – The proportional gain of the Jaguar’s PID controller.

	i – The integral gain of the Jaguar’s PID controller.

	d – The differential gain of the Jaguar’s PID controller.

	
CANJaguar.setPercentMode()[source]

	Enable controlling the motor voltage as a percentage of the bus
voltage without any position or speed feedback.

After calling this you must call enableControl() to enable
the device.

	
CANJaguar.setPercentModeEncoder(codesPerRev)[source]

	Enable controlling the motor voltage as a percentage of the bus
voltage, and enable speed sensing from a non-quadrature encoder.

After calling this you must call enableControl() to enable
the device.

	Parameters:	codesPerRev – The counts per revolution on the encoder

	
CANJaguar.setPercentModePotentiometer()[source]

	Enable controlling the motor voltage as a percentage of the bus
voltage, and enable position sensing from a potentiometer and no
speed feedback.

After calling this you must call enableControl() to enable
the device.

	Parameters:	tag – The constant {@link CANJaguar#kPotentiometer}

	
CANJaguar.setPercentModeQuadEncoder(codesPerRev)[source]

	Enable controlling the motor voltage as a percentage of the bus
voltage, and enable position and speed sensing from a quadrature
encoder.

After calling this you must call enableControl() to enable
the device.

	Parameters:	
	tag – The constant {@link CANJaguar#kQuadEncoder}

	codesPerRev – The counts per revolution on the encoder

	
CANJaguar.setPositionModePotentiometer(p, i, d)[source]

	Enable controlling the position with a feedback loop using a
potentiometer.

After calling this you must call enableControl() to enable
the device.

	Parameters:	
	p – The proportional gain of the Jaguar’s PID controller.

	i – The integral gain of the Jaguar’s PID controller.

	d – The differential gain of the Jaguar’s PID controller.

	
CANJaguar.setPositionModeQuadEncoder(codesPerRev, p, i, d)[source]

	Enable controlling the position with a feedback loop using an
encoder.

After calling this you must call enableControl() to enable
the device.

	Parameters:	
	codesPerRev – The counts per revolution on the encoder

	p – The proportional gain of the Jaguar’s PID controller.

	i – The integral gain of the Jaguar’s PID controller.

	d – The differential gain of the Jaguar’s PID controller.

	
CANJaguar.setPositionReference(reference)[source]

	Set the reference source device for position controller mode.

Choose between using and encoder and using a potentiometer
as the source of position feedback when in position control mode.

	Parameters:	reference – Specify a position reference.

	
CANJaguar.setSpeedModeEncoder(codesPerRev, p, i, d)[source]

	Enable controlling the speed with a feedback loop from a
non-quadrature encoder.

After calling this you must call enableControl() to enable
the device.

	Parameters:	
	codesPerRev – The counts per revolution on the encoder

	p – The proportional gain of the Jaguar’s PID controller.

	i – The integral gain of the Jaguar’s PID controller.

	d – The differential gain of the Jaguar’s PID controller.

	
CANJaguar.setSpeedModeQuadEncoder(codesPerRev, p, i, d)[source]

	Enable controlling the speed with a feedback loop from a
quadrature encoder.

After calling this you must call enableControl() to enable
the device.

	Parameters:	
	codesPerRev – The counts per revolution on the encoder

	p – The proportional gain of the Jaguar’s PID controller.

	i – The integral gain of the Jaguar’s PID controller.

	d – The differential gain of the Jaguar’s PID controller.

	
CANJaguar.setSpeedReference(reference)[source]

	Set the reference source device for speed controller mode.

Choose encoder as the source of speed feedback when in speed control
mode.

	Parameters:	reference – Specify a speed reference.

	
CANJaguar.setVoltageMode()[source]

	Enable controlling the motor voltage without any position or speed
feedback.

After calling this you must call enableControl() to enable
the device.

	
CANJaguar.setVoltageModeEncoder(codesPerRev)[source]

	Enable controlling the motor voltage with speed feedback from a
non-quadrature encoder and no position feedback.

After calling this you must call enableControl() to enable
the device.

	Parameters:	codesPerRev – The counts per revolution on the encoder

	
CANJaguar.setVoltageModePotentiometer()[source]

	Enable controlling the motor voltage with position feedback from a
potentiometer and no speed feedback.

After calling this you must call enableControl() to enable
the device.

	
CANJaguar.setVoltageModeQuadEncoder(codesPerRev)[source]

	Enable controlling the motor voltage with position and speed
feedback from a quadrature encoder.

After calling this you must call enableControl() to enable
the device.

	Parameters:	
	tag – The constant {@link CANJaguar#kQuadEncoder}

	codesPerRev – The counts per revolution on the encoder

	
CANJaguar.setVoltageRampRate(rampRate)[source]

	Set the maximum voltage change rate.

When in PercentVbus or Voltage output mode, the rate at which the
voltage changes can be limited to reduce current spikes. set this
to 0.0 to disable rate limiting.

	Parameters:	rampRate – The maximum rate of voltage change in Percent
Voltage mode in V/s.

	
CANJaguar.setupPeriodicStatus()[source]

	Enables periodic status updates from the Jaguar

	
CANJaguar.stopMotor()[source]

	Common interface for stopping a motor.

	
CANJaguar.updatePeriodicStatus()[source]

	Check for new periodic status updates and unpack them into local
variables.

	
static CANJaguar.updateSyncGroup(syncGroup)[source]

	Update all the motors that have pending sets in the syncGroup.

	Parameters:	syncGroup – A bitmask of groups to generate synchronous output.

	
CANJaguar.verify()[source]

	Check all unverified params and make sure they’re equal to their
local cached versions. If a value isn’t available, it gets requested.
If a value doesn’t match up, it gets set again.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

CANTalon

	
class wpilib.CANTalon(deviceNumber, controlPeriodMs=10)[source]

	Bases: wpilib.MotorSafety

Talon SRX device as a CAN device

The TALON SRX is designed to instrument all runtime signals periodically.
The default periods are chosen to support 16 TALONs with 10ms update rate
for control (throttle or setpoint). However these can be overridden with
setStatusFrameRate().

Likewise most control signals are sent periodically using the
fire-and-forget CAN API.

Signals that are not available in an unsolicited fashion are the Close
Loop gains. For teams that have a single profile for their TALON close
loop they can use either the webpage to configure their TALONs once or
set the PIDF,Izone,CloseLoopRampRate,etc... once in the robot application.
These parameters are saved to flash so once they are loaded in the TALON,
they will persist through power cycles and mode changes.

For teams that have one or two profiles to switch between, they can use
the same strategy since there are two slots to choose from and the
ProfileSlotSelect is periodically sent in the 10 ms control frame.

For teams that require changing gains frequently, they can use the
soliciting API to get and set those parameters. Most likely they will
only need to set them in a periodic fashion as a function of what motion
the application is attempting. If this API is used, be mindful of the CAN
utilization reported in the driver station.

Encoder position is measured in encoder edges. Every edge is counted
(similar to roboRIO 4X mode). Analog position is 10 bits, meaning 1024
ticks per rotation (0V => 3.3V). Use setFeedbackDevice() to select
which sensor type you need. Once you do that you can use
getSensorPosition() and getSensorVelocity(). These signals
are updated on CANBus every 20ms (by default). If a relative sensor is
selected, you can zero (or change the current value) using
setSensorPosition().

Analog Input and quadrature position (and velocity) are also explicitly
reported in getEncPosition(), getEncVelocity(),
getAnalogInPosition(), getAnalogInRaw(),
getAnalogInVelocity().
These signals are available all the time, regardless of what sensor is
selected at a rate of 100ms. This allows easy instrumentation for “in the
pits” checking of all sensors regardless of modeselect. The 100ms rate is
overridable for teams who want to acquire sensor data for processing, not
just instrumentation. Or just select the sensor using
setFeedbackDevice() to get it at 20ms.

Velocity is in position ticks / 100ms.

All output units are in respect to duty cycle (throttle) which is
-1023(full reverse) to +1023 (full forward). This includes demand (which
specifies duty cycle when in duty cycle mode) and rampRamp, which is in
throttle units per 10ms (if nonzero).

When in (default) PercentVBus mode, set() and get() are automatically
scaled to a -1.0 to +1.0 range to match other motor controllers.

Pos and velocity close loops are calc’d as:

err = target - posOrVel
iErr += err
if IZone != 0 and abs(err) > IZone:
 ClearIaccum()
output = P * err + I * iErr + D * dErr + F * target
dErr = err - lastErr

P, I, and D gains are always positive. F can be negative.

Motor direction can be reversed using reverseOutput() if sensor
and motor are out of phase. Similarly feedback sensor can also be reversed
(multiplied by -1) using reverseSensor() if you prefer the sensor to
be inverted.

P gain is specified in throttle per error tick. For example, a value of
102 is ~9.9% (which is 102/1023) throttle per 1 ADC unit(10bit) or 1
quadrature encoder edge depending on selected sensor.

I gain is specified in throttle per integrated error. For example, a value
of 10 equates to ~0.99% (which is 10/1023) for each accumulated ADC
unit(10bit) or 1 quadrature encoder edge depending on selected sensor.
Close loop and integral accumulator runs every 1ms.

D gain is specified in throttle per derivative error. For example a value
of 102 equates to ~9.9% (which is 102/1023) per change of 1 unit (ADC or
encoder) per ms.

I Zone is specified in the same units as sensor position (ADC units or
quadrature edges). If pos/vel error is outside of this value, the
integrated error will auto-clear:

if IZone != 0 and abs(err) > IZone:
 ClearIaccum()

This is very useful in preventing integral windup and is highly
recommended if using full PID to keep stability low.

CloseLoopRampRate is in throttle units per 1ms. Set to zero to disable
ramping. Works the same as RampThrottle but only is in effect when a
close loop mode and profile slot is selected.

	
class ControlMode[source]

	Bases: builtins.object

	
Current = 3

	

	
Disabled = 15

	

	
Follower = 5

	

	
PercentVbus = 0

	

	
Position = 1

	

	
Speed = 2

	

	
Voltage = 4

	

	
class CANTalon.FeedbackDevice[source]

	Bases: builtins.object

	
AnalogEncoder = 3

	

	
AnalogPot = 2

	

	
EncFalling = 5

	

	
EncRising = 4

	

	
QuadEncoder = 0

	

	
class CANTalon.StatusFrameRate[source]

	Bases: builtins.object

enumerated types for frame rate ms

	
AnalogTempVbat = 3

	

	
Feedback = 1

	

	
General = 0

	

	
QuadEncoder = 2

	

	
CANTalon.changeControlMode(controlMode)[source]

	

	
CANTalon.clearIaccum()[source]

	Clear the accumulator for I gain.

	
CANTalon.clearStickyFaults()[source]

	

	
CANTalon.configFwdLimitSwitchNormallyOpen(normallyOpen)[source]

	Configure the fwd limit switch to be normally open or normally closed.
Talon will disable momentarilly if the Talon’s current setting
is dissimilar to the caller’s requested setting.

Since Talon saves setting to flash this should only affect
a given Talon initially during robot install.

	Parameters:	normallyOpen – True for normally open. False for normally closed.

	
CANTalon.configRevLimitSwitchNormallyOpen(normallyOpen)[source]

	
	Configure the rev limit switch to be normally open or normally closed.

	Talon will disable momentarilly if the Talon’s current setting

	is dissimilar to the caller’s requested setting.

	

	Since Talon saves setting to flash this should only affect

	a given Talon initially during robot install.

	

	@param normallyOpen true for normally open. false for normally closed.

	
CANTalon.disable()[source]

	

	
CANTalon.disableControl()[source]

	

	
CANTalon.enableBrakeMode(brake)[source]

	

	
CANTalon.enableControl()[source]

	

	
CANTalon.enableForwardSoftLimit(enable)[source]

	

	
CANTalon.enableLimitSwitch(forward, reverse)[source]

	

	
CANTalon.enableReverseSoftLimit(enable)[source]

	

	
CANTalon.free()[source]

	

	
CANTalon.get()[source]

	Gets the current status of the Talon (usually a sensor value).

In Current mode: returns output current.

In Speed mode: returns current speed.

In Position omde: returns current sensor position.

In Throttle and Follower modes: returns current applied throttle.

	Returns:	The current sensor value of the Talon.

	
CANTalon.getAnalogInPosition()[source]

	Get the current analog in position, regardless of whether it is the
current feedback device.

	Returns:	The 24bit analog position. The bottom ten bits is the ADC
(0 - 1023) on the analog pin of the Talon. The upper 14 bits
tracks the overflows and underflows (continuous sensor).

	
CANTalon.getAnalogInRaw()[source]

	Get the current analog in position, regardless of whether it is the
current feedback device.
:returns: The ADC (0 - 1023) on analog pin of the Talon.

	
CANTalon.getAnalogInVelocity()[source]

	Get the current encoder velocity, regardless of whether it is the
current feedback device.

	Returns:	The current speed of the analog in device.

	
CANTalon.getBrakeEnableDuringNeutral()[source]

	Returns True if break is enabled during neutral. False if coast.

	
CANTalon.getBusVoltage()[source]

	

	Returns:	The voltage at the battery terminals of the Talon, in Volts.

	
CANTalon.getCloseLoopRampRate()[source]

	Get the closed loop ramp rate for the current profile.

Limits the rate at which the throttle will change.
Only affects position and speed closed loop modes.

	Returns:	rampRate Maximum change in voltage, in volts / sec.

	See:	#setProfile For selecting a certain profile.

	
CANTalon.getClosedLoopError()[source]

	Get the current difference between the setpoint and the sensor value.

	Returns:	The error, in whatever units are appropriate.

	
CANTalon.getControlMode()[source]

	

	
CANTalon.getD()[source]

	

	
CANTalon.getDescription()[source]

	

	
CANTalon.getDeviceID()[source]

	

	
CANTalon.getEncPosition()[source]

	Get the current encoder position, regardless of whether it is the
current feedback device.

	Returns:	The current position of the encoder.

	
CANTalon.getEncVelocity()[source]

	Get the current encoder velocity, regardless of whether it is the
current feedback device.

	Returns:	The current speed of the encoder.

	
CANTalon.getF()[source]

	

	
CANTalon.getFaultForLim()[source]

	

	
CANTalon.getFaultForSoftLim()[source]

	

	
CANTalon.getFaultHardwareFailure()[source]

	

	
CANTalon.getFaultOverTemp()[source]

	

	
CANTalon.getFaultRevLim()[source]

	

	
CANTalon.getFaultRevSoftLim()[source]

	

	
CANTalon.getFaultUnderVoltage()[source]

	

	
CANTalon.getFirmwareVersion()[source]

	

	Returns:	The version of the firmware running on the Talon

	
CANTalon.getI()[source]

	

	
CANTalon.getIZone()[source]

	

	
CANTalon.getIaccum()[source]

	

	
CANTalon.getNumberOfQuadIdxRises()[source]

	Get the number of of rising edges seen on the index pin.

	Returns:	number of rising edges on idx pin.

	
CANTalon.getOutputCurrent()[source]

	Returns the current going through the Talon, in Amperes.

	
CANTalon.getOutputVoltage()[source]

	

	Returns:	The voltage being output by the Talon, in Volts.

	
CANTalon.getP()[source]

	Get the current proportional constant.

	Returns:	double proportional constant for current profile.

	
CANTalon.getPinStateQuadA()[source]

	

	Returns:	IO level of QUADA pin.

	
CANTalon.getPinStateQuadB()[source]

	

	Returns:	IO level of QUADB pin.

	
CANTalon.getPinStateQuadIdx()[source]

	

	Returns:	IO level of QUAD Index pin.

	
CANTalon.getPosition()[source]

	

	
CANTalon.getSensorPosition()[source]

	

	
CANTalon.getSensorVelocity()[source]

	

	
CANTalon.getSetpoint()[source]

	

	Returns:	The latest value set using set().

	
CANTalon.getSpeed()[source]

	

	
CANTalon.getStickyFaultForLim()[source]

	

	
CANTalon.getStickyFaultForSoftLim()[source]

	

	
CANTalon.getStickyFaultOverTemp()[source]

	

	
CANTalon.getStickyFaultRevLim()[source]

	

	
CANTalon.getStickyFaultRevSoftLim()[source]

	

	
CANTalon.getStickyFaultUnderVoltage()[source]

	

	
CANTalon.getTemp()[source]

	Returns temperature of Talon, in degrees Celsius.

	
CANTalon.handle[source]

	

	
CANTalon.isControlEnabled()[source]

	

	
CANTalon.isFwdLimitSwitchClosed()[source]

	Returns True if limit switch is closed. False if open.

	
CANTalon.isRevLimitSwitchClosed()[source]

	Returns True if limit switch is closed. False if open.

	
CANTalon.kDelayForSolicitedSignals = 0.004

	

	
CANTalon.pidWrite(output)[source]

	

	
CANTalon.reverseOutput(flip)[source]

	Flips the sign (multiplies by negative one) the throttle values going
into the motor on the talon in closed loop modes.

	Parameters:	flip – True if motor output should be flipped; False if not.

	
CANTalon.reverseSensor(flip)[source]

	Flips the sign (multiplies by negative one) the sensor values going
into the talon.

	This only affects position and velocity closed loop control. Allows for

	situations where you may have a sensor flipped and going in the wrong
direction.

	Parameters:	flip – True if sensor input should be flipped; False if not.

	
CANTalon.set(outputValue, syncGroup=0)[source]

	Sets the appropriate output on the talon, depending on the mode.

In PercentVbus, the output is between -1.0 and 1.0, with 0.0 as stopped.

	In Follower mode, the output is the integer device ID of the talon to

	duplicate.

In Voltage mode, outputValue is in volts.

In Current mode, outputValue is in amperes.

In Speed mode, outputValue is in position change / 10ms.

	In Position mode, outputValue is in encoder ticks or an analog value,

	depending on the sensor.

	Parameters:	outputValue – The setpoint value, as described above.

	
CANTalon.setCloseLoopRampRate(rampRate)[source]

	Set the closed loop ramp rate for the current profile.

Limits the rate at which the throttle will change.
Only affects position and speed closed loop modes.

	Parameters:	rampRate – Maximum change in voltage, in volts / sec.

	See:	#setProfile For selecting a certain profile.

	
CANTalon.setD(d)[source]

	Set the derivative constant of the currently selected profile.

	Parameters:	d – Derivative constant for the currently selected PID profile.

	See:	#setProfile For selecting a certain profile.

	
CANTalon.setF(f)[source]

	Set the feedforward value of the currently selected profile.

	Parameters:	f – Feedforward constant for the currently selected PID profile.

	See:	#setProfile For selecting a certain profile.

	
CANTalon.setFeedbackDevice(device)[source]

	

	
CANTalon.setForwardSoftLimit(forwardLimit)[source]

	

	
CANTalon.setI(i)[source]

	Set the integration constant of the currently selected profile.

	Parameters:	i – Integration constant for the currently selected PID profile.

	See:	#setProfile For selecting a certain profile.

	
CANTalon.setIZone(izone)[source]

	Set the integration zone of the current Closed Loop profile.

Whenever the error is larger than the izone value, the accumulated
integration error is cleared so that high errors aren’t racked up when
at high errors.

An izone value of 0 means no difference from a standard PIDF loop.

	Parameters:	izone – Width of the integration zone.

	See:	#setProfile For selecting a certain profile.

	
CANTalon.setP(p)[source]

	Set the proportional value of the currently selected profile.

	Parameters:	p – Proportional constant for the currently selected PID profile.

	See:	#setProfile For selecting a certain profile.

	
CANTalon.setPID(p, i, d, f=0, izone=0, closeLoopRampRate=0, profile=None)[source]

	Sets control values for closed loop control.

	Parameters:	
	p – Proportional constant.

	i – Integration constant.

	d – Differential constant.

	f – Feedforward constant.

	izone – Integration zone – prevents accumulation of integration
error with large errors. Setting this to zero will ignore any
izone stuff.

	closeLoopRampRate – Closed loop ramp rate. Maximum change in
voltage, in volts / sec.

	profile – which profile to set the pid constants for. You can
have two profiles, with values of 0 or 1, allowing you to keep a
second set of values on hand in the talon. In order to switch
profiles without recalling setPID, you must call setProfile().

	
CANTalon.setPosition(pos)[source]

	

	
CANTalon.setProfile(profile)[source]

	Select which closed loop profile to use, and uses whatever PIDF gains
and the such that are already there.

	
CANTalon.setReverseSoftLimit(reverseLimit)[source]

	

	
CANTalon.setSensorPosition(pos)[source]

	

	
CANTalon.setStatusFrameRateMs(stateFrame, periodMs)[source]

	Change the periodMs of a TALON’s status frame. See StatusFrameRate
enum for what’s available.

	
CANTalon.setVoltageRampRate(rampRate)[source]

	Set the voltage ramp rate for the current profile.

Limits the rate at which the throttle will change.
Affects all modes.

	Parameters:	rampRate – Maximum change in voltage, in volts / sec.

	
CANTalon.stopMotor()[source]

	Common interface for stopping a motor.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

Compressor

	
class wpilib.Compressor(pcmId=None)[source]

	Bases: wpilib.SensorBase

Operates the PCM (Pneumatics compressor module)

The PCM automatically will run in close-loop mode by default whenever a
Solenoid object is created. For most cases the Compressor object does not
need to be instantiated or used in a robot program.

This class is only required in cases where more detailed status or to
enable/disable closed loop control. Note: you cannot operate the
compressor directly from this class as doing so would circumvent the
safety provided in using the pressure switch and closed loop control.
You can only turn off closed loop control, thereby stopping the
compressor from operating.

Create an instance of the Compressor

	Parameters:	pcmID – The PCM CAN device ID. Most robots that use PCM will
have a single module. Use this for supporting a second
module other than the default.

	
clearAllPCMStickyFaults()[source]

	

	
enabled()[source]

	Get the enabled status of the compressor.

	Returns:	True if the compressor is on

	Return type:	bool

	
getClosedLoopControl()[source]

	Gets the current operating mode of the PCM.

	Returns:	True if compressor is operating on closed-loop mode,
otherwise return False.

	Return type:	bool

	
getCompressorCurrent()[source]

	Get the current being used by the compressor.

	Returns:	Current consumed in amps for the compressor motor

	Return type:	float

	
getCompressorCurrentTooHighFault()[source]

	

	Returns:	True if PCM is in fault state : Compressor Drive is
disabled due to compressor current being too high

	
getCompressorCurrentTooHighStickyFault()[source]

	

	Returns:	True if PCM sticky fault is set : Compressor Drive is
disabled due to compressor current being too high

	
getCompressorNotConnectedFault()[source]

	

	Returns:	True if PCM is in fault state : Compressor does not appear
to be wired, i.e. compressor is not drawing enough current.

	
getCompressorNotConnectedStickyFault()[source]

	

	Returns:	True if PCM sticky fault is set : Compressor does not appear
to be wired, i.e. compressor is not drawing enough current.

	
getCompressorShortedFault()[source]

	

	Returns:	True if PCM is in fault state : Compressor Output
appears to be shorted

	
getCompressorShortedStickyFault()[source]

	

	Returns:	True if PCM sticky fault is set : Compressor Output
appears to be shorted

	
getPressureSwitchValue()[source]

	Get the current pressure switch value.

	Returns:	True if the pressure is low by reading the pressure switch
that is plugged into the PCM

	Return type:	bool

	
setClosedLoopControl(on)[source]

	Set the PCM in closed loop control mode.

	Parameters:	on (bool) – If True sets the compressor to be in closed loop control
mode otherwise normal operation of the compressor is disabled.

	
start()[source]

	Start the compressor running in closed loop control mode.
Use the method in cases where you would like to manually stop and
start the compressor for applications such as conserving battery
or making sure that the compressor motor doesn’t start during
critical operations.

	
stop()[source]

	Stop the compressor from running in closed loop control mode.
Use the method in cases where you would like to manually stop and
start the compressor for applications such as conserving battery
or making sure that the compressor motor doesn’t start during
critical operations.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

ControllerPower

	
class wpilib.ControllerPower[source]

	Bases: builtins.object

Provides access to power levels on the RoboRIO

	
static getCurrent3V3()[source]

	Get the current output of the 3.3V rail

	Returns:	The controller 3.3V rail output current value in Amps

	Return type:	float

	
static getCurrent5V()[source]

	Get the current output of the 5V rail

	Returns:	The controller 5V rail output current value in Amps

	Return type:	float

	
static getCurrent6V()[source]

	Get the current output of the 6V rail

	Returns:	The controller 6V rail output current value in Amps

	Return type:	float

	
static getEnabled3V3()[source]

	Get the enabled state of the 3.3V rail. The rail may be
disabled due to a controller brownout, a short circuit on the
rail, or controller over-voltage

	Returns:	True if enabled, False otherwise

	Return type:	bool

	
static getEnabled5V()[source]

	Get the enabled state of the 5V rail. The rail may be disabled
due to a controller brownout, a short circuit on the rail, or
controller over-voltage

	Returns:	True if enabled, False otherwise

	Return type:	bool

	
static getEnabled6V()[source]

	Get the enabled state of the 6V rail. The rail may be disabled
due to a controller brownout, a short circuit on the rail, or
controller over-voltage

	Returns:	True if enabled, False otherwise

	Return type:	bool

	
static getFaultCount3V3()[source]

	Get the count of the total current faults on the 3.3V rail since
the controller has booted

	Returns:	The number of faults

	Return type:	int

	
static getFaultCount5V()[source]

	Get the count of the total current faults on the 5V rail since
the controller has booted

	Returns:	The number of faults

	Return type:	int

	
static getFaultCount6V()[source]

	Get the count of the total current faults on the 6V rail since
the controller has booted

	Returns:	The number of faults

	Return type:	int

	
static getInputCurrent()[source]

	Get the input current to the robot controller

	Returns:	The controller input current value in Amps

	Return type:	float

	
static getInputVoltage()[source]

	Get the input voltage to the robot controller

	Returns:	The controller input voltage value in Volts

	Return type:	float

	
static getVoltage3V3()[source]

	Get the voltage of the 3.3V rail

	Returns:	The controller 3.3V rail voltage value in Volts

	Return type:	float

	
static getVoltage5V()[source]

	Get the voltage of the 5V rail

	Returns:	The controller 5V rail voltage value in Volts

	Return type:	float

	
static getVoltage6V()[source]

	Get the voltage of the 6V rail

	Returns:	The controller 6V rail voltage value in Volts

	Return type:	float

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

Counter

	
class wpilib.Counter(*args, **kwargs)[source]

	Bases: wpilib.SensorBase

Counts the number of ticks on a DigitalInput channel.

This is a general purpose class for counting repetitive events. It can return
the number of counts, the period of the most recent cycle, and detect when
the signal being counted has stopped by supplying a maximum cycle time.

All counters will immediately start counting - reset() them if you need
them to be zeroed before use.

Counter constructor.

The counter will start counting immediately.

Positional arguments may be either channel numbers, DigitalSource
sources, or AnalogTrigger sources in the following order:

A “source” is any valid single-argument input to setUpSource() and setDownSource()

	(none)

	upSource

	upSource, down source

And, to keep consistency with Java wpilib.
- encodingType, up source, down source, inverted

If the passed object has a
getChannelForRouting function, it is assumed to be a DigitalSource.
If the passed object has a createOutput function, it is assumed to
be an AnalogTrigger.

In addition, extra keyword parameters may be provided for mode, inverted,
and encodingType.

	Parameters:	
	upSource – The source (channel num, DigitalInput, or AnalogTrigger)
that should be used for up counting.

	downSource – The source (channel num, DigitalInput, or AnalogTrigger)
that should be used for down counting or direction control.

	mode – How and what the counter counts (see Mode). Defaults to
Mode.kTwoPulse for zero or one source, and
Mode.kExternalDirection for two sources.

	inverted – Flips the direction of counting. Defaults to False if unspecified.
Only used when two sources are specified.

	encodingType – Either k1X or k2X to indicate 1X or 2X decoding. 4X decoding
is not supported by Counter; use Encoder instead. Defaults
to k1X if unspecified. Only used when two sources are specified.

	
class EncodingType

	Bases: builtins.object

The number of edges for the counterbase to increment or decrement on

	
k1X = 0

	

	
k2X = 1

	

	
k4X = 2

	

	
class Counter.Mode[source]

	Bases: builtins.object

Mode determines how and what the counter counts

	
kExternalDirection = 3

	external direction mode

	
kPulseLength = 2

	pulse length mode

	
kSemiperiod = 1

	semi period mode

	
kTwoPulse = 0

	two pulse mode

	
class Counter.PIDSourceParameter

	Bases: builtins.object

A description for the type of output value to provide to a
PIDController

	
kAngle = 2

	

	
kDistance = 0

	

	
kRate = 1

	

	
Counter.allocatedDownSource = False

	

	
Counter.allocatedUpSource = False

	

	
Counter.clearDownSource()[source]

	Disable the down counting source to the counter.

	
Counter.clearUpSource()[source]

	Disable the up counting source to the counter.

	
Counter.counter[source]

	

	
Counter.free()[source]

	

	
Counter.get()[source]

	Read the current counter value. Read the value at this instant. It
may still be running, so it reflects the current value. Next time it
is read, it might have a different value.

	
Counter.getDirection()[source]

	The last direction the counter value changed.

	Returns:	The last direction the counter value changed.

	Return type:	bool

	
Counter.getDistance()[source]

	Read the current scaled counter value. Read the value at this
instant, scaled by the distance per pulse (defaults to 1).

	Returns:	Scaled value

	Return type:	float

	
Counter.getFPGAIndex()[source]

	

	Returns:	The Counter’s FPGA index.

	
Counter.getPeriod()[source]

	Get the Period of the most recent count. Returns the time interval
of the most recent count. This can be used for velocity calculations
to determine shaft speed.

	Returns:	The period of the last two pulses in units of seconds.

	Return type:	float

	
Counter.getRate()[source]

	Get the current rate of the Counter. Read the current rate of the
counter accounting for the distance per pulse value. The default
value for distance per pulse (1) yields units of pulses per second.

	Returns:	The rate in units/sec

	Return type:	float

	
Counter.getSamplesToAverage()[source]

	Get the Samples to Average which specifies the number of samples
of the timer to average when calculating the period. Perform averaging
to account for mechanical imperfections or as oversampling to increase
resolution.

	Returns:	The number of samples being averaged (from 1 to 127)

	Return type:	int

	
Counter.getStopped()[source]

	Determine if the clock is stopped. Determine if the clocked input
is stopped based on the MaxPeriod value set using the
setMaxPeriod() method. If the clock exceeds the MaxPeriod,
then the device (and counter) are assumed to be stopped and it
returns True.

	Returns:	Returns True if the most recent counter period exceeds the
MaxPeriod value set by SetMaxPeriod.

	Return type:	bool

	
Counter.pidGet()[source]

	

	
Counter.reset()[source]

	Reset the Counter to zero. Set the counter value to zero. This
doesn’t effect the running state of the counter, just sets the
current value to zero.

	
Counter.setDistancePerPulse(distancePerPulse)[source]

	Set the distance per pulse for this counter. This sets the
multiplier used to determine the distance driven based on the count
value from the encoder. Set this value based on the Pulses per
Revolution and factor in any gearing reductions. This distance can be
in any units you like, linear or angular.

	Parameters:	distancePerPulse (float) – The scale factor that will be used to convert pulses to useful
units.

	
Counter.setDownSource(*args, **kwargs)[source]

	Set the down counting source for the counter.

This function accepts either a digital channel index, a
DigitalSource, or an AnalogTrigger as positional arguments:

	source

	channel

	analogTrigger

	analogTrigger, triggerType

For positional arguments, if the passed object has a
getChannelForRouting function, it is assumed to be a DigitalSource.
If the passed object has a createOutput function, it is assumed to
be an AnalogTrigger.

Alternatively, sources and/or channels may be passed as keyword
arguments. The behavior of specifying both a source and a number
for the same channel is undefined, as is passing both a positional
and a keyword argument for the same channel.

	Parameters:	
	channel (int) – the DIO channel to use as the down source. 0-9 are on-board, 10-25 are on the MXP

	source (DigitalInput) – The digital source to count

	analogTrigger (AnalogTrigger) – The analog trigger object that is used for the Up Source

	triggerType (AnalogTriggerType) – The analog trigger output that will trigger the counter.
Defaults to kState if not specified.

	
Counter.setDownSourceEdge(risingEdge, fallingEdge)[source]

	Set the edge sensitivity on an down counting source. Set the down
source to either detect rising edges or falling edges.

	Parameters:	
	risingEdge (bool) – True to count rising edge

	fallingEdge (bool) – True to count falling edge

	
Counter.setExternalDirectionMode()[source]

	Set external direction mode on this counter. Counts are sourced on
the Up counter input. The Down counter input represents the direction
to count.

	
Counter.setMaxPeriod(maxPeriod)[source]

	Set the maximum period where the device is still considered
“moving”. Sets the maximum period where the device is considered
moving. This value is used to determine the “stopped” state of the
counter using the getStopped() method.

	Parameters:	maxPeriod (float or int) – The maximum period where the counted device is
considered moving in seconds.

	
Counter.setPIDSourceParameter(pidSource)[source]

	Set which parameter of the encoder you are using as a process
control variable. The counter class supports the rate and distance
parameters.

	Parameters:	pidSource (Counter.PIDSourceParameter) – An enum to select the parameter.

	
Counter.setPulseLengthMode(threshold)[source]

	Configure the counter to count in up or down based on the length
of the input pulse. This mode is most useful for direction sensitive
gear tooth sensors.

	Parameters:	threshold (float, int) – The pulse length beyond which the counter counts the
opposite direction. Units are seconds.

	
Counter.setReverseDirection(reverseDirection)[source]

	Set the Counter to return reversed sensing on the direction. This
allows counters to change the direction they are counting in the case
of 1X and 2X quadrature encoding only. Any other counter mode isn’t
supported.

	Parameters:	reverseDirection (bool) – True if the value counted should be negated.

	
Counter.setSamplesToAverage(samplesToAverage)[source]

	Set the Samples to Average which specifies the number of samples
of the timer to average when calculating the period. Perform averaging
to account for mechanical imperfections or as oversampling to increase
resolution.

	Parameters:	samplesToAverage (int) – The number of samples to average from 1 to 127.

	
Counter.setSemiPeriodMode(highSemiPeriod)[source]

	Set Semi-period mode on this counter. Counts up on both rising and
falling edges.

	Parameters:	highSemiPeriod (bool) – True to count up on both rising and falling

	
Counter.setUpDownCounterMode()[source]

	Set standard up / down counting mode on this counter. Up and down
counts are sourced independently from two inputs.

	
Counter.setUpSource(*args, **kwargs)[source]

	Set the up counting source for the counter.

This function accepts either a digital channel index, a
DigitalSource, or an AnalogTrigger as positional arguments:

	source

	channel

	analogTrigger

	analogTrigger, triggerType

For positional arguments, if the passed object has a
getChannelForRouting function, it is assumed to be a DigitalSource.
If the passed object has a createOutput function, it is assumed to
be an AnalogTrigger.

Alternatively, sources and/or channels may be passed as keyword
arguments. The behavior of specifying both a source and a number
for the same channel is undefined, as is passing both a positional
and a keyword argument for the same channel.

	Parameters:	
	channel (int) – the DIO channel to use as the up source. 0-9 are on-board, 10-25 are on the MXP

	source (DigitalInput) – The digital source to count

	analogTrigger (AnalogTrigger) – The analog trigger object that is used for the Up Source

	triggerType (AnalogTriggerType) – The analog trigger output that will trigger the counter.
Defaults to kState if not specified.

	
Counter.setUpSourceEdge(risingEdge, fallingEdge)[source]

	Set the edge sensitivity on an up counting source. Set the up
source to either detect rising edges or falling edges.

	Parameters:	
	risingEdge (bool) – True to count rising edge

	fallingEdge (bool) – True to count falling edge

	
Counter.setUpdateWhenEmpty(enabled)[source]

	Select whether you want to continue updating the event timer
output when there are no samples captured. The output of the event
timer has a buffer of periods that are averaged and posted to a
register on the FPGA. When the timer detects that the event source
has stopped (based on the MaxPeriod) the buffer of samples to be
averaged is emptied. If you enable update when empty, you will be
notified of the stopped source and the event time will report 0
samples. If you disable update when empty, the most recent average
will remain on the output until a new sample is acquired. You will
never see 0 samples output (except when there have been no events
since an FPGA reset) and you will likely not see the stopped bit
become true (since it is updated at the end of an average and
there are no samples to average).

	Parameters:	enabled (bool) – True to continue updating

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

DigitalInput

	
class wpilib.DigitalInput(channel)[source]

	Bases: wpilib.DigitalSource

Reads a digital input.

This class will read digital inputs and return the current value on the
channel. Other devices such as encoders, gear tooth sensors, etc. that
are implemented elsewhere will automatically allocate digital inputs
and outputs as required. This class is only for devices like switches
etc. that aren’t implemented anywhere else.

Create an instance of a Digital Input class. Creates a digital
input given a channel.

	Parameters:	channel (int) – the DIO channel for the digital input. 0-9 are on-board, 10-25 are on the MXP

	
get()[source]

	Get the value from a digital input channel. Retrieve the value of
a single digital input channel from the FPGA.

	Returns:	the state of the digital input

	Return type:	bool

	
getAnalogTriggerForRouting()[source]

	

	
getChannel()[source]

	Get the channel of the digital input

	Returns:	The GPIO channel number that this object represents.

	Return type:	int

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

DigitalOutput

	
class wpilib.DigitalOutput(channel)[source]

	Bases: wpilib.DigitalSource

Writes to a digital output

Other devices that are implemented elsewhere will automatically allocate
digital inputs and outputs as required.

Create an instance of a digital output.

	Parameters:	channel – the DIO channel for the digital output. 0-9 are on-board, 10-25 are on the MXP

	
disablePWM()[source]

	Change this line from a PWM output back to a static Digital Output
line.

Free up one of the 6 DO PWM generator resources that were in use.

	
enablePWM(initialDutyCycle)[source]

	Enable a PWM Output on this line.

Allocate one of the 6 DO PWM generator resources.

Supply the initial duty-cycle to output so as to avoid a glitch when
first starting.

The resolution of the duty cycle is 8-bit for low frequencies (1kHz or
less) but is reduced the higher the frequency of the PWM signal is.

	Parameters:	initialDutyCycle (float) – The duty-cycle to start generating. [0..1]

	
free()[source]

	Free the resources associated with a digital output.

	
getChannel()[source]

	

	Returns:	The GPIO channel number that this object represents.

	
isPulsing()[source]

	Determine if the pulse is still going. Determine if a previously
started pulse is still going.

	Returns:	True if pulsing

	Return type:	bool

	
pulse(channel, pulseLength)[source]

	Generate a single pulse. Write a pulse to the specified digital
output channel. There can only be a single pulse going at any time.

	Parameters:	
	channel – The channel to pulse.

	pulseLength (float) – The length of the pulse.

	
pwmGenerator[source]

	

	
set(value)[source]

	Set the value of a digital output.

	Parameters:	value (bool) – True is on, off is False

	
setPWMRate(rate)[source]

	Change the PWM frequency of the PWM output on a Digital Output line.

The valid range is from 0.6 Hz to 19 kHz. The frequency resolution is
logarithmic.

There is only one PWM frequency for all channnels.

	Parameters:	rate (float) – The frequency to output all digital output PWM signals.

	
updateDutyCycle(dutyCycle)[source]

	Change the duty-cycle that is being generated on the line.

The resolution of the duty cycle is 8-bit for low frequencies (1kHz or
less) but is reduced the higher the frequency of the PWM signal is.

	Parameters:	dutyCycle (float) – The duty-cycle to change to. [0..1]

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

DigitalSource

	
class wpilib.DigitalSource(channel, input)[source]

	Bases: wpilib.InterruptableSensorBase

DigitalSource Interface. The DigitalSource represents all the possible
inputs for a counter or a quadrature encoder. The source may be either a
digital input or an analog input. If the caller just provides a channel,
then a digital input will be constructed and freed when finished for the
source. The source can either be a digital input or analog trigger but
not both.

	Parameters:	
	channel (int) – Port for the digital input

	input (int) – True if input, False otherwise

	
channels = <wpilib.resource.Resource object at 0x7fb8e7483240>

	

	
free()[source]

	

	
getAnalogTriggerForRouting()[source]

	Is this an analog trigger

	Returns:	True if this is an analog trigger

	
getChannelForRouting()[source]

	Get the channel routing number

	Returns:	channel routing number

	
getModuleForRouting()[source]

	Get the module routing number

	Returns:	0

	
port[source]

	

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

DoubleSolenoid

	
class wpilib.DoubleSolenoid(*args, **kwargs)[source]

	Bases: wpilib.SolenoidBase

Controls 2 channels of high voltage Digital Output.

The DoubleSolenoid class is typically used for pneumatics solenoids that
have two positions controlled by two separate channels.

Constructor.

Arguments can be supplied as positional or keyword. Acceptable
positional argument combinations are:

	forwardChannel, reverseChannel

	moduleNumber, forwardChannel, reverseChannel

Alternatively, the above names can be used as keyword arguments.

	Parameters:	
	moduleNumber – The module number of the solenoid module to use.

	forwardChannel – The forward channel number on the PCM (0..7)

	reverseChannel – The reverse channel number on the PCM (0..7)

	
class Value[source]

	Bases: builtins.object

Possible values for a DoubleSolenoid.

	
kForward = 1

	

	
kOff = 0

	

	
kReverse = 2

	

	
DoubleSolenoid.free()[source]

	Mark the solenoid as freed.

	
DoubleSolenoid.get()[source]

	Read the current value of the solenoid.

	Returns:	The current value of the solenoid.

	Return type:	DoubleSolenoid.Value

	
DoubleSolenoid.isFwdSolenoidBlackListed()[source]

	
	Check if the forward solenoid is blacklisted.

	If a solenoid is shorted, it is added to the blacklist and disabled until power cycle, or until faults are
cleared. See clearAllPCMStickyFaults()

	Returns:	If solenoid is disabled due to short.

	
DoubleSolenoid.isRevSolenoidBlackListed()[source]

	
	Check if the reverse solenoid is blacklisted.

	If a solenoid is shorted, it is added to the blacklist and disabled until power cycle, or until faults are
cleared. See clearAllPCMStickyFaults()

	Returns:	If solenoid is disabled due to short.

	
DoubleSolenoid.set(value)[source]

	Set the value of a solenoid.

	Parameters:	value (DoubleSolenoid.Value) – The value to set (Off, Forward, Reverse)

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

DriverStation

	
class wpilib.DriverStation[source]

	Bases: builtins.object

Provide access to the network communication data to / from the Driver
Station.

DriverStation constructor.

The single DriverStation instance is created statically with the
instance static member variable, you should never create a
DriverStation instance.

	
class Alliance[source]

	Bases: builtins.object

The robot alliance that the robot is a part of

	
Blue = 1

	

	
Invalid = 2

	

	
Red = 0

	

	
DriverStation.InAutonomous(entering)[source]

	Only to be used to tell the Driver Station what code you claim to
be executing for diagnostic purposes only.

	Parameters:	entering – If True, starting autonomous code; if False, leaving
autonomous code

	
DriverStation.InDisabled(entering)[source]

	Only to be used to tell the Driver Station what code you claim to
be executing for diagnostic purposes only.

	Parameters:	entering – If True, starting disabled code; if False, leaving
disabled code

	
DriverStation.InOperatorControl(entering)[source]

	Only to be used to tell the Driver Station what code you claim to
be executing for diagnostic purposes only.

	Parameters:	entering – If True, starting teleop code; if False, leaving
teleop code

	
DriverStation.InTest(entering)[source]

	Only to be used to tell the Driver Station what code you claim to
be executing for diagnostic purposes only.

	Parameters:	entering – If True, starting test code; if False, leaving test
code

	
DriverStation.getAlliance()[source]

	Get the current alliance from the FMS.

	Returns:	The current alliance

	Return type:	DriverStation.Alliance

	
DriverStation.getBatteryVoltage()[source]

	Read the battery voltage.

	Returns:	The battery voltage in Volts.

	
DriverStation.getData()[source]

	Copy data from the DS task for the user.
If no new data exists, it will just be returned, otherwise
the data will be copied from the DS polling loop.

	
static DriverStation.getInstance()[source]

	Gets the global instance of the DriverStation

	Returns:	DriverStation

	
DriverStation.getLocation()[source]

	Gets the location of the team’s driver station controls.

	Returns:	The location of the team’s driver station controls:
1, 2, or 3

	
DriverStation.getMatchTime()[source]

	Return the approximate match time.
The FMS does not currently send the official match time to the robots, but
does send an approximate match time. The value will count down the time
remaining in the current period (auto or teleop).

Warning

This is not an official time (so it cannot be used to argue with
referees or guarantee that a function will trigger before a match ends).

The Practice Match function of the DS approximates the behaviour seen on the field.

	Returns:	Time remaining in current match period (auto or teleop) in seconds

	
DriverStation.getStickAxis(stick, axis)[source]

	Get the value of the axis on a joystick.
This depends on the mapping of the joystick connected to the specified
port.

	Parameters:	
	stick – The joystick port number

	axis – The analog axis value to read from the joystick.

	Returns:	The value of the axis on the joystick.

	
DriverStation.getStickAxisCount(stick)[source]

	Returns the number of axes on a given joystick port

	Parameters:	stick – The joystick port number

	Returns:	The number of axes on the indicated joystick

	
DriverStation.getStickButton(stick, button)[source]

	The state of a button on the joystick.

	Parameters:	
	stick – The joystick port number

	button – The button number to be read.

	Returns:	The state of the button.

	
DriverStation.getStickButtonCount(stick)[source]

	Gets the number of buttons on a joystick

	Parameters:	stick – The joystick port number

	Returns:	The number of buttons on the indicated joystick.

	
DriverStation.getStickButtons(stick)[source]

	The state of all the buttons on the joystick.

	Parameters:	stick – The joystick port number

	Returns:	The state of all buttons, as a bit array.

	
DriverStation.getStickPOV(stick, pov)[source]

	Get the state of a POV on the joystick.

	Parameters:	
	stick – The joystick port number

	pov – which POV

	Returns:	The angle of the POV in degrees, or -1 if the POV is not
pressed.

	
DriverStation.getStickPOVCount(stick)[source]

	Returns the number of POVs on a given joystick port

	Parameters:	stick – The joystick port number

	Returns:	The number of POVs on the indicated joystick

	
DriverStation.isAutonomous()[source]

	Gets a value indicating whether the Driver Station requires the
robot to be running in autonomous mode.

	Returns:	True if autonomous mode should be enabled, False otherwise.

	
DriverStation.isBrownedOut()[source]

	Check if the system is browned out.

	Returns:	True if the system is browned out.

	
DriverStation.isDSAttached()[source]

	Is the driver station attached to the robot?

	Returns:	True if the robot is being controlled by a driver station.

	
DriverStation.isDisabled()[source]

	Gets a value indicating whether the Driver Station requires the
robot to be disabled.

	Returns:	True if the robot should be disabled, False otherwise.

	
DriverStation.isEnabled()[source]

	Gets a value indicating whether the Driver Station requires the
robot to be enabled.

	Returns:	True if the robot is enabled, False otherwise.

	
DriverStation.isFMSAttached()[source]

	Is the driver station attached to a Field Management System?

	Returns:	True if the robot is competing on a field being controlled
by a Field Management System

	
DriverStation.isNewControlData()[source]

	Has a new control packet from the driver station arrived since the
last time this function was called?

	Returns:	True if the control data has been updated since the last
call.

	
DriverStation.isOperatorControl()[source]

	Gets a value indicating whether the Driver Station requires the
robot to be running in operator-controlled mode.

	Returns:	True if operator-controlled mode should be enabled,
False otherwise.

	
DriverStation.isSysActive()[source]

	Gets a value indicating whether the FPGA outputs are enabled. The outputs may be disabled
if the robot is disabled or e-stopped, the watdhog has expired, or if the roboRIO browns out.

	Returns:	True if the FPGA outputs are enabled.

	
DriverStation.isTest()[source]

	Gets a value indicating whether the Driver Station requires the
robot to be running in test mode.

	Returns:	True if test mode should be enabled, False otherwise.

	
DriverStation.kJoystickPorts = 6

	The number of joystick ports

	
DriverStation.release()[source]

	Kill the thread

	
static DriverStation.reportError(error, printTrace)[source]

	Report error to Driver Station, and also prints error to sys.stderr.
Optionally appends stack trace to error message.

	Parameters:	printTrace – If True, append stack trace to error string

	
DriverStation.task()[source]

	Provides the service routine for the DS polling thread.

	
DriverStation.waitForData(timeout=None)[source]

	Wait for new data or for timeout, which ever comes first. If
timeout is None, wait for new data only.

	Parameters:	timeout – The maximum time in milliseconds to wait.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

Encoder

	
class wpilib.Encoder(*args, **kwargs)[source]

	Bases: wpilib.SensorBase

Reads from quadrature encoders.

Quadrature encoders are devices that count
shaft rotation and can sense direction. The output of the QuadEncoder class
is an integer that can count either up or down, and can go negative for
reverse direction counting. When creating QuadEncoders, a direction is
supplied that changes the sense of the output to make code more readable
if the encoder is mounted such that forward movement generates negative
values. Quadrature encoders have two digital outputs, an A Channel and a
B Channel that are out of phase with each other to allow the FPGA to do
direction sensing.

All encoders will immediately start counting - reset() them if you need
them to be zeroed before use.

Instance variables:

	aSource: The A phase of the quad encoder

	bSource: The B phase of the quad encoder

	indexSource: The index source (available on some encoders)

Encoder constructor. Construct a Encoder given a and b channels
and optionally an index channel.

The encoder will start counting immediately.

The a, b, and optional index channel arguments may be either channel
numbers or DigitalSource sources. There may also be a boolean
reverseDirection, and an encodingType according to the following
list.

	aSource, bSource

	aSource, bSource, reverseDirection

	aSource, bSource, reverseDirection, encodingType

	aSource, bSource, indexSource, reverseDirection

	aSource, bSource, indexSource

	aChannel, bChannel

	aChannel, bChannel, reverseDirection

	aChannel, bChannel, reverseDirection, encodingType

	aChannel, bChannel, indexChannel, reverseDirection

	aChannel, bChannel, indexChannel

For positional arguments, if the passed object has a
getChannelForRouting function, it is assumed to be a DigitalSource.

Alternatively, sources and/or channels may be passed as keyword
arguments. The behavior of specifying both a source and a number
for the same channel is undefined, as is passing both a positional
and a keyword argument for the same channel.

In addition, keyword parameters may be provided for reverseDirection
and inputType.

	Parameters:	
	aSource – The source that should be used for the a channel.

	bSource – The source that should be used for the b channel.

	indexSource – The source that should be used for the index
channel.

	aChannel – The digital input index that should be used for
the a channel.

	bChannel – The digital input index that should be used for
the b channel.

	indexChannel – The digital input index that should be used
for the index channel.

	reverseDirection – Represents the orientation of the encoder and inverts the
output values if necessary so forward represents positive
values. Defaults to False if unspecified.

	encodingType (Encoder.EncodingType) – Either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If
4X is selected, then an encoder FPGA object is used and the
returned counts will be 4x the encoder spec’d value since all
rising and falling edges are counted. If 1X or 2X are selected
then a counter object will be used and the returned value will
either exactly match the spec’d count or be double (2x) the
spec’d count. Defaults to k4X if unspecified.

	
class EncodingType

	Bases: builtins.object

The number of edges for the counterbase to increment or decrement on

	
k1X = 0

	

	
k2X = 1

	

	
k4X = 2

	

	
class Encoder.IndexingType[source]

	Bases: builtins.object

	
kResetOnFallingEdge = 2

	

	
kResetOnRisingEdge = 3

	

	
kResetWhileHigh = 0

	

	
kResetWhileLow = 1

	

	
class Encoder.PIDSourceParameter

	Bases: builtins.object

A description for the type of output value to provide to a
PIDController

	
kAngle = 2

	

	
kDistance = 0

	

	
kRate = 1

	

	
Encoder.decodingScaleFactor()[source]

	The scale needed to convert a raw counter value into a number of
encoder pulses.

	
Encoder.encoder[source]

	

	
Encoder.free()[source]

	

	
Encoder.get()[source]

	Gets the current count. Returns the current count on the Encoder.
This method compensates for the decoding type.

	Returns:	Current count from the Encoder adjusted for the 1x, 2x, or
4x scale factor.

	
Encoder.getDirection()[source]

	The last direction the encoder value changed.

	Returns:	The last direction the encoder value changed.

	
Encoder.getDistance()[source]

	Get the distance the robot has driven since the last reset.

	Returns:	The distance driven since the last reset as scaled by the
value from setDistancePerPulse().

	
Encoder.getEncodingScale()[source]

	

	Returns:	The encoding scale factor 1x, 2x, or 4x, per the requested
encodingType. Used to divide raw edge counts down to spec’d counts.

	
Encoder.getFPGAIndex()[source]

	

	Returns:	The Encoder’s FPGA index

	
Encoder.getPeriod()[source]

	Returns the period of the most recent pulse. Returns the period of
the most recent Encoder pulse in seconds. This method compensates for
the decoding type.

Deprecated since version Use: getRate() in favor of this method. This returns unscaled
periods and getRate() scales using value from
getDistancePerPulse().

	Returns:	Period in seconds of the most recent pulse.

	
Encoder.getRate()[source]

	Get the current rate of the encoder. Units are distance per second
as scaled by the value from setDistancePerPulse().

	returns:	The current rate of the encoder.

	
Encoder.getRaw()[source]

	Gets the raw value from the encoder. The raw value is the actual
count unscaled by the 1x, 2x, or 4x scale factor.

	Returns:	Current raw count from the encoder

	
Encoder.getSamplesToAverage()[source]

	Get the Samples to Average which specifies the number of samples
of the timer to average when calculating the period. Perform averaging
to account for mechanical imperfections or as oversampling to increase
resolution.

	Returns:	The number of samples being averaged (from 1 to 127)

	
Encoder.getStopped()[source]

	Determine if the encoder is stopped. Using the MaxPeriod value, a
boolean is returned that is True if the encoder is considered stopped
and False if it is still moving. A stopped encoder is one where the
most recent pulse width exceeds the MaxPeriod.

	Returns:	True if the encoder is considered stopped.

	
Encoder.pidGet()[source]

	Implement the PIDSource interface.

	Returns:	The current value of the selected source parameter.

	
Encoder.reset()[source]

	Reset the Encoder distance to zero. Resets the current count to
zero on the encoder.

	
Encoder.setDistancePerPulse(distancePerPulse)[source]

	Set the distance per pulse for this encoder. This sets the
multiplier used to determine the distance driven based on the count
value from the encoder. Do not include the decoding type in this
scale. The library already compensates for the decoding type. Set
this value based on the encoder’s rated Pulses per Revolution and
factor in gearing reductions following the encoder shaft. This
distance can be in any units you like, linear or angular.

	Parameters:	distancePerPulse – The scale factor that will be used to convert
pulses to useful units.

	
Encoder.setIndexSource(source, indexing_type=3)[source]

	Set the index source for the encoder. When this source rises, the encoder count automatically resets.

	Parameters:	
	source – Either an initialized DigitalSource or a DIO channel number

	indexing_type – The state that will cause the encoder to reset

	Type:	Either a DigitalInput or number

	Type:	A value from wpilib.IndexingType

	
Encoder.setMaxPeriod(maxPeriod)[source]

	Sets the maximum period for stopped detection. Sets the value that
represents the maximum period of the Encoder before it will assume
that the attached device is stopped. This timeout allows users to
determine if the wheels or other shaft has stopped rotating. This
method compensates for the decoding type.

	Parameters:	maxPeriod – The maximum time between rising and falling edges
before the FPGA will report the device stopped. This is expressed
in seconds.

	
Encoder.setMinRate(minRate)[source]

	Set the minimum rate of the device before the hardware reports it
stopped.

	Parameters:	minRate – The minimum rate. The units are in distance per
second as scaled by the value from setDistancePerPulse().

	
Encoder.setPIDSourceParameter(pidSource)[source]

	Set which parameter of the encoder you are using as a process
control variable. The encoder class supports the rate and distance
parameters.

	Parameters:	pidSource – An enum to select the parameter.

	
Encoder.setReverseDirection(reverseDirection)[source]

	Set the direction sensing for this encoder. This sets the direction
sensing on the encoder so that it could count in the correct software
direction regardless of the mounting.

	Parameters:	reverseDirection – True if the encoder direction should be
reversed

	
Encoder.setSamplesToAverage(samplesToAverage)[source]

	Set the Samples to Average which specifies the number of samples
of the timer to average when calculating the period. Perform averaging
to account for mechanical imperfections or as oversampling to increase
resolution.

TODO: Should this raise an exception, so that the user has to
deal with giving an incorrect value?

	Parameters:	samplesToAverage – The number of samples to average from 1 to
127.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

GearTooth

	
class wpilib.GearTooth(channel, directionSensitive=False)[source]

	Bases: wpilib.Counter

Interface to the gear tooth sensor supplied by FIRST

Currently there is no reverse sensing on the gear tooth sensor, but in
future versions we might implement the necessary timing in the FPGA to
sense direction.

Construct a GearTooth sensor.

	Parameters:	
	channel (int) – The DIO channel index or DigitalSource that the sensor
is connected to.

	directionSensitive (bool) – True to enable the pulse length decoding in
hardware to specify count direction. Defaults to False.

	
enableDirectionSensing(directionSensitive)[source]

	

	
kGearToothThreshold = 5.5e-05

	

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

Gyro

	
class wpilib.Gyro(channel)[source]

	Bases: wpilib.SensorBase

Interface to a gyro device via an AnalogInput

Use a rate gyro to return the robots heading relative to a starting
position. The Gyro class tracks the robots heading based on the starting
position. As the robot rotates the new heading is computed by integrating
the rate of rotation returned by the sensor. When the class is
instantiated, it does a short calibration routine where it samples the
gyro while at rest to determine the default offset. This is subtracted
from each sample to determine the heading.

Gyro constructor.

Also initializes the gyro. Calibrate the gyro by running for a number
of samples and computing the center value. Then use the
center value as the Accumulator center value for subsequent
measurements. It’s important to make sure that the robot is not
moving while the centering calculations are in progress, this is
typically done when the robot is first turned on while it’s sitting
at rest before the competition starts.

	Parameters:	channel – The analog channel index or AnalogInput object that
the gyro is connected to. Gyros can only be used on on-board channels 0-1.

	
free()[source]

	Delete (free) the accumulator and the analog components used for the
gyro.

	
getAngle()[source]

	Return the actual angle in degrees that the robot is currently
facing.

The angle is based on the current accumulator value corrected by the
oversampling rate, the gyro type and the A/D calibration values. The
angle is continuous, that is it will continue from 360 to 361 degrees. This allows
algorithms that wouldn’t want to see a discontinuity in the gyro output
as it sweeps past from 360 to 0 on the second time around.

	Returns:	The current heading of the robot in degrees. This heading is
based on integration of the returned rate from the gyro.

	Return type:	float

	
getRate()[source]

	Return the rate of rotation of the gyro

The rate is based on the most recent reading of the gyro analog value

	Returns:	the current rate in degrees per second

	Return type:	float

	
kAverageBits = 0

	

	
kCalibrationSampleTime = 5.0

	

	
kDefaultVoltsPerDegreePerSecond = 0.007

	

	
kOversampleBits = 10

	

	
kSamplesPerSecond = 50.0

	

	
pidGet()[source]

	Get the output of the gyro for use with PIDControllers

	Returns:	the current angle according to the gyro

	Return type:	float

	
reset()[source]

	Reset the gyro. Resets the gyro to a heading of zero. This can be
used if there is significant drift in the gyro and it needs to be
recalibrated after it has been running.

	
setDeadband(volts)[source]

	Set the size of the neutral zone. Any voltage from the gyro less
than this amount from the center is considered stationary. Setting a
deadband will decrease the amount of drift when the gyro isn’t
rotating, but will make it less accurate.

	Parameters:	volts (float) – The size of the deadband in volts

	
setPIDSourceParameter(pidSource)[source]

	Set which parameter of the gyro you are using as a process
control variable. The Gyro class supports the rate and angle
parameters.

	Parameters:	pidSource (PIDSource.PIDSourceParameter) – An enum to select the parameter.

	
setSensitivity(voltsPerDegreePerSecond)[source]

	Set the gyro sensitivity. This takes the number of
volts/degree/second sensitivity of the gyro and uses it in subsequent
calculations to allow the code to work with multiple gyros. This value
is typically found in the gyro datasheet.

	Parameters:	voltsPerDegreePerSecond (float) – The sensitivity in Volts/degree/second

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

I2C

	
class wpilib.I2C(port, deviceAddress)[source]

	Bases: builtins.object

I2C bus interface class.

This class is intended to be used by sensor (and other I2C device) drivers.
It probably should not be used directly.

Constructor.

	Parameters:	
	port – The I2C port the device is connected to.

	deviceAddress – The address of the device on the I2C bus.

	
class Port[source]

	Bases: builtins.object

	
kMXP = 1

	

	
kOnboard = 0

	

	
I2C.addressOnly()[source]

	Attempt to address a device on the I2C bus.

This allows you to figure out if there is a device on the I2C bus that
responds to the address specified in the constructor.

	Returns:	Transfer Aborted... False for success, True for aborted.

	
I2C.broadcast(registerAddress, data)[source]

	Send a broadcast write to all devices on the I2C bus.

Warning

This is not currently implemented!

	Parameters:	
	registerAddress – The register to write on all devices on the bus.

	data – The value to write to the devices.

	
I2C.read(registerAddress, count)[source]

	Execute a read transaction with the device.

Read 1 to 7 bytes from a device. Most I2C devices will auto-increment
the register pointer internally allowing you to read up to 7
consecutive registers on a device in a single transaction.

	Parameters:	
	registerAddress – The register to read first in the transaction.

	count – The number of bytes to read in the transaction. [1..7]

	Returns:	The data read from the device.

	
I2C.readOnly(count)[source]

	Execute a read only transaction with the device.

Read 1 to 7 bytes from a device. This method does not write any data
to prompt the device.

	Parameters:	count – The number of bytes to read in the transaction. [1..7]

	Returns:	The data read from the device.

	
I2C.transaction(dataToSend, receiveSize)[source]

	Generic transaction.

This is a lower-level interface to the I2C hardware giving you more
control over each transaction.

	Parameters:	
	dataToSend – Data to send as part of the transaction.

	receiveSize – Number of bytes to read from the device. [0..7]

	Returns:	Data received from the device.

	
I2C.verifySensor(registerAddress, expected)[source]

	Verify that a device’s registers contain expected values.

Most devices will have a set of registers that contain a known value
that can be used to identify them. This allows an I2C device driver
to easily verify that the device contains the expected value.

The device must support and be configured to use register
auto-increment.

	Parameters:	
	registerAddress – The base register to start reading from the device.

	expected – The values expected from the device.

	Returns:	True if the sensor was verified to be connected

	
I2C.write(registerAddress, data)[source]

	Execute a write transaction with the device.

Write a single byte to a register on a device and wait until the
transaction is complete.

	Parameters:	
	registerAddress – The address of the register on the device to be written.

	data – The byte to write to the register on the device.

	Returns:	Transfer Aborted... False for success, True for aborted.

	
I2C.writeBulk(data)[source]

	Execute a write transaction with the device.

Write multiple bytes to a register on a device and wait until the
transaction is complete.

	Parameters:	data – The data to write to the device.

	Returns:	Transfer Aborted... False for success, True for aborted.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

InterruptableSensorBase

	
class wpilib.InterruptableSensorBase[source]

	Bases: wpilib.SensorBase

Base for sensors to be used with interrupts

Create a new InterrupatableSensorBase

	
allocateInterrupts(watcher)[source]

	Allocate the interrupt

	Parameters:	watcher – True if the interrupt should be in synchronous mode
where the user program will have to explicitly wait for the interrupt
to occur.

	
cancelInterrupts()[source]

	Cancel interrupts on this device. This deallocates all the
chipobject structures and disables any interrupts.

	
disableInterrupts()[source]

	Disable Interrupts without without deallocating structures.

	
enableInterrupts()[source]

	Enable interrupts to occur on this input. Interrupts are disabled
when the RequestInterrupt call is made. This gives time to do the
setup of the other options before starting to field interrupts.

	
getAnalogTriggerForRouting()[source]

	

	
getChannelForRouting()[source]

	

	
getModuleForRouting()[source]

	

	
interrupt[source]

	

	
interrupts = <wpilib.resource.Resource object at 0x7fb8e7483908>

	

	
readFallingTimestamp()[source]

	Return the timestamp for the falling interrupt that occurred most
recently. This is in the same time domain as getClock(). The
falling-edge interrupt should be enabled with setUpSourceEdge.

	Returns:	Timestamp in seconds since boot.

	
readRisingTimestamp()[source]

	Return the timestamp for the rising interrupt that occurred most
recently. This is in the same time domain as getClock(). The
rising-edge interrupt should be enabled with setUpSourceEdge.

	Returns:	Timestamp in seconds since boot.

	
requestInterrupts(handler=None)[source]

	Request one of the 8 interrupts asynchronously on this digital
input.

	Parameters:	handler – (optional)
The function that will be called whenever there is an interrupt
on this device. Request interrupts in synchronous mode where the
user program interrupt handler will be called when an interrupt
occurs. The default is interrupt on rising edges only. If not
specified, the user program will have to explicitly wait for the
interrupt to occur using waitForInterrupt.

	
setUpSourceEdge(risingEdge, fallingEdge)[source]

	Set which edge to trigger interrupts on

	Parameters:	
	risingEdge – True to interrupt on rising edge

	fallingEdge – True to interrupt on falling edge

	
waitForInterrupt(timeout, ignorePrevious=True)[source]

	In synchronous mode, wait for the defined interrupt to occur.
You should NOT attempt to read the sensor from another thread
while waiting for an interrupt. This is not threadsafe, and can cause
memory corruption

	Parameters:	
	timeout – Timeout in seconds

	ignorePrevious – If True (default), ignore interrupts that
happened before waitForInterrupt was called.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

IterativeRobot

	
class wpilib.IterativeRobot[source]

	Bases: wpilib.RobotBase

IterativeRobot implements a specific type of Robot Program framework,
extending the RobotBase class.

The IterativeRobot class is intended to be subclassed by a user creating a
robot program.

This class is intended to implement the “old style” default code, by
providing the following functions which are called by the main loop,
startCompetition(), at the appropriate times:

	robotInit() – provide for initialization at robot power-on

init() functions – each of the following functions is called once when the
appropriate mode is entered:

	disabledInit() – called only when first disabled

	autonomousInit() – called each and every time autonomous is entered from another mode

	teleopInit() – called each and every time teleop is entered from another mode

	testInit() – called each and every time test mode is entered from another mode

Periodic() functions – each of these functions is called iteratively at
the appropriate periodic rate (aka the “slow loop”). The period of
the iterative robot is synced to the driver station control packets,
giving a periodic frequency of about 50Hz (50 times per second).

	disabledPeriodic()

	autonomousPeriodic()

	teleopPeriodic()

	testPeriodic()

Constructor for RobotIterativeBase.

The constructor initializes the instance variables for the robot to
indicate the status of initialization for disabled, autonomous, and
teleop code.

	
autonomousInit()[source]

	Initialization code for autonomous mode should go here.

Users should override this method for initialization code which will be
called each time the robot enters autonomous mode.

	
autonomousPeriodic()[source]

	Periodic code for autonomous mode should go here.

Users should override this method for code which will be called
periodically at a regular rate while the robot is in autonomous mode.

	
disabledInit()[source]

	Initialization code for disabled mode should go here.

Users should override this method for initialization code which will be
called each time the robot enters disabled mode.

	
disabledPeriodic()[source]

	Periodic code for disabled mode should go here.

Users should override this method for code which will be called
periodically at a regular rate while the robot is in disabled mode.

	
logger = <logging.Logger object at 0x7fb8e7422fd0>

	A python logging object that you can use to send messages to the log. It
is recommended to use this instead of print statements.

	
nextPeriodReady()[source]

	Determine if the appropriate next periodic function should be
called. Call the periodic functions whenever a packet is received
from the Driver Station, or about every 20ms.

	Return type:	bool

	
prestart()[source]

	Don’t immediately say that the robot’s ready to be enabled, see below

	
robotInit()[source]

	Robot-wide initialization code should go here.

Users should override this method for default Robot-wide initialization
which will be called when the robot is first powered on. It will be
called exactly 1 time.

Note

It is simpler to override this function instead of defining
a constructor for your robot class

	
startCompetition()[source]

	Provide an alternate “main loop” via startCompetition().

	
teleopInit()[source]

	Initialization code for teleop mode should go here.

Users should override this method for initialization code which will be
called each time the robot enters teleop mode.

	
teleopPeriodic()[source]

	Periodic code for teleop mode should go here.

Users should override this method for code which will be called
periodically at a regular rate while the robot is in teleop mode.

	
testInit()[source]

	Initialization code for test mode should go here.

Users should override this method for initialization code which will be
called each time the robot enters test mode.

	
testPeriodic()[source]

	Periodic code for test mode should go here.

Users should override this method for code which will be called
periodically at a regular rate while the robot is in test mode.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

Jaguar

	
class wpilib.Jaguar(channel)[source]

	Bases: wpilib.SafePWM

Texas Instruments / Vex Robotics Jaguar Speed Controller as a PWM device.

See also

CANJaguar for CAN control of a Jaguar

Constructor.

	Parameters:	channel – The PWM channel that the Jaguar is attached to. 0-9 are on-board, 10-19 are on the MXP port

	
get()[source]

	Get the recently set value of the PWM.

	Returns:	The most recently set value for the PWM between -1.0 and 1.0.

	Return type:	float

	
pidWrite(output)[source]

	Write out the PID value as seen in the PIDOutput base object.

	Parameters:	output (float) – Write out the PWM value as was found in the
PIDController.

	
set(speed, syncGroup=0)[source]

	Set the PWM value.

The PWM value is set using a range of -1.0 to 1.0, appropriately
scaling the value for the FPGA.

	Parameters:	
	speed (float) – The speed to set. Value should be between -1.0 and 1.0.

	syncGroup – The update group to add this set() to, pending
updateSyncGroup(). If 0, update immediately.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

Joystick

	
class wpilib.Joystick(port, numAxisTypes=None, numButtonTypes=None)[source]

	Bases: builtins.object

Handle input from standard Joysticks connected to the Driver Station.

This class handles standard input that comes from the Driver Station. Each
time a value is requested the most recent value is returned. There is a
single class instance for each joystick and the mapping of ports to
hardware buttons depends on the code in the driver station.

Construct an instance of a joystick.

The joystick index is the usb port on the drivers station.

This constructor is intended for use by subclasses to configure the
number of constants for axes and buttons.

	Parameters:	
	port (int) – The port on the driver station that the joystick is
plugged into.

	numAxisTypes (int) – The number of axis types.

	numButtonTypes (int) – The number of button types.

	
class AxisType[source]

	Bases: builtins.object

Represents an analog axis on a joystick.

	
kNumAxis = 5

	

	
kThrottle = 4

	

	
kTwist = 3

	

	
kX = 0

	

	
kY = 1

	

	
kZ = 2

	

	
class Joystick.ButtonType[source]

	Bases: builtins.object

Represents a digital button on the Joystick

	
kNumButton = 2

	

	
kTop = 1

	

	
kTrigger = 0

	

	
class Joystick.RumbleType[source]

	Bases: builtins.object

Represents a rumble output on the Joystick

	
kLeftRumble_val = 0

	

	
kRightRumble_val = 1

	

	
Joystick.flush_outputs()[source]

	Flush all joystick HID & rumble output values to the HAL

	
Joystick.getAxis(axis)[source]

	For the current joystick, return the axis determined by the
argument.

This is for cases where the joystick axis is returned programmatically,
otherwise one of the previous functions would be preferable (for
example getX()).

	Parameters:	axis (Joystick.AxisType) – The axis to read.

	Returns:	The value of the axis.

	Return type:	float

	
Joystick.getAxisChannel(axis)[source]

	Get the channel currently associated with the specified axis.

	Parameters:	axis (int) – The axis to look up the channel for.

	Returns:	The channel for the axis.

	Return type:	int

	
Joystick.getAxisCount()[source]

	For the current joystick, return the number of axis

	
Joystick.getBumper(hand=None)[source]

	This is not supported for the Joystick.

This method is only here to complete the GenericHID interface.

	Parameters:	hand – This parameter is ignored for the Joystick class and is
only here to complete the GenericHID interface.

	Returns:	The state of the bumper (always False)

	Return type:	bool

	
Joystick.getButton(button)[source]

	Get buttons based on an enumerated type.

The button type will be looked up in the list of buttons and then read.

	Parameters:	button (Joystick.ButtonType) – The type of button to read.

	Returns:	The state of the button.

	Return type:	bool

	
Joystick.getButtonCount()[source]

	For the current joystick, return the number of buttons

:rtype int

	
Joystick.getDirectionDegrees()[source]

	Get the direction of the vector formed by the joystick and its
origin in degrees.

	Returns:	The direction of the vector in degrees

	Return type:	float

	
Joystick.getDirectionRadians()[source]

	Get the direction of the vector formed by the joystick and its
origin in radians.

	Returns:	The direction of the vector in radians

	Return type:	float

	
Joystick.getMagnitude()[source]

	Get the magnitude of the direction vector formed by the joystick’s
current position relative to its origin.

	Returns:	The magnitude of the direction vector

	Return type:	float

	
Joystick.getPOV(pov=0)[source]

	Get the state of a POV on the joystick.

	Parameters:	pov (int) – which POV (default is 0)

	Returns:	The angle of the POV in degrees, or -1 if the POV is not
pressed.

	Return type:	float

	
Joystick.getPOVCount()[source]

	For the current joystick, return the number of POVs

	Return type:	int

	
Joystick.getRawAxis(axis)[source]

	Get the value of the axis.

	Parameters:	axis (int) – The axis to read, starting at 0.

	Returns:	The value of the axis.

	Return type:	float

	
Joystick.getRawButton(button)[source]

	Get the button value (starting at button 1).

The buttons are returned in a single 16 bit value with one bit
representing the state of each button. The appropriate button is
returned as a boolean value.

	Parameters:	button (int) – The button number to be read (starting at 1).

	Returns:	The state of the button.

	Return type:	bool

	
Joystick.getThrottle()[source]

	Get the throttle value of the current joystick.

This depends on the mapping of the joystick connected to the current
port.

	Returns:	The Throttle value of the joystick.

	Return type:	float

	
Joystick.getTop(hand=None)[source]

	Read the state of the top button on the joystick.

Look up which button has been assigned to the top and read its state.

	Parameters:	hand – This parameter is ignored for the Joystick class and is
only here to complete the GenericHID interface.

	Returns:	The state of the top button.

	Return type:	bool

	
Joystick.getTrigger(hand=None)[source]

	Read the state of the trigger on the joystick.

Look up which button has been assigned to the trigger and read its
state.

	Parameters:	hand – This parameter is ignored for the Joystick class and is
only here to complete the GenericHID interface.

	Returns:	The state of the trigger.

	Return type:	bool

	
Joystick.getTwist()[source]

	Get the twist value of the current joystick.

This depends on the mapping of the joystick connected to the current
port.

	Returns:	The Twist value of the joystick.

	Return type:	float

	
Joystick.getX(hand=None)[source]

	Get the X value of the joystick.

This depends on the mapping of the joystick connected to the current
port.

	Parameters:	hand – Unused

	Returns:	The X value of the joystick.

	Return type:	float

	
Joystick.getY(hand=None)[source]

	Get the Y value of the joystick.

This depends on the mapping of the joystick connected to the current
port.

	Parameters:	hand – Unused

	Returns:	The Y value of the joystick.

	Return type:	float

	
Joystick.getZ(hand=None)[source]

	Get the Z value of the joystick.

This depends on the mapping of the joystick connected to the current
port.

	Parameters:	hand – Unused

	Returns:	The Z value of the joystick.

	Return type:	float

	
Joystick.kDefaultThrottleAxis = 3

	

	
Joystick.kDefaultTopButton = 2

	

	
Joystick.kDefaultTriggerButton = 1

	

	
Joystick.kDefaultTwistAxis = 2

	

	
Joystick.kDefaultXAxis = 0

	

	
Joystick.kDefaultYAxis = 1

	

	
Joystick.kDefaultZAxis = 2

	

	
Joystick.setAxisChannel(axis, channel)[source]

	Set the channel associated with a specified axis.

	Parameters:	
	axis (int) – The axis to set the channel for.

	channel (int) – The channel to set the axis to.

	
Joystick.setOutput(outputNumber, value)[source]

	Set a single HID output value for the joystick.

	Parameters:	
	outputNumber – The index of the output to set (1-32)

	value – The value to set the output to.

	
Joystick.setOutputs(value)[source]

	Set all HID output values for the joystick.

	Parameters:	value (int) – The 32 bit output value (1 bit for each output)

	
Joystick.setRumble(type, value)[source]

	Set the rumble output for the joystick. The DS currently supports 2 rumble values,
left rumble and right rumble

	Parameters:	
	type (Joystick.RumbleType) – Which rumble value to set

	value (float) – The normalized value (0 to 1) to set the rumble to

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

LiveWindow

	
class wpilib.LiveWindow[source]

	Bases: builtins.object

The public interface for putting sensors and
actuators on the LiveWindow.

	
static addActuator(subsystem, name, component)[source]

	Add an Actuator associated with the subsystem and with call it by
the given name.

	Parameters:	
	subsystem – The subsystem this component is part of.

	name – The name of this component.

	component – A LiveWindowSendable component that represents a
actuator.

	
static addActuatorChannel(moduleType, channel, component)[source]

	Add Actuator to LiveWindow. The components are shown with the
module type, slot and channel like this: Servo[0,2] for a servo
object connected to the first digital module and PWM port 2.

	Parameters:	
	moduleType – A string that defines the module name in the label
for the value

	channel – The channel number the device is plugged into
(usually PWM)

	component – The reference to the object being added

	
static addActuatorModuleChannel(moduleType, moduleNumber, channel, component)[source]

	Add Actuator to LiveWindow. The components are shown with the
module type, slot and channel like this: Servo[0,2] for a servo
object connected to the first digital module and PWM port 2.

	Parameters:	
	moduleType – A string that defines the module name in the label
for the value

	moduleNumber – The number of the particular module type

	channel – The channel number the device is plugged into
(usually PWM)

	component – The reference to the object being added

	
static addSensor(subsystem, name, component)[source]

	Add a Sensor associated with the subsystem and with call it by the
given name.

	Parameters:	
	subsystem – The subsystem this component is part of.

	name – The name of this component.

	component – A LiveWindowSendable component that represents a
sensor.

	
static addSensorChannel(moduleType, channel, component)[source]

	Add Sensor to LiveWindow. The components are shown with the type
and channel like this: Gyro[0] for a gyro object connected to the
first analog channel.

	Parameters:	
	moduleType – A string indicating the type of the module used in
the naming (above)

	channel – The channel number the device is connected to

	component – A reference to the object being added

	
components = {}

	

	
firstTime = True

	

	
static initializeLiveWindowComponents()[source]

	Initialize all the LiveWindow elements the first time we enter
LiveWindow mode. By holding off creating the NetworkTable entries, it
allows them to be redefined before the first time in LiveWindow mode.
This allows default sensor and actuator values to be created that are
replaced with the custom names from users calling addActuator and
addSensor.

	
liveWindowEnabled = False

	

	
livewindowTable = None

	

	
static run()[source]

	The run method is called repeatedly to keep the values refreshed
on the screen in test mode.

	
sensors = set()

	

	
static setEnabled(enabled)[source]

	Set the enabled state of LiveWindow. If it’s being enabled, turn
off the scheduler and remove all the commands from the queue and
enable all the components registered for LiveWindow. If it’s being
disabled, stop all the registered components and reenable the
scheduler.

TODO: add code to disable PID loops when enabling LiveWindow. The
commands should reenable the PID loops themselves when they get
rescheduled. This prevents arms from starting to move around, etc.
after a period of adjusting them in LiveWindow mode.

	
statusTable = None

	

	
static updateValues()[source]

	Puts all sensor values on the live window.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

LiveWindowSendable

	
class wpilib.LiveWindowSendable[source]

	Bases: wpilib.Sendable

A special type of object that can be displayed on the live window.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

MotorSafety

	
class wpilib.MotorSafety[source]

	Bases: builtins.object

Provides mechanisms to safely shutdown motors if they aren’t updated
often enough.

The MotorSafety object is constructed for every object that wants to
implement the Motor Safety protocol. The helper object has the code to
actually do the timing and call the motors stop() method when the timeout
expires. The motor object is expected to call the feed() method whenever
the motors value is updated.

The constructor for a MotorSafety object.
The helper object is constructed for every object that wants to
implement the Motor Safety protocol. The helper object has the code
to actually do the timing and call the motors stop() method when the
timeout expires. The motor object is expected to call the feed()
method whenever the motors value is updated.

	
DEFAULT_SAFETY_EXPIRATION = 0.1

	

	
check()[source]

	Check if this motor has exceeded its timeout.
This method is called periodically to determine if this motor has
exceeded its timeout value. If it has, the stop method is called,
and the motor is shut down until its value is updated again.

	
static checkMotors()[source]

	Check the motors to see if any have timed out.
This static method is called periodically to poll all the motors and
stop any that have timed out.

	
feed()[source]

	Feed the motor safety object.
Resets the timer on this object that is used to do the timeouts.

	
getExpiration()[source]

	Retrieve the timeout value for the corresponding motor safety
object.

	Returns:	the timeout value in seconds.

	Return type:	float

	
helpers = <_weakrefset.WeakSet object at 0x7fb8e74d46a0>

	

	
isAlive()[source]

	Determine of the motor is still operating or has timed out.

	Returns:	True if the motor is still operating normally and hasn’t
timed out.

	Return type:	float

	
isSafetyEnabled()[source]

	Return the state of the motor safety enabled flag.
Return if the motor safety is currently enabled for this device.

	Returns:	True if motor safety is enforced for this device

	Return type:	bool

	
setExpiration(expirationTime)[source]

	Set the expiration time for the corresponding motor safety object.

	Parameters:	expirationTime (float) – The timeout value in seconds.

	
setSafetyEnabled(enabled)[source]

	Enable/disable motor safety for this device.
Turn on and off the motor safety option for this PWM object.

	Parameters:	enabled (bool) – True if motor safety is enforced for this object

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

PIDController

	
class wpilib.PIDController(*args, **kwargs)[source]

	Bases: wpilib.LiveWindowSendable

Can be used to control devices via a PID Control Loop.

Creates a separate thread which reads the given PIDSource and takes
care of the integral calculations, as well as writing the given
PIDOutput.

Allocate a PID object with the given constants for P, I, D, and F

Arguments can be structured as follows:

	Kp, Ki, Kd, Kf, PIDSource, PIDOutput, period

	Kp, Ki, Kd, PIDSource, PIDOutput, period

	Kp, Ki, Kd, PIDSource, PIDOutput

	Kp, Ki, Kd, Kf, PIDSource, PIDOutput

	Parameters:	
	Kp (float or int) – the proportional coefficient

	Ki (float or int) – the integral coefficient

	Kd (float or int) – the derivative coefficient

	Kf (float or int) – the feed forward term

	source (A function, or an object that implements PIDSource) – Called to get values

	output (A function, or an object that implements PIDOutput) – Receives the output percentage

	period (float or int) – the loop time for doing calculations. This particularly
effects calculations of the integral and differential terms.
The default is 50ms.

	
AbsoluteTolerance_onTarget(value)[source]

	

	
PercentageTolerance_onTarget(percentage)[source]

	

	
calculate()[source]

	Read the input, calculate the output accordingly, and write to the
output. This should only be called by the PIDTask and is created
during initialization.

	
disable()[source]

	Stop running the PIDController, this sets the output to zero before
stopping.

	
enable()[source]

	Begin running the PIDController.

	
free()[source]

	Free the PID object

	
get()[source]

	Return the current PID result.
This is always centered on zero and constrained the the max and min
outs.

	Returns:	the latest calculated output

	
getD()[source]

	Get the Differential coefficient.

	Returns:	differential coefficient

	
getError()[source]

	Returns the current difference of the input from the setpoint.

	Returns:	the current error

	
getF()[source]

	Get the Feed forward coefficient.

	Returns:	feed forward coefficient

	
getI()[source]

	Get the Integral coefficient

	Returns:	integral coefficient

	
getP()[source]

	Get the Proportional coefficient.

	Returns:	proportional coefficient

	
getSetpoint()[source]

	Returns the current setpoint of the PIDController.

	Returns:	the current setpoint

	
instances = 0

	

	
isEnable()[source]

	Return True if PIDController is enabled.

	
kDefaultPeriod = 0.05

	

	
onTarget()[source]

	Return True if the error is within the percentage of the total input
range, determined by setTolerance. This assumes that the maximum and
minimum input were set using setInput().

	Returns:	True if the error is less than the tolerance

	
reset()[source]

	Reset the previous error, the integral term, and disable the
controller.

	
setAbsoluteTolerance(absvalue)[source]

	Set the absolute error which is considered tolerable for use with
onTarget().

	Parameters:	absvalue – absolute error which is tolerable in the units of the
input object

	
setContinuous(continuous=True)[source]

	Set the PID controller to consider the input to be continuous.
Rather then using the max and min in as constraints, it considers them
to be the same point and automatically calculates the shortest route
to the setpoint.

	Parameters:	continuous – Set to True turns on continuous, False turns off
continuous

	
setInputRange(minimumInput, maximumInput)[source]

	Sets the maximum and minimum values expected from the input.

	Parameters:	
	minimumInput – the minimum percentage expected from the input

	maximumInput – the maximum percentage expected from the output

	
setOutputRange(minimumOutput, maximumOutput)[source]

	Sets the minimum and maximum values to write.

	Parameters:	
	minimumOutput – the minimum percentage to write to the output

	maximumOutput – the maximum percentage to write to the output

	
setPID(p, i, d, f=None)[source]

	Set the PID Controller gain parameters.
Set the proportional, integral, and differential coefficients.

	Parameters:	
	p – Proportional coefficient

	i – Integral coefficient

	d – Differential coefficient

	f – Feed forward coefficient (optional)

	
setPercentTolerance(percentage)[source]

	Set the percentage error which is considered tolerable for use with
onTarget(). (Input of 15.0 = 15 percent)

	Parameters:	percentage – percent error which is tolerable

	
setSetpoint(setpoint)[source]

	Set the setpoint for the PIDController.

	Parameters:	setpoint – the desired setpoint

	
setTolerance(percent)[source]

	Set the percentage error which is considered tolerable for use with
onTarget(). (Input of 15.0 = 15 percent)

	Parameters:	percent – error which is tolerable

Deprecated since version 2015.1: Use setPercentTolerance() or setAbsoluteTolerance()
instead.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

PowerDistributionPanel

	
class wpilib.PowerDistributionPanel[source]

	Bases: wpilib.SensorBase

Use to obtain voltage, current, temperature, power, and energy from the CAN PDP

The PDP must be at CAN Address 0

	
clearStickyFaults()[source]

	Clear all pdp sticky faults

	
getCurrent(channel)[source]

	Query the current of a single channel of the PDP

	Returns:	The current of one of the PDP channels (channels 0-15)
in Amperes

	Return type:	float

	
getTemperature()[source]

	Query the temperature of the PDP

	Returns:	The temperature of the PDP in degrees Celsius

	Return type:	float

	
getTotalCurrent()[source]

	Query the current of all monitored PDP channels (0-15)

	Returns:	The total current drawn from the PDP channels in Amperes

	Return type:	float

	
getTotalEnergy()[source]

	Query the total energy drawn from the monitored PDP channels

	Returns:	The total energy drawn from the PDP channels in Joules

	Return type:	float

	
getTotalPower()[source]

	Query the total power drawn from the monitored PDP channels

	Returns:	The total power drawn from the PDP channels in Watts

	Return type:	float

	
getVoltage()[source]

	Query the voltage of the PDP

	Returns:	The voltage of the PDP in volts

	Return type:	float

	
resetTotalEnergy()[source]

	Reset the total energy to 0

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

Preferences

	
class wpilib.Preferences[source]

	Bases: builtins.object

Provides a relatively simple way to save important
values to the RoboRIO to access the next time the RoboRIO is booted.

This class loads and saves from a file inside the RoboRIO. The user can not
access the file directly, but may modify values at specific fields which
will then be saved to the file when save() is called.

This class is thread safe.

This will also interact with networktables.NetworkTable by creating a table
called “Preferences” with all the key-value pairs. To save using
NetworkTable, simply set the boolean at position ~S A V E~ to true.
Also, if the value of any variable is ” in the NetworkTable, then
that represents non-existence in the Preferences table.

Creates a preference class that will automatically read the file in
a different thread. Any call to its methods will be blocked until the
thread is finished reading.

	
FILE_NAME = '/home/lvuser/wpilib-preferences.ini'

	

	
NEW_LINE = '\n'

	

	
SAVE_FIELD = '~S A V E~'

	

	
TABLE_NAME = 'Preferences'

	

	
VALUE_PREFIX = '="'

	

	
VALUE_SUFFIX = '"\n'

	

	
containsKey(key)[source]

	Returns whether or not there is a key with the given name.

	Parameters:	key – the key

	Returns:	True if there is a value at the given key

	
get(key, d=None)[source]

	Returns the value at the given key.

	Parameters:	
	key – the key

	d – the return value if the key doesn’t exist (default is None)

	Returns:	the value (or d/None if none exists)

	
getBoolean(key, backup)[source]

	Returns the boolean at the given key. If this table does not have a
value for that position, then the given backup value will be returned.

	Parameters:	
	key – the key

	backup – the value to return if none exists in the table

	Returns:	either the value in the table, or the backup

	Raises:	ValueError if value cannot be converted to integer

	
getFloat(key, backup)[source]

	Returns the float at the given key. If this table does not have a
value for that position, then the given backup value will be returned.

	Parameters:	
	key – the key

	backup – the value to return if none exists in the table

	Returns:	either the value in the table, or the backup

	Raises:	ValueError if value cannot be converted to integer

	
static getInstance()[source]

	Returns the preferences instance.

	Returns:	the preferences instance

	
getInt(key, backup)[source]

	Returns the int at the given key. If this table does not have a
value for that position, then the given backup value will be returned.

	Parameters:	
	key – the key

	backup – the value to return if none exists in the table

	Returns:	either the value in the table, or the backup

	Raises:	ValueError if value cannot be converted to integer

	
getKeys()[source]

	

	Returns:	a list of the keys

	
getString(key, backup)[source]

	Returns the string at the given key. If this table does not have a
value for that position, then the given backup value will be returned.

	Parameters:	
	key – the key

	backup – the value to return if none exists in the table

	Returns:	either the value in the table, or the backup

	
has_key(key)[source]

	Python style contains key.

	
keys()[source]

	Python style get list of keys.

	
put(key, value)[source]

	Puts the given value into the given key position

	Parameters:	
	key – the key

	value – the value

	
putBoolean(key, value)[source]

	Puts the given float into the preferences table.

The key may not have any whitespace nor an equals sign.

This will NOT save the value to memory between power cycles, to
do that you must call save() (which must be used with care)
at some point after calling this.

	Parameters:	
	key – the key

	value – the value

	
putFloat(key, value)[source]

	Puts the given float into the preferences table.

The key may not have any whitespace nor an equals sign.

This will NOT save the value to memory between power cycles, to
do that you must call save() (which must be used with care)
at some point after calling this.

	Parameters:	
	key – the key

	value – the value

	
putInt(key, value)[source]

	Puts the given int into the preferences table.

The key may not have any whitespace nor an equals sign.

This will NOT save the value to memory between power cycles, to
do that you must call save() (which must be used with care)
at some point after calling this.

	Parameters:	
	key – the key

	value – the value

	
putString(key, value)[source]

	Puts the given string into the preferences table.

The value may not have quotation marks, nor may the key have any
whitespace nor an equals sign.

This will NOT save the value to memory between power cycles, to
do that you must call save() (which must be used with care)
at some point after calling this.

	Parameters:	
	key – the key

	value – the value

	
read()[source]

	The internal method to read from a file. This will be called in its
own thread when the preferences singleton is first created.

	
remove(key)[source]

	Remove a preference

	Parameters:	key – the key

	
save()[source]

	Saves the preferences to a file on the RoboRIO.

This should NOT be called often. Too many writes can damage the
RoboRIO’s flash memory. While it is ok to save once or twice a match,
this should never be called every run of
IterativeRobot.teleopPeriodic().

The actual writing of the file is done in a separate thread. However,
any call to a get or put method will wait until the table is fully
saved before continuing.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

PWM

	
class wpilib.PWM(channel)[source]

	Bases: wpilib.LiveWindowSendable

Raw interface to PWM generation in the FPGA.

The values supplied as arguments for PWM outputs range from -1.0 to 1.0. They
are mapped to the hardware dependent values, in this case 0-2000 for the
FPGA. Changes are immediately sent to the FPGA, and the update occurs at
the next FPGA cycle. There is no delay.

As of revision 0.1.10 of the FPGA, the FPGA interprets the 0-2000 values as
follows:

	2000 = full “forward”

	1999 to 1001 = linear scaling from “full forward” to “center”

	1000 = center value

	999 to 2 = linear scaling from “center” to “full reverse”

	1 = minimum pulse width (currently .5ms)

	0 = disabled (i.e. PWM output is held low)

kDefaultPwmPeriod is the 1x period (5.05 ms). In hardware, the period
scaling is implemented as an output squelch to get longer periods for old
devices.

	20ms periods (50 Hz) are the “safest” setting in that this works for all
devices

	20ms periods seem to be desirable for Vex Motors

	20ms periods are the specified period for HS-322HD servos, but work
reliably down to 10.0 ms; starting at about 8.5ms, the servo sometimes
hums and get hot; by 5.0ms the hum is nearly continuous

	10ms periods work well for Victor 884

	5ms periods allows higher update rates for Luminary Micro Jaguar speed
controllers. Due to the shipping firmware on the Jaguar, we can’t run the
update period less than 5.05 ms.

Allocate a PWM given a channel.

	Parameters:	channel (int) – The PWM channel number. 0-9 are on-board, 10-19 are on the MXP port

	
class PeriodMultiplier[source]

	Bases: builtins.object

Represents the amount to multiply the minimum servo-pulse pwm
period by.

	
k1X = 1

	

	
k2X = 2

	

	
k4X = 4

	

	
PWM.enableDeadbandElimination(eliminateDeadband)[source]

	Optionally eliminate the deadband from a speed controller.

	Parameters:	eliminateDeadband (bool) – If True, set the motor curve on the Jaguar
to eliminate the deadband in the middle of the range. Otherwise, keep
the full range without modifying any values.

	
PWM.free()[source]

	Free the PWM channel.

Free the resource associated with the PWM channel and set the value
to 0.

	
PWM.getCenterPwm()[source]

	

	
PWM.getChannel()[source]

	Gets the channel number associated with the PWM Object.

	Returns:	The channel number.

	Return type:	int

	
PWM.getFullRangeScaleFactor()[source]

	Get the scale for positions.

	
PWM.getMaxNegativePwm()[source]

	

	
PWM.getMaxPositivePwm()[source]

	

	
PWM.getMinNegativePwm()[source]

	

	
PWM.getMinPositivePwm()[source]

	

	
PWM.getNegativeScaleFactor()[source]

	Get the scale for negative speeds.

	
PWM.getPosition()[source]

	Get the PWM value in terms of a position.

This is intended to be used by servos.

Note

setBounds() must be called first.

	Returns:	The position the servo is set to between 0.0 and 1.0.

	Return type:	float

	
PWM.getPositiveScaleFactor()[source]

	Get the scale for positive speeds.

	
PWM.getRaw()[source]

	Get the PWM value directly from the hardware.

Read a raw value from a PWM channel.

	Returns:	Raw PWM control value. Range: 0 - 255.

	Return type:	int

	
PWM.getSpeed()[source]

	Get the PWM value in terms of speed.

This is intended to be used by speed controllers.

Note

setBounds() must be called first.

	Returns:	The most recently set speed between -1.0 and 1.0.

	Return type:	float

	
PWM.kDefaultPwmCenter = 1.5

	the PWM range center in ms

	
PWM.kDefaultPwmPeriod = 5.05

	the default PWM period measured in ms.

	
PWM.kDefaultPwmStepsDown = 1000

	the number of PWM steps below the centerpoint

	
PWM.kPwmDisabled = 0

	the value to use to disable

	
PWM.port[source]

	

	
PWM.setBounds(max, deadbandMax, center, deadbandMin, min)[source]

	Set the bounds on the PWM pulse widths.

This sets the bounds on the PWM values for a particular type of
controller. The values determine the upper and lower speeds as well
as the deadband bracket.

	Parameters:	
	max (float) – The max PWM pulse width in ms

	deadbandMax (float) – The high end of the deadband range pulse width in ms

	center (float) – The center (off) pulse width in ms

	deadbandMin (float) – The low end of the deadband pulse width in ms

	min (float) – The minimum pulse width in ms

	
PWM.setPeriodMultiplier(mult)[source]

	Slow down the PWM signal for old devices.

	Parameters:	mult (PWM.PeriodMultiplier) – The period multiplier to apply to this channel

	
PWM.setPosition(pos)[source]

	Set the PWM value based on a position.

This is intended to be used by servos.

Note

setBounds() must be called first.

	Parameters:	pos (float) – The position to set the servo between 0.0 and 1.0.

	
PWM.setRaw(value)[source]

	Set the PWM value directly to the hardware.

Write a raw value to a PWM channel.

	Parameters:	value (int) – Raw PWM value. Range 0 - 255.

	
PWM.setSpeed(speed)[source]

	Set the PWM value based on a speed.

This is intended to be used by speed controllers.

Note

setBounds() must be called first.

	Parameters:	speed (float) – The speed to set the speed controller between -1.0 and
1.0.

	
PWM.setZeroLatch()[source]

	

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

Relay

	
class wpilib.Relay(channel, direction=None)[source]

	Bases: wpilib.SensorBase

Controls VEX Robotics Spike style relay outputs.

Relays are intended to be connected to Spikes or similar relays. The relay
channels controls a pair of pins that are either both off, one on, the
other on, or both on. This translates into two Spike outputs at 0v, one at
12v and one at 0v, one at 0v and the other at 12v, or two Spike outputs at
12V. This allows off, full forward, or full reverse control of motors without
variable speed. It also allows the two channels (forward and reverse) to
be used independently for something that does not care about voltage
polarity (like a solenoid).

Relay constructor given a channel.

Initially the relay is set to both lines at 0v.

	Parameters:	
	channel (int) – The channel number for this relay (0-3)

	direction (Relay.Direction) – The direction that the Relay object will control.
If not specified, defaults to allowing both directions.

	
class Direction[source]

	Bases: builtins.object

The Direction(s) that a relay is configured to operate in.

	
kBoth = 0

	Both directions are valid

	
kForward = 1

	Only forward is valid

	
kReverse = 2

	Only reverse is valid

	
class Relay.Value[source]

	Bases: builtins.object

The state to drive a Relay to.

	
kForward = 2

	Forward

	
kOff = 0

	Off

	
kOn = 1

	On for relays with defined direction

	
kReverse = 3

	Reverse

	
Relay.free()[source]

	

	
Relay.get()[source]

	Get the Relay State

Gets the current state of the relay.

When set to kForwardOnly or kReverseOnly, value is returned as kOn/kOff
not kForward/kReverse (per the recommendation in Set)

	Returns:	The current state of the relay

	Return type:	Relay.Value

	
Relay.port[source]

	

	
Relay.relayChannels = <wpilib.resource.Resource object at 0x7fb8e74517b8>

	

	
Relay.set(value)[source]

	Set the relay state.

Valid values depend on which directions of the relay are controlled by
the object.

When set to kBothDirections, the relay can be set to any of the four
states: 0v-0v, 12v-0v, 0v-12v, 12v-12v

When set to kForwardOnly or kReverseOnly, you can specify the constant
for the direction or you can simply specify kOff and kOn. Using only
kOff and kOn is recommended.

	Parameters:	value (Relay.Value) – The state to set the relay.

	
Relay.setDirection(direction)[source]

	Set the Relay Direction.

Changes which values the relay can be set to depending on which
direction is used.

Valid inputs are kBothDirections, kForwardOnly, and kReverseOnly.

	Parameters:	direction (Relay.Direction) – The direction for the relay to operate in

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

Resource

	
class wpilib.Resource(size)[source]

	Bases: builtins.object

Tracks resources in the program.

The Resource class is a convenient way of keeping track of allocated
arbitrary resources in the program. Resources are just indices that
have an lower and upper bound that are tracked by this class. In the
library they are used for tracking allocation of hardware channels
but this is purely arbitrary. The resource class does not do any actual
allocation, but simply tracks if a given index is currently in use.

Allocate storage for a new instance of Resource.
Allocate a bool array of values that will get initialized to
indicate that no resources have been allocated yet. The indicies
of the resources are 0..size-1.

	Parameters:	size – The number of blocks to allocate

	
allocate(obj, index=None)[source]

	Allocate a resource.

When index is None or unspecified, a free resource value within the
range is located and returned after it is marked allocated.
Otherwise, it is verified unallocated, then returned.

	Parameters:	
	obj – The object requesting the resource.

	index – The resource to allocate

	Returns:	The index of the allocated block.

	Raises IndexError:

		If there are no resources available to be
allocated or the specified index is already used.

	
free(index)[source]

	Force-free an allocated resource.
After a resource is no longer needed, for example a destructor is
called for a channel assignment class, free will release the resource
value so it can be reused somewhere else in the program.

	Parameters:	index – The index of the resource to free.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

RobotBase

	
class wpilib.RobotBase[source]

	Bases: builtins.object

Implement a Robot Program framework.

The RobotBase class is intended to be subclassed by a user creating a
robot program. Overridden autonomous() and operatorControl() methods
are called at the appropriate time as the match proceeds. In the current
implementation, the Autonomous code will run to completion before the
OperatorControl code could start. In the future the Autonomous code might
be spawned as a task, then killed at the end of the Autonomous period.

User code should be placed in the constructor that runs before the
Autonomous or Operator Control period starts. The constructor will
run to completion before Autonomous is entered.

Warning

If you override __init__ in your robot class, you must call
the base class constructor. This must be used to ensure that
the communications code starts.

	
free()[source]

	Free the resources for a RobotBase class.

	
static initializeHardwareConfiguration()[source]

	Common initialization for all robot programs.

	
isAutonomous()[source]

	Determine if the robot is currently in Autonomous mode.

	Returns:	True if the robot is currently operating Autonomously as
determined by the field controls.

	Return type:	bool

	
isDisabled()[source]

	Determine if the Robot is currently disabled.

	Returns:	True if the Robot is currently disabled by the field
controls.

	Return type:	bool

	
isEnabled()[source]

	Determine if the Robot is currently enabled.

	Returns:	True if the Robot is currently enabled by the field
controls.

	Return type:	bool

	
isNewDataAvailable()[source]

	Indicates if new data is available from the driver station.

	Returns:	Has new data arrived over the network since the last time
this function was called?

	Return type:	bool

	
isOperatorControl()[source]

	Determine if the robot is currently in Operator Control mode.

	Returns:	True if the robot is currently operating in Tele-Op mode as
determined by the field controls.

	Return type:	bool

	
static isReal()[source]

	

	Returns:	If the robot is running in the real world.

	Return type:	bool

	
static isSimulation()[source]

	

	Returns:	If the robot is running in simulation.

	Return type:	bool

	
isTest()[source]

	Determine if the robot is currently in Test mode.

	Returns:	True if the robot is currently operating in Test mode as
determined by the driver station.

	Return type:	bool

	
static main(robot_cls)[source]

	Starting point for the applications.

	
prestart()[source]

	This hook is called right before startCompetition(). By default, tell
the DS that the robot is now ready to be enabled. If you don’t want the
robot to be enabled yet, you can override this method to do nothing.
If you do so, you will need to call hal.HALNetworkCommunicationObserveUserProgramStarting()
from your code when you are ready for the robot to be enabled.

	
startCompetition()[source]

	Provide an alternate “main loop” via startCompetition().

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

RobotDrive

	
class wpilib.RobotDrive(*args, **kwargs)[source]

	Bases: wpilib.MotorSafety

Operations on a robot drivetrain based on a definition of the motor
configuration.

The robot drive class handles basic driving for a robot. Currently, 2
and 4 motor tank and mecanum drive trains are supported. In the future
other drive types like swerve might be implemented. Motor channel numbers
are passed supplied on creation of the class. Those are used for either
the drive function (intended for hand created drive code, such as
autonomous) or with the Tank/Arcade functions intended to be used for
Operator Control driving.

Constructor for RobotDrive.

Either 2 or 4 motors can be passed to the constructor to implement
a two or four wheel drive system, respectively.

When positional arguments are used, these are the two accepted orders:

	leftMotor, rightMotor

	frontLeftMotor, rearLeftMotor, frontRightMotor, rearRightMotor

Alternatively, the above names can be used as keyword arguments.

Either channel numbers or motor controllers can be passed (determined
by whether the passed object has a set function). If channel
numbers are passed, the motorController keyword argument, if present,
is the motor controller class to use; if unspecified, Talon is used.

	
class MotorType[source]

	Bases: builtins.object

The location of a motor on the robot for the purpose of driving.

	
kFrontLeft = 0

	Front left

	
kFrontRight = 1

	Front right

	
kRearLeft = 2

	Rear left

	
kRearRight = 3

	Rear right

	
RobotDrive.arcadeDrive(*args, **kwargs)[source]

	Provide tank steering using the stored robot configuration.

Either one or two joysticks (with optional specified axis) or two raw
values may be passed positionally, along with an optional
squaredInputs boolean. The valid positional combinations are:

	stick

	stick, squaredInputs

	moveStick, moveAxis, rotateStick, rotateAxis

	moveStick, moveAxis, rotateStick, rotateAxis, squaredInputs

	moveValue, rotateValue

	moveValue, rotateValue, squaredInputs

Alternatively, the above names can be used as keyword arguments.
The behavior of mixes of keyword arguments in other than the
combinations above is undefined.

If specified positionally, the value and joystick versions are
disambiguated by looking for a getY function on the stick.

	Parameters:	
	stick – The joystick to use for Arcade single-stick driving.
The Y-axis will be selected for forwards/backwards and the
X-axis will be selected for rotation rate.

	moveStick – The Joystick object that represents the
forward/backward direction.

	moveAxis – The axis on the moveStick object to use for
forwards/backwards (typically Y_AXIS).

	rotateStick – The Joystick object that represents the rotation
value.

	rotateAxis – The axis on the rotation object to use for the
rotate right/left (typically X_AXIS).

	moveValue – The value to use for forwards/backwards.

	rotateValue – The value to use for the rotate right/left.

	squaredInputs – Setting this parameter to True decreases the
sensitivity at lower speeds. Defaults to True if unspecified.

	
RobotDrive.drive(outputMagnitude, curve)[source]

	Drive the motors at “speed” and “curve”.

The speed and curve are -1.0 to +1.0 values where 0.0 represents
stopped and not turning. The algorithm for adding in the direction
attempts to provide a constant turn radius for differing speeds.

This function will most likely be used in an autonomous routine.

	Parameters:	
	outputMagnitude – The forward component of the output magnitude
to send to the motors.

	curve – The rate of turn, constant for different forward speeds.

	
RobotDrive.free()[source]

	

	
RobotDrive.getDescription()[source]

	

	
RobotDrive.getNumMotors()[source]

	

	
RobotDrive.holonomicDrive(magnitude, direction, rotation)[source]

	Holonomic Drive method for Mecanum wheeled robots.

This is an alias to mecanumDrive_Polar() for backward
compatibility.

	Parameters:	
	magnitude – The speed that the robot should drive in a given
direction. [-1.0..1.0]

	direction – The direction the robot should drive. The direction
and magnitude are independent of the rotation rate.

	rotation – The rate of rotation for the robot that is
completely independent of the magnitude or direction. [-1.0..1.0]

	
RobotDrive.kArcadeRatioCurve_Reported = False

	

	
RobotDrive.kArcadeStandard_Reported = False

	

	
RobotDrive.kDefaultExpirationTime = 0.1

	

	
RobotDrive.kDefaultMaxOutput = 1.0

	

	
RobotDrive.kDefaultSensitivity = 0.5

	

	
RobotDrive.kMaxNumberOfMotors = 4

	

	
RobotDrive.kMecanumCartesian_Reported = False

	

	
RobotDrive.kMecanumPolar_Reported = False

	

	
RobotDrive.kTank_Reported = False

	

	
static RobotDrive.limit(num)[source]

	Limit motor values to the -1.0 to +1.0 range.

	
RobotDrive.mecanumDrive_Cartesian(x, y, rotation, gyroAngle)[source]

	Drive method for Mecanum wheeled robots.

A method for driving with Mecanum wheeled robots. There are 4 wheels
on the robot, arranged so that the front and back wheels are toed in
45 degrees. When looking at the wheels from the top, the roller
axles should form an X across the robot.

This is designed to be directly driven by joystick axes.

	Parameters:	
	x – The speed that the robot should drive in the X direction.
[-1.0..1.0]

	y – The speed that the robot should drive in the Y direction.
This input is inverted to match the forward == -1.0 that
joysticks produce. [-1.0..1.0]

	rotation – The rate of rotation for the robot that is
completely independent of the translation. [-1.0..1.0]

	gyroAngle – The current angle reading from the gyro. Use this
to implement field-oriented controls.

	
RobotDrive.mecanumDrive_Polar(magnitude, direction, rotation)[source]

	Drive method for Mecanum wheeled robots.

A method for driving with Mecanum wheeled robots. There are 4 wheels
on the robot, arranged so that the front and back wheels are toed in
45 degrees. When looking at the wheels from the top, the roller
axles should form an X across the robot.

	Parameters:	
	magnitude – The speed that the robot should drive in a given
direction.

	direction – The direction the robot should drive in degrees.
The direction and maginitute are independent of the rotation rate.

	rotation – The rate of rotation for the robot that is completely
independent of the magnitute or direction. [-1.0..1.0]

	
static RobotDrive.normalize(wheelSpeeds)[source]

	Normalize all wheel speeds if the magnitude of any wheel is greater
than 1.0.

	
static RobotDrive.rotateVector(x, y, angle)[source]

	Rotate a vector in Cartesian space.

	
RobotDrive.setCANJaguarSyncGroup(syncGroup)[source]

	Set the number of the sync group for the motor controllers. If the motor controllers are :class:`CANJaguar`s,
then they will be added to this sync group, causing them to update their values at the same time.

	Parameters:	syncGroup – The update group to add the motor controllers to.

	
RobotDrive.setInvertedMotor(motor, isInverted)[source]

	Invert a motor direction.

This is used when a motor should run in the opposite direction as
the drive code would normally run it. Motors that are direct drive
would be inverted, the drive code assumes that the motors are geared
with one reversal.

	Parameters:	
	motor – The motor index to invert.

	isInverted – True if the motor should be inverted when operated.

	
RobotDrive.setLeftRightMotorOutputs(leftOutput, rightOutput)[source]

	Set the speed of the right and left motors.

This is used once an appropriate drive setup function is called such as
twoWheelDrive(). The motors are set to “leftSpeed” and “rightSpeed”
and includes flipping the direction of one side for opposing motors.

	Parameters:	
	leftOutput – The speed to send to the left side of the robot.

	rightOutput – The speed to send to the right side of the robot.

	
RobotDrive.setMaxOutput(maxOutput)[source]

	Configure the scaling factor for using RobotDrive with motor
controllers in a mode other than PercentVbus.

	Parameters:	maxOutput – Multiplied with the output percentage computed by
the drive functions.

	
RobotDrive.setSensitivity(sensitivity)[source]

	Set the turning sensitivity.

This only impacts the drive() entry-point.

	Parameters:	sensitivity – Effectively sets the turning sensitivity (or turn
radius for a given value)

	
RobotDrive.stopMotor()[source]

	

	
RobotDrive.tankDrive(*args, **kwargs)[source]

	Provide tank steering using the stored robot configuration.

Either two joysticks (with optional specified axis) or two raw values
may be passed positionally, along with an optional squaredInputs
boolean. The valid positional combinations are:

	leftStick, rightStick

	leftStick, rightStick, squaredInputs

	leftStick, leftAxis, rightStick, rightAxis

	leftStick, leftAxis, rightStick, rightAxis, squaredInputs

	leftValue, rightValue

	leftValue, rightValue, squaredInputs

Alternatively, the above names can be used as keyword arguments.
The behavior of mixes of keyword arguments in other than the
combinations above is undefined.

If specified positionally, the value and joystick versions are
disambiguated by looking for a getY function.

	Parameters:	
	leftStick – The joystick to control the left side of the robot.

	leftAxis – The axis to select on the left side Joystick object
(defaults to the Y axis if unspecified).

	rightStick – The joystick to control the right side of the robot.

	rightAxis – The axis to select on the right side Joystick object
(defaults to the Y axis if unspecified).

	leftValue – The value to control the left side of the robot.

	rightValue – The value to control the right side of the robot.

	squaredInputs – Setting this parameter to True decreases the
sensitivity at lower speeds. Defaults to True if unspecified.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

RobotState

	
class wpilib.RobotState[source]

	Bases: builtins.object

Provides an interface to determine the current operating state of the
robot code.

	
impl = None

	

	
static isAutonomous()[source]

	

	
static isDisabled()[source]

	

	
static isEnabled()[source]

	

	
static isOperatorControl()[source]

	

	
static isTest()[source]

	

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

SafePWM

	
class wpilib.SafePWM(channel)[source]

	Bases: wpilib.PWM, wpilib.MotorSafety

A raw PWM interface that implements the MotorSafety interface

Constructor for a SafePWM object taking a channel number.

	Parameters:	channel (int) – The channel number to be used for the underlying PWM
object. 0-9 are on-board, 10-19 are on the MXP port.

	
disable()[source]

	

	
getDescription()[source]

	

	
stopMotor()[source]

	Stop the motor associated with this PWM object.
This is called by the MotorSafety object when it has a timeout for
this PWM and needs to stop it from running.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

SampleRobot

	
class wpilib.SampleRobot[source]

	Bases: wpilib.RobotBase

A simple robot base class that knows the standard FRC competition
states (disabled, autonomous, or operator controlled).

You can build a simple robot program off of this by overriding the
robotinit(), disabled(), autonomous() and
operatorControl() methods. The startCompetition() method
will call these methods (sometimes repeatedly) depending on the state
of the competition.

Alternatively you can override the robotMain() method and manage all
aspects of the robot yourself (not recommended).

Warning

While it may look like a good choice to use for your code
if you’re inexperienced, don’t. Unless you know what you
are doing, complex code will be much more difficult under
this system. Use IterativeRobot or command based
instead if you’re new.

	
autonomous()[source]

	Autonomous should go here.
Users should add autonomous code to this method that should run while
the field is in the autonomous period.

Called once each time the robot enters the autonomous state.

	
disabled()[source]

	Disabled should go here.
Users should overload this method to run code that should run while
the field is disabled.

Called once each time the robot enters the disabled state.

	
logger = <logging.Logger object at 0x7fb8e7422fd0>

	A python logging object that you can use to send messages to the log. It
is recommended to use this instead of print statements.

	
operatorControl()[source]

	Operator control (tele-operated) code should go here.
Users should add Operator Control code to this method that should run
while the field is in the Operator Control (tele-operated) period.

Called once each time the robot enters the operator-controlled state.

	
robotInit()[source]

	Robot-wide initialization code should go here.

Users should override this method for default Robot-wide initialization
which will be called when the robot is first powered on. It will be
called exactly 1 time.

Note

It is simpler to override this function instead of defining
a constructor for your robot class

	
robotMain()[source]

	Robot main program for free-form programs.

This should be overridden by user subclasses if the intent is to not
use the autonomous() and operatorControl() methods. In that case, the
program is responsible for sensing when to run the autonomous and
operator control functions in their program.

This method will be called immediately after the constructor is
called. If it has not been overridden by a user subclass (i.e. the
default version runs), then the robotInit(), disabled(), autonomous()
and operatorControl() methods will be called.

	
startCompetition()[source]

	Start a competition.
This code tracks the order of the field starting to ensure that
everything happens in the right order. Repeatedly run the correct
method, either Autonomous or OperatorControl when the robot is
enabled. After running the correct method, wait for some state to
change, either the other mode starts or the robot is disabled. Then
go back and wait for the robot to be enabled again.

	
test()[source]

	Test code should go here.
Users should add test code to this method that should run while the
robot is in test mode.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

Sendable

	
class wpilib.Sendable[source]

	Bases: builtins.object

The base interface for objects that can be sent over the network
through network tables

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

SendableChooser

	
class wpilib.SendableChooser[source]

	Bases: wpilib.Sendable

A useful tool for presenting a selection of options to be displayed on
the SmartDashboard

For instance, you may wish to be able to select between multiple
autonomous modes. You can do this by putting every possible Command
you want to run as an autonomous into a SendableChooser and then put
it into the SmartDashboard to have a list of options appear on the
laptop. Once autonomous starts, simply ask the SendableChooser what
the selected value is.

Example:

This shows the user two options on the SmartDashboard
chooser = wpilib.SendableChooser()
chooser.addOption('option1', '1')
chooser.addOption('option2', '2')

wpilib.SmartDashboard.putData('Choice', chooser)

.. later, ask to see what the user selected?
value = chooser.getSelected()

Instantiates a SendableChooser.

	
DEFAULT = 'default'

	

	
OPTIONS = 'options'

	

	
SELECTED = 'selected'

	

	
addDefault(name, object)[source]

	Add the given object to the list of options and marks it as the
default. Functionally, this is very close to addObject(...) except
that it will use this as the default option if none other is
explicitly selected.

	Parameters:	
	name – the name of the option

	object – the option

	
addObject(name, object)[source]

	Adds the given object to the list of options. On the
SmartDashboard on the desktop, the object will appear as the
given name.

	Parameters:	
	name – the name of the option

	object – the option

	
getSelected()[source]

	Returns the object associated with the selected option. If there
is none selected, it will return the default. If there is none
selected and no default, then it will return None.

	Returns:	the object associated with the selected option

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

SensorBase

	
class wpilib.SensorBase[source]

	Bases: wpilib.LiveWindowSendable

Base class for all sensors

Stores most recent status information as well as containing utility
functions for checking channels and error processing.

	
static checkAnalogInputChannel(channel)[source]

	Check that the analog input number is value.
Verify that the analog input number is one of the legal channel
numbers. Channel numbers are 0-based.

	Parameters:	channel – The channel number to check.

	
static checkAnalogOutputChannel(channel)[source]

	Check that the analog input number is value.
Verify that the analog input number is one of the legal channel
numbers. Channel numbers are 0-based.

	Parameters:	channel – The channel number to check.

	
static checkDigitalChannel(channel)[source]

	Check that the digital channel number is valid.
Verify that the channel number is one of the legal channel numbers.
Channel numbers are 0-based.

	Parameters:	channel – The channel number to check.

	
static checkPDPChannel(channel)[source]

	Verify that the power distribution channel number is within limits.
Channel numbers are 0-based.

	Parameters:	channel – The channel number to check.

	
static checkPWMChannel(channel)[source]

	Check that the digital channel number is valid.
Verify that the channel number is one of the legal channel numbers.
Channel numbers are 0-based.

	Parameters:	channel – The channel number to check.

	
static checkRelayChannel(channel)[source]

	Check that the digital channel number is valid.
Verify that the channel number is one of the legal channel numbers.
Channel numbers are 0-based.

	Parameters:	channel – The channel number to check.

	
static checkSolenoidChannel(channel)[source]

	Verify that the solenoid channel number is within limits. Channel
numbers are 0-based.

	Parameters:	channel – The channel number to check.

	
static checkSolenoidModule(moduleNumber)[source]

	Verify that the solenoid module is correct.

	Parameters:	moduleNumber – The solenoid module module number to check.

	
defaultSolenoidModule = 0

	Default solenoid module

	
free()[source]

	Free the resources used by this object

	
static getDefaultSolenoidModule()[source]

	Get the number of the default solenoid module.

	Returns:	The number of the default solenoid module.

	
kAnalogInputChannels = 8

	Number of analog input channels

	
kAnalogOutputChannels = 2

	Number of analog output channels

	
kDigitalChannels = 26

	Number of digital channels per roboRIO

	
kPDPChannels = 16

	Number of power distribution channels

	
kPwmChannels = 20

	Number of PWM channels per roboRIO

	
kRelayChannels = 4

	Number of relay channels per roboRIO

	
kSolenoidChannels = 8

	Number of solenoid channels per module

	
kSolenoidModules = 2

	Number of solenoid modules

	
kSystemClockTicksPerMicrosecond = 40

	Ticks per microsecond

	
static setDefaultSolenoidModule(moduleNumber)[source]

	Set the default location for the Solenoid module.

	Parameters:	moduleNumber – The number of the solenoid module to use.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

Servo

	
class wpilib.Servo(channel)[source]

	Bases: wpilib.PWM

Standard hobby style servo

The range parameters default to the appropriate values for the Hitec
HS-322HD servo provided in the FIRST Kit of Parts in 2008.

Constructor.

	By default kDefaultMaxServoPWM ms is used as the maxPWM value

	By default kDefaultMinServoPWM ms is used as the minPWM value

	Parameters:	channel (int) – The PWM channel to which the servo is attached. 0-9 are on-board, 10-19 are on the MXP port.

	
get()[source]

	Get the servo position.

Servo values range from 0.0 to 1.0 corresponding to the range of
full left to full right.

	Returns:	Position from 0.0 to 1.0.

	Return type:	float

	
getAngle()[source]

	Get the servo angle.

Assume that the servo angle is linear with respect to the PWM value
(big assumption, need to test).

	Returns:	The angle in degrees to which the servo is set.

	Return type:	float

	
getServoAngleRange()[source]

	

	
kDefaultMaxServoPWM = 2.4

	

	
kDefaultMinServoPWM = 0.6

	

	
kMaxServoAngle = 180.0

	

	
kMinServoAngle = 0.0

	

	
set(value)[source]

	Set the servo position.

Servo values range from 0.0 to 1.0 corresponding to the range of
full left to full right.

	Parameters:	value (float) – Position from 0.0 to 1.0.

	
setAngle(degrees)[source]

	Set the servo angle.

Assumes that the servo angle is linear with respect to the PWM value
(big assumption, need to test).

Servo angles that are out of the supported range of the servo simply
“saturate” in that direction In other words, if the servo has a range
of (X degrees to Y degrees) than angles of less than X result in an
angle of X being set and angles of more than Y degrees result in an
angle of Y being set.

	Parameters:	degrees (float) – The angle in degrees to set the servo.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

SmartDashboard

	
class wpilib.SmartDashboard[source]

	Bases: builtins.object

The bridge between robot programs and the SmartDashboard on the laptop

When a value is put into the SmartDashboard, it pops up on the
SmartDashboard on the remote host. Users can put values into and get values
from the SmartDashboard.

These values can also be accessed by a NetworkTables client via the
‘SmartDashboard’ table:

from networktables import NetworkTable
sd = NetworkTable.getTable('SmartDashboard')

sd.putXXX and sd.getXXX work as expected here

	
static getBoolean(key, defaultValue=<class 'wpilib.smartdashboard.SmartDashboard._defaultValueSentry'>)[source]

	Returns the value at the specified key.

	Parameters:	
	key (str) – the key

	defaultValue – returned if the key doesn’t exist

	Returns:	the value

	Raises:	KeyError if the key doesn’t exist and defaultValue
is not provided.

	
static getData(key)[source]

	Returns the value at the specified key.

	Parameters:	key (str) – the key

	Returns:	the value

	Raises:	KeyError if the key doesn’t exist

	
static getDouble(key, defaultValue=<class 'wpilib.smartdashboard.SmartDashboard._defaultValueSentry'>)

	Returns the value at the specified key.

	Parameters:	
	key (str) – the key

	defaultValue – returned if the key doesn’t exist

	Return type:	float

	Raises:	KeyError if the key doesn’t exist and defaultValue
is not provided.

	
static getInt(key, defaultValue=<class 'wpilib.smartdashboard.SmartDashboard._defaultValueSentry'>)

	Returns the value at the specified key.

	Parameters:	
	key (str) – the key

	defaultValue – returned if the key doesn’t exist

	Return type:	float

	Raises:	KeyError if the key doesn’t exist and defaultValue
is not provided.

	
static getNumber(key, defaultValue=<class 'wpilib.smartdashboard.SmartDashboard._defaultValueSentry'>)[source]

	Returns the value at the specified key.

	Parameters:	
	key (str) – the key

	defaultValue – returned if the key doesn’t exist

	Return type:	float

	Raises:	KeyError if the key doesn’t exist and defaultValue
is not provided.

	
static getString(key, defaultValue=<class 'wpilib.smartdashboard.SmartDashboard._defaultValueSentry'>)[source]

	Returns the value at the specified key.

	Parameters:	
	key (str) – the key

	defaultValue – returned if the key doesn’t exist

	Return type:	str

	Raises:	KeyError if the key doesn’t exist and defaultValue
is not provided.

	
static putBoolean(key, value)[source]

	Maps the specified key to the specified value in this table.
The key can not be None.

The value can be retrieved by calling the get method with a key that
is equal to the original key.

	Parameters:	
	key (str) – the key

	value – the value

	
static putData(*args, **kwargs)[source]

	Maps the specified key to the specified value in this table.
The value can be retrieved by calling the get method with a key that
is equal to the original key.

Two argument formats are supported: key, data:

	Parameters:	
	key (str) – the key (cannot be None)

	data – the value

Or the single argument “value”:

	Parameters:	value – the named value (getName is called to retrieve the value)

	
static putDouble(key, value)

	Maps the specified key to the specified value in this table.
The key can not be None.
The value can be retrieved by calling the get method with a key that
is equal to the original key.

	Parameters:	
	key (str) – the key

	value (int or float) – the value

	
static putInt(key, value)

	Maps the specified key to the specified value in this table.
The key can not be None.
The value can be retrieved by calling the get method with a key that
is equal to the original key.

	Parameters:	
	key (str) – the key

	value (int or float) – the value

	
static putNumber(key, value)[source]

	Maps the specified key to the specified value in this table.
The key can not be None.
The value can be retrieved by calling the get method with a key that
is equal to the original key.

	Parameters:	
	key (str) – the key

	value (int or float) – the value

	
static putString(key, value)[source]

	Maps the specified key to the specified value in this table.
The key can not be None.
The value can be retrieved by calling the get method with a key that
is equal to the original key.

	Parameters:	
	key (str) – the key

	value (str) – the value

	
table = None

	

	
tablesToData = {}

	

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

Solenoid

	
class wpilib.Solenoid(*args, **kwargs)[source]

	Bases: wpilib.SolenoidBase

Solenoid class for running high voltage Digital Output.

The Solenoid class is typically used for pneumatics solenoids, but could
be used for any device within the current spec of the PCM.

Constructor.

Arguments can be supplied as positional or keyword. Acceptable
positional argument combinations are:

	channel

	moduleNumber, channel

Alternatively, the above names can be used as keyword arguments.

	Parameters:	
	moduleNumber (int) – The CAN ID of the PCM the solenoid is attached to

	channel (int) – The channel on the PCM to control (0..7)

	
free()[source]

	Mark the solenoid as freed.

	
get()[source]

	Read the current value of the solenoid.

	Returns:	The current value of the solenoid.

	Return type:	bool

	
isBlackListed()[source]

	
	Check if the solenoid is blacklisted.

	If a solenoid is shorted, it is added to the blacklist and disabled until power cycle, or until faults are
cleared. See clearAllPCMStickyFaults()

	Returns:	If solenoid is disabled due to short.

	
set(on)[source]

	Set the value of a solenoid.

	Parameters:	on (bool) – Turn the solenoid output off or on.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

SolenoidBase

	
class wpilib.SolenoidBase(moduleNumber)[source]

	Bases: wpilib.SensorBase

SolenoidBase class is the common base class for the Solenoid and
DoubleSolenoid classes.

Constructor.

	Parameters:	moduleNumber – The PCM CAN ID

	
all_allocated = {}

	

	
all_mutex = {}

	

	
all_ports = {}

	

	
clearAllPCMStickyFaults()[source]

	Clear ALL sticky faults inside the PCM that Solenoid is wired to.

	If a sticky fault is set, then it will be persistently cleared. Compressor drive

	maybe momentarily disable while flages are being cleared. Care should be
taken to not call this too frequently, otherwise normal compressor functionality
may be prevented.

If no sticky faults are set then this call will have no effect.

	
getAll()[source]

	Read all 8 solenoids from the module used by this solenoid as a
single byte.

	Returns:	The current value of all 8 solenoids on this module.

	
getPCMSolenoidBlackList()[source]

	
	Reads complete solenoid blacklist for all 8 solenoids as a single byte.

	If a solenoid is shorted, it is added to the blacklist and
disabled until power cycle, or until faults are cleared. See
clearAllPCMStickyFaults()

	Returns:	The solenoid blacklist of all 8 solenoids on the module.

	
getPCMSolenoidVoltageFault()[source]

	

	Returns:	True if PCM is in fault state : The common
highside solenoid voltage rail is too low, most likely
a solenoid channel has been shorted.

	
getPCMSolenoidVoltageStickyFault()[source]

	

	Returns:	True if PCM Sticky fault is set : The common
highside solenoid voltage rail is too low, most likely
a solenoid channel has been shorted.

	
set(value, mask)[source]

	Set the value of a solenoid.

	Parameters:	
	value – The value you want to set on the module.

	mask – The channels you want to be affected.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

SPI

	
class wpilib.SPI(port)[source]

	Bases: builtins.object

Represents a SPI bus port

Constructor

	Parameters:	port – the physical SPI port

	
class Port[source]

	Bases: builtins.object

	
kMXP = 4

	

	
kOnboardCS0 = 0

	

	
kOnboardCS1 = 1

	

	
kOnboardCS2 = 2

	

	
kOnboardCS3 = 3

	

	
SPI.devices = 0

	

	
SPI.read(initiate, size)[source]

	Read a word from the receive FIFO.

Waits for the current transfer to complete if the receive FIFO is
empty.

If the receive FIFO is empty, there is no active transfer, and
initiate is False, errors.

	Parameters:	
	initiate – If True, this function pushes “0” into the
transmit buffer and initiates a transfer. If False, this function
assumes that data is already in the receive FIFO from a previous
write.

	size – Number of bytes to read.

	Returns:	received data bytes

	
SPI.setChipSelectActiveHigh()[source]

	Configure the chip select line to be active high.

	
SPI.setChipSelectActiveLow()[source]

	Configure the chip select line to be active low.

	
SPI.setClockActiveHigh()[source]

	Configure the clock output line to be active high.
This is sometimes called clock polarity low or clock idle low.

	
SPI.setClockActiveLow()[source]

	Configure the clock output line to be active low.
This is sometimes called clock polarity high or clock idle high.

	
SPI.setClockRate(hz)[source]

	Configure the rate of the generated clock signal.
The default value is 500,000 Hz.
The maximum value is 4,000,000 Hz.

	Parameters:	hz – The clock rate in Hertz.

	
SPI.setLSBFirst()[source]

	Configure the order that bits are sent and received on the wire
to be least significant bit first.

	
SPI.setMSBFirst()[source]

	Configure the order that bits are sent and received on the wire
to be most significant bit first.

	
SPI.setSampleDataOnFalling()[source]

	Configure that the data is stable on the falling edge and the data
changes on the rising edge.

	
SPI.setSampleDataOnRising()[source]

	Configure that the data is stable on the rising edge and the data
changes on the falling edge.

	
SPI.transaction(dataToSend)[source]

	Perform a simultaneous read/write transaction with the device

	Parameters:	dataToSend – The data to be written out to the device

	Returns:	data received from the device

	
SPI.write(dataToSend)[source]

	Write data to the slave device. Blocks until there is space in the
output FIFO.

If not running in output only mode, also saves the data received
on the MISO input during the transfer into the receive FIFO.

	Parameters:	dataToSend – Data to send (bytes)

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

Talon

	
class wpilib.Talon(channel)[source]

	Bases: wpilib.SafePWM

Cross the Road Electronics (CTRE) Talon and Talon SR Speed Controller via PWM

Constructor for a Talon (original or Talon SR)

	Parameters:	channel (int) – The PWM channel that the Talon is attached to. 0-9 are on-board, 10-19 are on the MXP port

Note

The Talon uses the following bounds for PWM values. These values
should work reasonably well for most controllers, but if users
experience issues such as asymmetric behavior around the deadband
or inability to saturate the controller in either direction,
calibration is recommended. The calibration procedure can be
found in the Talon User Manual available from CTRE.

	2.037ms = full “forward”

	1.539ms = the “high end” of the deadband range

	1.513ms = center of the deadband range (off)

	1.487ms = the “low end” of the deadband range

	0.989ms = full “reverse”

	
get()[source]

	Get the recently set value of the PWM.

	Returns:	The most recently set value for the PWM between -1.0 and 1.0.

	Return type:	float

	
pidWrite(output)[source]

	Write out the PID value as seen in the PIDOutput base object.

	Parameters:	output (float) – Write out the PWM value as was found in the
PIDController.

	
set(speed, syncGroup=0)[source]

	Set the PWM value.

The PWM value is set using a range of -1.0 to 1.0, appropriately
scaling the value for the FPGA.

	Parameters:	
	speed (float) – The speed to set. Value should be between -1.0 and 1.0.

	syncGroup – The update group to add this set() to, pending
updateSyncGroup(). If 0, update immediately.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

TalonSRX

	
class wpilib.TalonSRX(channel)[source]

	Bases: wpilib.SafePWM

Cross the Road Electronics (CTRE) Talon SRX Speed Controller via PWM

See also

See CANTalon for CAN control of Talon SRX.

Constructor for a TalonSRX connected via PWM.

	Parameters:	channel (int) – The PWM channel that the TalonSRX is attached to. 0-9 are on-board, 10-19 are on the MXP port.

Note

The TalonSRX uses the following bounds for PWM values. These values
should work reasonably well for most controllers, but if users
experience issues such as asymmetric behavior around the deadband
or inability to saturate the controller in either direction,
calibration is recommended. The calibration procedure can be
found in the TalonSRX User Manual available from CTRE.

	2.004ms = full “forward”

	1.520ms = the “high end” of the deadband range

	1.500ms = center of the deadband range (off)

	1.480ms = the “low end” of the deadband range

	0.997ms = full “reverse”

	
get()[source]

	Get the recently set value of the PWM.

	Returns:	The most recently set value for the PWM between -1.0 and 1.0.

	Return type:	float

	
pidWrite(output)[source]

	Write out the PID value as seen in the PIDOutput base object.

	Parameters:	output (float) – Write out the PWM value as was found in the
PIDController.

	
set(speed, syncGroup=0)[source]

	Set the PWM value.

The PWM value is set using a range of -1.0 to 1.0, appropriately
scaling the value for the FPGA.

	Parameters:	
	speed (float) – The speed to set. Value should be between -1.0 and 1.0.

	syncGroup – The update group to add this set() to, pending
updateSyncGroup(). If 0, update immediately.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

Timer

	
class wpilib.Timer[source]

	Bases: builtins.object

Provides time-related functionality for the robot

Note

Prefer to use this module for time functions, instead of
the time module in the standard library. This will
make it easier for your code to work properly in simulation.

	
static delay(seconds)[source]

	Pause the thread for a specified time. Pause the execution of the
thread for a specified period of time given in seconds. Motors will
continue to run at their last assigned values, and sensors will
continue to update. Only the thread containing the wait will pause
until the wait time is expired.

	Parameters:	seconds (float) – Length of time to pause

Warning

If you’re tempted to use this function for autonomous
mode to time transitions between actions, don’t do it!

Delaying the main robot thread for more than a few
milliseconds is generally discouraged, and will cause
problems and possibly leave the robot unresponsive.

	
get()[source]

	Get the current time from the timer. If the clock is running it is
derived from the current system clock the start time stored in the
timer class. If the clock is not running, then return the time when
it was last stopped.

	Returns:	Current time value for this timer in seconds

	Return type:	float

	
static getFPGATimestamp()[source]

	Return the system clock time in seconds. Return the time from the
FPGA hardware clock in seconds since the FPGA started.

	Returns:	Robot running time in seconds.

	Return type:	float

	
static getMatchTime()[source]

	Return the approximate match time.
The FMS does not currently send the official match time to the robots.
This returns the time since the enable signal sent from the Driver
Station.
At the beginning of autonomous, the time is reset to 0.0 seconds.
At the beginning of teleop, the time is reset to +15.0 seconds.
If the robot is disabled, this returns 0.0 seconds.

Warning

This is not an official time (so it cannot be used to argue with
referees).

	Returns:	Match time in seconds since the beginning of autonomous

	Return type:	float

	
getMsClock()[source]

	

	Returns:	the system clock time in milliseconds.

	Return type:	int

	
hasPeriodPassed(period)[source]

	Check if the period specified has passed and if it has, advance the start
time by that period. This is useful to decide if it’s time to do periodic
work without drifting later by the time it took to get around to checking.

	Parameters:	period – The period to check for (in seconds).

	Returns:	If the period has passed.

	Return type:	bool

	
reset()[source]

	Reset the timer by setting the time to 0.
Make the timer startTime the current time so new requests will be
relative now.

	
start()[source]

	Start the timer running.
Just set the running flag to true indicating that all time requests
should be relative to the system clock.

	
stop()[source]

	Stop the timer.
This computes the time as of now and clears the running flag, causing
all subsequent time requests to be read from the accumulated time
rather than looking at the system clock.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

Ultrasonic

	
class wpilib.Ultrasonic(pingChannel, echoChannel, units=0)[source]

	Bases: wpilib.SensorBase

Ultrasonic rangefinder control

The Ultrasonic rangefinder measures
absolute distance based on the round-trip time of a ping generated by
the controller. These sensors use two transducers, a speaker and a
microphone both tuned to the ultrasonic range. A common ultrasonic
sensor, the Daventech SRF04 requires a short pulse to be generated on
a digital channel. This causes the chirp to be emmitted. A second line
becomes high as the ping is transmitted and goes low when the echo is
received. The time that the line is high determines the round trip
distance (time of flight).

Create an instance of the Ultrasonic Sensor.
This is designed to supchannel the Daventech SRF04 and Vex ultrasonic
sensors.

	Parameters:	
	pingChannel – The digital output channel that sends the pulse
to initiate the sensor sending the ping.

	echoChannel – The digital input channel that receives the echo.
The length of time that the echo is high represents the round
trip time of the ping, and the distance.

	units – The units returned in either kInches or kMillimeters

	
class Unit[source]

	Bases: builtins.object

The units to return when PIDGet is called

	
kInches = 0

	

	
kMillimeters = 1

	

	
Ultrasonic.automaticEnabled = False

	Automatic round robin mode

	
Ultrasonic.getDistanceUnits()[source]

	Get the current DistanceUnit that is used for the PIDSource
interface.

	Returns:	The type of DistanceUnit that is being used.

	
Ultrasonic.getRangeInches()[source]

	Get the range in inches from the ultrasonic sensor.

	Returns:	Range in inches of the target returned from the ultrasonic
sensor. If there is no valid value yet, i.e. at least one
measurement hasn’t completed, then return 0.

	Return type:	float

	
Ultrasonic.getRangeMM()[source]

	Get the range in millimeters from the ultrasonic sensor.

	Returns:	Range in millimeters of the target returned by the
ultrasonic sensor. If there is no valid value yet, i.e. at least
one measurement hasn’t complted, then return 0.

	Return type:	float

	
Ultrasonic.instances = 0

	

	
static Ultrasonic.isAutomaticMode()[source]

	

	
Ultrasonic.isEnabled()[source]

	Is the ultrasonic enabled.

	Returns:	True if the ultrasonic is enabled

	
Ultrasonic.isRangeValid()[source]

	Check if there is a valid range measurement. The ranges are
accumulated in a counter that will increment on each edge of the
echo (return) signal. If the count is not at least 2, then the range
has not yet been measured, and is invalid.

	Returns:	True if the range is valid

	Return type:	bool

	
Ultrasonic.kMaxUltrasonicTime = 0.1

	Max time (ms) between readings.

	
Ultrasonic.kPingTime = 9.999999999999999e-06

	Time (sec) for the ping trigger pulse.

	
Ultrasonic.kPriority = 90

	Priority that the ultrasonic round robin task runs.

	
Ultrasonic.kSpeedOfSoundInchesPerSec = 13560.0

	

	
Ultrasonic.pidGet()[source]

	Get the range in the current DistanceUnit (PIDSource interface).

	Returns:	The range in DistanceUnit

	Return type:	float

	
Ultrasonic.ping()[source]

	Single ping to ultrasonic sensor. Send out a single ping to the
ultrasonic sensor. This only works if automatic (round robin) mode is
disabled. A single ping is sent out, and the counter should count the
semi-period when it comes in. The counter is reset to make the current
value invalid.

	
Ultrasonic.sensors = <_weakrefset.WeakSet object at 0x7fb8e73f1048>

	ultrasonic sensor list

	
Ultrasonic.setAutomaticMode(enabling)[source]

	Turn Automatic mode on/off. When in Automatic mode, all sensors
will fire in round robin, waiting a set time between each sensor.

	Parameters:	enabling (bool) – Set to true if round robin scheduling should start for all the
ultrasonic sensors. This scheduling method assures that the
sensors are non-interfering because no two sensors fire at the
same time. If another scheduling algorithm is preffered, it
can be implemented by pinging the sensors manually and waiting
for the results to come back.

	
Ultrasonic.setDistanceUnits(units)[source]

	Set the current DistanceUnit that should be used for the
PIDSource interface.

	Parameters:	units – The DistanceUnit that should be used.

	
Ultrasonic.setEnabled(enable)[source]

	Set if the ultrasonic is enabled.

	Parameters:	enable (bool) – set to True to enable the ultrasonic

	
static Ultrasonic.ultrasonicChecker()[source]

	Background task that goes through the list of ultrasonic sensors
and pings each one in turn. The counter is configured to read the
timing of the returned echo pulse.

Warning

DANGER WILL ROBINSON, DANGER WILL ROBINSON: This code runs
as a task and assumes that none of the ultrasonic sensors will
change while it’s running. If one does, then this will certainly
break. Make sure to disable automatic mode before changing
anything with the sensors!!

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

Utility

	
class wpilib.Utility[source]

	Bases: builtins.object

Contains global utility functions

	
static getFPGARevision()[source]

	Return the FPGA Revision number. The format of the revision is 3
numbers. The 12 most significant bits are the Major Revision. the
next 8 bits are the Minor Revision. The 12 least significant bits
are the Build Number.

	Returns:	FPGA Revision number.

	Return type:	int

	
static getFPGATime()[source]

	Read the microsecond timer from the FPGA.

	Returns:	The current time in microseconds according to the FPGA.

	Return type:	int

	
static getFPGAVersion()[source]

	Return the FPGA Version number.

	Returns:	FPGA Version number.

	Return type:	int

	
static getUserButton()[source]

	Get the state of the “USER” button on the RoboRIO.

	Returns:	True if the button is currently pressed down

	Return type:	bool

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

Victor

	
class wpilib.Victor(channel)[source]

	Bases: wpilib.SafePWM

VEX Robotics Victor 888 Speed Controller via PWM

The Vex Robotics Victor 884 Speed Controller can also be used with this
class but may need to be calibrated per the Victor 884 user manual.

Note

The Victor uses the following bounds for PWM values. These
values were determined empirically and optimized for the Victor
888. These values should work reasonably well for Victor 884
controllers also but if users experience issues such as
asymmetric behaviour around the deadband or inability to saturate
the controller in either direction, calibration is recommended.
The calibration procedure can be found in the Victor 884 User
Manual available from VEX Robotics:
http://content.vexrobotics.com/docs/ifi-v884-users-manual-9-25-06.pdf

	2.027ms = full “forward”

	1.525ms = the “high end” of the deadband range

	1.507ms = center of the deadband range (off)

	1.49ms = the “low end” of the deadband range

	1.026ms = full “reverse”

Constructor.

	Parameters:	channel (int) – The PWM channel that the Victor is attached to. 0-9 are on-board, 10-19 are on the MXP port

	
get()[source]

	Get the recently set value of the PWM.

	Returns:	The most recently set value for the PWM between -1.0 and 1.0.

	Return type:	float

	
pidWrite(output)[source]

	Write out the PID value as seen in the PIDOutput base object.

	Parameters:	output (float) – Write out the PWM value as was found in the
PIDController.

	
set(speed, syncGroup=0)[source]

	Set the PWM value.

The PWM value is set using a range of -1.0 to 1.0, appropriately
scaling the value for the FPGA.

	Parameters:	
	speed (float) – The speed to set. Value should be between -1.0 and 1.0.

	syncGroup – The update group to add this set to, pending
updateSyncGroup(). If 0, update immediately.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib Package

VictorSP

	
class wpilib.VictorSP(channel)[source]

	Bases: wpilib.SafePWM

VEX Robotics Victor SP Speed Controller via PWM

Constructor.

	Parameters:	channel (int) – The PWM channel that the VictorSP is attached to. 0-9 are on-board, 10-19 are on the MXP port.

Note

The Talon uses the following bounds for PWM values. These values
should work reasonably well for most controllers, but if users
experience issues such as asymmetric behavior around the deadband
or inability to saturate the controller in either direction,
calibration is recommended. The calibration procedure can be
found in the VictorSP User Manual.

	2.004ms = full “forward”

	1.520ms = the “high end” of the deadband range

	1.500ms = center of the deadband range (off)

	1.480ms = the “low end” of the deadband range

	0.997ms = full “reverse”

	
get()[source]

	Get the recently set value of the PWM.

	Returns:	The most recently set value for the PWM between -1.0 and 1.0.

	Return type:	float

	
pidWrite(output)[source]

	Write out the PID value as seen in the PIDOutput base object.

	Parameters:	output (float) – Write out the PWM value as was found in the
PIDController.

	
set(speed, syncGroup=0)[source]

	Set the PWM value.

The PWM value is set using a range of -1.0 to 1.0, appropriately
scaling the value for the FPGA.

	Parameters:	
	speed (float) – The speed to set. Value should be between -1.0 and 1.0.

	syncGroup – The update group to add this set() to, pending
updateSyncGroup(). If 0, update immediately.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

wpilib.buttons Package

Classes in this package are used to interface various types of buttons
to a command-based robot.

If you are not using the Command framework, you can ignore these classes.

	wpilib.buttons.Button
	This class provides an easy way to link commands to OI inputs.

	wpilib.buttons.InternalButton([...])
	This class is intended to be used within a program.

	wpilib.buttons.JoystickButton(...)
	Create a joystick button for triggering commands.

	wpilib.buttons.NetworkButton(...)
	

	wpilib.buttons.Trigger
	This class provides an easy way to link commands to inputs.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib.buttons Package

Button

	
class wpilib.buttons.Button[source]

	Bases: wpilib.buttons.Trigger

This class provides an easy way to link commands to OI inputs.

It is very easy to link a button to a command. For instance, you could
link the trigger button of a joystick to a “score” command.

This class represents a subclass of Trigger that is specifically aimed at
buttons on an operator interface as a common use case of the more
generalized Trigger objects. This is a simple wrapper around Trigger with
the method names renamed to fit the Button object use.

	
cancelWhenPressed(command)[source]

	Cancel the command when the button is pressed.

	Parameters:	command –

	
toggleWhenPressed(command)[source]

	Toggles the command whenever the button is pressed (on then off
then on).

	Parameters:	command –

	
whenPressed(command)[source]

	Starts the given command whenever the button is newly pressed.

	Parameters:	command – the command to start

	
whenReleased(command)[source]

	Starts the command when the button is released.

	Parameters:	command – the command to start

	
whileHeld(command)[source]

	Constantly starts the given command while the button is held.

Command.start() will be called repeatedly while the button is
held, and will be canceled when the button is released.

	Parameters:	command – the command to start

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib.buttons Package

InternalButton

	
class wpilib.buttons.InternalButton(inverted=False)[source]

	Bases: wpilib.buttons.Button

This class is intended to be used within a program. The programmer can
manually set its value. Includes a setting for whether or not it should
invert its value.

Creates an InternalButton which is inverted depending on the input.

	Parameters:	inverted – If False, then this button is pressed when set to
True, otherwise it is pressed when set to False.

	
get()[source]

	

	
setInverted(inverted)[source]

	

	
setPressed(pressed)[source]

	

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib.buttons Package

JoystickButton

	
class wpilib.buttons.JoystickButton(joystick, buttonNumber)[source]

	Bases: wpilib.buttons.Button

Create a joystick button for triggering commands.

	Parameters:	
	joystick – The GenericHID object that has the button (e.g.
Joystick, KinectStick, etc)

	buttonNumber – The button number
(see GenericHID.getRawButton())

	
get()[source]

	Gets the value of the joystick button.

	Returns:	The value of the joystick button

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib.buttons Package

NetworkButton

	
class wpilib.buttons.NetworkButton(table, field)[source]

	Bases: wpilib.buttons.Button

	
get()[source]

	

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib.buttons Package

Trigger

	
class wpilib.buttons.Trigger[source]

	Bases: builtins.object

This class provides an easy way to link commands to inputs.

It is very easy to link a button to a command. For instance, you could
link the trigger button of a joystick to a “score” command.

It is encouraged that teams write a subclass of Trigger if they want to
have something unusual (for instance, if they want to react to the user
holding a button while the robot is reading a certain sensor input).
For this, they only have to write the get() method to get the full
functionality of the Trigger class.

	
cancelWhenActive(command)[source]

	Cancels a command when the trigger becomes active.

	Parameters:	command – the command to cancel

	
get()[source]

	Returns whether or not the trigger is active

This method will be called repeatedly a command is linked to the
Trigger.

	Returns:	whether or not the trigger condition is active.

	
grab()[source]

	Returns whether get() returns True or the internal table for
SmartDashboard use is pressed.

	
toggleWhenActive(command)[source]

	Toggles a command when the trigger becomes active.

	Parameters:	command – the command to toggle

	
whenActive(command)[source]

	Starts the given command whenever the trigger just becomes active.

	Parameters:	command – the command to start

	
whenInactive(command)[source]

	Starts the command when the trigger becomes inactive.

	Parameters:	command – the command to start

	
whileActive(command)[source]

	Constantly starts the given command while the button is held.

Command.start() will be called repeatedly while the trigger is
active, and will be canceled when the trigger becomes inactive.

	Parameters:	command – the command to start

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

wpilib.command Package

Objects in this package allow you to implement a robot using Command-based
programming. Command based programming is a design pattern to help you
organize your robot programs, by organizing your robot program into
components based on Command and Subsystem

The python implementation of the Command framework closely follows the
Java language implementation. RobotPy has several examples of command
based robots available.

Each one of the objects in the Command framework has detailed
documentation available. If you need more information, for examples,
tutorials, and other detailed information on programming your robot
using this pattern, we recommend that you consult the Java version of the
FRC Control System documentation [https://wpilib.screenstepslive.com/s/3120/m/7952/c/44956]

	wpilib.command.Command([name,timeout])
	The Command class is at the very core of the entire command framework.

	wpilib.command.CommandGroup([name])
	A CommandGroup is a list of commands which are executed in sequence.

	wpilib.command.PIDCommand(p,i,d)
	This class defines a Command which interacts heavily with a PID loop.

	wpilib.command.PIDSubsystem(p,i,d)
	This class is designed to handle the case where there is a Subsystem which uses a single {@link PIDController} almost constantly (for instance, an elevator which attempts to stay at a constant height).

	wpilib.command.PrintCommand(message)
	A PrintCommand is a command which prints out a string when it is initialized, and then immediately finishes.

	wpilib.command.Scheduler()
	The Scheduler is a singleton which holds the top-level running commands.

	wpilib.command.StartCommand(...)
	A StartCommand will call the start() method of another command when it is initialized and will finish immediately.

	wpilib.command.Subsystem([name])
	This class defines a major component of the robot.

	wpilib.command.WaitCommand(timeout)
	A WaitCommand will wait for a certain amount of time before finishing.

	wpilib.command.WaitForChildren([...])
	This command will only finish if whatever CommandGroup it is in has no active children.

	wpilib.command.WaitUntilCommand(time)
	This will wait until the game clock reaches some value, then continue to the next command.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib.command Package

Command

	
class wpilib.command.Command(name=None, timeout=None)[source]

	Bases: wpilib.Sendable

The Command class is at the very core of the entire command framework.
Every command can be started with a call to start().
Once a command is started it will call initialize(), and then
will repeatedly call execute() until isFinished() returns True.
Once it does, end() will be called.

However, if at any point while it is running cancel() is called, then
the command will be stopped and interrupted() will be called.

If a command uses a Subsystem, then it should specify that it
does so by calling the requires() method in its constructor.
Note that a Command may have multiple requirements, and requires()
should be called for each one.

If a command is running and a new command with shared requirements is
started, then one of two things will happen. If the active command is
interruptible, then cancel() will be called and the command will be removed
to make way for the new one. If the active command is not interruptible,
the other one will not even be started, and the active one will continue
functioning.

See also

Subsystem, CommandGroup

Creates a new command.

	Parameters:	
	name – The name for this command; if unspecified or None,
The name of this command will be set to its class name.

	timeout – The time (in seconds) before this command “times out”.
Default is no timeout. See isTimedOut().

	
cancel()[source]

	This will cancel the current command.

This will cancel the current command eventually. It can be called
multiple times. And it can be called when the command is not running.
If the command is running though, then the command will be marked as
canceled and eventually removed.

Warning

A command can not be canceled if it is a part of a
CommandGroup, you must cancel the CommandGroup
instead.

	
doesRequire(system)[source]

	Checks if the command requires the given Subsystem.

	Parameters:	system – the system

	Returns:	whether or not the subsystem is required, or False if given
None.

	
end()[source]

	Called when the command ended peacefully. This is where you may
want to wrap up loose ends, like shutting off a motor that was being
used in the command.

	
execute()[source]

	The execute method is called repeatedly until this Command either
finishes or is canceled.

	
getGroup()[source]

	Returns the CommandGroup that this command is a part of.
Will return None if this Command is not in a group.

	Returns:	the CommandGroup that this command is a part of
(or None if not in group)

	
getName()[source]

	Returns the name of this command. If no name was specified
in the constructor, then the default is the name of the class.

	Returns:	the name of this command

	
getRequirements()[source]

	Returns the requirements (as a set of Subsystems) of this command

	
initialize()[source]

	The initialize method is called the first time this Command is run
after being started.

	
interrupted()[source]

	Called when the command ends because somebody called cancel() or
another command shared the same requirements as this one, and booted
it out.

This is where you may want to wrap up loose ends, like shutting off a
motor that was being used in the command.

Generally, it is useful to simply call the end() method within this
method.

	
isCanceled()[source]

	Returns whether or not this has been canceled.

	Returns:	whether or not this has been canceled

	
isFinished()[source]

	Returns whether this command is finished.
If it is, then the command will be removed and end() will be called.

It may be useful for a team to reference the isTimedOut() method
for time-sensitive commands.

	Returns:	whether this command is finished.

	See:	isTimedOut()

	
isInterruptible()[source]

	Returns whether or not this command can be interrupted.

	Returns:	whether or not this command can be interrupted

	
isRunning()[source]

	Returns whether or not the command is running.
This may return true even if the command has just been canceled, as it
may not have yet called interrupted().

	Returns:	whether or not the command is running

	
isTimedOut()[source]

	Returns whether or not the timeSinceInitialized() method returns a
number which is greater than or equal to the timeout for the command.
If there is no timeout, this will always return false.

	Returns:	whether the time has expired

	
lockChanges()[source]

	Prevents further changes from being made

	
removed()[source]

	Called when the command has been removed. This will call
interrupted() or end().

	
requires(subsystem)[source]

	This method specifies that the given Subsystem is used by this
command. This method is crucial to the functioning of the Command
System in general.

Note that the recommended way to call this method is in the
constructor.

	Parameters:	subsystem – the Subsystem required

	
run()[source]

	The run method is used internally to actually run the commands.

	Returns:	whether or not the command should stay within the Scheduler.

	
setInterruptible(interruptible)[source]

	Sets whether or not this command can be interrupted.

	Parameters:	interruptible – whether or not this command can be interrupted

	
setParent(parent)[source]

	Sets the parent of this command. No actual change is made to the
group.

	Parameters:	parent – the parent

	
setRunWhenDisabled(run)[source]

	Sets whether or not this {@link Command} should run when the robot
is disabled.

By default a command will not run when the robot is disabled, and will
in fact be canceled.

	Parameters:	run – whether or not this command should run when the robot is
disabled

	
setTimeout(seconds)[source]

	Sets the timeout of this command.

	Parameters:	seconds – the timeout (in seconds)

	See:	isTimedOut()

	
start()[source]

	Starts up the command. Gets the command ready to start.
Note that the command will eventually start, however it will not
necessarily do so immediately, and may in fact be canceled before
initialize is even called.

	
startRunning()[source]

	This is used internally to mark that the command has been started.
The lifecycle of a command is:

	startRunning() is called.

	run() is called (multiple times potentially)

	removed() is called

It is very important that startRunning() and removed() be
called in order or some assumptions of the code will be broken.

	
startTiming()[source]

	Called to indicate that the timer should start.
This is called right before initialize() is, inside the run() method.

	
timeSinceInitialized()[source]

	Returns the time since this command was initialized (in seconds).
This function will work even if there is no specified timeout.

	Returns:	the time since this command was initialized (in seconds).

	
willRunWhenDisabled()[source]

	Returns whether or not this Command will run when the robot is
disabled, or if it will cancel itself.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib.command Package

CommandGroup

	
class wpilib.command.CommandGroup(name=None)[source]

	Bases: wpilib.command.Command

A CommandGroup is a list of commands which are executed in sequence.

Commands in a CommandGroup are added using the addSequential() method
and are called sequentially. CommandGroups are themselves Commands and can
be given to other CommandGroups.

CommandGroups will carry all of the requirements of their subcommands.
Additional requirements can be specified by calling requires()
normally in the constructor.

CommandGroups can also execute commands in parallel, simply by adding them
using addParallel(...).

See also

Command, Subsystem

Creates a new CommandGroup with the given name.

	Parameters:	name – the name for this command group (optional). If None,
the name of this command will be set to its class name.

	
class Entry(command, state, timeout)[source]

	Bases: builtins.object

	
BRANCH_CHILD = 2

	

	
BRANCH_PEER = 1

	

	
IN_SEQUENCE = 0

	

	
isTimedOut()[source]

	

	
CommandGroup.addParallel(command, timeout=None)[source]

	Adds a new child Command to the group (with an optional timeout).
The Command will be started after all the previously added Commands.

Once the Command is started, it will run until it finishes, is
interrupted, or the time expires (if a timeout is provided), whichever
is sooner. Note that the given Command will have no knowledge that it
is on a timer.

Instead of waiting for the child to finish, a CommandGroup will have it
run at the same time as the subsequent Commands. The child will run
until either it finishes, the timeout expires, a new child with
conflicting requirements is started, or the main sequence runs a
Command with conflicting requirements. In the latter two cases, the
child will be canceled even if it says it can’t be interrupted.

Note that any requirements the given Command has will be added to the
group. For this reason, a Command’s requirements can not be changed
after being added to a group.

It is recommended that this method be called in the constructor.

	Parameters:	
	command – The command to be added

	timeout – The timeout (in seconds) (optional)

	
CommandGroup.addSequential(command, timeout=None)[source]

	Adds a new Command to the group (with an optional timeout).
The Command will be started after all the previously added Commands.

Once the Command is started, it will be run until it finishes or the
time expires, whichever is sooner (if a timeout is provided). Note
that the given Command will have no knowledge that it is on a timer.

Note that any requirements the given Command has will be added to the
group. For this reason, a Command’s requirements can not be changed
after being added to a group.

It is recommended that this method be called in the constructor.

	Parameters:	
	command – The Command to be added

	timeout – The timeout (in seconds) (optional)

	
CommandGroup.cancelConflicts(command)[source]

	

	
CommandGroup.end()[source]

	

	
CommandGroup.execute()[source]

	

	
CommandGroup.initialize()[source]

	

	
CommandGroup.interrupted()[source]

	

	
CommandGroup.isFinished()[source]

	Returns True if all the Commands in this group
have been started and have finished.

Teams may override this method, although they should probably
reference super().isFinished() if they do.

	Returns:	whether this CommandGroup is finished

	
CommandGroup.isInterruptible()[source]

	Returns whether or not this group is interruptible.
A command group will be uninterruptible if setInterruptable(False)
was called or if it is currently running an uninterruptible command
or child.

	Returns:	whether or not this CommandGroup is interruptible.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib.command Package

PIDCommand

	
class wpilib.command.PIDCommand(p, i, d, period=None, f=0.0, name=None)[source]

	Bases: wpilib.command.Command

This class defines a Command which interacts heavily with a PID loop.

It provides some convenience methods to run an internal PIDController.
It will also start and stop said PIDController when the PIDCommand is
first initialized and ended/interrupted.

Instantiates a PIDCommand that will use the given p, i and d values.
It will use the class name as its name unless otherwise specified.
It will also space the time between PID loop calculations to be equal
to the given period.

	Parameters:	
	p – the proportional value

	i – the integral value

	d – the derivative value

	period – the time (in seconds) between calculations (optional)

	f – the feed forward value

	name – the name (optional)

	
getPIDController()[source]

	Returns the PIDController used by this PIDCommand.
Use this if you would like to fine tune the pid loop.

Notice that calling setSetpoint(...) on the controller
will not result in the setpoint being trimmed to be in
the range defined by setSetpointRange(...).

	Returns:	the PIDController used by this PIDCommand

	
getPosition()[source]

	Returns the current position

	Returns:	the current position

	
getSetpoint()[source]

	Returns the setpoint.

	Returns:	the setpoint

	
returnPIDInput()[source]

	Returns the input for the pid loop.

It returns the input for the pid loop, so if this command was based
off of a gyro, then it should return the angle of the gyro

All subclasses of PIDCommand must override this method.

This method will be called in a different thread then the Scheduler
thread.

	Returns:	the value the pid loop should use as input

	
setSetpoint(setpoint)[source]

	Sets the setpoint to the given value. If setRange() was called,
then the given setpoint will be trimmed to fit within the range.

	Parameters:	setpoint – the new setpoint

	
setSetpointRelative(deltaSetpoint)[source]

	Adds the given value to the setpoint.
If setRange() was used, then the bounds will still be honored by
this method.

	Parameters:	deltaSetpoint – the change in the setpoint

	
usePIDOutput(output)[source]

	Uses the value that the pid loop calculated. The calculated value
is the “output” parameter.
This method is a good time to set motor values, maybe something along
the lines of driveline.tankDrive(output, -output).

All subclasses of PIDCommand should override this method.

This method will be called in a different thread then the Scheduler
thread.

	Parameters:	output – the value the pid loop calculated

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib.command Package

PIDSubsystem

	
class wpilib.command.PIDSubsystem(p, i, d, period=None, f=0.0, name=None)[source]

	Bases: wpilib.command.Subsystem

This class is designed to handle the case where there is a Subsystem
which uses a single {@link PIDController} almost constantly (for instance,
an elevator which attempts to stay at a constant height).

It provides some convenience methods to run an internal PIDController.
It also allows access to the internal PIDController in order to give total
control to the programmer.

Instantiates a PIDSubsystem that will use the given p, i and d
values.
It will use the class name as its name unless otherwise specified.
It will also space the time between PID loop calculations to be equal
to the given period.

	Parameters:	
	p – the proportional value

	i – the integral value

	d – the derivative value

	period – the time (in seconds) between calculations (optional)

	f – the feed forward value

	name – the name (optional)

	
disable()[source]

	Disables the internal PIDController

	
enable()[source]

	Enables the internal PIDController

	
getPIDController()[source]

	Returns the PIDController used by this PIDSubsystem.
Use this if you would like to fine tune the pid loop.

Notice that calling setSetpoint() on the controller
will not result in the setpoint being trimmed to be in
the range defined by setSetpointRange().

	Returns:	the PIDController used by this PIDSubsystem

	
getPosition()[source]

	Returns the current position

	Returns:	the current position

	
getSetpoint()[source]

	Returns the setpoint.

	Returns:	the setpoint

	
onTarget()[source]

	Return True if the error is within the percentage of the total
input range, determined by setAbsoluteTolerance or setPercentTolerance.
This assumes that the maximum and minimum input were set using
setInput.

	Returns:	True if the error is less than the tolerance

	
returnPIDInput()[source]

	Returns the input for the pid loop.

It returns the input for the pid loop, so if this command was based
off of a gyro, then it should return the angle of the gyro

All subclasses of PIDSubsystem must override this method.

This method will be called in a different thread then the Scheduler
thread.

	Returns:	the value the pid loop should use as input

	
setAbsoluteTolerance(t)[source]

	Set the absolute error which is considered tolerable for use with
OnTarget.

	Parameters:	t – The absolute tolerance (same range as the PIDInput values)

	
setInputRange(minimumInput, maximumInput)[source]

	Sets the maximum and minimum values expected from the input.

	Parameters:	
	minimumInput – the minimum value expected from the input

	maximumInput – the maximum value expected from the output

	
setOutputRange(minimumOutput, maximumOutput)[source]

	Sets the maximum and minimum values to write.

	Parameters:	
	minimumOutput – the minimum value to write to the output

	maximumOutput – the maximum value to write to the output

	
setPercentTolerance(p)[source]

	Set the percentage error which is considered tolerable for use with
OnTarget.

	Parameters:	p – The percentage tolerance (value of 15.0 == 15 percent)

	
setSetpoint(setpoint)[source]

	Sets the setpoint to the given value. If setRange() was called,
then the given setpoint will be trimmed to fit within the range.

	Parameters:	setpoint – the new setpoint

	
setSetpointRelative(deltaSetpoint)[source]

	Adds the given value to the setpoint.
If setRange() was used, then the bounds will still be honored by
this method.

	Parameters:	deltaSetpoint – the change in the setpoint

	
usePIDOutput(output)[source]

	Uses the value that the pid loop calculated. The calculated value
is the “output” parameter.
This method is a good time to set motor values, maybe something along
the lines of driveline.tankDrive(output, -output).

All subclasses of PIDSubsystem should override this method.

This method will be called in a different thread then the Scheduler
thread.

	Parameters:	output – the value the pid loop calculated

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib.command Package

PrintCommand

	
class wpilib.command.PrintCommand(message)[source]

	Bases: wpilib.command.Command

A PrintCommand is a command which prints out a string when it is
initialized, and then immediately finishes.

It is useful if you want a CommandGroup to print out a string when it
reaches a certain point.

Instantiates a PrintCommand which will print the given message when
it is run.

	Parameters:	message – the message to print

	
initialize()[source]

	

	
isFinished()[source]

	

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib.command Package

Scheduler

	
class wpilib.command.Scheduler[source]

	Bases: wpilib.Sendable

The Scheduler is a singleton which holds the top-level running commands.
It is in charge of both calling the command’s run() method and to make
sure that there are no two commands with conflicting requirements running.

It is fine if teams wish to take control of the Scheduler themselves, all
that needs to be done is to call Scheduler.getInstance().run() often to
have Commands function correctly. However, this is already done for you
if you use the CommandBased Robot template.

See also

Command

Instantiates a Scheduler.

	
add(command)[source]

	Adds the command to the Scheduler. This will not add the
Command immediately, but will instead wait for the proper time in
the run() loop before doing so. The command returns immediately
and does nothing if given null.

Adding a Command to the Scheduler involves the
Scheduler removing any Command which has shared requirements.

	Parameters:	command – the command to add

	
addButton(button)[source]

	Adds a button to the Scheduler. The Scheduler will poll
the button during its run().

	Parameters:	button – the button to add

	
disable()[source]

	Disable the command scheduler.

	
enable()[source]

	Enable the command scheduler.

	
static getInstance()[source]

	Returns the Scheduler, creating it if one does not exist.

	Returns:	the Scheduler

	
getName()[source]

	

	
getType()[source]

	

	
registerSubsystem(system)[source]

	Registers a Subsystem to this Scheduler, so that the
Scheduler might know if a default Command needs to be
run. All Subsystem objects should call this.

	Parameters:	system – the system

	
remove(command)[source]

	Removes the Command from the Scheduler.

	Parameters:	command – the command to remove

	
removeAll()[source]

	Removes all commands

	
run()[source]

	Runs a single iteration of the loop. This method should be called
often in order to have a functioning Command system. The loop has five
stages:

	Poll the Buttons

	Execute/Remove the Commands

	Send values to SmartDashboard

	Add Commands

	Add Defaults

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib.command Package

StartCommand

	
class wpilib.command.StartCommand(commandToStart)[source]

	Bases: wpilib.command.Command

A StartCommand will call the start() method of another command when it
is initialized and will finish immediately.

Instantiates a StartCommand which will start the
given command whenever its initialize() is called.

	Parameters:	commandToStart – the Command to start

	
initialize()[source]

	

	
isFinished()[source]

	

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib.command Package

Subsystem

	
class wpilib.command.Subsystem(name=None)[source]

	Bases: wpilib.Sendable

This class defines a major component of the robot.

A good example of a subsystem is the driveline, or a claw if the robot has
one.

All motors should be a part of a subsystem. For instance, all the wheel
motors should be a part of some kind of “Driveline” subsystem.

Subsystems are used within the command system as requirements for Command.
Only one command which requires a subsystem can run at a time. Also,
subsystems can have default commands which are started if there is no
command running which requires this subsystem.

See also

Command

Creates a subsystem.

	Parameters:	name – the name of the subsystem; if None, it will be set to the
name to the name of the class.

	
confirmCommand()[source]

	Call this to alert Subsystem that the current command is actually
the command. Sometimes, the Subsystem is told that it has no command
while the Scheduler is going through the loop, only to be soon after
given a new one. This will avoid that situation.

	
getCurrentCommand()[source]

	Returns the command which currently claims this subsystem.

	Returns:	the command which currently claims this subsystem

	
getDefaultCommand()[source]

	Returns the default command (or None if there is none).

	Returns:	the default command

	
getName()[source]

	Returns the name of this subsystem, which is by default the class
name.

	Returns:	the name of this subsystem

	
initDefaultCommand()[source]

	Initialize the default command for a subsystem
By default subsystems have no default command, but if they do, the
default command is set with this method. It is called on all
Subsystems by CommandBase in the users program after all the
Subsystems are created.

	
setCurrentCommand(command)[source]

	Sets the current command

	Parameters:	command – the new current command

	
setDefaultCommand(command)[source]

	Sets the default command. If this is not called or is called with
None, then there will be no default command for the subsystem.

	Parameters:	command – the default command (or None if there should be none)

Warning

This should NOT be called in a constructor if the subsystem
is a singleton.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib.command Package

WaitCommand

	
class wpilib.command.WaitCommand(timeout, name=None)[source]

	Bases: wpilib.command.Command

A WaitCommand will wait for a certain amount of time before finishing.
It is useful if you want a CommandGroup to pause for a moment.

See also

CommandGroup

Instantiates a WaitCommand with the given timeout.

	Parameters:	
	timeout – the time the command takes to run

	name – the name of the command (optional)

	
isFinished()[source]

	

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib.command Package

WaitForChildren

	
class wpilib.command.WaitForChildren(name=None, timeout=None)[source]

	Bases: wpilib.command.Command

This command will only finish if whatever CommandGroup it
is in has no active children. If it is not a part of a CommandGroup,
then it will finish immediately. If it is itself an active child, then
the CommandGroup will never end.

This class is useful for the situation where you want to allow anything
running in parallel to finish, before continuing in the main CommandGroup
sequence.

Creates a new command.

	Parameters:	
	name – The name for this command; if unspecified or None,
The name of this command will be set to its class name.

	timeout – The time (in seconds) before this command “times out”.
Default is no timeout. See isTimedOut().

	
isFinished()[source]

	

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib.command Package

WaitUntilCommand

	
class wpilib.command.WaitUntilCommand(time)[source]

	Bases: wpilib.command.Command

This will wait until the game clock reaches some value, then continue to
the next command.

	
isFinished()[source]

	

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

wpilib.interfaces Package

This package contains objects that can be used to determine the
requirements of various interfaces used in WPILib.

Generally, the python version of WPILib does not require that you inherit
from any of these interfaces, but instead will allow you to use custom
objects as long as they have the same methods.

	wpilib.interfaces.Accelerometer
	Interface for 3-axis accelerometers

	wpilib.interfaces.Controller
	An interface for controllers.

	wpilib.interfaces.CounterBase
	Interface for counting the number of ticks on a digital input channel.

	wpilib.interfaces.GenericHID
	GenericHID Interface

	wpilib.interfaces.NamedSendable
	The interface for sendable objects that gives the sendable a default name in the Smart Dashboard.

	wpilib.interfaces.PIDOutput
	This interface allows PIDController to write its results to its output.

	wpilib.interfaces.PIDSource
	This interface allows for PIDController to automatically read from this object.

	wpilib.interfaces.Potentiometer
	

	wpilib.interfaces.SpeedController
	Interface for speed controlling devices.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib.interfaces Package

Accelerometer

	
class wpilib.interfaces.Accelerometer[source]

	Bases: builtins.object

Interface for 3-axis accelerometers

	
class Range[source]

	Bases: builtins.object

	
k16G = 3

	

	
k2G = 0

	

	
k4G = 1

	

	
k8G = 2

	

	
Accelerometer.getX()[source]

	Common interface for getting the x axis acceleration

	Returns:	The acceleration along the x axis in g-forces

	
Accelerometer.getY()[source]

	Common interface for getting the y axis acceleration

	Returns:	The acceleration along the y axis in g-forces

	
Accelerometer.getZ()[source]

	Common interface for getting the z axis acceleration

	Returns:	The acceleration along the z axis in g-forces

	
Accelerometer.setRange(range)[source]

	Common interface for setting the measuring range of an
accelerometer.

	Parameters:	range – The maximum acceleration, positive or negative, that
the accelerometer will measure. Not all accelerometers
support all ranges.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib.interfaces Package

Controller

	
class wpilib.interfaces.Controller[source]

	Bases: builtins.object

An interface for controllers. Controllers run control loops, the most
command are PID controllers and there variants, but this includes anything
that is controlling an actuator in a separate thread.

	
disable()[source]

	Stops the control loop from running until explicitly re-enabled by
calling enable().

	
enable()[source]

	Allows the control loop to run.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib.interfaces Package

CounterBase

	
class wpilib.interfaces.CounterBase[source]

	Bases: builtins.object

Interface for counting the number of ticks on a digital input channel.
Encoders, Gear tooth sensors, and counters should all subclass this so it
can be used to build more advanced classes for control and driving.

All counters will immediately start counting - reset() them if you
need them to be zeroed before use.

	
class EncodingType[source]

	Bases: builtins.object

The number of edges for the counterbase to increment or decrement on

	
k1X = 0

	Count only the rising edge

	
k2X = 1

	Count both the rising and falling edge

	
k4X = 2

	Count rising and falling on both channels

	
CounterBase.get()[source]

	Get the count

	Returns:	the count

	
CounterBase.getDirection()[source]

	Determine which direction the counter is going

	Returns:	True for one direction, False for the other

	
CounterBase.getPeriod()[source]

	Get the time between the last two edges counted

	Returns:	the time beteween the last two ticks in seconds

	
CounterBase.getStopped()[source]

	Determine if the counter is not moving

	Returns:	True if the counter has not changed for the max period

	
CounterBase.reset()[source]

	Reset the count to zero

	
CounterBase.setMaxPeriod(maxPeriod)[source]

	Set the maximum time between edges to be considered stalled

	Parameters:	maxPeriod – the maximum period in seconds

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib.interfaces Package

GenericHID

	
class wpilib.interfaces.GenericHID[source]

	Bases: builtins.object

GenericHID Interface

	
class Hand[source]

	Bases: builtins.object

Which hand the Human Interface Device is associated with.

	
kLeft = 0

	Left hand

	
kRight = 1

	Right hand

	
GenericHID.getBumper(hand=None)[source]

	Is the bumper pressed?

	Parameters:	hand – which hand (default right)

	Returns:	True if the bumper is pressed

	
GenericHID.getPOV(pov=0)[source]

	Get the state of a POV.

	Parameters:	pov – which POV (default is 0)

	Returns:	The angle of the POV in degrees, or -1 if the POV is not
pressed.

	
GenericHID.getRawAxis(which)[source]

	Get the raw axis.

	Parameters:	which – index of the axis

	Returns:	the raw value of the selected axis

	
GenericHID.getRawButton(button)[source]

	Is the given button pressed?

	Parameters:	button – which button number

	Returns:	True if the button is pressed

	
GenericHID.getThrottle()[source]

	Get the throttle.

	Returns:	the throttle value

	
GenericHID.getTop(hand=None)[source]

	Is the top button pressed

	Parameters:	hand – which hand (default right)

	Returns:	True if the top button for the given hand is pressed

	
GenericHID.getTrigger(hand=None)[source]

	Is the trigger pressed

	Parameters:	hand – which hand (default right)

	Returns:	True if the trigger for the given hand is pressed

	
GenericHID.getTwist()[source]

	Get the twist value.

	Returns:	the twist value

	
GenericHID.getX(hand=None)[source]

	Get the x position of HID.

	Parameters:	hand – which hand, left or right (default right)

	Returns:	the x position

	
GenericHID.getY(hand=None)[source]

	Get the y position of the HID.

	Parameters:	hand – which hand, left or right (default right)

	Returns:	the y position

	
GenericHID.getZ(hand=None)[source]

	Get the z position of the HID.

	Parameters:	hand – which hand, left or right (default right)

	Returns:	the z position

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib.interfaces Package

NamedSendable

	
class wpilib.interfaces.NamedSendable[source]

	Bases: wpilib.Sendable

The interface for sendable objects that gives the sendable a default
name in the Smart Dashboard.

	
getName()[source]

	

	Returns:	The name of the subtable of SmartDashboard that the
Sendable object will use

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib.interfaces Package

PIDOutput

	
class wpilib.interfaces.PIDOutput[source]

	Bases: builtins.object

This interface allows PIDController to write its results to
its output.

	
pidWrite(output)[source]

	Set the output to the value calculated by PIDController.

	Parameters:	output – the value calculated by PIDController

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib.interfaces Package

PIDSource

	
class wpilib.interfaces.PIDSource[source]

	Bases: builtins.object

This interface allows for PIDController to automatically read from this
object.

	
class PIDSourceParameter[source]

	Bases: builtins.object

A description for the type of output value to provide to a
PIDController

	
kAngle = 2

	

	
kDistance = 0

	

	
kRate = 1

	

	
PIDSource.pidGet()[source]

	Get the result to use in PIDController

	Returns:	the result to use in PIDController

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib.interfaces Package

Potentiometer

	
class wpilib.interfaces.Potentiometer[source]

	Bases: wpilib.interfaces.PIDSource

	
get()[source]

	

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

 	wpilib.interfaces Package

SpeedController

	
class wpilib.interfaces.SpeedController[source]

	Bases: wpilib.interfaces.PIDOutput

Interface for speed controlling devices.

	
disable()[source]

	Disable the speed controller.

	
get()[source]

	Common interface for getting the current set speed of a speed
controller.

	Returns:	The current set speed. Value is between -1.0 and 1.0.

	
set(speed, syncGroup=0)[source]

	Common interface for setting the speed of a speed controller.

	Parameters:	
	speed – The speed to set. Value should be between -1.0 and 1.0.

	syncGroup – The update group to add this set() to, pending
updateSyncGroup(). If 0 (or unspecified), update
immediately.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

RobotPy Installer

Note

This is not the RobotPy installation guide, see Getting Started
if you’re looking for that!

Most FRC robots are not placed on networks that have access to the internet,
particularly at competition arenas. The RobotPy installer is designed for
this type of ‘two-phase’ operation – with individual steps for downloading
and installing packages separately.

As of 2015, the RobotPy installer now supports downloading external packages
from the python package repository (pypi) via pip, and installing those
packages onto the robot. We cannot make any guarantees about the quality of
external packages, so use them at your own risk.

Note

If your robot is on a network that has internet access, then you
can manually install packages via opkg or pip. However, if you use
the RobotPy installer to install packages, then you can easily
reinstall them on your robot in the case you need to reimage it.

If you choose to install packages manually via pip, keep in mind that
when powered off, your RoboRIO does not keep track of the correct
date, and as a result pip may fail with an SSL related error message.
To set the date, you can either:

	Set the date via the web interface

	You can login to your roboRIO via SSH, and set the date via the
date command:

date -s "2015-01-03 00:00:00"

Each of the commands supports various options, which you can read about by
invoking the –help command.

install-robotpy

python3 installer.py install-robotpy

This will copy the appropriate RobotPy components to the robot, and install
them. If the components are already installed on the robot, then they will
be reinstalled.

download-robotpy

python3 installer.py download-robotpy

This will update the cached RobotPy packages to the newest versions available.

download

python3 installer.py download PACKAGE [PACKAGE ..]

Specify python package(s) to download, similar to what you would pass the
‘pip install’ command. This command does not install files on the robot, and
must be executed from a computer with internet access.

You can run this command multiple times, and files will not be removed from
the download cache.

You can also use a requirements.txt file to specify which packages should
be downloaded.

python3 installer.py download -r requirements.txt

install

python3 installer.py install PACKAGE [PACKAGE ..]

Copies python packages over to the roboRIO, and installs them. If the
package already has been installed, it will be reinstalled.

You can also use a requirements.txt file to specify which packages should
be downloaded.

python3 installer.py download -r requirements.txt

Warning

The ‘install’ command will only install packages that have been
downloaded using the ‘download’ command, or packages that are
on the robot’s pypi cache.

Warning

If your robot does not have a python3 interpeter installed, this
command will fail. Run the install-robotpy command first.

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	RobotPy WPILib master documentation

Implementation Details

This page contains various design/implementation notes that are useful to
people that are peering at the internals of WPILib/HAL. We will try to
keep this document up to date...

Design Goals

The python implementation of WPILib/HAL is derived from the Java implementation
of WPILib. In particular, we strive to keep the python implementation of WPILib
as close to the spirit of the original WPILib java libraries as we can, only
adding language-specific features where it makes sense.

Things that you won’t find in the original WPILib can be found in the _impl
package.

If you have a suggestion for things to add to WPILib, we suggest adding it to
the robotpy_ext [https://github.com/robotpy/robotpy-wpilib-utilities] package,
which is a separate package for “high quality code of things that should be in
WPILib, but aren’t”. This package is installed by the RobotPy installer by
default.

HAL Loading

Currently, the HAL is split into two python packages:

	hal - Provided by the robotpy-hal-base package

	hal_impl - Provided by either robotpy-hal-roborio or robotpy-hal-sim

You can only have a single hal_impl package installed in a particular python
installation.

The hal package provides the definition of the functions and various
types & required constants.

The hal_impl package provides the actual implementation of the HAL
functions, or links them to a shared DLL via ctypes.

Adding options to robot.py

When run() is called, that function determines available commands
that can be run, and parses command line arguments to pass to the commands.
Examples of commands include:

	Running the robot code

	Running the robot code, connected to a simulator

	Running unit tests on the robot code

	And lots more!

python setuptools has a feature that allows you to extend the commands available
to robot.py without needing to modify WPILib’s code. To add your own command,
do the following:

	Define a setuptools entrypoint in your package’s setup.py (see below)

	The entrypoint name is the command to add

	
	The entrypoint must point at an object that has the following properties:

	
	Must have a docstring (shown when –help is given)

	Constructor must take a single argument (it is an argparse parser which options can be added to)

	Must have a ‘run’ function which takes two arguments: options, and robot_class. It must
also take arbitrary keyword arguments via the **kwargs mechanism. If it receives arguments
that it does not recognize, the entry point must ignore any such options.

If your command’s run function is called, it is your command’s responsibility
to execute the robot code (if that is desired). This sample command
demonstrates how to do this:

class SampleCommand:
 '''Help text shown to user'''

 def __init__(self, parser):
 pass

 def run(self, options, robot_class, **static_options):
 # runs the robot code main loop
 robot_class.main(robot_class)

To register your command as a robotpy extension, you must add the following
to your setup.py setup() invocation:

from setuptools import setup

setup(
 ...
 entry_points={'robot_py': ['name_of_command = package.module:CommandClassName']},
 ...
)

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	RobotPy WPILib master documentation

Support

The RobotPy project was started in 2010, and since then the community
surrounding RobotPy has continued to grow! If you have questions about how
to do something with RobotPy, you can ask questions in the following locations:

	RobotPy mailing list [https://groups.google.com/forum/#!forum/robotpy]

	ChiefDelphi Python Forums [http://www.chiefdelphi.com/forums/forumdisplay.php?f=187]

We have found that most problems users have are actually questions generic to
WPILib-based languages like C++/Java, so searching around the ChiefDelphi forums
could be useful if you don’t have a python-specific question.

During the FRC build season, you can probably expect answers to your questions
within a day or two if you send messages to the mailing list. As community members
are also members of FRC teams, you can expect that the closer we get to the end of
the build season, the harder it will be for community members to respond to your
questions!

Reporting Bugs

If you run into a problem with RobotPy that you think is a bug, or perhaps there
is something wrong with the documentation or just too difficult to do, please
feel free to file bug reports on the github issue tracker [https://github.com/robotpy/robotpy-wpilib/issues].
Someone should respond within a day or two, especially during the FIRST
build season.

Contributing new fixes or features

RobotPy is intended to be a project that all members of the FIRST community can
quickly and easily contribute to. If you find a bug, or have an idea that you
think others can use:

	Fork this git repository [https://github.com/robotpy/robotpy-wpilib/fork] to your github account

	Create your feature branch (git checkout -b my-new-feature)

	Commit your changes (git commit -am ‘Add some feature’)

	Push to the branch (git push -u origin my-new-feature)

	Create new Pull Request on github

Github has a lot of documentation about forking repositories [https://help.github.com/articles/fork-a-repo]
and pull requests [https://help.github.com/articles/using-pull-requests],
so be sure to check out those resources.

IRC

During the FRC Build Season, some RobotPy developers may be able to be reached on
#robotpy channel on Freenode [http://freenode.net/irc_servers.shtml].

Note

the channel is not very active, but if you stick around long enough
someone will probably answer your question – think in terms of email
response time

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	RobotPy WPILib master documentation

 Python Module Index

 w

 			

 		
 w	

 	[image: -]
 	
 wpilib	

 	
 	
 wpilib._impl.dummycamera	

 	
 	
 wpilib.adxl345_i2c	

 	
 	
 wpilib.adxl345_spi	

 	
 	
 wpilib.analogaccelerometer	

 	
 	
 wpilib.analoginput	

 	
 	
 wpilib.analogoutput	

 	
 	
 wpilib.analogpotentiometer	

 	
 	
 wpilib.analogtrigger	

 	
 	
 wpilib.analogtriggeroutput	

 	
 	
 wpilib.builtinaccelerometer	

 	
 	
 wpilib.buttons	

 	
 	
 wpilib.buttons.button	

 	
 	
 wpilib.buttons.internalbutton	

 	
 	
 wpilib.buttons.joystickbutton	

 	
 	
 wpilib.buttons.networkbutton	

 	
 	
 wpilib.buttons.trigger	

 	
 	
 wpilib.canjaguar	

 	
 	
 wpilib.cantalon	

 	
 	
 wpilib.command	

 	
 	
 wpilib.command.command	

 	
 	
 wpilib.command.commandgroup	

 	
 	
 wpilib.command.pidcommand	

 	
 	
 wpilib.command.pidsubsystem	

 	
 	
 wpilib.command.printcommand	

 	
 	
 wpilib.command.scheduler	

 	
 	
 wpilib.command.startcommand	

 	
 	
 wpilib.command.subsystem	

 	
 	
 wpilib.command.waitcommand	

 	
 	
 wpilib.command.waitforchildren	

 	
 	
 wpilib.command.waituntilcommand	

 	
 	
 wpilib.compressor	

 	
 	
 wpilib.controllerpower	

 	
 	
 wpilib.counter	

 	
 	
 wpilib.digitalinput	

 	
 	
 wpilib.digitaloutput	

 	
 	
 wpilib.digitalsource	

 	
 	
 wpilib.doublesolenoid	

 	
 	
 wpilib.driverstation	

 	
 	
 wpilib.encoder	

 	
 	
 wpilib.geartooth	

 	
 	
 wpilib.gyro	

 	
 	
 wpilib.i2c	

 	
 	
 wpilib.interfaces	

 	
 	
 wpilib.interfaces.accelerometer	

 	
 	
 wpilib.interfaces.controller	

 	
 	
 wpilib.interfaces.counterbase	

 	
 	
 wpilib.interfaces.generichid	

 	
 	
 wpilib.interfaces.namedsendable	

 	
 	
 wpilib.interfaces.pidoutput	

 	
 	
 wpilib.interfaces.pidsource	

 	
 	
 wpilib.interfaces.potentiometer	

 	
 	
 wpilib.interfaces.speedcontroller	

 	
 	
 wpilib.interruptablesensorbase	

 	
 	
 wpilib.iterativerobot	

 	
 	
 wpilib.jaguar	

 	
 	
 wpilib.joystick	

 	
 	
 wpilib.livewindow	

 	
 	
 wpilib.livewindowsendable	

 	
 	
 wpilib.motorsafety	

 	
 	
 wpilib.pidcontroller	

 	
 	
 wpilib.powerdistributionpanel	

 	
 	
 wpilib.preferences	

 	
 	
 wpilib.pwm	

 	
 	
 wpilib.relay	

 	
 	
 wpilib.resource	

 	
 	
 wpilib.robotbase	

 	
 	
 wpilib.robotdrive	

 	
 	
 wpilib.robotstate	

 	
 	
 wpilib.safepwm	

 	
 	
 wpilib.samplerobot	

 	
 	
 wpilib.sendable	

 	
 	
 wpilib.sendablechooser	

 	
 	
 wpilib.sensorbase	

 	
 	
 wpilib.servo	

 	
 	
 wpilib.smartdashboard	

 	
 	
 wpilib.solenoid	

 	
 	
 wpilib.solenoidbase	

 	
 	
 wpilib.spi	

 	
 	
 wpilib.talon	

 	
 	
 wpilib.talonsrx	

 	
 	
 wpilib.timer	

 	
 	
 wpilib.ultrasonic	

 	
 	
 wpilib.utility	

 	
 	
 wpilib.victor	

 	
 	
 wpilib.victorsp	

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	RobotPy WPILib master documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	

 	AbsoluteTolerance_onTarget() (wpilib.pidcontroller.PIDController method)

 	Accelerometer (class in wpilib.interfaces.accelerometer)

 	Accelerometer.Range (class in wpilib.interfaces.accelerometer)

 	add() (wpilib.command.scheduler.Scheduler method)

 	addActuator() (wpilib.livewindow.LiveWindow static method)

 	addActuatorChannel() (wpilib.livewindow.LiveWindow static method)

 	addActuatorModuleChannel() (wpilib.livewindow.LiveWindow static method)

 	addButton() (wpilib.command.scheduler.Scheduler method)

 	addDefault() (wpilib.sendablechooser.SendableChooser method)

 	addObject() (wpilib.sendablechooser.SendableChooser method)

 	addParallel() (wpilib.command.commandgroup.CommandGroup method)

 	addressOnly() (wpilib.i2c.I2C method)

 	addSensor() (wpilib.livewindow.LiveWindow static method)

 	addSensorChannel() (wpilib.livewindow.LiveWindow static method)

 	addSequential() (wpilib.command.commandgroup.CommandGroup method)

 	ADXL345_I2C (class in wpilib.adxl345_i2c)

 	ADXL345_I2C.Axes (class in wpilib.adxl345_i2c)

 	ADXL345_I2C.Range (class in wpilib.adxl345_i2c)

 	ADXL345_SPI (class in wpilib.adxl345_spi)

 	ADXL345_SPI.Axes (class in wpilib.adxl345_spi)

 	ADXL345_SPI.Range (class in wpilib.adxl345_spi)

 	all_allocated (wpilib.solenoidbase.SolenoidBase attribute)

 	all_mutex (wpilib.solenoidbase.SolenoidBase attribute)

 	

 	all_ports (wpilib.solenoidbase.SolenoidBase attribute)

 	allocate() (wpilib.resource.Resource method)

 	allocated (wpilib.canjaguar.CANJaguar attribute)

 	allocatedDownSource (wpilib.counter.Counter attribute)

 	allocatedUpSource (wpilib.counter.Counter attribute)

 	allocateInterrupts() (wpilib.interruptablesensorbase.InterruptableSensorBase method)

 	AnalogAccelerometer (class in wpilib.analogaccelerometer)

 	AnalogEncoder (wpilib.cantalon.CANTalon.FeedbackDevice attribute)

 	AnalogInput (class in wpilib.analoginput)

 	AnalogOutput (class in wpilib.analogoutput)

 	AnalogPot (wpilib.cantalon.CANTalon.FeedbackDevice attribute)

 	AnalogPotentiometer (class in wpilib.analogpotentiometer)

 	AnalogTempVbat (wpilib.cantalon.CANTalon.StatusFrameRate attribute)

 	AnalogTrigger (class in wpilib.analogtrigger)

 	AnalogTrigger.AnalogTriggerType (class in wpilib.analogtrigger)

 	AnalogTriggerOutput (class in wpilib.analogtriggeroutput)

 	AnalogTriggerOutput.AnalogTriggerType (class in wpilib.analogtriggeroutput)

 	arcadeDrive() (wpilib.robotdrive.RobotDrive method)

 	automaticEnabled (wpilib.ultrasonic.Ultrasonic attribute)

 	autonomous() (wpilib.samplerobot.SampleRobot method)

 	autonomousInit() (wpilib.iterativerobot.IterativeRobot method)

 	autonomousPeriodic() (wpilib.iterativerobot.IterativeRobot method)

B

 	

 	Blue (wpilib.driverstation.DriverStation.Alliance attribute)

 	Brake (wpilib.canjaguar.CANJaguar.NeutralMode attribute)

 	BRANCH_CHILD (wpilib.command.commandgroup.CommandGroup.Entry attribute)

 	BRANCH_PEER (wpilib.command.commandgroup.CommandGroup.Entry attribute)

 	

 	broadcast() (wpilib.i2c.I2C method)

 	BuiltInAccelerometer (class in wpilib.builtinaccelerometer)

 	BuiltInAccelerometer.Range (class in wpilib.builtinaccelerometer)

 	Button (class in wpilib.buttons.button)

C

 	

 	calculate() (wpilib.pidcontroller.PIDController method)

 	CameraServer (class in wpilib._impl.dummycamera), [1]

 	cancel() (wpilib.command.command.Command method)

 	cancelConflicts() (wpilib.command.commandgroup.CommandGroup method)

 	cancelInterrupts() (wpilib.interruptablesensorbase.InterruptableSensorBase method)

 	cancelWhenActive() (wpilib.buttons.trigger.Trigger method)

 	cancelWhenPressed() (wpilib.buttons.button.Button method)

 	CANJaguar (class in wpilib.canjaguar)

 	CANJaguar.ControlMode (class in wpilib.canjaguar)

 	CANJaguar.LimitMode (class in wpilib.canjaguar)

 	CANJaguar.Mode (class in wpilib.canjaguar)

 	CANJaguar.NeutralMode (class in wpilib.canjaguar)

 	CANTalon (class in wpilib.cantalon)

 	CANTalon.ControlMode (class in wpilib.cantalon)

 	CANTalon.FeedbackDevice (class in wpilib.cantalon)

 	CANTalon.StatusFrameRate (class in wpilib.cantalon)

 	changeControlMode() (wpilib.canjaguar.CANJaguar method)

 	

 	(wpilib.cantalon.CANTalon method)

 	channels (wpilib.analoginput.AnalogInput attribute)

 	

 	(wpilib.analogoutput.AnalogOutput attribute)

 	(wpilib.digitalsource.DigitalSource attribute)

 	check() (wpilib.motorsafety.MotorSafety method)

 	checkAnalogInputChannel() (wpilib.sensorbase.SensorBase static method)

 	checkAnalogOutputChannel() (wpilib.sensorbase.SensorBase static method)

 	checkDigitalChannel() (wpilib.sensorbase.SensorBase static method)

 	checkMotors() (wpilib.motorsafety.MotorSafety static method)

 	checkPDPChannel() (wpilib.sensorbase.SensorBase static method)

 	checkPWMChannel() (wpilib.sensorbase.SensorBase static method)

 	checkRelayChannel() (wpilib.sensorbase.SensorBase static method)

 	checkSolenoidChannel() (wpilib.sensorbase.SensorBase static method)

 	checkSolenoidModule() (wpilib.sensorbase.SensorBase static method)

 	clearAllPCMStickyFaults() (wpilib.compressor.Compressor method)

 	

 	(wpilib.solenoidbase.SolenoidBase method)

 	clearDownSource() (wpilib.counter.Counter method)

 	clearIaccum() (wpilib.cantalon.CANTalon method)

 	clearStickyFaults() (wpilib.cantalon.CANTalon method)

 	

 	(wpilib.powerdistributionpanel.PowerDistributionPanel method)

 	

 	clearUpSource() (wpilib.counter.Counter method)

 	closeCamera() (wpilib._impl.dummycamera.USBCamera method), [1]

 	Coast (wpilib.canjaguar.CANJaguar.NeutralMode attribute)

 	Command (class in wpilib.command.command)

 	CommandGroup (class in wpilib.command.commandgroup)

 	CommandGroup.Entry (class in wpilib.command.commandgroup)

 	components (wpilib.livewindow.LiveWindow attribute)

 	Compressor (class in wpilib.compressor)

 	configEncoderCodesPerRev() (wpilib.canjaguar.CANJaguar method)

 	configFaultTime() (wpilib.canjaguar.CANJaguar method)

 	configForwardLimit() (wpilib.canjaguar.CANJaguar method)

 	configFwdLimitSwitchNormallyOpen() (wpilib.cantalon.CANTalon method)

 	configLimitMode() (wpilib.canjaguar.CANJaguar method)

 	configMaxOutputVoltage() (wpilib.canjaguar.CANJaguar method)

 	configNeutralMode() (wpilib.canjaguar.CANJaguar method)

 	configPotentiometerTurns() (wpilib.canjaguar.CANJaguar method)

 	configReverseLimit() (wpilib.canjaguar.CANJaguar method)

 	configRevLimitSwitchNormallyOpen() (wpilib.cantalon.CANTalon method)

 	configSoftPositionLimits() (wpilib.canjaguar.CANJaguar method)

 	confirmCommand() (wpilib.command.subsystem.Subsystem method)

 	containsKey() (wpilib.preferences.Preferences method)

 	Controller (class in wpilib.interfaces.controller)

 	ControllerPower (class in wpilib.controllerpower)

 	Counter (class in wpilib.counter)

 	counter (wpilib.counter.Counter attribute)

 	Counter.EncodingType (class in wpilib.counter)

 	Counter.Mode (class in wpilib.counter)

 	Counter.PIDSourceParameter (class in wpilib.counter)

 	CounterBase (class in wpilib.interfaces.counterbase)

 	CounterBase.EncodingType (class in wpilib.interfaces.counterbase)

 	createOutput() (wpilib.analogtrigger.AnalogTrigger method)

 	Current (wpilib.canjaguar.CANJaguar.ControlMode attribute)

 	

 	(wpilib.cantalon.CANTalon.ControlMode attribute)

D

 	

 	decodingScaleFactor() (wpilib.encoder.Encoder method)

 	DEFAULT (wpilib.sendablechooser.SendableChooser attribute)

 	DEFAULT_SAFETY_EXPIRATION (wpilib.motorsafety.MotorSafety attribute)

 	defaultSolenoidModule (wpilib.sensorbase.SensorBase attribute)

 	delay() (wpilib.timer.Timer static method)

 	devices (wpilib.spi.SPI attribute)

 	DigitalInput (class in wpilib.digitalinput)

 	DigitalOutput (class in wpilib.digitaloutput)

 	DigitalSource (class in wpilib.digitalsource)

 	disable() (wpilib.canjaguar.CANJaguar method)

 	

 	(wpilib.cantalon.CANTalon method)

 	(wpilib.command.pidsubsystem.PIDSubsystem method)

 	(wpilib.command.scheduler.Scheduler method)

 	(wpilib.interfaces.controller.Controller method)

 	(wpilib.interfaces.speedcontroller.SpeedController method)

 	(wpilib.pidcontroller.PIDController method)

 	(wpilib.safepwm.SafePWM method)

 	disableControl() (wpilib.canjaguar.CANJaguar method)

 	

 	(wpilib.cantalon.CANTalon method)

 	Disabled (wpilib.cantalon.CANTalon.ControlMode attribute)

 	

 	disabled() (wpilib.samplerobot.SampleRobot method)

 	disabledInit() (wpilib.iterativerobot.IterativeRobot method)

 	disabledPeriodic() (wpilib.iterativerobot.IterativeRobot method)

 	disableInterrupts() (wpilib.interruptablesensorbase.InterruptableSensorBase method)

 	disablePWM() (wpilib.digitaloutput.DigitalOutput method)

 	disableSoftPositionLimits() (wpilib.canjaguar.CANJaguar method)

 	doesRequire() (wpilib.command.command.Command method)

 	DoubleSolenoid (class in wpilib.doublesolenoid)

 	DoubleSolenoid.Value (class in wpilib.doublesolenoid)

 	drive() (wpilib.robotdrive.RobotDrive method)

 	DriverStation (class in wpilib.driverstation)

 	DriverStation.Alliance (class in wpilib.driverstation)

E

 	

 	enable() (wpilib.command.pidsubsystem.PIDSubsystem method)

 	

 	(wpilib.command.scheduler.Scheduler method)

 	(wpilib.interfaces.controller.Controller method)

 	(wpilib.pidcontroller.PIDController method)

 	enableBrakeMode() (wpilib.cantalon.CANTalon method)

 	enableControl() (wpilib.canjaguar.CANJaguar method)

 	

 	(wpilib.cantalon.CANTalon method)

 	enabled() (wpilib.compressor.Compressor method)

 	enableDeadbandElimination() (wpilib.pwm.PWM method)

 	enableDirectionSensing() (wpilib.geartooth.GearTooth method)

 	enableForwardSoftLimit() (wpilib.cantalon.CANTalon method)

 	enableInterrupts() (wpilib.interruptablesensorbase.InterruptableSensorBase method)

 	enableLimitSwitch() (wpilib.cantalon.CANTalon method)

 	enablePWM() (wpilib.digitaloutput.DigitalOutput method)

 	

 	enableReverseSoftLimit() (wpilib.cantalon.CANTalon method)

 	EncFalling (wpilib.cantalon.CANTalon.FeedbackDevice attribute)

 	Encoder (class in wpilib.encoder)

 	encoder (wpilib.encoder.Encoder attribute)

 	Encoder.EncodingType (class in wpilib.encoder)

 	Encoder.IndexingType (class in wpilib.encoder)

 	Encoder.PIDSourceParameter (class in wpilib.encoder)

 	EncRising (wpilib.cantalon.CANTalon.FeedbackDevice attribute)

 	end() (wpilib.command.command.Command method)

 	

 	(wpilib.command.commandgroup.CommandGroup method)

 	execute() (wpilib.command.command.Command method)

 	

 	(wpilib.command.commandgroup.CommandGroup method)

F

 	

 	feed() (wpilib.motorsafety.MotorSafety method)

 	Feedback (wpilib.cantalon.CANTalon.StatusFrameRate attribute)

 	FILE_NAME (wpilib.preferences.Preferences attribute)

 	firstTime (wpilib.livewindow.LiveWindow attribute)

 	

 	flush_outputs() (wpilib.joystick.Joystick method)

 	Follower (wpilib.cantalon.CANTalon.ControlMode attribute)

 	free() (wpilib.analoginput.AnalogInput method)

 	

 	(wpilib.analogoutput.AnalogOutput method)

 	(wpilib.analogpotentiometer.AnalogPotentiometer method)

 	(wpilib.analogtrigger.AnalogTrigger method)

 	(wpilib.analogtriggeroutput.AnalogTriggerOutput method)

 	(wpilib.canjaguar.CANJaguar method)

 	(wpilib.cantalon.CANTalon method)

 	(wpilib.counter.Counter method)

 	(wpilib.digitaloutput.DigitalOutput method)

 	(wpilib.digitalsource.DigitalSource method)

 	(wpilib.doublesolenoid.DoubleSolenoid method)

 	(wpilib.encoder.Encoder method)

 	(wpilib.gyro.Gyro method)

 	(wpilib.pidcontroller.PIDController method)

 	(wpilib.pwm.PWM method)

 	(wpilib.relay.Relay method)

 	(wpilib.resource.Resource method)

 	(wpilib.robotbase.RobotBase method)

 	(wpilib.robotdrive.RobotDrive method)

 	(wpilib.sensorbase.SensorBase method)

 	(wpilib.solenoid.Solenoid method)

G

 	

 	GearTooth (class in wpilib.geartooth)

 	General (wpilib.cantalon.CANTalon.StatusFrameRate attribute)

 	GenericHID (class in wpilib.interfaces.generichid)

 	GenericHID.Hand (class in wpilib.interfaces.generichid)

 	get() (wpilib.analogpotentiometer.AnalogPotentiometer method)

 	

 	(wpilib.analogtriggeroutput.AnalogTriggerOutput method)

 	(wpilib.buttons.internalbutton.InternalButton method)

 	(wpilib.buttons.joystickbutton.JoystickButton method)

 	(wpilib.buttons.networkbutton.NetworkButton method)

 	(wpilib.buttons.trigger.Trigger method)

 	(wpilib.canjaguar.CANJaguar method)

 	(wpilib.cantalon.CANTalon method)

 	(wpilib.counter.Counter method)

 	(wpilib.digitalinput.DigitalInput method)

 	(wpilib.doublesolenoid.DoubleSolenoid method)

 	(wpilib.encoder.Encoder method)

 	(wpilib.interfaces.counterbase.CounterBase method)

 	(wpilib.interfaces.potentiometer.Potentiometer method)

 	(wpilib.interfaces.speedcontroller.SpeedController method)

 	(wpilib.jaguar.Jaguar method)

 	(wpilib.pidcontroller.PIDController method)

 	(wpilib.preferences.Preferences method)

 	(wpilib.relay.Relay method)

 	(wpilib.servo.Servo method)

 	(wpilib.solenoid.Solenoid method)

 	(wpilib.talon.Talon method)

 	(wpilib.talonsrx.TalonSRX method)

 	(wpilib.timer.Timer method)

 	(wpilib.victor.Victor method)

 	(wpilib.victorsp.VictorSP method)

 	getAcceleration() (wpilib.adxl345_i2c.ADXL345_I2C method)

 	

 	(wpilib.adxl345_spi.ADXL345_SPI method)

 	(wpilib.analogaccelerometer.AnalogAccelerometer method)

 	getAccelerations() (wpilib.adxl345_i2c.ADXL345_I2C method)

 	

 	(wpilib.adxl345_spi.ADXL345_SPI method)

 	getAccumulatorCount() (wpilib.analoginput.AnalogInput method)

 	getAccumulatorOutput() (wpilib.analoginput.AnalogInput method)

 	getAccumulatorValue() (wpilib.analoginput.AnalogInput method)

 	getAll() (wpilib.solenoidbase.SolenoidBase method)

 	getAlliance() (wpilib.driverstation.DriverStation method)

 	getAnalogInPosition() (wpilib.cantalon.CANTalon method)

 	getAnalogInRaw() (wpilib.cantalon.CANTalon method)

 	getAnalogInVelocity() (wpilib.cantalon.CANTalon method)

 	getAnalogTriggerForRouting() (wpilib.analogtriggeroutput.AnalogTriggerOutput method)

 	

 	(wpilib.digitalinput.DigitalInput method)

 	(wpilib.digitalsource.DigitalSource method)

 	(wpilib.interruptablesensorbase.InterruptableSensorBase method)

 	getAngle() (wpilib.gyro.Gyro method)

 	

 	(wpilib.servo.Servo method)

 	getAverageBits() (wpilib.analoginput.AnalogInput method)

 	getAverageValue() (wpilib.analoginput.AnalogInput method)

 	getAverageVoltage() (wpilib.analoginput.AnalogInput method)

 	getAxis() (wpilib.joystick.Joystick method)

 	getAxisChannel() (wpilib.joystick.Joystick method)

 	getAxisCount() (wpilib.joystick.Joystick method)

 	getBatteryVoltage() (wpilib.driverstation.DriverStation method)

 	getBoolean() (wpilib.preferences.Preferences method)

 	

 	(wpilib.smartdashboard.SmartDashboard static method)

 	getBrakeEnableDuringNeutral() (wpilib.cantalon.CANTalon method)

 	getBrightness() (wpilib._impl.dummycamera.USBCamera method), [1]

 	getBumper() (wpilib.interfaces.generichid.GenericHID method)

 	

 	(wpilib.joystick.Joystick method)

 	getBusVoltage() (wpilib.canjaguar.CANJaguar method)

 	

 	(wpilib.cantalon.CANTalon method)

 	getButton() (wpilib.joystick.Joystick method)

 	getButtonCount() (wpilib.joystick.Joystick method)

 	getCenterPwm() (wpilib.pwm.PWM method)

 	getChannel() (wpilib.analoginput.AnalogInput method)

 	

 	(wpilib.digitalinput.DigitalInput method)

 	(wpilib.digitaloutput.DigitalOutput method)

 	(wpilib.pwm.PWM method)

 	getChannelForRouting() (wpilib.analogtriggeroutput.AnalogTriggerOutput method)

 	

 	(wpilib.digitalsource.DigitalSource method)

 	(wpilib.interruptablesensorbase.InterruptableSensorBase method)

 	getClosedLoopControl() (wpilib.compressor.Compressor method)

 	getClosedLoopError() (wpilib.cantalon.CANTalon method)

 	getCloseLoopRampRate() (wpilib.cantalon.CANTalon method)

 	getCompressorCurrent() (wpilib.compressor.Compressor method)

 	getCompressorCurrentTooHighFault() (wpilib.compressor.Compressor method)

 	getCompressorCurrentTooHighStickyFault() (wpilib.compressor.Compressor method)

 	getCompressorNotConnectedFault() (wpilib.compressor.Compressor method)

 	getCompressorNotConnectedStickyFault() (wpilib.compressor.Compressor method)

 	getCompressorShortedFault() (wpilib.compressor.Compressor method)

 	getCompressorShortedStickyFault() (wpilib.compressor.Compressor method)

 	getControlMode() (wpilib.canjaguar.CANJaguar method)

 	

 	(wpilib.cantalon.CANTalon method)

 	getCurrent() (wpilib.powerdistributionpanel.PowerDistributionPanel method)

 	getCurrent3V3() (wpilib.controllerpower.ControllerPower static method)

 	getCurrent5V() (wpilib.controllerpower.ControllerPower static method)

 	getCurrent6V() (wpilib.controllerpower.ControllerPower static method)

 	getCurrentCommand() (wpilib.command.subsystem.Subsystem method)

 	getD() (wpilib.canjaguar.CANJaguar method)

 	

 	(wpilib.cantalon.CANTalon method)

 	(wpilib.pidcontroller.PIDController method)

 	getData() (wpilib.driverstation.DriverStation method)

 	

 	(wpilib.smartdashboard.SmartDashboard static method)

 	getDefaultCommand() (wpilib.command.subsystem.Subsystem method)

 	getDefaultSolenoidModule() (wpilib.sensorbase.SensorBase static method)

 	getDescription() (wpilib.canjaguar.CANJaguar method)

 	

 	(wpilib.cantalon.CANTalon method)

 	(wpilib.robotdrive.RobotDrive method)

 	(wpilib.safepwm.SafePWM method)

 	getDeviceID() (wpilib.canjaguar.CANJaguar method)

 	

 	(wpilib.cantalon.CANTalon method)

 	getDeviceNumber() (wpilib.canjaguar.CANJaguar method)

 	getDirection() (wpilib.counter.Counter method)

 	

 	(wpilib.encoder.Encoder method)

 	(wpilib.interfaces.counterbase.CounterBase method)

 	getDirectionDegrees() (wpilib.joystick.Joystick method)

 	getDirectionRadians() (wpilib.joystick.Joystick method)

 	getDistance() (wpilib.counter.Counter method)

 	

 	(wpilib.encoder.Encoder method)

 	getDistanceUnits() (wpilib.ultrasonic.Ultrasonic method)

 	getDouble() (wpilib.smartdashboard.SmartDashboard static method)

 	getEnabled3V3() (wpilib.controllerpower.ControllerPower static method)

 	getEnabled5V() (wpilib.controllerpower.ControllerPower static method)

 	getEnabled6V() (wpilib.controllerpower.ControllerPower static method)

 	getEncodingScale() (wpilib.encoder.Encoder method)

 	getEncPosition() (wpilib.cantalon.CANTalon method)

 	getEncVelocity() (wpilib.cantalon.CANTalon method)

 	getError() (wpilib.pidcontroller.PIDController method)

 	getExpiration() (wpilib.motorsafety.MotorSafety method)

 	getF() (wpilib.cantalon.CANTalon method)

 	

 	(wpilib.pidcontroller.PIDController method)

 	getFaultCount3V3() (wpilib.controllerpower.ControllerPower static method)

 	getFaultCount5V() (wpilib.controllerpower.ControllerPower static method)

 	getFaultCount6V() (wpilib.controllerpower.ControllerPower static method)

 	getFaultForLim() (wpilib.cantalon.CANTalon method)

 	getFaultForSoftLim() (wpilib.cantalon.CANTalon method)

 	getFaultHardwareFailure() (wpilib.cantalon.CANTalon method)

 	getFaultOverTemp() (wpilib.cantalon.CANTalon method)

 	getFaultRevLim() (wpilib.cantalon.CANTalon method)

 	getFaultRevSoftLim() (wpilib.cantalon.CANTalon method)

 	getFaults() (wpilib.canjaguar.CANJaguar method)

 	getFaultUnderVoltage() (wpilib.cantalon.CANTalon method)

 	getFirmwareVersion() (wpilib.canjaguar.CANJaguar method)

 	

 	(wpilib.cantalon.CANTalon method)

 	getFloat() (wpilib.preferences.Preferences method)

 	getForwardLimitOK() (wpilib.canjaguar.CANJaguar method)

 	getFPGAIndex() (wpilib.counter.Counter method)

 	

 	(wpilib.encoder.Encoder method)

 	getFPGARevision() (wpilib.utility.Utility static method)

 	getFPGATime() (wpilib.utility.Utility static method)

 	getFPGATimestamp() (wpilib.timer.Timer static method)

 	getFPGAVersion() (wpilib.utility.Utility static method)

 	getFullRangeScaleFactor() (wpilib.pwm.PWM method)

 	getGlobalSampleRate() (wpilib.analoginput.AnalogInput static method)

 	getGroup() (wpilib.command.command.Command method)

 	getHardwareVersion() (wpilib.canjaguar.CANJaguar method)

 	getI() (wpilib.canjaguar.CANJaguar method)

 	

 	(wpilib.cantalon.CANTalon method)

 	(wpilib.pidcontroller.PIDController method)

 	getIaccum() (wpilib.cantalon.CANTalon method)

 	

 	getImage() (wpilib._impl.dummycamera.USBCamera method), [1]

 	getImageData() (wpilib._impl.dummycamera.USBCamera method), [1]

 	getIndex() (wpilib.analogtrigger.AnalogTrigger method)

 	getInputCurrent() (wpilib.controllerpower.ControllerPower static method)

 	getInputVoltage() (wpilib.controllerpower.ControllerPower static method)

 	getInstance() (wpilib._impl.dummycamera.CameraServer static method), [1]

 	

 	(wpilib.command.scheduler.Scheduler static method)

 	(wpilib.driverstation.DriverStation static method)

 	(wpilib.preferences.Preferences static method)

 	getInt() (wpilib.preferences.Preferences method)

 	

 	(wpilib.smartdashboard.SmartDashboard static method)

 	getInWindow() (wpilib.analogtrigger.AnalogTrigger method)

 	getIZone() (wpilib.cantalon.CANTalon method)

 	getKeys() (wpilib.preferences.Preferences method)

 	getLocation() (wpilib.driverstation.DriverStation method)

 	getLSBWeight() (wpilib.analoginput.AnalogInput method)

 	getMagnitude() (wpilib.joystick.Joystick method)

 	getMatchTime() (wpilib.driverstation.DriverStation method)

 	

 	(wpilib.timer.Timer static method)

 	getMaxNegativePwm() (wpilib.pwm.PWM method)

 	getMaxPositivePwm() (wpilib.pwm.PWM method)

 	getMessage() (wpilib.canjaguar.CANJaguar method)

 	getMinNegativePwm() (wpilib.pwm.PWM method)

 	getMinPositivePwm() (wpilib.pwm.PWM method)

 	getModuleForRouting() (wpilib.analogtriggeroutput.AnalogTriggerOutput method)

 	

 	(wpilib.digitalsource.DigitalSource method)

 	(wpilib.interruptablesensorbase.InterruptableSensorBase method)

 	getMsClock() (wpilib.timer.Timer method)

 	getName() (wpilib.command.command.Command method)

 	

 	(wpilib.command.scheduler.Scheduler method)

 	(wpilib.command.subsystem.Subsystem method)

 	(wpilib.interfaces.namedsendable.NamedSendable method)

 	getNegativeScaleFactor() (wpilib.pwm.PWM method)

 	getNumber() (wpilib.smartdashboard.SmartDashboard static method)

 	getNumberOfQuadIdxRises() (wpilib.cantalon.CANTalon method)

 	getNumMotors() (wpilib.robotdrive.RobotDrive method)

 	getOffset() (wpilib.analoginput.AnalogInput method)

 	getOutputCurrent() (wpilib.canjaguar.CANJaguar method)

 	

 	(wpilib.cantalon.CANTalon method)

 	getOutputVoltage() (wpilib.canjaguar.CANJaguar method)

 	

 	(wpilib.cantalon.CANTalon method)

 	getOversampleBits() (wpilib.analoginput.AnalogInput method)

 	getP() (wpilib.canjaguar.CANJaguar method)

 	

 	(wpilib.cantalon.CANTalon method)

 	(wpilib.pidcontroller.PIDController method)

 	getPCMSolenoidBlackList() (wpilib.solenoidbase.SolenoidBase method)

 	getPCMSolenoidVoltageFault() (wpilib.solenoidbase.SolenoidBase method)

 	getPCMSolenoidVoltageStickyFault() (wpilib.solenoidbase.SolenoidBase method)

 	getPeriod() (wpilib.counter.Counter method)

 	

 	(wpilib.encoder.Encoder method)

 	(wpilib.interfaces.counterbase.CounterBase method)

 	getPIDController() (wpilib.command.pidcommand.PIDCommand method)

 	

 	(wpilib.command.pidsubsystem.PIDSubsystem method)

 	getPinStateQuadA() (wpilib.cantalon.CANTalon method)

 	getPinStateQuadB() (wpilib.cantalon.CANTalon method)

 	getPinStateQuadIdx() (wpilib.cantalon.CANTalon method)

 	getPosition() (wpilib.canjaguar.CANJaguar method)

 	

 	(wpilib.cantalon.CANTalon method)

 	(wpilib.command.pidcommand.PIDCommand method)

 	(wpilib.command.pidsubsystem.PIDSubsystem method)

 	(wpilib.pwm.PWM method)

 	getPositiveScaleFactor() (wpilib.pwm.PWM method)

 	getPOV() (wpilib.interfaces.generichid.GenericHID method)

 	

 	(wpilib.joystick.Joystick method)

 	getPOVCount() (wpilib.joystick.Joystick method)

 	getPressureSwitchValue() (wpilib.compressor.Compressor method)

 	getQuality() (wpilib._impl.dummycamera.CameraServer method), [1]

 	getRangeInches() (wpilib.ultrasonic.Ultrasonic method)

 	getRangeMM() (wpilib.ultrasonic.Ultrasonic method)

 	getRate() (wpilib.counter.Counter method)

 	

 	(wpilib.encoder.Encoder method)

 	(wpilib.gyro.Gyro method)

 	getRaw() (wpilib.encoder.Encoder method)

 	

 	(wpilib.pwm.PWM method)

 	getRawAxis() (wpilib.interfaces.generichid.GenericHID method)

 	

 	(wpilib.joystick.Joystick method)

 	getRawButton() (wpilib.interfaces.generichid.GenericHID method)

 	

 	(wpilib.joystick.Joystick method)

 	getRequirements() (wpilib.command.command.Command method)

 	getReverseLimitOK() (wpilib.canjaguar.CANJaguar method)

 	getSamplesToAverage() (wpilib.counter.Counter method)

 	

 	(wpilib.encoder.Encoder method)

 	getSelected() (wpilib.sendablechooser.SendableChooser method)

 	getSensorPosition() (wpilib.cantalon.CANTalon method)

 	getSensorVelocity() (wpilib.cantalon.CANTalon method)

 	getServoAngleRange() (wpilib.servo.Servo method)

 	getSetpoint() (wpilib.cantalon.CANTalon method)

 	

 	(wpilib.command.pidcommand.PIDCommand method)

 	(wpilib.command.pidsubsystem.PIDSubsystem method)

 	(wpilib.pidcontroller.PIDController method)

 	getSpeed() (wpilib.canjaguar.CANJaguar method)

 	

 	(wpilib.cantalon.CANTalon method)

 	(wpilib.pwm.PWM method)

 	getStickAxis() (wpilib.driverstation.DriverStation method)

 	getStickAxisCount() (wpilib.driverstation.DriverStation method)

 	getStickButton() (wpilib.driverstation.DriverStation method)

 	getStickButtonCount() (wpilib.driverstation.DriverStation method)

 	getStickButtons() (wpilib.driverstation.DriverStation method)

 	getStickPOV() (wpilib.driverstation.DriverStation method)

 	getStickPOVCount() (wpilib.driverstation.DriverStation method)

 	getStickyFaultForLim() (wpilib.cantalon.CANTalon method)

 	getStickyFaultForSoftLim() (wpilib.cantalon.CANTalon method)

 	getStickyFaultOverTemp() (wpilib.cantalon.CANTalon method)

 	getStickyFaultRevLim() (wpilib.cantalon.CANTalon method)

 	getStickyFaultRevSoftLim() (wpilib.cantalon.CANTalon method)

 	getStickyFaultUnderVoltage() (wpilib.cantalon.CANTalon method)

 	getStopped() (wpilib.counter.Counter method)

 	

 	(wpilib.encoder.Encoder method)

 	(wpilib.interfaces.counterbase.CounterBase method)

 	getString() (wpilib.preferences.Preferences method)

 	

 	(wpilib.smartdashboard.SmartDashboard static method)

 	getTemp() (wpilib.cantalon.CANTalon method)

 	getTemperature() (wpilib.canjaguar.CANJaguar method)

 	

 	(wpilib.powerdistributionpanel.PowerDistributionPanel method)

 	getThrottle() (wpilib.interfaces.generichid.GenericHID method)

 	

 	(wpilib.joystick.Joystick method)

 	getTop() (wpilib.interfaces.generichid.GenericHID method)

 	

 	(wpilib.joystick.Joystick method)

 	getTotalCurrent() (wpilib.powerdistributionpanel.PowerDistributionPanel method)

 	getTotalEnergy() (wpilib.powerdistributionpanel.PowerDistributionPanel method)

 	getTotalPower() (wpilib.powerdistributionpanel.PowerDistributionPanel method)

 	getTrigger() (wpilib.interfaces.generichid.GenericHID method)

 	

 	(wpilib.joystick.Joystick method)

 	getTriggerState() (wpilib.analogtrigger.AnalogTrigger method)

 	getTwist() (wpilib.interfaces.generichid.GenericHID method)

 	

 	(wpilib.joystick.Joystick method)

 	getType() (wpilib.command.scheduler.Scheduler method)

 	getUserButton() (wpilib.utility.Utility static method)

 	getValue() (wpilib.analoginput.AnalogInput method)

 	getVoltage() (wpilib.analoginput.AnalogInput method)

 	

 	(wpilib.analogoutput.AnalogOutput method)

 	(wpilib.powerdistributionpanel.PowerDistributionPanel method)

 	getVoltage3V3() (wpilib.controllerpower.ControllerPower static method)

 	getVoltage5V() (wpilib.controllerpower.ControllerPower static method)

 	getVoltage6V() (wpilib.controllerpower.ControllerPower static method)

 	getX() (wpilib.adxl345_i2c.ADXL345_I2C method)

 	

 	(wpilib.adxl345_spi.ADXL345_SPI method)

 	(wpilib.builtinaccelerometer.BuiltInAccelerometer method)

 	(wpilib.interfaces.accelerometer.Accelerometer method)

 	(wpilib.interfaces.generichid.GenericHID method)

 	(wpilib.joystick.Joystick method)

 	getY() (wpilib.adxl345_i2c.ADXL345_I2C method)

 	

 	(wpilib.adxl345_spi.ADXL345_SPI method)

 	(wpilib.builtinaccelerometer.BuiltInAccelerometer method)

 	(wpilib.interfaces.accelerometer.Accelerometer method)

 	(wpilib.interfaces.generichid.GenericHID method)

 	(wpilib.joystick.Joystick method)

 	getZ() (wpilib.adxl345_i2c.ADXL345_I2C method)

 	

 	(wpilib.adxl345_spi.ADXL345_SPI method)

 	(wpilib.builtinaccelerometer.BuiltInAccelerometer method)

 	(wpilib.interfaces.accelerometer.Accelerometer method)

 	(wpilib.interfaces.generichid.GenericHID method)

 	(wpilib.joystick.Joystick method)

 	grab() (wpilib.buttons.trigger.Trigger method)

 	Gyro (class in wpilib.gyro)

H

 	

 	handle (wpilib.cantalon.CANTalon attribute)

 	has_key() (wpilib.preferences.Preferences method)

 	hasPeriodPassed() (wpilib.timer.Timer method)

 	

 	helpers (wpilib.motorsafety.MotorSafety attribute)

 	holonomicDrive() (wpilib.robotdrive.RobotDrive method)

I

 	

 	I2C (class in wpilib.i2c)

 	I2C.Port (class in wpilib.i2c)

 	impl (wpilib.robotstate.RobotState attribute)

 	IN_SEQUENCE (wpilib.command.commandgroup.CommandGroup.Entry attribute)

 	InAutonomous() (wpilib.driverstation.DriverStation method)

 	InDisabled() (wpilib.driverstation.DriverStation method)

 	initAccumulator() (wpilib.analoginput.AnalogInput method)

 	initDefaultCommand() (wpilib.command.subsystem.Subsystem method)

 	initialize() (wpilib.command.command.Command method)

 	

 	(wpilib.command.commandgroup.CommandGroup method)

 	(wpilib.command.printcommand.PrintCommand method)

 	(wpilib.command.startcommand.StartCommand method)

 	initializeHardwareConfiguration() (wpilib.robotbase.RobotBase static method)

 	initializeLiveWindowComponents() (wpilib.livewindow.LiveWindow static method)

 	InOperatorControl() (wpilib.driverstation.DriverStation method)

 	instances (wpilib.pidcontroller.PIDController attribute)

 	

 	(wpilib.ultrasonic.Ultrasonic attribute)

 	InternalButton (class in wpilib.buttons.internalbutton)

 	interrupt (wpilib.interruptablesensorbase.InterruptableSensorBase attribute)

 	InterruptableSensorBase (class in wpilib.interruptablesensorbase)

 	interrupted() (wpilib.command.command.Command method)

 	

 	(wpilib.command.commandgroup.CommandGroup method)

 	interrupts (wpilib.interruptablesensorbase.InterruptableSensorBase attribute)

 	InTest() (wpilib.driverstation.DriverStation method)

 	Invalid (wpilib.driverstation.DriverStation.Alliance attribute)

 	isAccumulatorChannel() (wpilib.analoginput.AnalogInput method)

 	isAlive() (wpilib.motorsafety.MotorSafety method)

 	isAutoCaptureStarted() (wpilib._impl.dummycamera.CameraServer method), [1]

 	isAutomaticMode() (wpilib.ultrasonic.Ultrasonic static method)

 	isAutonomous() (wpilib.driverstation.DriverStation method)

 	

 	(wpilib.robotbase.RobotBase method)

 	(wpilib.robotstate.RobotState static method)

 	isBlackListed() (wpilib.solenoid.Solenoid method)

 	isBrownedOut() (wpilib.driverstation.DriverStation method)

 	

 	isCanceled() (wpilib.command.command.Command method)

 	isControlEnabled() (wpilib.cantalon.CANTalon method)

 	isDisabled() (wpilib.driverstation.DriverStation method)

 	

 	(wpilib.robotbase.RobotBase method)

 	(wpilib.robotstate.RobotState static method)

 	isDSAttached() (wpilib.driverstation.DriverStation method)

 	isEnable() (wpilib.pidcontroller.PIDController method)

 	isEnabled() (wpilib.driverstation.DriverStation method)

 	

 	(wpilib.robotbase.RobotBase method)

 	(wpilib.robotstate.RobotState static method)

 	(wpilib.ultrasonic.Ultrasonic method)

 	isFinished() (wpilib.command.command.Command method)

 	

 	(wpilib.command.commandgroup.CommandGroup method)

 	(wpilib.command.printcommand.PrintCommand method)

 	(wpilib.command.startcommand.StartCommand method)

 	(wpilib.command.waitcommand.WaitCommand method)

 	(wpilib.command.waitforchildren.WaitForChildren method)

 	(wpilib.command.waituntilcommand.WaitUntilCommand method)

 	isFMSAttached() (wpilib.driverstation.DriverStation method)

 	isFwdLimitSwitchClosed() (wpilib.cantalon.CANTalon method)

 	isFwdSolenoidBlackListed() (wpilib.doublesolenoid.DoubleSolenoid method)

 	isInterruptible() (wpilib.command.command.Command method)

 	

 	(wpilib.command.commandgroup.CommandGroup method)

 	isNewControlData() (wpilib.driverstation.DriverStation method)

 	isNewDataAvailable() (wpilib.robotbase.RobotBase method)

 	isOperatorControl() (wpilib.driverstation.DriverStation method)

 	

 	(wpilib.robotbase.RobotBase method)

 	(wpilib.robotstate.RobotState static method)

 	isPulsing() (wpilib.digitaloutput.DigitalOutput method)

 	isRangeValid() (wpilib.ultrasonic.Ultrasonic method)

 	isReal() (wpilib.robotbase.RobotBase static method)

 	isRevLimitSwitchClosed() (wpilib.cantalon.CANTalon method)

 	isRevSolenoidBlackListed() (wpilib.doublesolenoid.DoubleSolenoid method)

 	isRunning() (wpilib.command.command.Command method)

 	isSafetyEnabled() (wpilib.motorsafety.MotorSafety method)

 	isSimulation() (wpilib.robotbase.RobotBase static method)

 	isSysActive() (wpilib.driverstation.DriverStation method)

 	isTest() (wpilib.driverstation.DriverStation method)

 	

 	(wpilib.robotbase.RobotBase method)

 	(wpilib.robotstate.RobotState static method)

 	isTimedOut() (wpilib.command.command.Command method)

 	

 	(wpilib.command.commandgroup.CommandGroup.Entry method)

 	IterativeRobot (class in wpilib.iterativerobot)

J

 	

 	Jaguar (class in wpilib.jaguar)

 	Joystick (class in wpilib.joystick)

 	Joystick.AxisType (class in wpilib.joystick)

 	Joystick.ButtonType (class in wpilib.joystick)

 	

 	Joystick.RumbleType (class in wpilib.joystick)

 	JoystickButton (class in wpilib.buttons.joystickbutton)

 	Jumper (wpilib.canjaguar.CANJaguar.NeutralMode attribute)

K

 	

 	k16G (wpilib.adxl345_i2c.ADXL345_I2C.Range attribute)

 	

 	(wpilib.adxl345_spi.ADXL345_SPI.Range attribute)

 	(wpilib.builtinaccelerometer.BuiltInAccelerometer.Range attribute)

 	(wpilib.interfaces.accelerometer.Accelerometer.Range attribute)

 	k1X (wpilib.counter.Counter.EncodingType attribute)

 	

 	(wpilib.encoder.Encoder.EncodingType attribute)

 	(wpilib.interfaces.counterbase.CounterBase.EncodingType attribute)

 	(wpilib.pwm.PWM.PeriodMultiplier attribute)

 	k2G (wpilib.adxl345_i2c.ADXL345_I2C.Range attribute)

 	

 	(wpilib.adxl345_spi.ADXL345_SPI.Range attribute)

 	(wpilib.builtinaccelerometer.BuiltInAccelerometer.Range attribute)

 	(wpilib.interfaces.accelerometer.Accelerometer.Range attribute)

 	k2X (wpilib.counter.Counter.EncodingType attribute)

 	

 	(wpilib.encoder.Encoder.EncodingType attribute)

 	(wpilib.interfaces.counterbase.CounterBase.EncodingType attribute)

 	(wpilib.pwm.PWM.PeriodMultiplier attribute)

 	k4G (wpilib.adxl345_i2c.ADXL345_I2C.Range attribute)

 	

 	(wpilib.adxl345_spi.ADXL345_SPI.Range attribute)

 	(wpilib.builtinaccelerometer.BuiltInAccelerometer.Range attribute)

 	(wpilib.interfaces.accelerometer.Accelerometer.Range attribute)

 	k4X (wpilib.counter.Counter.EncodingType attribute)

 	

 	(wpilib.encoder.Encoder.EncodingType attribute)

 	(wpilib.interfaces.counterbase.CounterBase.EncodingType attribute)

 	(wpilib.pwm.PWM.PeriodMultiplier attribute)

 	k8G (wpilib.adxl345_i2c.ADXL345_I2C.Range attribute)

 	

 	(wpilib.adxl345_spi.ADXL345_SPI.Range attribute)

 	(wpilib.builtinaccelerometer.BuiltInAccelerometer.Range attribute)

 	(wpilib.interfaces.accelerometer.Accelerometer.Range attribute)

 	kAccumulatorChannels (wpilib.analoginput.AnalogInput attribute)

 	kAccumulatorSlot (wpilib.analoginput.AnalogInput attribute)

 	kAddress (wpilib.adxl345_i2c.ADXL345_I2C attribute)

 	kAddress_MultiByte (wpilib.adxl345_spi.ADXL345_SPI attribute)

 	kAddress_Read (wpilib.adxl345_spi.ADXL345_SPI attribute)

 	kAnalogInputChannels (wpilib.sensorbase.SensorBase attribute)

 	kAnalogOutputChannels (wpilib.sensorbase.SensorBase attribute)

 	kAngle (wpilib.counter.Counter.PIDSourceParameter attribute)

 	

 	(wpilib.encoder.Encoder.PIDSourceParameter attribute)

 	(wpilib.interfaces.pidsource.PIDSource.PIDSourceParameter attribute)

 	kApproxBusVoltage (wpilib.canjaguar.CANJaguar attribute)

 	kArcadeRatioCurve_Reported (wpilib.robotdrive.RobotDrive attribute)

 	kArcadeStandard_Reported (wpilib.robotdrive.RobotDrive attribute)

 	kAverageBits (wpilib.gyro.Gyro attribute)

 	kBoth (wpilib.relay.Relay.Direction attribute)

 	kBusVoltageFault (wpilib.canjaguar.CANJaguar attribute)

 	kCalibrationSampleTime (wpilib.gyro.Gyro attribute)

 	kControllerRate (wpilib.canjaguar.CANJaguar attribute)

 	kCurrentFault (wpilib.canjaguar.CANJaguar attribute)

 	kDataFormat_FullRes (wpilib.adxl345_i2c.ADXL345_I2C attribute)

 	

 	(wpilib.adxl345_spi.ADXL345_SPI attribute)

 	kDataFormat_IntInvert (wpilib.adxl345_i2c.ADXL345_I2C attribute)

 	

 	(wpilib.adxl345_spi.ADXL345_SPI attribute)

 	kDataFormat_Justify (wpilib.adxl345_i2c.ADXL345_I2C attribute)

 	

 	(wpilib.adxl345_spi.ADXL345_SPI attribute)

 	kDataFormat_SelfTest (wpilib.adxl345_i2c.ADXL345_I2C attribute)

 	

 	(wpilib.adxl345_spi.ADXL345_SPI attribute)

 	kDataFormat_SPI (wpilib.adxl345_i2c.ADXL345_I2C attribute)

 	

 	(wpilib.adxl345_spi.ADXL345_SPI attribute)

 	kDataFormatRegister (wpilib.adxl345_i2c.ADXL345_I2C attribute)

 	

 	(wpilib.adxl345_spi.ADXL345_SPI attribute)

 	kDataRegister (wpilib.adxl345_i2c.ADXL345_I2C attribute)

 	

 	(wpilib.adxl345_spi.ADXL345_SPI attribute)

 	kDefaultCameraName (wpilib._impl.dummycamera.USBCamera attribute), [1]

 	kDefaultExpirationTime (wpilib.robotdrive.RobotDrive attribute)

 	kDefaultMaxOutput (wpilib.robotdrive.RobotDrive attribute)

 	kDefaultMaxServoPWM (wpilib.servo.Servo attribute)

 	kDefaultMinServoPWM (wpilib.servo.Servo attribute)

 	kDefaultPeriod (wpilib.pidcontroller.PIDController attribute)

 	kDefaultPwmCenter (wpilib.pwm.PWM attribute)

 	kDefaultPwmPeriod (wpilib.pwm.PWM attribute)

 	kDefaultPwmStepsDown (wpilib.pwm.PWM attribute)

 	kDefaultSensitivity (wpilib.robotdrive.RobotDrive attribute)

 	kDefaultThrottleAxis (wpilib.joystick.Joystick attribute)

 	kDefaultTopButton (wpilib.joystick.Joystick attribute)

 	kDefaultTriggerButton (wpilib.joystick.Joystick attribute)

 	kDefaultTwistAxis (wpilib.joystick.Joystick attribute)

 	kDefaultVoltsPerDegreePerSecond (wpilib.gyro.Gyro attribute)

 	kDefaultXAxis (wpilib.joystick.Joystick attribute)

 	kDefaultYAxis (wpilib.joystick.Joystick attribute)

 	kDefaultZAxis (wpilib.joystick.Joystick attribute)

 	kDelayForSolicitedSignals (wpilib.cantalon.CANTalon attribute)

 	kDigitalChannels (wpilib.sensorbase.SensorBase attribute)

 	kDistance (wpilib.counter.Counter.PIDSourceParameter attribute)

 	

 	(wpilib.encoder.Encoder.PIDSourceParameter attribute)

 	(wpilib.interfaces.pidsource.PIDSource.PIDSourceParameter attribute)

 	kEncoder (wpilib.canjaguar.CANJaguar.Mode attribute)

 	kExternalDirection (wpilib.counter.Counter.Mode attribute)

 	keys() (wpilib.preferences.Preferences method)

 	kFallingPulse (wpilib.analogtrigger.AnalogTrigger.AnalogTriggerType attribute)

 	

 	(wpilib.analogtriggeroutput.AnalogTriggerOutput.AnalogTriggerType attribute)

 	kFixedFlourescent2 (wpilib._impl.dummycamera.USBCamera.WhiteBalance attribute), [1]

 	kFixedFluorescent1 (wpilib._impl.dummycamera.USBCamera.WhiteBalance attribute), [1]

 	kFixedIndoor (wpilib._impl.dummycamera.USBCamera.WhiteBalance attribute), [1]

 	kFixedOutdoor1 (wpilib._impl.dummycamera.USBCamera.WhiteBalance attribute), [1]

 	kFixedOutdoor2 (wpilib._impl.dummycamera.USBCamera.WhiteBalance attribute), [1]

 	kForward (wpilib.doublesolenoid.DoubleSolenoid.Value attribute)

 	

 	(wpilib.relay.Relay.Direction attribute)

 	(wpilib.relay.Relay.Value attribute)

 	kForwardLimit (wpilib.canjaguar.CANJaguar attribute)

 	kFrontLeft (wpilib.robotdrive.RobotDrive.MotorType attribute)

 	kFrontRight (wpilib.robotdrive.RobotDrive.MotorType attribute)

 	kFullMessageIDMask (wpilib.canjaguar.CANJaguar attribute)

 	kGateDriverFault (wpilib.canjaguar.CANJaguar attribute)

 	kGearToothThreshold (wpilib.geartooth.GearTooth attribute)

 	kGsPerLSB (wpilib.adxl345_i2c.ADXL345_I2C attribute)

 	

 	(wpilib.adxl345_spi.ADXL345_SPI attribute)

 	kInches (wpilib.ultrasonic.Ultrasonic.Unit attribute)

 	kInWindow (wpilib.analogtrigger.AnalogTrigger.AnalogTriggerType attribute)

 	

 	(wpilib.analogtriggeroutput.AnalogTriggerOutput.AnalogTriggerType attribute)

 	kJoystickPorts (wpilib.driverstation.DriverStation attribute)

 	

 	kLeft (wpilib.interfaces.generichid.GenericHID.Hand attribute)

 	kLeftRumble_val (wpilib.joystick.Joystick.RumbleType attribute)

 	kMaxMessageDataSize (wpilib.canjaguar.CANJaguar attribute)

 	kMaxNumberOfMotors (wpilib.robotdrive.RobotDrive attribute)

 	kMaxServoAngle (wpilib.servo.Servo attribute)

 	kMaxUltrasonicTime (wpilib.ultrasonic.Ultrasonic attribute)

 	kMecanumCartesian_Reported (wpilib.robotdrive.RobotDrive attribute)

 	kMecanumPolar_Reported (wpilib.robotdrive.RobotDrive attribute)

 	kMillimeters (wpilib.ultrasonic.Ultrasonic.Unit attribute)

 	kMinServoAngle (wpilib.servo.Servo attribute)

 	kMXP (wpilib.i2c.I2C.Port attribute)

 	

 	(wpilib.spi.SPI.Port attribute)

 	kNumAxis (wpilib.joystick.Joystick.AxisType attribute)

 	kNumButton (wpilib.joystick.Joystick.ButtonType attribute)

 	kOff (wpilib.doublesolenoid.DoubleSolenoid.Value attribute)

 	

 	(wpilib.relay.Relay.Value attribute)

 	kOn (wpilib.relay.Relay.Value attribute)

 	kOnboard (wpilib.i2c.I2C.Port attribute)

 	kOnboardCS0 (wpilib.spi.SPI.Port attribute)

 	kOnboardCS1 (wpilib.spi.SPI.Port attribute)

 	kOnboardCS2 (wpilib.spi.SPI.Port attribute)

 	kOnboardCS3 (wpilib.spi.SPI.Port attribute)

 	kOversampleBits (wpilib.gyro.Gyro attribute)

 	kPDPChannels (wpilib.sensorbase.SensorBase attribute)

 	kPingTime (wpilib.ultrasonic.Ultrasonic attribute)

 	kPort (wpilib._impl.dummycamera.CameraServer attribute), [1]

 	kPotentiometer (wpilib.canjaguar.CANJaguar.Mode attribute)

 	kPowerCtl_AutoSleep (wpilib.adxl345_i2c.ADXL345_I2C attribute)

 	

 	(wpilib.adxl345_spi.ADXL345_SPI attribute)

 	kPowerCtl_Link (wpilib.adxl345_i2c.ADXL345_I2C attribute)

 	

 	(wpilib.adxl345_spi.ADXL345_SPI attribute)

 	kPowerCtl_Measure (wpilib.adxl345_i2c.ADXL345_I2C attribute)

 	

 	(wpilib.adxl345_spi.ADXL345_SPI attribute)

 	kPowerCtl_Sleep (wpilib.adxl345_i2c.ADXL345_I2C attribute)

 	

 	(wpilib.adxl345_spi.ADXL345_SPI attribute)

 	kPowerCtlRegister (wpilib.adxl345_i2c.ADXL345_I2C attribute)

 	

 	(wpilib.adxl345_spi.ADXL345_SPI attribute)

 	kPriority (wpilib.ultrasonic.Ultrasonic attribute)

 	kPulseLength (wpilib.counter.Counter.Mode attribute)

 	kPwmChannels (wpilib.sensorbase.SensorBase attribute)

 	kPwmDisabled (wpilib.pwm.PWM attribute)

 	kQuadEncoder (wpilib.canjaguar.CANJaguar.Mode attribute)

 	kRate (wpilib.counter.Counter.PIDSourceParameter attribute)

 	

 	(wpilib.encoder.Encoder.PIDSourceParameter attribute)

 	(wpilib.interfaces.pidsource.PIDSource.PIDSourceParameter attribute)

 	kRearLeft (wpilib.robotdrive.RobotDrive.MotorType attribute)

 	kRearRight (wpilib.robotdrive.RobotDrive.MotorType attribute)

 	kReceiveStatusAttempts (wpilib.canjaguar.CANJaguar attribute)

 	kRelayChannels (wpilib.sensorbase.SensorBase attribute)

 	kResetOnFallingEdge (wpilib.encoder.Encoder.IndexingType attribute)

 	kResetOnRisingEdge (wpilib.encoder.Encoder.IndexingType attribute)

 	kResetWhileHigh (wpilib.encoder.Encoder.IndexingType attribute)

 	kResetWhileLow (wpilib.encoder.Encoder.IndexingType attribute)

 	kReverse (wpilib.doublesolenoid.DoubleSolenoid.Value attribute)

 	

 	(wpilib.relay.Relay.Direction attribute)

 	(wpilib.relay.Relay.Value attribute)

 	kReverseLimit (wpilib.canjaguar.CANJaguar attribute)

 	kRight (wpilib.interfaces.generichid.GenericHID.Hand attribute)

 	kRightRumble_val (wpilib.joystick.Joystick.RumbleType attribute)

 	kRisingPulse (wpilib.analogtrigger.AnalogTrigger.AnalogTriggerType attribute)

 	

 	(wpilib.analogtriggeroutput.AnalogTriggerOutput.AnalogTriggerType attribute)

 	kSamplesPerSecond (wpilib.gyro.Gyro attribute)

 	kSemiperiod (wpilib.counter.Counter.Mode attribute)

 	kSendMessagePeriod (wpilib.canjaguar.CANJaguar attribute)

 	kSize160x120 (wpilib._impl.dummycamera.CameraServer attribute), [1]

 	kSize320x240 (wpilib._impl.dummycamera.CameraServer attribute), [1]

 	kSize640x480 (wpilib._impl.dummycamera.CameraServer attribute), [1]

 	kSolenoidChannels (wpilib.sensorbase.SensorBase attribute)

 	kSolenoidModules (wpilib.sensorbase.SensorBase attribute)

 	kSpeedOfSoundInchesPerSec (wpilib.ultrasonic.Ultrasonic attribute)

 	kState (wpilib.analogtrigger.AnalogTrigger.AnalogTriggerType attribute)

 	

 	(wpilib.analogtriggeroutput.AnalogTriggerOutput.AnalogTriggerType attribute)

 	kSystemClockTicksPerMicrosecond (wpilib.sensorbase.SensorBase attribute)

 	kTank_Reported (wpilib.robotdrive.RobotDrive attribute)

 	kTemperatureFault (wpilib.canjaguar.CANJaguar attribute)

 	kThrottle (wpilib.joystick.Joystick.AxisType attribute)

 	kTop (wpilib.joystick.Joystick.ButtonType attribute)

 	kTrigger (wpilib.joystick.Joystick.ButtonType attribute)

 	kTrustedMessages (wpilib.canjaguar.CANJaguar attribute)

 	kTwist (wpilib.joystick.Joystick.AxisType attribute)

 	kTwoPulse (wpilib.counter.Counter.Mode attribute)

 	kX (wpilib.adxl345_i2c.ADXL345_I2C.Axes attribute)

 	

 	(wpilib.adxl345_spi.ADXL345_SPI.Axes attribute)

 	(wpilib.joystick.Joystick.AxisType attribute)

 	kY (wpilib.adxl345_i2c.ADXL345_I2C.Axes attribute)

 	

 	(wpilib.adxl345_spi.ADXL345_SPI.Axes attribute)

 	(wpilib.joystick.Joystick.AxisType attribute)

 	kZ (wpilib.adxl345_i2c.ADXL345_I2C.Axes attribute)

 	

 	(wpilib.adxl345_spi.ADXL345_SPI.Axes attribute)

 	(wpilib.joystick.Joystick.AxisType attribute)

L

 	

 	limit() (wpilib.robotdrive.RobotDrive static method)

 	LiveWindow (class in wpilib.livewindow)

 	liveWindowEnabled (wpilib.livewindow.LiveWindow attribute)

 	LiveWindowSendable (class in wpilib.livewindowsendable)

 	

 	livewindowTable (wpilib.livewindow.LiveWindow attribute)

 	lockChanges() (wpilib.command.command.Command method)

 	logger (wpilib.iterativerobot.IterativeRobot attribute)

 	

 	(wpilib.samplerobot.SampleRobot attribute)

M

 	

 	main() (wpilib.robotbase.RobotBase static method)

 	mecanumDrive_Cartesian() (wpilib.robotdrive.RobotDrive method)

 	

 	mecanumDrive_Polar() (wpilib.robotdrive.RobotDrive method)

 	MotorSafety (class in wpilib.motorsafety)

N

 	

 	NamedSendable (class in wpilib.interfaces.namedsendable)

 	NetworkButton (class in wpilib.buttons.networkbutton)

 	NEW_LINE (wpilib.preferences.Preferences attribute)

 	

 	nextPeriodReady() (wpilib.iterativerobot.IterativeRobot method)

 	normalize() (wpilib.robotdrive.RobotDrive static method)

O

 	

 	onTarget() (wpilib.command.pidsubsystem.PIDSubsystem method)

 	

 	(wpilib.pidcontroller.PIDController method)

 	openCamera() (wpilib._impl.dummycamera.USBCamera method), [1]

 	

 	operatorControl() (wpilib.samplerobot.SampleRobot method)

 	OPTIONS (wpilib.sendablechooser.SendableChooser attribute)

P

 	

 	PercentageTolerance_onTarget() (wpilib.pidcontroller.PIDController method)

 	PercentVbus (wpilib.canjaguar.CANJaguar.ControlMode attribute)

 	

 	(wpilib.cantalon.CANTalon.ControlMode attribute)

 	PIDCommand (class in wpilib.command.pidcommand)

 	PIDController (class in wpilib.pidcontroller)

 	pidGet() (wpilib.analogaccelerometer.AnalogAccelerometer method)

 	

 	(wpilib.analoginput.AnalogInput method)

 	(wpilib.analogpotentiometer.AnalogPotentiometer method)

 	(wpilib.counter.Counter method)

 	(wpilib.encoder.Encoder method)

 	(wpilib.gyro.Gyro method)

 	(wpilib.interfaces.pidsource.PIDSource method)

 	(wpilib.ultrasonic.Ultrasonic method)

 	PIDOutput (class in wpilib.interfaces.pidoutput)

 	PIDSource (class in wpilib.interfaces.pidsource)

 	PIDSource.PIDSourceParameter (class in wpilib.interfaces.pidsource)

 	PIDSubsystem (class in wpilib.command.pidsubsystem)

 	pidWrite() (wpilib.canjaguar.CANJaguar method)

 	

 	(wpilib.cantalon.CANTalon method)

 	(wpilib.interfaces.pidoutput.PIDOutput method)

 	(wpilib.jaguar.Jaguar method)

 	(wpilib.talon.Talon method)

 	(wpilib.talonsrx.TalonSRX method)

 	(wpilib.victor.Victor method)

 	(wpilib.victorsp.VictorSP method)

 	ping() (wpilib.ultrasonic.Ultrasonic method)

 	port (wpilib.analogtrigger.AnalogTrigger attribute)

 	

 	(wpilib.digitalsource.DigitalSource attribute)

 	(wpilib.pwm.PWM attribute)

 	(wpilib.relay.Relay attribute)

 	Position (wpilib.canjaguar.CANJaguar.ControlMode attribute)

 	

 	(wpilib.cantalon.CANTalon.ControlMode attribute)

 	Potentiometer (class in wpilib.interfaces.potentiometer)

 	PowerDistributionPanel (class in wpilib.powerdistributionpanel)

 	

 	Preferences (class in wpilib.preferences)

 	prestart() (wpilib.iterativerobot.IterativeRobot method)

 	

 	(wpilib.robotbase.RobotBase method)

 	PrintCommand (class in wpilib.command.printcommand)

 	pulse() (wpilib.digitaloutput.DigitalOutput method)

 	put() (wpilib.preferences.Preferences method)

 	putBoolean() (wpilib.preferences.Preferences method)

 	

 	(wpilib.smartdashboard.SmartDashboard static method)

 	putData() (wpilib.smartdashboard.SmartDashboard static method)

 	putDouble() (wpilib.smartdashboard.SmartDashboard static method)

 	putFloat() (wpilib.preferences.Preferences method)

 	putInt() (wpilib.preferences.Preferences method)

 	

 	(wpilib.smartdashboard.SmartDashboard static method)

 	putNumber() (wpilib.smartdashboard.SmartDashboard static method)

 	putString() (wpilib.preferences.Preferences method)

 	

 	(wpilib.smartdashboard.SmartDashboard static method)

 	PWM (class in wpilib.pwm)

 	PWM.PeriodMultiplier (class in wpilib.pwm)

 	pwmGenerator (wpilib.digitaloutput.DigitalOutput attribute)

Q

 	

 	QuadEncoder (wpilib.cantalon.CANTalon.FeedbackDevice attribute)

 	

 	(wpilib.cantalon.CANTalon.StatusFrameRate attribute)

R

 	

 	read() (wpilib.i2c.I2C method)

 	

 	(wpilib.preferences.Preferences method)

 	(wpilib.spi.SPI method)

 	readFallingTimestamp() (wpilib.interruptablesensorbase.InterruptableSensorBase method)

 	readOnly() (wpilib.i2c.I2C method)

 	readRisingTimestamp() (wpilib.interruptablesensorbase.InterruptableSensorBase method)

 	Red (wpilib.driverstation.DriverStation.Alliance attribute)

 	registerSubsystem() (wpilib.command.scheduler.Scheduler method)

 	Relay (class in wpilib.relay)

 	Relay.Direction (class in wpilib.relay)

 	Relay.Value (class in wpilib.relay)

 	relayChannels (wpilib.relay.Relay attribute)

 	release() (wpilib.driverstation.DriverStation method)

 	remove() (wpilib.command.scheduler.Scheduler method)

 	

 	(wpilib.preferences.Preferences method)

 	removeAll() (wpilib.command.scheduler.Scheduler method)

 	removed() (wpilib.command.command.Command method)

 	reportError() (wpilib.driverstation.DriverStation static method)

 	requestInterrupts() (wpilib.interruptablesensorbase.InterruptableSensorBase method)

 	requestMessage() (wpilib.canjaguar.CANJaguar method)

 	

 	requires() (wpilib.command.command.Command method)

 	reset() (wpilib.counter.Counter method)

 	

 	(wpilib.encoder.Encoder method)

 	(wpilib.gyro.Gyro method)

 	(wpilib.interfaces.counterbase.CounterBase method)

 	(wpilib.pidcontroller.PIDController method)

 	(wpilib.timer.Timer method)

 	resetAccumulator() (wpilib.analoginput.AnalogInput method)

 	resetTotalEnergy() (wpilib.powerdistributionpanel.PowerDistributionPanel method)

 	Resource (class in wpilib.resource)

 	returnPIDInput() (wpilib.command.pidcommand.PIDCommand method)

 	

 	(wpilib.command.pidsubsystem.PIDSubsystem method)

 	reverseOutput() (wpilib.cantalon.CANTalon method)

 	reverseSensor() (wpilib.cantalon.CANTalon method)

 	RobotBase (class in wpilib.robotbase)

 	RobotDrive (class in wpilib.robotdrive)

 	RobotDrive.MotorType (class in wpilib.robotdrive)

 	robotInit() (wpilib.iterativerobot.IterativeRobot method)

 	

 	(wpilib.samplerobot.SampleRobot method)

 	robotMain() (wpilib.samplerobot.SampleRobot method)

 	RobotState (class in wpilib.robotstate)

 	rotateVector() (wpilib.robotdrive.RobotDrive static method)

 	run() (wpilib.command.command.Command method)

 	

 	(wpilib.command.scheduler.Scheduler method)

 	(wpilib.livewindow.LiveWindow static method)

S

 	

 	SafePWM (class in wpilib.safepwm)

 	SampleRobot (class in wpilib.samplerobot)

 	save() (wpilib.preferences.Preferences method)

 	SAVE_FIELD (wpilib.preferences.Preferences attribute)

 	Scheduler (class in wpilib.command.scheduler)

 	SELECTED (wpilib.sendablechooser.SendableChooser attribute)

 	Sendable (class in wpilib.sendable)

 	SendableChooser (class in wpilib.sendablechooser)

 	sendMessage() (wpilib.canjaguar.CANJaguar method)

 	SensorBase (class in wpilib.sensorbase)

 	sensors (wpilib.livewindow.LiveWindow attribute)

 	

 	(wpilib.ultrasonic.Ultrasonic attribute)

 	server (wpilib._impl.dummycamera.CameraServer attribute), [1]

 	Servo (class in wpilib.servo)

 	set() (wpilib.canjaguar.CANJaguar method)

 	

 	(wpilib.cantalon.CANTalon method)

 	(wpilib.digitaloutput.DigitalOutput method)

 	(wpilib.doublesolenoid.DoubleSolenoid method)

 	(wpilib.interfaces.speedcontroller.SpeedController method)

 	(wpilib.jaguar.Jaguar method)

 	(wpilib.relay.Relay method)

 	(wpilib.servo.Servo method)

 	(wpilib.solenoid.Solenoid method)

 	(wpilib.solenoidbase.SolenoidBase method)

 	(wpilib.talon.Talon method)

 	(wpilib.talonsrx.TalonSRX method)

 	(wpilib.victor.Victor method)

 	(wpilib.victorsp.VictorSP method)

 	setAbsoluteTolerance() (wpilib.command.pidsubsystem.PIDSubsystem method)

 	

 	(wpilib.pidcontroller.PIDController method)

 	setAccumulatorCenter() (wpilib.analoginput.AnalogInput method)

 	setAccumulatorDeadband() (wpilib.analoginput.AnalogInput method)

 	setAccumulatorInitialValue() (wpilib.analoginput.AnalogInput method)

 	setAngle() (wpilib.servo.Servo method)

 	setAutomaticMode() (wpilib.ultrasonic.Ultrasonic method)

 	setAverageBits() (wpilib.analoginput.AnalogInput method)

 	setAveraged() (wpilib.analogtrigger.AnalogTrigger method)

 	setAxisChannel() (wpilib.joystick.Joystick method)

 	setBounds() (wpilib.pwm.PWM method)

 	setBrightness() (wpilib._impl.dummycamera.USBCamera method), [1]

 	setCANJaguarSyncGroup() (wpilib.robotdrive.RobotDrive method)

 	setChipSelectActiveHigh() (wpilib.spi.SPI method)

 	setChipSelectActiveLow() (wpilib.spi.SPI method)

 	setClockActiveHigh() (wpilib.spi.SPI method)

 	setClockActiveLow() (wpilib.spi.SPI method)

 	setClockRate() (wpilib.spi.SPI method)

 	setClosedLoopControl() (wpilib.compressor.Compressor method)

 	setCloseLoopRampRate() (wpilib.cantalon.CANTalon method)

 	setContinuous() (wpilib.pidcontroller.PIDController method)

 	setCurrentCommand() (wpilib.command.subsystem.Subsystem method)

 	setCurrentModeEncoder() (wpilib.canjaguar.CANJaguar method)

 	setCurrentModePID() (wpilib.canjaguar.CANJaguar method)

 	setCurrentModePotentiometer() (wpilib.canjaguar.CANJaguar method)

 	setCurrentModeQuadEncoder() (wpilib.canjaguar.CANJaguar method)

 	setD() (wpilib.canjaguar.CANJaguar method)

 	

 	(wpilib.cantalon.CANTalon method)

 	setDeadband() (wpilib.gyro.Gyro method)

 	setDefaultCommand() (wpilib.command.subsystem.Subsystem method)

 	setDefaultSolenoidModule() (wpilib.sensorbase.SensorBase static method)

 	setDirection() (wpilib.relay.Relay method)

 	setDistancePerPulse() (wpilib.counter.Counter method)

 	

 	(wpilib.encoder.Encoder method)

 	setDistanceUnits() (wpilib.ultrasonic.Ultrasonic method)

 	setDownSource() (wpilib.counter.Counter method)

 	setDownSourceEdge() (wpilib.counter.Counter method)

 	setEnabled() (wpilib.livewindow.LiveWindow static method)

 	

 	(wpilib.ultrasonic.Ultrasonic method)

 	setExpiration() (wpilib.motorsafety.MotorSafety method)

 	setExposureAuto() (wpilib._impl.dummycamera.USBCamera method), [1]

 	setExposureHoldCurrent() (wpilib._impl.dummycamera.USBCamera method), [1]

 	setExposureManual() (wpilib._impl.dummycamera.USBCamera method), [1]

 	setExternalDirectionMode() (wpilib.counter.Counter method)

 	setF() (wpilib.cantalon.CANTalon method)

 	setFeedbackDevice() (wpilib.cantalon.CANTalon method)

 	setFiltered() (wpilib.analogtrigger.AnalogTrigger method)

 	setForwardSoftLimit() (wpilib.cantalon.CANTalon method)

 	setFPS() (wpilib._impl.dummycamera.USBCamera method), [1]

 	setGlobalSampleRate() (wpilib.analoginput.AnalogInput static method)

 	setI() (wpilib.canjaguar.CANJaguar method)

 	

 	(wpilib.cantalon.CANTalon method)

 	setImage() (wpilib._impl.dummycamera.CameraServer method), [1]

 	setIndexSource() (wpilib.encoder.Encoder method)

 	setInputRange() (wpilib.command.pidsubsystem.PIDSubsystem method)

 	

 	(wpilib.pidcontroller.PIDController method)

 	setInterruptible() (wpilib.command.command.Command method)

 	setInverted() (wpilib.buttons.internalbutton.InternalButton method)

 	setInvertedMotor() (wpilib.robotdrive.RobotDrive method)

 	setIZone() (wpilib.cantalon.CANTalon method)

 	setLeftRightMotorOutputs() (wpilib.robotdrive.RobotDrive method)

 	setLimitsRaw() (wpilib.analogtrigger.AnalogTrigger method)

 	setLimitsVoltage() (wpilib.analogtrigger.AnalogTrigger method)

 	setLSBFirst() (wpilib.spi.SPI method)

 	setMaxOutput() (wpilib.robotdrive.RobotDrive method)

 	setMaxPeriod() (wpilib.counter.Counter method)

 	

 	(wpilib.encoder.Encoder method)

 	(wpilib.interfaces.counterbase.CounterBase method)

 	setMinRate() (wpilib.encoder.Encoder method)

 	setMSBFirst() (wpilib.spi.SPI method)

 	setOutput() (wpilib.joystick.Joystick method)

 	setOutputRange() (wpilib.command.pidsubsystem.PIDSubsystem method)

 	

 	(wpilib.pidcontroller.PIDController method)

 	setOutputs() (wpilib.joystick.Joystick method)

 	setOversampleBits() (wpilib.analoginput.AnalogInput method)

 	

 	setP() (wpilib.canjaguar.CANJaguar method)

 	

 	(wpilib.cantalon.CANTalon method)

 	setParent() (wpilib.command.command.Command method)

 	setPercentMode() (wpilib.canjaguar.CANJaguar method)

 	setPercentModeEncoder() (wpilib.canjaguar.CANJaguar method)

 	setPercentModePotentiometer() (wpilib.canjaguar.CANJaguar method)

 	setPercentModeQuadEncoder() (wpilib.canjaguar.CANJaguar method)

 	setPercentTolerance() (wpilib.command.pidsubsystem.PIDSubsystem method)

 	

 	(wpilib.pidcontroller.PIDController method)

 	setPeriodMultiplier() (wpilib.pwm.PWM method)

 	setPID() (wpilib.canjaguar.CANJaguar method)

 	

 	(wpilib.cantalon.CANTalon method)

 	(wpilib.pidcontroller.PIDController method)

 	setPIDSourceParameter() (wpilib.counter.Counter method)

 	

 	(wpilib.encoder.Encoder method)

 	(wpilib.gyro.Gyro method)

 	setPosition() (wpilib.cantalon.CANTalon method)

 	

 	(wpilib.pwm.PWM method)

 	setPositionModePotentiometer() (wpilib.canjaguar.CANJaguar method)

 	setPositionModeQuadEncoder() (wpilib.canjaguar.CANJaguar method)

 	setPositionReference() (wpilib.canjaguar.CANJaguar method)

 	setPressed() (wpilib.buttons.internalbutton.InternalButton method)

 	setProfile() (wpilib.cantalon.CANTalon method)

 	setPulseLengthMode() (wpilib.counter.Counter method)

 	setPWMRate() (wpilib.digitaloutput.DigitalOutput method)

 	setQuality() (wpilib._impl.dummycamera.CameraServer method), [1]

 	setRange() (wpilib.adxl345_i2c.ADXL345_I2C method)

 	

 	(wpilib.adxl345_spi.ADXL345_SPI method)

 	(wpilib.builtinaccelerometer.BuiltInAccelerometer method)

 	(wpilib.interfaces.accelerometer.Accelerometer method)

 	setRaw() (wpilib.pwm.PWM method)

 	setReverseDirection() (wpilib.counter.Counter method)

 	

 	(wpilib.encoder.Encoder method)

 	setReverseSoftLimit() (wpilib.cantalon.CANTalon method)

 	setRumble() (wpilib.joystick.Joystick method)

 	setRunWhenDisabled() (wpilib.command.command.Command method)

 	setSafetyEnabled() (wpilib.motorsafety.MotorSafety method)

 	setSampleDataOnFalling() (wpilib.spi.SPI method)

 	setSampleDataOnRising() (wpilib.spi.SPI method)

 	setSamplesToAverage() (wpilib.counter.Counter method)

 	

 	(wpilib.encoder.Encoder method)

 	setSemiPeriodMode() (wpilib.counter.Counter method)

 	setSensitivity() (wpilib.analogaccelerometer.AnalogAccelerometer method)

 	

 	(wpilib.gyro.Gyro method)

 	(wpilib.robotdrive.RobotDrive method)

 	setSensorPosition() (wpilib.cantalon.CANTalon method)

 	setSetpoint() (wpilib.command.pidcommand.PIDCommand method)

 	

 	(wpilib.command.pidsubsystem.PIDSubsystem method)

 	(wpilib.pidcontroller.PIDController method)

 	setSetpointRelative() (wpilib.command.pidcommand.PIDCommand method)

 	

 	(wpilib.command.pidsubsystem.PIDSubsystem method)

 	setSize() (wpilib._impl.dummycamera.CameraServer method), [1]

 	

 	(wpilib._impl.dummycamera.USBCamera method), [1]

 	setSpeed() (wpilib.pwm.PWM method)

 	setSpeedModeEncoder() (wpilib.canjaguar.CANJaguar method)

 	setSpeedModeQuadEncoder() (wpilib.canjaguar.CANJaguar method)

 	setSpeedReference() (wpilib.canjaguar.CANJaguar method)

 	setStatusFrameRateMs() (wpilib.cantalon.CANTalon method)

 	setTimeout() (wpilib.command.command.Command method)

 	setTolerance() (wpilib.pidcontroller.PIDController method)

 	setUpdateWhenEmpty() (wpilib.counter.Counter method)

 	setUpDownCounterMode() (wpilib.counter.Counter method)

 	setupPeriodicStatus() (wpilib.canjaguar.CANJaguar method)

 	setUpSource() (wpilib.counter.Counter method)

 	setUpSourceEdge() (wpilib.counter.Counter method)

 	

 	(wpilib.interruptablesensorbase.InterruptableSensorBase method)

 	setVoltage() (wpilib.analogoutput.AnalogOutput method)

 	setVoltageMode() (wpilib.canjaguar.CANJaguar method)

 	setVoltageModeEncoder() (wpilib.canjaguar.CANJaguar method)

 	setVoltageModePotentiometer() (wpilib.canjaguar.CANJaguar method)

 	setVoltageModeQuadEncoder() (wpilib.canjaguar.CANJaguar method)

 	setVoltageRampRate() (wpilib.canjaguar.CANJaguar method)

 	

 	(wpilib.cantalon.CANTalon method)

 	setWhiteBalanceAuto() (wpilib._impl.dummycamera.USBCamera method), [1]

 	setWhiteBalanceHoldCurrent() (wpilib._impl.dummycamera.USBCamera method), [1]

 	setWhiteBalanceManual() (wpilib._impl.dummycamera.USBCamera method), [1]

 	setZero() (wpilib.analogaccelerometer.AnalogAccelerometer method)

 	setZeroLatch() (wpilib.pwm.PWM method)

 	SmartDashboard (class in wpilib.smartdashboard)

 	SoftPositionLimits (wpilib.canjaguar.CANJaguar.LimitMode attribute)

 	Solenoid (class in wpilib.solenoid)

 	SolenoidBase (class in wpilib.solenoidbase)

 	Speed (wpilib.canjaguar.CANJaguar.ControlMode attribute)

 	

 	(wpilib.cantalon.CANTalon.ControlMode attribute)

 	SpeedController (class in wpilib.interfaces.speedcontroller)

 	SPI (class in wpilib.spi)

 	SPI.Port (class in wpilib.spi)

 	start() (wpilib.command.command.Command method)

 	

 	(wpilib.compressor.Compressor method)

 	(wpilib.timer.Timer method)

 	startAutomaticCapture() (wpilib._impl.dummycamera.CameraServer method), [1]

 	startCapture() (wpilib._impl.dummycamera.USBCamera method), [1]

 	StartCommand (class in wpilib.command.startcommand)

 	startCompetition() (wpilib.iterativerobot.IterativeRobot method)

 	

 	(wpilib.robotbase.RobotBase method)

 	(wpilib.samplerobot.SampleRobot method)

 	startRunning() (wpilib.command.command.Command method)

 	startTiming() (wpilib.command.command.Command method)

 	statusTable (wpilib.livewindow.LiveWindow attribute)

 	stop() (wpilib.compressor.Compressor method)

 	

 	(wpilib.timer.Timer method)

 	stopCapture() (wpilib._impl.dummycamera.USBCamera method), [1]

 	stopMotor() (wpilib.canjaguar.CANJaguar method)

 	

 	(wpilib.cantalon.CANTalon method)

 	(wpilib.robotdrive.RobotDrive method)

 	(wpilib.safepwm.SafePWM method)

 	Subsystem (class in wpilib.command.subsystem)

 	SwitchInputsOnly (wpilib.canjaguar.CANJaguar.LimitMode attribute)

T

 	

 	table (wpilib.smartdashboard.SmartDashboard attribute)

 	TABLE_NAME (wpilib.preferences.Preferences attribute)

 	tablesToData (wpilib.smartdashboard.SmartDashboard attribute)

 	Talon (class in wpilib.talon)

 	TalonSRX (class in wpilib.talonsrx)

 	tankDrive() (wpilib.robotdrive.RobotDrive method)

 	task() (wpilib.driverstation.DriverStation method)

 	teleopInit() (wpilib.iterativerobot.IterativeRobot method)

 	teleopPeriodic() (wpilib.iterativerobot.IterativeRobot method)

 	

 	test() (wpilib.samplerobot.SampleRobot method)

 	testInit() (wpilib.iterativerobot.IterativeRobot method)

 	testPeriodic() (wpilib.iterativerobot.IterativeRobot method)

 	Timer (class in wpilib.timer)

 	timeSinceInitialized() (wpilib.command.command.Command method)

 	toggleWhenActive() (wpilib.buttons.trigger.Trigger method)

 	toggleWhenPressed() (wpilib.buttons.button.Button method)

 	transaction() (wpilib.i2c.I2C method)

 	

 	(wpilib.spi.SPI method)

 	Trigger (class in wpilib.buttons.trigger)

U

 	

 	Ultrasonic (class in wpilib.ultrasonic)

 	Ultrasonic.Unit (class in wpilib.ultrasonic)

 	ultrasonicChecker() (wpilib.ultrasonic.Ultrasonic static method)

 	updateDutyCycle() (wpilib.digitaloutput.DigitalOutput method)

 	updatePeriodicStatus() (wpilib.canjaguar.CANJaguar method)

 	updateSettings() (wpilib._impl.dummycamera.USBCamera method), [1]

 	

 	updateSyncGroup() (wpilib.canjaguar.CANJaguar static method)

 	updateValues() (wpilib.livewindow.LiveWindow static method)

 	USBCamera (class in wpilib._impl.dummycamera), [1]

 	USBCamera.WhiteBalance (class in wpilib._impl.dummycamera), [1]

 	usePIDOutput() (wpilib.command.pidcommand.PIDCommand method)

 	

 	(wpilib.command.pidsubsystem.PIDSubsystem method)

 	Utility (class in wpilib.utility)

V

 	

 	VALUE_PREFIX (wpilib.preferences.Preferences attribute)

 	VALUE_SUFFIX (wpilib.preferences.Preferences attribute)

 	verify() (wpilib.canjaguar.CANJaguar method)

 	verifySensor() (wpilib.i2c.I2C method)

 	

 	Victor (class in wpilib.victor)

 	VictorSP (class in wpilib.victorsp)

 	Voltage (wpilib.canjaguar.CANJaguar.ControlMode attribute)

 	

 	(wpilib.cantalon.CANTalon.ControlMode attribute)

W

 	

 	WaitCommand (class in wpilib.command.waitcommand)

 	WaitForChildren (class in wpilib.command.waitforchildren)

 	waitForData() (wpilib.driverstation.DriverStation method)

 	waitForInterrupt() (wpilib.interruptablesensorbase.InterruptableSensorBase method)

 	WaitUntilCommand (class in wpilib.command.waituntilcommand)

 	whenActive() (wpilib.buttons.trigger.Trigger method)

 	whenInactive() (wpilib.buttons.trigger.Trigger method)

 	whenPressed() (wpilib.buttons.button.Button method)

 	whenReleased() (wpilib.buttons.button.Button method)

 	whileActive() (wpilib.buttons.trigger.Trigger method)

 	whileHeld() (wpilib.buttons.button.Button method)

 	willRunWhenDisabled() (wpilib.command.command.Command method)

 	wpilib (module)

 	wpilib._impl.dummycamera (module), [1]

 	wpilib.adxl345_i2c (module)

 	wpilib.adxl345_spi (module)

 	wpilib.analogaccelerometer (module)

 	wpilib.analoginput (module)

 	wpilib.analogoutput (module)

 	wpilib.analogpotentiometer (module)

 	wpilib.analogtrigger (module)

 	wpilib.analogtriggeroutput (module)

 	wpilib.builtinaccelerometer (module)

 	wpilib.buttons (module)

 	wpilib.buttons.button (module)

 	wpilib.buttons.internalbutton (module)

 	wpilib.buttons.joystickbutton (module)

 	wpilib.buttons.networkbutton (module)

 	wpilib.buttons.trigger (module)

 	wpilib.canjaguar (module)

 	wpilib.cantalon (module)

 	wpilib.command (module)

 	wpilib.command.command (module)

 	wpilib.command.commandgroup (module)

 	wpilib.command.pidcommand (module)

 	wpilib.command.pidsubsystem (module)

 	wpilib.command.printcommand (module)

 	wpilib.command.scheduler (module)

 	wpilib.command.startcommand (module)

 	wpilib.command.subsystem (module)

 	wpilib.command.waitcommand (module)

 	wpilib.command.waitforchildren (module)

 	wpilib.command.waituntilcommand (module)

 	wpilib.compressor (module)

 	wpilib.controllerpower (module)

 	wpilib.counter (module)

 	wpilib.digitalinput (module)

 	wpilib.digitaloutput (module)

 	wpilib.digitalsource (module)

 	wpilib.doublesolenoid (module)

 	

 	wpilib.driverstation (module)

 	wpilib.encoder (module)

 	wpilib.geartooth (module)

 	wpilib.gyro (module)

 	wpilib.i2c (module)

 	wpilib.interfaces (module)

 	wpilib.interfaces.accelerometer (module)

 	wpilib.interfaces.controller (module)

 	wpilib.interfaces.counterbase (module)

 	wpilib.interfaces.generichid (module)

 	wpilib.interfaces.namedsendable (module)

 	wpilib.interfaces.pidoutput (module)

 	wpilib.interfaces.pidsource (module)

 	wpilib.interfaces.potentiometer (module)

 	wpilib.interfaces.speedcontroller (module)

 	wpilib.interruptablesensorbase (module)

 	wpilib.iterativerobot (module)

 	wpilib.jaguar (module)

 	wpilib.joystick (module)

 	wpilib.livewindow (module)

 	wpilib.livewindowsendable (module)

 	wpilib.motorsafety (module)

 	wpilib.pidcontroller (module)

 	wpilib.powerdistributionpanel (module)

 	wpilib.preferences (module)

 	wpilib.pwm (module)

 	wpilib.relay (module)

 	wpilib.resource (module)

 	wpilib.robotbase (module)

 	wpilib.robotdrive (module)

 	wpilib.robotstate (module)

 	wpilib.safepwm (module)

 	wpilib.samplerobot (module)

 	wpilib.sendable (module)

 	wpilib.sendablechooser (module)

 	wpilib.sensorbase (module)

 	wpilib.servo (module)

 	wpilib.smartdashboard (module)

 	wpilib.solenoid (module)

 	wpilib.solenoidbase (module)

 	wpilib.spi (module)

 	wpilib.talon (module)

 	wpilib.talonsrx (module)

 	wpilib.timer (module)

 	wpilib.ultrasonic (module)

 	wpilib.utility (module)

 	wpilib.victor (module)

 	wpilib.victorsp (module)

 	write() (wpilib.i2c.I2C method)

 	

 	(wpilib.spi.SPI method)

 	writeBulk() (wpilib.i2c.I2C method)

 Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

 _modules/wpilib/powerdistributionpanel.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.powerdistributionpanel

#--
Copyright (c) FIRST 2014. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal

from .sensorbase import SensorBase

__all__ = ["PowerDistributionPanel"]

[docs]class PowerDistributionPanel(SensorBase):
 """Use to obtain voltage, current, temperature, power, and energy from the CAN PDP

 The PDP must be at CAN Address 0
 """

[docs] def getVoltage(self):
 """
 Query the voltage of the PDP

 :returns: The voltage of the PDP in volts
 :rtype: float
 """
 return hal.getPDPVoltage()

[docs] def getTemperature(self):
 """
 Query the temperature of the PDP

 :returns: The temperature of the PDP in degrees Celsius
 :rtype: float
 """
 return hal.getPDPTemperature()

[docs] def getCurrent(self, channel):
 """
 Query the current of a single channel of the PDP

 :returns: The current of one of the PDP channels (channels 0-15)
 in Amperes
 :rtype: float
 """
 SensorBase.checkPDPChannel(channel)
 return hal.getPDPChannelCurrent(channel)

[docs] def getTotalCurrent(self):
 """
 Query the current of all monitored PDP channels (0-15)

 :returns: The total current drawn from the PDP channels in Amperes
 :rtype: float
 """
 return hal.getPDPTotalCurrent()

[docs] def getTotalPower(self):
 """
 Query the total power drawn from the monitored PDP channels

 :returns: The total power drawn from the PDP channels in Watts
 :rtype: float
 """
 return hal.getPDPTotalPower()

[docs] def getTotalEnergy(self):
 """
 Query the total energy drawn from the monitored PDP channels

 :returns: The total energy drawn from the PDP channels in Joules
 :rtype: float
 """
 return hal.getPDPTotalEnergy()

[docs] def resetTotalEnergy(self):
 """
 Reset the total energy to 0
 """
 hal.resetPDPTotalEnergy()

[docs] def clearStickyFaults(self):
 """
 Clear all pdp sticky faults
 """
 hal.clearPDPStickyFaults()

 # Live Window code, only does anything if live window is activated.

 def getSmartDashboardType(self):
 return "PowerDistributionPanel"

 def initTable(self, subtable):
 self.table = subtable
 self.updateTable()

 def getTable(self):
 return self.table

 def updateTable(self):
 if self.table is not None:
 for channel in range(0, 15):
 self.table.putNumber("Chan" + str(channel), self.getCurrent(channel))
 self.table.putNumber("Voltage", self.getVoltage())
 self.table.putNumber("Current", self.getTotalCurrent())

 def startLiveWindowMode(self):
 """
 PDP doesn't have to do anything special when entering the LiveWindow.
 """
 pass

 def stopLiveWindowMode(self):
 """
 PDP doesn't have to do anything special when exiting the LiveWindow.
 """
 pass

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/adxl345_i2c.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.adxl345_i2c

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal

from .interfaces import Accelerometer
from .i2c import I2C
from .sensorbase import SensorBase
from .livewindow import LiveWindow

__all__ = ["ADXL345_I2C"]

[docs]class ADXL345_I2C(SensorBase):
 """
 ADXL345 accelerometer device via i2c
 """

 kAddress = 0x1D
 kPowerCtlRegister = 0x2D
 kDataFormatRegister = 0x31
 kDataRegister = 0x32
 kGsPerLSB = 0.00390625

 kPowerCtl_Link = 0x20
 kPowerCtl_AutoSleep = 0x10
 kPowerCtl_Measure = 0x08
 kPowerCtl_Sleep = 0x04

 kDataFormat_SelfTest = 0x80
 kDataFormat_SPI = 0x40
 kDataFormat_IntInvert = 0x20
 kDataFormat_FullRes = 0x08
 kDataFormat_Justify = 0x04

 Range = Accelerometer.Range

[docs] class Axes:
 kX = 0x00
 kY = 0x02
 kZ = 0x04

 def __init__(self, port, range):
 """Constructor.

 :param port: The I2C port the accelerometer is attached to.
 :param range: The range (+ or -) that the accelerometer will measure.
 """
 self.i2c = I2C(port, self.kAddress)

 # Turn on the measurements
 self.i2c.write(self.kPowerCtlRegister, self.kPowerCtl_Measure)

 self.setRange(range)

 hal.HALReport(hal.HALUsageReporting.kResourceType_ADXL345,
 hal.HALUsageReporting.kADXL345_I2C)

 LiveWindow.addSensor("ADXL345_I2C", port, self)

 # Accelerometer interface

[docs] def setRange(self, range):
 """Set the measuring range of the accelerometer.

 :param range: The maximum acceleration, positive or negative, that
 the accelerometer will measure.
 :type range: :class:`ADXL345_I2C.Range`
 """
 if range == self.Range.k2G:
 value = 0
 elif range == self.Range.k4G:
 value = 1
 elif range == self.Range.k8G:
 value = 2
 elif range == self.Range.k16G:
 value = 3
 else:
 raise ValueError("Invalid range argument '%s'" % range)

 # Specify the data format to read
 self.i2c.write(self.kDataFormatRegister, self.kDataFormat_FullRes | value)

[docs] def getX(self):
 """Get the x axis acceleration

 :returns: The acceleration along the x axis in g-forces
 """
 return self.getAcceleration(self.Axes.kX)

[docs] def getY(self):
 """Get the y axis acceleration

 :returns: The acceleration along the y axis in g-forces
 """
 return self.getAcceleration(self.Axes.kY)

[docs] def getZ(self):
 """Get the z axis acceleration

 :returns: The acceleration along the z axis in g-forces
 """
 return self.getAcceleration(self.Axes.kZ)

[docs] def getAcceleration(self, axis):
 """Get the acceleration of one axis in Gs.

 :param axis: The axis to read from.
 :returns: An object containing the acceleration measured on each axis of the ADXL345 in Gs.
 """
 data = self.i2c.read(self.kDataRegister + axis, 2)
 # Sensor is little endian... swap bytes
 rawAccel = (data[1] << 8) | data[0]
 return rawAccel * self.kGsPerLSB

[docs] def getAccelerations(self):
 """Get the acceleration of all axes in Gs.

 :returns: X,Y,Z tuple of acceleration measured on all axes of the
 ADXL345 in Gs.
 """
 data = self.i2c.read(self.kDataRegister, 6)

 # Sensor is little endian... swap bytes
 rawData = []
 for i in range(3):
 rawData.append((data[i*2+1] << 8) | data[i*2])

 return (rawData[0] * self.kGsPerLSB,
 rawData[1] * self.kGsPerLSB,
 rawData[2] * self.kGsPerLSB)

 # Live Window code, only does anything if live window is activated.

 def getSmartDashboardType(self):
 return "3AxisAccelerometer"

 def initTable(self, subtable):
 self.table = subtable
 self.updateTable()

 def getTable(self):
 return self.table

 def updateTable(self):
 if self.table is not None:
 self.table.putNumber("X", self.getX())
 self.table.putNumber("Y", self.getY())
 self.table.putNumber("Z", self.getZ())

 def startLiveWindowMode(self):
 """
 ADXL345_I2C doesn't have to do anything special when entering the LiveWindow.
 """
 pass

 def stopLiveWindowMode(self):
 """
 ADXL345_I2C doesn't have to do anything special when exiting the LiveWindow.
 """
 pass

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/utility.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.utility

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal

__all__ = ["Utility"]

[docs]class Utility:
 """Contains global utility functions"""

 @staticmethod
[docs] def getFPGAVersion():
 """Return the FPGA Version number.

 :returns: FPGA Version number.
 :rtype: int
 """
 return hal.getFPGAVersion()

 @staticmethod
[docs] def getFPGARevision():
 """Return the FPGA Revision number. The format of the revision is 3
 numbers. The 12 most significant bits are the Major Revision. the
 next 8 bits are the Minor Revision. The 12 least significant bits
 are the Build Number.

 :returns: FPGA Revision number.
 :rtype: int
 """
 return hal.getFPGARevision()

 @staticmethod
[docs] def getFPGATime():
 """Read the microsecond timer from the FPGA.

 :returns: The current time in microseconds according to the FPGA.
 :rtype: int
 """
 return hal.getFPGATime()

 @staticmethod
[docs] def getUserButton():
 """Get the state of the "USER" button on the RoboRIO.

 :returns: True if the button is currently pressed down
 :rtype: bool
 """
 return hal.getFPGAButton()

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/livewindowsendable.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.livewindowsendable

from .sendable import Sendable

__all__ = ["LiveWindowSendable"]

[docs]class LiveWindowSendable(Sendable):
 """A special type of object that can be displayed on the live window.
 """

 def updateTable(self):
 """Update the table for this sendable object with the latest
 values.
 """
 pass

 def startLiveWindowMode(self):
 """Start having this sendable object automatically respond to
 value changes reflect the value on the table.

 Default implementation will add self.valueChanged (if it exists)
 as a table listener on "Value".
 """
 if hasattr(self, "valueChanged"):
 table = getattr(self, "table", None)
 table_listener = getattr(self, "table_listener", None)
 if table is None or table_listener is not None:
 return
 self.table_listener = self.valueChanged
 table.addTableListener(self.valueChanged, True, key="Value")

 def stopLiveWindowMode(self):
 """Stop having this sendable object automatically respond to value
 changes.
 """
 # TODO: Broken, should only remove the listener from "Value" only.
 table = getattr(self, "table", None)
 table_listener = getattr(self, "table_listener", None)
 if table is None or table_listener is None:
 return
 table.removeTableListener(table_listener)
 self.table_listener = None

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/builtinaccelerometer.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.builtinaccelerometer

#--
Copyright (c) FIRST 2014. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in $(WIND_BASE)/WPILib.
#--

import hal

from .interfaces import Accelerometer
from .livewindowsendable import LiveWindowSendable
from .livewindow import LiveWindow

__all__ = ["BuiltInAccelerometer"]

[docs]class BuiltInAccelerometer(LiveWindowSendable):
 """Built-in accelerometer device

 This class allows access to the RoboRIO's internal accelerometer.
 """

 Range = Accelerometer.Range

 def __init__(self, range=Accelerometer.Range.k8G):
 """Constructor.

 :param range: The range the accelerometer will measure. Defaults to
 +/-8g if unspecified.
 :type range: :class:`.Accelerometer.Range`
 """
 self.setRange(range)
 hal.HALReport(hal.HALUsageReporting.kResourceType_Accelerometer, 0, 0,
 "Built-in accelerometer")
 LiveWindow.addSensor("BuiltInAccel", 0, self)

[docs] def setRange(self, range):
 """Set the measuring range of the accelerometer.

 :param range: The maximum acceleration, positive or negative, that
 the accelerometer will measure.
 :type range: :class:`BuiltInAccelerometer.Range`
 """

 hal.setAccelerometerActive(False)

 if range == self.Range.k2G:
 hal.setAccelerometerRange(hal.AccelerometerRange.kRange_2G)
 elif range == self.Range.k4G:
 hal.setAccelerometerRange(hal.AccelerometerRange.kRange_4G)
 elif range == self.Range.k8G:
 hal.setAccelerometerRange(hal.AccelerometerRange.kRange_8G)
 elif range == self.Range.k16G:
 raise ValueError("16G range not supported (use k2G, k4G, or k8G)")
 else:
 raise ValueError("Invalid range argument '%s'" % range)

 hal.setAccelerometerActive(True)

[docs] def getX(self):
 """
 :returns: The acceleration of the RoboRIO along the X axis in
 g-forces
 :rtype: float
 """
 return hal.getAccelerometerX()

[docs] def getY(self):
 """
 :returns: The acceleration of the RoboRIO along the Y axis in
 g-forces
 :rtype: float
 """
 return hal.getAccelerometerY()

[docs] def getZ(self):
 """
 :returns: The acceleration of the RoboRIO along the Z axis in
 g-forces
 :rtype: float
 """
 return hal.getAccelerometerZ()

 def getSmartDashboardType(self):
 return "3AxisAccelerometer"

 def updateTable(self):
 table = self.getTable()
 if table is not None:
 table.putNumber("X", self.getX())
 table.putNumber("Y", self.getY())
 table.putNumber("Z", self.getZ())

 def startLiveWindowMode(self): # pragma: no cover
 pass

 def stopLiveWindowMode(self): # pragma: no cover
 pass

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/command/scheduler.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.command.scheduler

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal

from ..sendable import Sendable

import collections
import warnings

__all__ = ["Scheduler"]

[docs]class Scheduler(Sendable):
 """The Scheduler is a singleton which holds the top-level running commands.
 It is in charge of both calling the command's run() method and to make
 sure that there are no two commands with conflicting requirements running.

 It is fine if teams wish to take control of the Scheduler themselves, all
 that needs to be done is to call Scheduler.getInstance().run() often to
 have Commands function correctly. However, this is already done for you
 if you use the CommandBased Robot template.

 .. seealso:: :class:`.Command`
 """

 @staticmethod
 def _reset():
 try:
 del Scheduler.instance
 except:
 pass

 @staticmethod
[docs] def getInstance():
 """Returns the Scheduler, creating it if one does not exist.

 :returns: the Scheduler
 """
 if not hasattr(Scheduler, "instance"):
 Scheduler.instance = Scheduler()
 return Scheduler.instance

 def __init__(self):
 """Instantiates a Scheduler.
 """
 hal.HALReport(hal.HALUsageReporting.kResourceType_Command,
 hal.HALUsageReporting.kCommand_Scheduler)

 # Active Commands
 self.commandTable = collections.OrderedDict()
 # The set of all Subsystems
 self.subsystems = set()
 # Whether or not we are currently adding a command
 self.adding = False
 # Whether or not we are currently disabled
 self.disabled = False
 # A list of all Commands which need to be added
 self.additions = []
 # A list of all Buttons. It is created lazily.
 self.buttons = []
 self.runningCommandsChanged = False

[docs] def add(self, command):
 """Adds the command to the Scheduler. This will not add the
 :class:`.Command` immediately, but will instead wait for the proper time in
 the :meth:`run` loop before doing so. The command returns immediately
 and does nothing if given null.

 Adding a :class:`.Command` to the :class:`.Scheduler` involves the
 Scheduler removing any Command which has shared requirements.

 :param command: the command to add
 """
 if command is not None:
 self.additions.append(command)

[docs] def addButton(self, button):
 """Adds a button to the Scheduler. The Scheduler will poll
 the button during its :meth:`run`.

 :param button: the button to add
 """
 self.buttons.append(button)

 def _add(self, command):
 """Adds a command immediately to the Scheduler. This should only be
 called in the :meth:`run` loop. Any command with conflicting
 requirements will be removed, unless it is uninterruptable. Giving
 None does nothing.

 :param command: the :class:`.Command` to add
 """
 if command is None:
 return

 # Check to make sure no adding during adding
 if self.adding:
 warnings.warn("Can not start command from cancel method. Ignoring: %s" % command, RuntimeWarning)
 return

 # Only add if not already in
 if command not in self.commandTable:
 # Check that the requirements can be had
 for lock in command.getRequirements():
 if (lock.getCurrentCommand() is not None and
 not lock.getCurrentCommand().isInterruptible()):
 return

 # Give it the requirements
 self.adding = True
 for lock in command.getRequirements():
 if lock.getCurrentCommand() is not None:
 lock.getCurrentCommand().cancel()
 self.remove(lock.getCurrentCommand())
 lock.setCurrentCommand(command)
 self.adding = False

 # Add it to the list
 self.commandTable[command] = 1

 self.runningCommandsChanged = True

 command.startRunning()

[docs] def run(self):
 """Runs a single iteration of the loop. This method should be called
 often in order to have a functioning Command system. The loop has five
 stages:

 - Poll the Buttons
 - Execute/Remove the Commands
 - Send values to SmartDashboard
 - Add Commands
 - Add Defaults
 """

 self.runningCommandsChanged = False

 if self.disabled:
 return # Don't run when disabled

 # Get button input (going backwards preserves button priority)
 for button in reversed(self.buttons):
 button()

 # Loop through the commands
 for command in list(self.commandTable):
 if not command.run():
 self.remove(command)
 self.runningCommandsChanged = True

 # Add the new things
 for command in self.additions:
 self._add(command)
 self.additions.clear()

 # Add in the defaults
 for lock in self.subsystems:
 if lock.getCurrentCommand() is None:
 self._add(lock.getDefaultCommand())
 lock.confirmCommand()

 self.updateTable()

[docs] def registerSubsystem(self, system):
 """Registers a :class:`.Subsystem` to this Scheduler, so that the
 Scheduler might know if a default Command needs to be
 run. All :class:`.Subsystem` objects should call this.

 :param system: the system
 """
 if system is not None:
 self.subsystems.add(system)

[docs] def remove(self, command):
 """Removes the :class:`.Command` from the Scheduler.

 :param command: the command to remove
 """
 if command is None or command not in self.commandTable:
 return
 del self.commandTable[command]
 for reqt in command.getRequirements():
 reqt.setCurrentCommand(None)
 command.removed()

[docs] def removeAll(self):
 """Removes all commands
 """
 # TODO: Confirm that this works with "uninteruptible" commands
 for command in self.commandTable:
 for reqt in command.getRequirements():
 reqt.setCurrentCommand(None)
 command.removed()
 self.commandTable.clear()

[docs] def disable(self):
 """Disable the command scheduler.
 """
 self.disabled = True

[docs] def enable(self):
 """Enable the command scheduler.
 """
 self.disabled = False

[docs] def getName(self):
 return "Scheduler"

[docs] def getType(self):
 return "Scheduler"

 def initTable(self, subtable):
 self.table = subtable
 from networktables import StringArray, NumberArray
 self.commands = StringArray()
 self.ids = NumberArray()
 self.toCancel = NumberArray()

 self.table.putValue("Names", self.commands)
 self.table.putValue("Ids", self.ids)
 self.table.putValue("Cancel", self.toCancel)

 def updateTable(self):
 table = self.getTable()
 if table is None:
 return
 # Get the commands to cancel
 self.table.retrieveValue("Cancel", self.toCancel)
 if self.toCancel:
 for command in self.commandTable:
 if id(command) in self.toCancel:
 command.cancel()
 self.toCancel.clear()
 self.table.putValue("Cancel", self.toCancel)

 if self.runningCommandsChanged:
 self.commands.clear()
 self.ids.clear()
 # Set the the running commands
 for command in self.commandTable:
 self.commands.add(command.getName())
 self.ids.add(id(command))
 self.table.putValue("Names", self.commands)
 self.table.putValue("Ids", self.ids)

 def getSmartDashboardType(self):
 return "Scheduler"

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/interruptablesensorbase.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.interruptablesensorbase

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal
import weakref

from .resource import Resource
from .sensorbase import SensorBase

__all__ = ["InterruptableSensorBase"]

[docs]class InterruptableSensorBase(SensorBase):
 """Base for sensors to be used with interrupts"""

 # Resource manager
 interrupts = Resource(8)

 def __init__(self):
 """Create a new InterrupatableSensorBase"""
 # The interrupt resource
 self._interrupt = None
 self._interrupt_finalizer = None
 # Flags if the interrupt being allocated is synchronous
 self.isSynchronousInterrupt = False
 # The index of the interrupt
 self.interruptIndex = None

[docs] def getAnalogTriggerForRouting(self):
 raise NotImplementedError

[docs] def getChannelForRouting(self):
 raise NotImplementedError

[docs] def getModuleForRouting(self):
 raise NotImplementedError

 @property
[docs] def interrupt(self):
 if self._interrupt_finalizer is None:
 return None
 if not self._interrupt_finalizer.alive:
 return None
 return self._interrupt

[docs] def requestInterrupts(self, handler=None):
 """Request one of the 8 interrupts asynchronously on this digital
 input.

 :param handler: (optional)
 The function that will be called whenever there is an interrupt
 on this device. Request interrupts in synchronous mode where the
 user program interrupt handler will be called when an interrupt
 occurs. The default is interrupt on rising edges only. If not
 specified, the user program will have to explicitly wait for the
 interrupt to occur using waitForInterrupt.
 """
 if self.interrupt is not None:
 raise ValueError("The interrupt has already been allocated")

 self.allocateInterrupts(handler is not None)

 assert self.interrupt is not None

 hal.requestInterrupts(self.interrupt, self.getModuleForRouting(),
 self.getChannelForRouting(),
 1 if self.getAnalogTriggerForRouting() else 0)
 self.setUpSourceEdge(True, False)
 if handler is not None:
 hal.attachInterruptHandler(self.interrupt, handler)

[docs] def allocateInterrupts(self, watcher):
 """Allocate the interrupt

 :param watcher: True if the interrupt should be in synchronous mode
 where the user program will have to explicitly wait for the interrupt
 to occur.
 """
 if self.interrupt is not None:
 raise ValueError("The interrupt has already been allocated")

 try:
 self.interruptIndex = \
 InterruptableSensorBase.interrupts.allocate(self)
 except IndexError as e:
 raise IndexError("No interrupts are left to be allocated") from e

 self.isSynchronousInterrupt = watcher
 self._interrupt = hal.initializeInterrupts(self.interruptIndex,
 1 if watcher else 0)
 self._interrupt_finalizer = weakref.finalize(self, hal.cleanInterrupts,
 self._interrupt)

[docs] def cancelInterrupts(self):
 """Cancel interrupts on this device. This deallocates all the
 chipobject structures and disables any interrupts.
 """
 if self.interrupt is None:
 raise ValueError("The interrupt is not allocated.")
 self._interrupt_finalizer()
 InterruptableSensorBase.interrupts.free(self.interruptIndex)
 self.interruptIndex = None

[docs] def waitForInterrupt(self, timeout, ignorePrevious=True):
 """In synchronous mode, wait for the defined interrupt to occur.
 You should **NOT** attempt to read the sensor from another thread
 while waiting for an interrupt. This is not threadsafe, and can cause
 memory corruption

 :param timeout: Timeout in seconds
 :param ignorePrevious: If True (default), ignore interrupts that
 happened before waitForInterrupt was called.
 """
 if self.interrupt is None:
 raise ValueError("The interrupt is not allocated.")
 return hal.waitForInterrupt(self.interrupt, timeout, ignorePrevious)

[docs] def enableInterrupts(self):
 """Enable interrupts to occur on this input. Interrupts are disabled
 when the RequestInterrupt call is made. This gives time to do the
 setup of the other options before starting to field interrupts.
 """
 if self.interrupt is None:
 raise ValueError("The interrupt is not allocated.")
 if self.isSynchronousInterrupt:
 raise ValueError("You do not need to enable synchronous interrupts")
 hal.enableInterrupts(self.interrupt)

[docs] def disableInterrupts(self):
 """Disable Interrupts without without deallocating structures."""
 if self.interrupt is None:
 raise ValueError("The interrupt is not allocated.")
 if self.isSynchronousInterrupt:
 raise ValueError("You can not disable synchronous interrupts")
 hal.disableInterrupts(self.interrupt)

[docs] def readRisingTimestamp(self):
 """Return the timestamp for the rising interrupt that occurred most
 recently. This is in the same time domain as getClock(). The
 rising-edge interrupt should be enabled with setUpSourceEdge.

 :returns: Timestamp in seconds since boot.
 """
 if self.interrupt is None:
 raise ValueError("The interrupt is not allocated.")
 return hal.readRisingTimestamp(self.interrupt)

[docs] def readFallingTimestamp(self):
 """Return the timestamp for the falling interrupt that occurred most
 recently. This is in the same time domain as getClock(). The
 falling-edge interrupt should be enabled with setUpSourceEdge.

 :returns: Timestamp in seconds since boot.
 """
 if self.interrupt is None:
 raise ValueError("The interrupt is not allocated.")
 return hal.readFallingTimestamp(self.interrupt)

[docs] def setUpSourceEdge(self, risingEdge, fallingEdge):
 """Set which edge to trigger interrupts on

 :param risingEdge: True to interrupt on rising edge
 :param fallingEdge: True to interrupt on falling edge
 """
 if self.interrupt is not None:
 hal.setInterruptUpSourceEdge(self.interrupt,
 1 if risingEdge else 0,
 1 if fallingEdge else 0)
 else:
 raise ValueError("You must call RequestInterrupts before setUpSourceEdge")

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/command/pidsubsystem.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.command.pidsubsystem

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

from .subsystem import Subsystem

from ..pidcontroller import PIDController

__all__ = ["PIDSubsystem"]

[docs]class PIDSubsystem(Subsystem):
 """This class is designed to handle the case where there is a Subsystem
 which uses a single {@link PIDController} almost constantly (for instance,
 an elevator which attempts to stay at a constant height).

 It provides some convenience methods to run an internal PIDController.
 It also allows access to the internal PIDController in order to give total
 control to the programmer.
 """

 def __init__(self, p, i, d, period=None, f=0.0, name=None):
 """Instantiates a PIDSubsystem that will use the given p, i and d
 values.
 It will use the class name as its name unless otherwise specified.
 It will also space the time between PID loop calculations to be equal
 to the given period.

 :param p: the proportional value
 :param i: the integral value
 :param d: the derivative value
 :param period: the time (in seconds) between calculations (optional)
 :param f: the feed forward value
 :param name: the name (optional)
 """
 super().__init__(name)
 if period is None:
 period = PIDController.kDefaultPeriod
 self.controller = PIDController(p, i, d, f, self.returnPIDInput,
 self.usePIDOutput, period)

[docs] def getPIDController(self):
 """Returns the PIDController used by this PIDSubsystem.
 Use this if you would like to fine tune the pid loop.

 Notice that calling :meth:`setSetpoint` on the controller
 will not result in the setpoint being trimmed to be in
 the range defined by :meth:`setSetpointRange`.

 :returns: the :class:`.PIDController` used by this PIDSubsystem
 """
 return self.controller

[docs] def setSetpointRelative(self, deltaSetpoint):
 """Adds the given value to the setpoint.
 If :meth:`setRange` was used, then the bounds will still be honored by
 this method.

 :param deltaSetpoint: the change in the setpoint
 """
 self.setSetpoint(self.getSetpoint() + deltaSetpoint)

[docs] def setSetpoint(self, setpoint):
 """Sets the setpoint to the given value. If :meth:`setRange` was called,
 then the given setpoint will be trimmed to fit within the range.

 :param setpoint: the new setpoint
 """
 self.controller.setSetpoint(setpoint)

[docs] def getSetpoint(self):
 """Returns the setpoint.

 :returns: the setpoint
 """
 return self.controller.getSetpoint()

[docs] def getPosition(self):
 """Returns the current position

 :returns: the current position
 """
 return self.returnPIDInput()

[docs] def setInputRange(self, minimumInput, maximumInput):
 """Sets the maximum and minimum values expected from the input.

 :param minimumInput: the minimum value expected from the input
 :param maximumInput: the maximum value expected from the output
 """
 self.controller.setInputRange(minimumInput, maximumInput)

[docs] def setOutputRange(self, minimumOutput, maximumOutput):
 """Sets the maximum and minimum values to write.

 :param minimumOutput: the minimum value to write to the output
 :param maximumOutput: the maximum value to write to the output
 """
 self.controller.setOutputRange(minimumOutput, maximumOutput)

[docs] def setAbsoluteTolerance(self, t):
 """Set the absolute error which is considered tolerable for use with
 OnTarget.

 :param t: The absolute tolerance (same range as the PIDInput values)
 """
 self.controller.setAbsoluteTolerance(t)

[docs] def setPercentTolerance(self, p):
 """Set the percentage error which is considered tolerable for use with
 OnTarget.

 :param p: The percentage tolerance (value of 15.0 == 15 percent)
 """
 self.controller.setPercentTolerance(p)

[docs] def onTarget(self):
 """Return True if the error is within the percentage of the total
 input range, determined by setAbsoluteTolerance or setPercentTolerance.
 This assumes that the maximum and minimum input were set using
 setInput.

 :returns: True if the error is less than the tolerance
 """
 return self.controller.onTarget()

[docs] def returnPIDInput(self):
 """Returns the input for the pid loop.

 It returns the input for the pid loop, so if this command was based
 off of a gyro, then it should return the angle of the gyro

 All subclasses of PIDSubsystem must override this method.

 This method will be called in a different thread then the Scheduler
 thread.

 :returns: the value the pid loop should use as input
 """
 raise NotImplementedError

[docs] def usePIDOutput(self, output):
 """Uses the value that the pid loop calculated. The calculated value
 is the "output" parameter.
 This method is a good time to set motor values, maybe something along
 the lines of `driveline.tankDrive(output, -output)`.

 All subclasses of PIDSubsystem should override this method.

 This method will be called in a different thread then the Scheduler
 thread.

 :param output: the value the pid loop calculated
 """
 pass

[docs] def enable(self):
 """Enables the internal :class:`.PIDController`
 """
 self.controller.enable()

[docs] def disable(self):
 """Disables the internal :class:`.PIDController`
 """
 self.controller.disable()

 def getSmartDashboardType(self):
 return "PIDSubsystem"

 def initTable(self, table):
 self.controller.initTable(table)
 super().initTable(table)

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/command/printcommand.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.command.printcommand

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

from .command import Command

__all__ = ["PrintCommand"]

[docs]class PrintCommand(Command):
 """A PrintCommand is a command which prints out a string when it is
 initialized, and then immediately finishes.

 It is useful if you want a :class:`.CommandGroup` to print out a string when it
 reaches a certain point.
 """

 def __init__(self, message):
 """Instantiates a PrintCommand which will print the given message when
 it is run.

 :param message: the message to print
 """
 super().__init__('Print("%s")' % message)
 self.message = message

[docs] def initialize(self):
 print(self.message)

[docs] def isFinished(self):
 return True

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/command/waitforchildren.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.command.waitforchildren

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

from .command import Command

__all__ = ["WaitForChildren"]

[docs]class WaitForChildren(Command):
 """This command will only finish if whatever :class:`.CommandGroup` it
 is in has no active children. If it is not a part of a CommandGroup,
 then it will finish immediately. If it is itself an active child, then
 the CommandGroup will never end.

 This class is useful for the situation where you want to allow anything
 running in parallel to finish, before continuing in the main CommandGroup
 sequence.
 """

[docs] def isFinished(self):
 return self.getGroup() is None or not self.getGroup().children

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/command/subsystem.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.command.subsystem

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

from .scheduler import Scheduler
from ..sendable import Sendable

__all__ = ["Subsystem"]

[docs]class Subsystem(Sendable):
 """This class defines a major component of the robot.

 A good example of a subsystem is the driveline, or a claw if the robot has
 one.

 All motors should be a part of a subsystem. For instance, all the wheel
 motors should be a part of some kind of "Driveline" subsystem.

 Subsystems are used within the command system as requirements for Command.
 Only one command which requires a subsystem can run at a time. Also,
 subsystems can have default commands which are started if there is no
 command running which requires this subsystem.

 .. seealso:: :class:`.Command`
 """

 def __init__(self, name=None):
 """Creates a subsystem.

 :param name: the name of the subsystem; if None, it will be set to the
 name to the name of the class.
 """
 # The name
 if name is None:
 self.name = self.__class__.__name__
 else:
 self.name = name
 Scheduler.getInstance().registerSubsystem(self)

 # Whether or not getDefaultCommand() was called
 self.initializedDefaultCommand = False
 # The current command
 self.currentCommand = None
 self.currentCommandChanged = True

 # The default command
 self.defaultCommand = None

[docs] def initDefaultCommand(self):
 """Initialize the default command for a subsystem
 By default subsystems have no default command, but if they do, the
 default command is set with this method. It is called on all
 Subsystems by CommandBase in the users program after all the
 Subsystems are created.
 """
 pass

[docs] def setDefaultCommand(self, command):
 """Sets the default command. If this is not called or is called with
 None, then there will be no default command for the subsystem.

 :param command: the default command (or None if there should be none)

 .. warning:: This should NOT be called in a constructor if the subsystem
 is a singleton.
 """
 if command is None:
 self.defaultCommand = None
 else:
 if self not in command.getRequirements():
 raise ValueError("A default command must require the subsystem")
 self.defaultCommand = command
 table = self.getTable()
 if table is not None:
 if self.defaultCommand is not None:
 table.putBoolean("hasDefault", True)
 table.putString("default", self.defaultCommand.getName())
 else:
 table.putBoolean("hasDefault", False)

[docs] def getDefaultCommand(self):
 """Returns the default command (or None if there is none).

 :returns: the default command
 """
 if not self.initializedDefaultCommand:
 self.initializedDefaultCommand = True
 self.initDefaultCommand()
 return self.defaultCommand

[docs] def setCurrentCommand(self, command):
 """Sets the current command

 :param command: the new current command
 """
 self.currentCommand = command
 self.currentCommandChanged = True

[docs] def confirmCommand(self):
 """Call this to alert Subsystem that the current command is actually
 the command. Sometimes, the Subsystem is told that it has no command
 while the Scheduler is going through the loop, only to be soon after
 given a new one. This will avoid that situation.
 """
 if self.currentCommandChanged:
 table = self.getTable()
 if table is not None:
 if self.currentCommand is not None:
 table.putBoolean("hasCommand", True)
 table.putString("command", self.currentCommand.getName())
 else:
 table.putBoolean("hasCommand", False)
 self.currentCommandChanged = False

[docs] def getCurrentCommand(self):
 """Returns the command which currently claims this subsystem.

 :returns: the command which currently claims this subsystem
 """
 return self.currentCommand

 def __str__(self):
 return self.getName()

[docs] def getName(self):
 """Returns the name of this subsystem, which is by default the class
 name.

 :returns: the name of this subsystem
 """
 return self.name

 def getSmartDashboardType(self):
 return "Subsystem"

 def initTable(self, table):
 super().initTable(table)
 if table is not None:
 if self.defaultCommand is not None:
 table.putBoolean("hasDefault", True)
 table.putString("default", self.defaultCommand.getName())
 else:
 table.putBoolean("hasDefault", False)

 if self.currentCommand is not None:
 table.putBoolean("hasCommand", True)
 table.putString("command", self.currentCommand.getName())
 else:
 table.putBoolean("hasCommand", False)

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/command/commandgroup.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.command.commandgroup

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

from .command import Command

__all__ = ["CommandGroup"]

[docs]class CommandGroup(Command):
 """A CommandGroup is a list of commands which are executed in sequence.

 Commands in a CommandGroup are added using the :meth:`addSequential` method
 and are called sequentially. CommandGroups are themselves Commands and can
 be given to other CommandGroups.

 CommandGroups will carry all of the requirements of their subcommands.
 Additional requirements can be specified by calling :meth:`requires`
 normally in the constructor.

 CommandGroups can also execute commands in parallel, simply by adding them
 using addParallel(...).

 .. seealso:: :class:`.Command`, :class:`Subsystem`
 """

[docs] class Entry:
 IN_SEQUENCE = 0
 BRANCH_PEER = 1
 BRANCH_CHILD = 2

 def __init__(self, command, state, timeout):
 self.command = command
 self.state = state
 self.timeout = timeout

[docs] def isTimedOut(self):
 if self.timeout is None:
 return False
 else:
 time = self.command.timeSinceInitialized()
 if time == 0:
 return False
 else:
 return time >= self.timeout

 def __init__(self, name=None):
 """Creates a new CommandGroup with the given name.

 :param name: the name for this command group (optional). If None,
 the name of this command will be set to its class name.
 """
 super().__init__(name)
 # The commands in this group (stored in entries)
 self.commands = []
 # The active children in this group (stored in entries)
 self.children = []
 # The current command, None signifies that none have been run
 self.currentCommandIndex = None

[docs] def addSequential(self, command, timeout=None):
 """Adds a new Command to the group (with an optional timeout).
 The Command will be started after all the previously added Commands.

 Once the Command is started, it will be run until it finishes or the
 time expires, whichever is sooner (if a timeout is provided). Note
 that the given Command will have no knowledge that it is on a timer.

 Note that any requirements the given Command has will be added to the
 group. For this reason, a Command's requirements can not be changed
 after being added to a group.

 It is recommended that this method be called in the constructor.

 :param command: The Command to be added
 :param timeout: The timeout (in seconds) (optional)
 """
 with self.mutex:
 if self.locked:
 raise ValueError("Can not add new command to command group")
 if command is None:
 raise ValueError("Given None command")
 if timeout is not None and timeout < 0:
 raise ValueError("Can not be given a negative timeout")

 command.setParent(self)

 self.commands.append(CommandGroup.Entry(command, CommandGroup.Entry.IN_SEQUENCE, timeout))
 for reqt in command.getRequirements():
 self.requires(reqt)

[docs] def addParallel(self, command, timeout=None):
 """Adds a new child Command to the group (with an optional timeout).
 The Command will be started after all the previously added Commands.

 Once the Command is started, it will run until it finishes, is
 interrupted, or the time expires (if a timeout is provided), whichever
 is sooner. Note that the given Command will have no knowledge that it
 is on a timer.

 Instead of waiting for the child to finish, a CommandGroup will have it
 run at the same time as the subsequent Commands. The child will run
 until either it finishes, the timeout expires, a new child with
 conflicting requirements is started, or the main sequence runs a
 Command with conflicting requirements. In the latter two cases, the
 child will be canceled even if it says it can't be interrupted.

 Note that any requirements the given Command has will be added to the
 group. For this reason, a Command's requirements can not be changed
 after being added to a group.

 It is recommended that this method be called in the constructor.

 :param command: The command to be added
 :param timeout: The timeout (in seconds) (optional)
 """
 with self.mutex:
 if self.locked:
 raise ValueError("Can not add new command to command group")
 if command is None:
 raise ValueError("Given null command")
 if timeout is not None and timeout < 0:
 raise ValueError("Can not be given a negative timeout")

 command.setParent(self)

 self.commands.append(CommandGroup.Entry(command, CommandGroup.Entry.BRANCH_CHILD, timeout))
 for reqt in command.getRequirements():
 self.requires(reqt)

 def _initialize(self):
 self.currentCommandIndex = None

 def _execute(self):
 entry = None
 cmd = None
 firstRun = False
 if self.currentCommandIndex is None:
 firstRun = True
 self.currentCommandIndex = 0

 while self.currentCommandIndex < len(self.commands):
 if cmd is not None:
 if entry.isTimedOut():
 cmd._cancel()
 if cmd.run():
 break
 else:
 cmd.removed()
 self.currentCommandIndex += 1
 firstRun = True
 cmd = None
 continue

 entry = self.commands[self.currentCommandIndex]
 cmd = None

 if entry.state == CommandGroup.Entry.IN_SEQUENCE:
 cmd = entry.command
 if firstRun:
 cmd.startRunning()
 self.cancelConflicts(cmd)
 firstRun = False
 elif entry.state == CommandGroup.Entry.BRANCH_PEER:
 self.currentCommandIndex += 1
 entry.command.start()
 elif entry.state == CommandGroup.Entry.BRANCH_CHILD:
 self.currentCommandIndex += 1
 self.cancelConflicts(entry.command)
 entry.command.startRunning()
 self.children.append(entry)

 # Run Children
 toremove = []
 for i, entry in enumerate(self.children):
 child = entry.command
 if entry.isTimedOut():
 child._cancel()
 if not child.run():
 child.removed()
 toremove.append(i)
 for i in reversed(toremove):
 del self.children[i]

 def _end(self):
 # Theoretically, we don't have to check this, but we do if teams
 # override the isFinished method
 if self.currentCommandIndex is not None and self.currentCommandIndex < len(self.commands):
 cmd = self.commands[self.currentCommandIndex].command
 cmd._cancel()
 cmd.removed()

 for entry in self.children:
 cmd = entry.command
 cmd._cancel()
 cmd.removed()
 self.children.clear()

 def _interrupted(self):
 self._end()

[docs] def isFinished(self):
 """Returns True if all the Commands in this group
 have been started and have finished.

 Teams may override this method, although they should probably
 reference super().isFinished() if they do.

 :returns: whether this CommandGroup is finished
 """
 if self.currentCommandIndex is None:
 return False
 return (self.currentCommandIndex >= len(self.commands) and
 not self.children)

[docs] def initialize(self):
 pass # Can be overwritten by teams

[docs] def execute(self):
 pass # Can be overwritten by teams

[docs] def end(self):
 pass # Can be overwritten by teams

[docs] def interrupted(self):
 pass # Can be overwritten by teams

[docs] def isInterruptible(self):
 """Returns whether or not this group is interruptible.
 A command group will be uninterruptible if setInterruptable(False)
 was called or if it is currently running an uninterruptible command
 or child.

 :returns: whether or not this CommandGroup is interruptible.
 """
 with self.mutex:
 if not super().isInterruptible():
 return False

 if (self.currentCommandIndex is not None and
 self.currentCommandIndex < len(self.commands)):
 cmd = self.commands[self.currentCommandIndex].command
 if not cmd.isInterruptible():
 return False

 for entry in self.children:
 if not entry.command.isInterruptible():
 return False

 return True

[docs] def cancelConflicts(self, command):
 toremove = []
 for i, entry in enumerate(self.children):
 child = entry.command

 for requirement in command.getRequirements():
 if child.doesRequire(requirement):
 child._cancel()
 child.removed()
 toremove.append(i)
 break

 for i in reversed(toremove):
 del self.children[i]

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/command/command.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.command.command

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

from .scheduler import Scheduler
from ..robotstate import RobotState
from ..sendable import Sendable
from ..timer import Timer

import threading

__all__ = ["Command"]

[docs]class Command(Sendable):
 """The Command class is at the very core of the entire command framework.
 Every command can be started with a call to start().
 Once a command is started it will call :meth:`initialize`, and then
 will repeatedly call :meth:`execute` until :meth:`isFinished` returns True.
 Once it does, :meth:`end` will be called.

 However, if at any point while it is running :meth:`cancel` is called, then
 the command will be stopped and :meth:`interrupted` will be called.

 If a command uses a :class:`.Subsystem`, then it should specify that it
 does so by calling the :meth:`requires` method in its constructor.
 Note that a Command may have multiple requirements, and :meth:`requires`
 should be called for each one.

 If a command is running and a new command with shared requirements is
 started, then one of two things will happen. If the active command is
 interruptible, then :meth:`cancel` will be called and the command will be removed
 to make way for the new one. If the active command is not interruptible,
 the other one will not even be started, and the active one will continue
 functioning.

 .. seealso:: :class:`.Subsystem`, :class:`.CommandGroup`
 """

 def __init__(self, name=None, timeout=None):
 """Creates a new command.

 :param name: The name for this command; if unspecified or None,
 The name of this command will be set to its class name.
 :param timeout: The time (in seconds) before this command "times out".
 Default is no timeout. See isTimedOut().
 """
 self.mutex = threading.RLock()

 # The name of this command
 if name is None:
 self.name = self.__class__.__name__
 else:
 self.name = name

 # The time (in seconds) before this command "times out" (or None if no
 # timeout)
 if timeout is not None and timeout < 0:
 raise ValueError("Timeout must not be negative")
 self.timeout = timeout

 # The time since this command was initialized
 self.startTime = None
 # Whether or not this command has been initialized
 self.initialized = False
 # The requirements (or null if no requirements)
 self.requirements = set()
 # Whether or not it is running
 self.running = False
 # Whether or not it is interruptible
 self.interruptible = True
 # Whether or not it has been canceled
 self.canceled = False
 # Whether or not it has been locked
 self.locked = False
 # Whether this command should run when the robot is disabled
 self.runWhenDisabled = False
 # The CommandGroup this is in
 self.parent = None

[docs] def getName(self):
 """Returns the name of this command. If no name was specified
 in the constructor, then the default is the name of the class.

 :returns: the name of this command
 """
 return self.name

[docs] def setTimeout(self, seconds):
 """Sets the timeout of this command.

 :param seconds: the timeout (in seconds)

 :see: :meth:`isTimedOut`
 """
 if seconds < 0:
 raise ValueError("Seconds must be positive.")
 with self.mutex:
 self.timeout = seconds

[docs] def timeSinceInitialized(self):
 """Returns the time since this command was initialized (in seconds).
 This function will work even if there is no specified timeout.

 :returns: the time since this command was initialized (in seconds).
 """
 with self.mutex:
 if self.startTime is None:
 return 0
 else:
 return Timer.getFPGATimestamp() - self.startTime

[docs] def requires(self, subsystem):
 """This method specifies that the given Subsystem is used by this
 command. This method is crucial to the functioning of the Command
 System in general.

 Note that the recommended way to call this method is in the
 constructor.

 :param subsystem: the :class:`.Subsystem` required
 """
 with self.mutex:
 if self.locked:
 raise ValueError("Can not add new requirement to command")
 if subsystem is None:
 raise ValueError("Subsystem must not be None.")
 self.requirements.add(subsystem)

[docs] def removed(self):
 """Called when the command has been removed. This will call
 :meth:`interrupted` or :meth:`end`.
 """
 with self.mutex:
 if self.initialized:
 if self.isCanceled():
 self.interrupted()
 self._interrupted()
 else:
 self.end()
 self._end()
 self.initialized = False
 self.canceled = False
 self.running = False
 table = self.getTable()
 if table is not None:
 table.putBoolean("running", False)

[docs] def run(self):
 """The run method is used internally to actually run the commands.

 :returns: whether or not the command should stay within the Scheduler.
 """
 with self.mutex:
 if not self.runWhenDisabled and self.parent is None and RobotState.isDisabled():
 self.cancel()
 if self.isCanceled():
 return False
 if not self.initialized:
 self.initialized = True
 self.startTiming()
 self._initialize()
 self.initialize()
 self._execute()
 self.execute()
 return not self.isFinished()

[docs] def initialize(self):
 """The initialize method is called the first time this Command is run
 after being started.
 """
 pass #raise NotImplementedError

 def _initialize(self):
 """A shadow method called before initialize()."""
 pass

[docs] def execute(self):
 """The execute method is called repeatedly until this Command either
 finishes or is canceled.
 """
 pass #raise NotImplementedError

 def _execute(self):
 """A shadow method called before execute()."""
 pass

[docs] def isFinished(self):
 """Returns whether this command is finished.
 If it is, then the command will be removed and end() will be called.

 It may be useful for a team to reference the isTimedOut() method
 for time-sensitive commands.

 :returns: whether this command is finished.
 :see: :meth:`isTimedOut`
 """
 raise NotImplementedError

[docs] def end(self):
 """Called when the command ended peacefully. This is where you may
 want to wrap up loose ends, like shutting off a motor that was being
 used in the command.
 """
 pass #raise NotImplementedError

 def _end(self):
 """A shadow method called after end()."""
 pass

[docs] def interrupted(self):
 """Called when the command ends because somebody called cancel() or
 another command shared the same requirements as this one, and booted
 it out.

 This is where you may want to wrap up loose ends, like shutting off a
 motor that was being used in the command.

 Generally, it is useful to simply call the end() method within this
 method.
 """
 pass #raise NotImplementedError

 def _interrupted(self):
 """A shadow method called after interrupted()."""
 pass

[docs] def startTiming(self):
 """Called to indicate that the timer should start.
 This is called right before initialize() is, inside the run() method.
 """
 with self.mutex:
 self.startTime = Timer.getFPGATimestamp()

[docs] def isTimedOut(self):
 """Returns whether or not the :meth:`timeSinceInitialized` method returns a
 number which is greater than or equal to the timeout for the command.
 If there is no timeout, this will always return false.

 :returns: whether the time has expired
 """
 with self.mutex:
 return (self.timeout != -1 and
 self.timeSinceInitialized() >= self.timeout)

[docs] def getRequirements(self):
 """Returns the requirements (as a set of Subsystems) of this command
 """
 with self.mutex:
 return self.requirements.copy()

[docs] def lockChanges(self):
 """Prevents further changes from being made
 """
 with self.mutex:
 self.locked = True

[docs] def setParent(self, parent):
 """Sets the parent of this command. No actual change is made to the
 group.

 :param parent: the parent
 """
 with self.mutex:
 if self.parent is not None:
 raise ValueError("Can not give command to a command group after already being put in a command group")
 self.lockChanges()
 self.parent = parent
 table = self.getTable()
 if table is not None:
 table.putBoolean("isParented", True)

[docs] def start(self):
 """Starts up the command. Gets the command ready to start.
 Note that the command will eventually start, however it will not
 necessarily do so immediately, and may in fact be canceled before
 initialize is even called.
 """
 with self.mutex:
 self.lockChanges()
 if self.parent is not None:
 raise ValueError("Can not start a command that is a part of a command group")
 Scheduler.getInstance().add(self)

[docs] def startRunning(self):
 """This is used internally to mark that the command has been started.
 The lifecycle of a command is:

 * :meth:`startRunning` is called.
 * :meth:`run` is called (multiple times potentially)
 * :meth:`removed` is called

 It is very important that :meth:`startRunning` and :meth:`removed` be
 called in order or some assumptions of the code will be broken.
 """
 with self.mutex:
 self.running = True
 self.startTime = None
 table = self.getTable()
 if table is not None:
 table.putBoolean("running", True)

[docs] def isRunning(self):
 """Returns whether or not the command is running.
 This may return true even if the command has just been canceled, as it
 may not have yet called :meth:`interrupted`.

 :returns: whether or not the command is running
 """
 with self.mutex:
 return self.running

[docs] def cancel(self):
 """This will cancel the current command.

 This will cancel the current command eventually. It can be called
 multiple times. And it can be called when the command is not running.
 If the command is running though, then the command will be marked as
 canceled and eventually removed.

 .. warning:: A command can not be canceled if it is a part of a
 :class:`.CommandGroup`, you must cancel the CommandGroup
 instead.
 """
 if self.parent is not None:
 raise ValueError("Can not manually cancel a command in a command group")
 self._cancel()

 def _cancel(self):
 """This works like cancel(), except that it doesn't throw an exception
 if it is a part of a command group. Should only be called by the
 parent command group.
 """
 with self.mutex:
 if self.isRunning():
 self.canceled = True

[docs] def isCanceled(self):
 """Returns whether or not this has been canceled.

 :returns: whether or not this has been canceled
 """
 with self.mutex:
 return self.canceled

[docs] def isInterruptible(self):
 """Returns whether or not this command can be interrupted.

 :returns: whether or not this command can be interrupted
 """
 with self.mutex:
 return self.interruptible

[docs] def setInterruptible(self, interruptible):
 """Sets whether or not this command can be interrupted.

 :param interruptible: whether or not this command can be interrupted
 """
 with self.mutex:
 self.interruptible = interruptible

[docs] def doesRequire(self, system):
 """Checks if the command requires the given :class:`.Subsystem`.

 :param system: the system
 :returns: whether or not the subsystem is required, or False if given
 None.
 """
 with self.mutex:
 return system in self.requirements

[docs] def getGroup(self):
 """Returns the :class:`.CommandGroup` that this command is a part of.
 Will return None if this Command is not in a group.

 :returns: the :class:`.CommandGroup` that this command is a part of
 (or None if not in group)
 """
 with self.mutex:
 return self.parent

[docs] def setRunWhenDisabled(self, run):
 """Sets whether or not this {@link Command} should run when the robot
 is disabled.

 By default a command will not run when the robot is disabled, and will
 in fact be canceled.

 :param run: whether or not this command should run when the robot is
 disabled
 """
 with self.mutex:
 self.runWhenDisabled = run

[docs] def willRunWhenDisabled(self):
 """Returns whether or not this Command will run when the robot is
 disabled, or if it will cancel itself.
 """
 with self.mutex:
 return self.runWhenDisabled

 def __str__(self):
 """The string representation for a Command is by default its name.

 :returns: the string representation of this object
 """
 return self.getName()

 def getSmartDashboardType(self):
 return "Command"

 def valueChanged(self, itable, key, value, isNew):
 if value:
 self.start()
 else:
 self.cancel()

 def initTable(self, table):
 oldtable = self.getTable()
 if oldtable is not None:
 oldtable.removeTableListener(self.valueChanged)
 super().initTable(table)
 if table is not None:
 table.putString("name", self.getName())
 table.putBoolean("running", self.isRunning())
 table.putBoolean("isParented", self.parent is not None)
 table.addTableListener(self.valueChanged, False, key="running")

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/buttons/joystickbutton.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.buttons.joystickbutton

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

from .button import Button

__all__ = ["JoystickButton"]

[docs]class JoystickButton(Button):
 def __init__(self, joystick, buttonNumber):
 """Create a joystick button for triggering commands.

 :param joystick: The GenericHID object that has the button (e.g.
 :class:`.Joystick`, :class:`.KinectStick`, etc)
 :param buttonNumber: The button number
 (see :meth:`GenericHID.getRawButton`)
 """
 super().__init__()
 self.joystick = joystick
 self.buttonNumber = buttonNumber

[docs] def get(self):
 """Gets the value of the joystick button.

 :returns: The value of the joystick button
 """
 return self.joystick.getRawButton(self.buttonNumber)

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/buttons/networkbutton.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.buttons.networkbutton

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

from .button import Button

__all__ = ["NetworkButton"]

[docs]class NetworkButton(Button):
 def __init__(self, table, field):
 from networktables import NetworkTable
 if isinstance(table, NetworkTable):
 self.table = table
 else:
 self.table = NetworkTable.getTable(table)
 self.field = field

[docs] def get(self):
 return self.table.isConnected() and self.table.getBoolean(self.field, False)

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/command/waituntilcommand.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.command.waituntilcommand

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

from .command import Command

from ..timer import Timer

__all__ = ["WaitUntilCommand"]

[docs]class WaitUntilCommand(Command):
 """
 This will wait until the game clock reaches some value, then continue to
 the next command.
 """

 def __init__(self, time):
 super().__init__("WaitUntil(%s)" % time)
 self.time = time

[docs] def isFinished(self):
 # Check if we've reached the actual finish time.
 return Timer.getMatchTime() >= self.time

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/command/startcommand.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.command.startcommand

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

from .command import Command

__all__ = ["StartCommand"]

[docs]class StartCommand(Command):
 """A StartCommand will call the start() method of another command when it
 is initialized and will finish immediately.
 """

 def __init__(self, commandToStart):
 """Instantiates a StartCommand which will start the
 given command whenever its initialize() is called.

 :param commandToStart: the :class:`.Command` to start
 """
 super().__init__("Start(%s)" % commandToStart)
 self.commandToFork = commandToStart

[docs] def initialize(self):
 self.commandToFork.start()

[docs] def isFinished(self):
 return True

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/doublesolenoid.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.doublesolenoid

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal
import warnings

from .livewindow import LiveWindow
from .resource import Resource
from .sensorbase import SensorBase
from .solenoidbase import SolenoidBase

__all__ = ["DoubleSolenoid"]

[docs]class DoubleSolenoid(SolenoidBase):
 """Controls 2 channels of high voltage Digital Output.

 The DoubleSolenoid class is typically used for pneumatics solenoids that
 have two positions controlled by two separate channels.

 .. not_implemented: initSolenoid
 """

[docs] class Value:
 """Possible values for a DoubleSolenoid."""
 kOff = 0
 kForward = 1
 kReverse = 2

 def __init__(self, *args, **kwargs):
 """Constructor.

 Arguments can be supplied as positional or keyword. Acceptable
 positional argument combinations are:

 - forwardChannel, reverseChannel
 - moduleNumber, forwardChannel, reverseChannel

 Alternatively, the above names can be used as keyword arguments.

 :param moduleNumber: The module number of the solenoid module to use.
 :param forwardChannel: The forward channel number on the PCM (0..7)
 :param reverseChannel: The reverse channel number on the PCM (0..7)
 """
 # keyword arguments
 forwardChannel = kwargs.pop("forwardChannel", None)
 reverseChannel = kwargs.pop("reverseChannel", None)
 moduleNumber = kwargs.pop("moduleNumber", None)

 if kwargs:
 warnings.warn("unknown keyword arguments: %s" % kwargs.keys(),
 RuntimeWarning)

 # positional arguments
 if len(args) == 2:
 forwardChannel, reverseChannel = args
 elif len(args) == 3:
 moduleNumber, forwardChannel, reverseChannel = args
 elif len(args) != 0:
 raise ValueError("don't know how to handle %d positional arguments" % len(args))

 if moduleNumber is None:
 moduleNumber = SensorBase.getDefaultSolenoidModule()
 if forwardChannel is None:
 raise ValueError("must specify forward channel")
 if reverseChannel is None:
 raise ValueError("must specify reverse channel")

 SensorBase.checkSolenoidModule(moduleNumber)
 SensorBase.checkSolenoidChannel(forwardChannel)
 SensorBase.checkSolenoidChannel(reverseChannel)

 super().__init__(moduleNumber)
 self.forwardChannel = forwardChannel
 self.reverseChannel = reverseChannel

 try:
 self.allocated.allocate(self, forwardChannel)
 except IndexError as e:
 raise IndexError("Solenoid channel %d on module %d is already allocated" % (forwardChannel, moduleNumber)) from e
 try:
 self.allocated.allocate(self, reverseChannel)
 except IndexError as e:
 raise IndexError("Solenoid channel %d on module %d is already allocated" % (reverseChannel, moduleNumber)) from e

 # Need this to free on unit test wpilib reset
 Resource._add_global_resource(self)

 self.forwardPort = self.ports[forwardChannel]
 self.reversePort = self.ports[reverseChannel]

 hal.HALReport(hal.HALUsageReporting.kResourceType_Solenoid,
 forwardChannel, moduleNumber)
 hal.HALReport(hal.HALUsageReporting.kResourceType_Solenoid,
 reverseChannel, moduleNumber)

 LiveWindow.addActuatorModuleChannel("DoubleSolenoid", moduleNumber,
 forwardChannel, self)

[docs] def free(self):
 """Mark the solenoid as freed."""
 self.allocated.free(self.forwardChannel)
 self.allocated.free(self.reverseChannel)

[docs] def set(self, value):
 """Set the value of a solenoid.

 :param value: The value to set (Off, Forward, Reverse)
 :type value: :class:`DoubleSolenoid.Value`
 """

 if value == self.Value.kOff:
 hal.setSolenoid(self.forwardPort, False)
 hal.setSolenoid(self.reversePort, False)
 elif value == self.Value.kForward:
 hal.setSolenoid(self.reversePort, False)
 hal.setSolenoid(self.forwardPort, True)
 elif value == self.Value.kReverse:
 hal.setSolenoid(self.forwardPort, False)
 hal.setSolenoid(self.reversePort, True)
 else:
 raise ValueError("Invalid argument '%s'" % value)

[docs] def get(self):
 """Read the current value of the solenoid.

 :returns: The current value of the solenoid.
 :rtype: :class:`DoubleSolenoid.Value`
 """
 if hal.getSolenoid(self.forwardPort):
 return self.Value.kForward
 if hal.getSolenoid(self.reversePort):
 return self.Value.kReverse
 return self.Value.kOff

[docs] def isFwdSolenoidBlackListed(self):
 """
 Check if the forward solenoid is blacklisted.
 If a solenoid is shorted, it is added to the blacklist and disabled until power cycle, or until faults are
 cleared. See :meth:`clearAllPCMStickyFaults`

 :returns: If solenoid is disabled due to short.
 """
 blacklist = self.getPCMSolenoidBlackList()

 return (blacklist & (1 << self.forwardChannel)) != 0

[docs] def isRevSolenoidBlackListed(self):
 """
 Check if the reverse solenoid is blacklisted.
 If a solenoid is shorted, it is added to the blacklist and disabled until power cycle, or until faults are
 cleared. See :meth:`clearAllPCMStickyFaults`

 :returns: If solenoid is disabled due to short.
 """
 blacklist = self.getPCMSolenoidBlackList()

 return (blacklist & (1 << self.reverseChannel)) != 0

 # Live Window code, only does anything if live window is activated.

 def getSmartDashboardType(self):
 return "Double Solenoid"

 def updateTable(self):
 table = self.getTable()
 if table is not None:
 #TODO: this is bad
 val = self.get()
 if val == self.Value.kForward:
 table.putString("Value", "Forward")
 elif val == self.Value.kReverse:
 table.putString("Value", "Reverse")
 else:
 table.putString("Value", "Off")

 def valueChanged(self, itable, key, value, bln):
 #TODO: this is bad also
 if value == "Reverse":
 self.set(self.Value.kReverse)
 elif value == "Forward":
 self.set(self.Value.kForward)
 else:
 self.set(self.Value.kOff)

 def startLiveWindowMode(self):
 self.set(self.Value.kOff) # Stop for safety
 super().startLiveWindowMode()

 def stopLiveWindowMode(self):
 super().stopLiveWindowMode()
 self.set(self.Value.kOff) # Stop for safety

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/iterativerobot.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.iterativerobot

Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.

import hal
import logging

from .robotbase import RobotBase
from .timer import Timer
from .livewindow import LiveWindow

__all__ = ["IterativeRobot"]

[docs]class IterativeRobot(RobotBase):
 """IterativeRobot implements a specific type of Robot Program framework,
 extending the :class:`.RobotBase` class.

 The IterativeRobot class is intended to be subclassed by a user creating a
 robot program.

 This class is intended to implement the "old style" default code, by
 providing the following functions which are called by the main loop,
 :meth:`startCompetition`, at the appropriate times:

 - :meth:`robotInit` -- provide for initialization at robot power-on

 init() functions -- each of the following functions is called once when the
 appropriate mode is entered:

 - :meth:`disabledInit` -- called only when first disabled
 - :meth:`autonomousInit` -- called each and every time autonomous is entered from another mode
 - :meth:`teleopInit` -- called each and every time teleop is entered from another mode
 - :meth:`testInit` -- called each and every time test mode is entered from another mode

 Periodic() functions -- each of these functions is called iteratively at
 the appropriate periodic rate (aka the "slow loop"). The period of
 the iterative robot is synced to the driver station control packets,
 giving a periodic frequency of about 50Hz (50 times per second).

 - :meth:`disabledPeriodic`
 - :meth:`autonomousPeriodic`
 - :meth:`teleopPeriodic`
 - :meth:`testPeriodic`

 """

 #: A python logging object that you can use to send messages to the log. It
 #: is recommended to use this instead of print statements.
 logger = logging.getLogger("robot")

 def __init__(self):
 """Constructor for RobotIterativeBase.

 The constructor initializes the instance variables for the robot to
 indicate the status of initialization for disabled, autonomous, and
 teleop code.
 """
 super().__init__()
 # set status for initialization of disabled, autonomous, and teleop code.
 self.disabledInitialized = False
 self.autonomousInitialized = False
 self.teleopInitialized = False
 self.testInitialized = False

[docs] def prestart(self):
 """Don't immediately say that the robot's ready to be enabled, see below"""
 pass

[docs] def startCompetition(self):
 """Provide an alternate "main loop" via startCompetition()."""
 hal.HALReport(hal.HALUsageReporting.kResourceType_Framework,
 hal.HALUsageReporting.kFramework_Iterative)

 self.robotInit()

 #We call this now (not in prestart like default) so that the robot
 #won't enable until the initialization has finished. This is useful
 #because otherwise it's sometimes possible to enable the robot before
 #the code is ready.
 hal.HALNetworkCommunicationObserveUserProgramStarting()

 # loop forever, calling the appropriate mode-dependent function
 LiveWindow.setEnabled(False)
 while True:
 # Call the appropriate function depending upon the current robot mode
 if self.isDisabled():
 # call DisabledInit() if we are now just entering disabled mode from
 # either a different mode or from power-on
 if not self.disabledInitialized:
 LiveWindow.setEnabled(False)
 self.disabledInit()
 self.disabledInitialized = True
 # reset the initialization flags for the other modes
 self.autonomousInitialized = False
 self.teleopInitialized = False
 self.testInitialized = False
 if self.nextPeriodReady():
 hal.HALNetworkCommunicationObserveUserProgramDisabled()
 self.disabledPeriodic()
 elif self.isTest():
 # call TestInit() if we are now just entering test mode from either
 # a different mode or from power-on
 if not self.testInitialized:
 LiveWindow.setEnabled(True)
 self.testInit()
 self.testInitialized = True
 self.autonomousInitialized = False
 self.teleopInitialized = False
 self.disabledInitialized = False
 if self.nextPeriodReady():
 hal.HALNetworkCommunicationObserveUserProgramTest()
 self.testPeriodic()
 elif self.isAutonomous():
 # call Autonomous_Init() if this is the first time
 # we've entered autonomous_mode
 if not self.autonomousInitialized:
 LiveWindow.setEnabled(False)
 # KBS NOTE: old code reset all PWMs and relays to "safe values"
 # whenever entering autonomous mode, before calling
 # "Autonomous_Init()"
 self.autonomousInit()
 self.autonomousInitialized = True
 self.testInitialized = False
 self.teleopInitialized = False
 self.disabledInitialized = False
 if self.nextPeriodReady():
 hal.HALNetworkCommunicationObserveUserProgramAutonomous()
 self.autonomousPeriodic()
 else:
 # call Teleop_Init() if this is the first time
 # we've entered teleop_mode
 if not self.teleopInitialized:
 LiveWindow.setEnabled(False)
 self.teleopInit()
 self.teleopInitialized = True
 self.testInitialized = False
 self.autonomousInitialized = False
 self.disabledInitialized = False
 if self.nextPeriodReady():
 hal.HALNetworkCommunicationObserveUserProgramTeleop()
 self.teleopPeriodic()
 self.ds.waitForData()

[docs] def nextPeriodReady(self):
 """Determine if the appropriate next periodic function should be
 called. Call the periodic functions whenever a packet is received
 from the Driver Station, or about every 20ms.

 :rtype: bool
 """
 return self.ds.isNewControlData()

 # ----------- Overridable initialization code -----------------

[docs] def robotInit(self):
 """Robot-wide initialization code should go here.

 Users should override this method for default Robot-wide initialization
 which will be called when the robot is first powered on. It will be
 called exactly 1 time.

 .. note:: It is simpler to override this function instead of defining
 a constructor for your robot class
 """
 self.logger.info("Default IterativeRobot.robotInit() method... Overload me!")

[docs] def disabledInit(self):
 """Initialization code for disabled mode should go here.

 Users should override this method for initialization code which will be
 called each time the robot enters disabled mode.
 """
 self.logger.info("Default IterativeRobot.disabledInit() method... Overload me!")

[docs] def autonomousInit(self):
 """Initialization code for autonomous mode should go here.

 Users should override this method for initialization code which will be
 called each time the robot enters autonomous mode.
 """
 self.logger.info("Default IterativeRobot.autonomousInit() method... Overload me!")

[docs] def teleopInit(self):
 """Initialization code for teleop mode should go here.

 Users should override this method for initialization code which will be
 called each time the robot enters teleop mode.
 """
 self.logger.info("Default IterativeRobot.teleopInit() method... Overload me!")

[docs] def testInit(self):
 """Initialization code for test mode should go here.

 Users should override this method for initialization code which will be
 called each time the robot enters test mode.
 """
 self.logger.info("Default IterativeRobot.testInit() method... Overload me!")

 # ----------- Overridable periodic code -----------------

[docs] def disabledPeriodic(self):
 """Periodic code for disabled mode should go here.

 Users should override this method for code which will be called
 periodically at a regular rate while the robot is in disabled mode.
 """
 func = self.disabledPeriodic.__func__
 if not hasattr(func, "firstRun"):
 self.logger.info("Default IterativeRobot.disabledPeriodic() method... Overload me!")
 func.firstRun = False
 Timer.delay(0.001)

[docs] def autonomousPeriodic(self):
 """Periodic code for autonomous mode should go here.

 Users should override this method for code which will be called
 periodically at a regular rate while the robot is in autonomous mode.
 """
 func = self.autonomousPeriodic.__func__
 if not hasattr(func, "firstRun"):
 self.logger.info("Default IterativeRobot.autonomousPeriodic() method... Overload me!")
 func.firstRun = False
 Timer.delay(0.001)

[docs] def teleopPeriodic(self):
 """Periodic code for teleop mode should go here.

 Users should override this method for code which will be called
 periodically at a regular rate while the robot is in teleop mode.
 """
 func = self.teleopPeriodic.__func__
 if not hasattr(func, "firstRun"):
 self.logger.warn("Default IterativeRobot.teleopPeriodic() method... Overload me!")
 func.firstRun = False
 Timer.delay(0.001)

[docs] def testPeriodic(self):
 """Periodic code for test mode should go here.

 Users should override this method for code which will be called
 periodically at a regular rate while the robot is in test mode.
 """
 func = self.testPeriodic.__func__
 if not hasattr(func, "firstRun"):
 self.logger.info("Default IterativeRobot.testPeriodic() method... Overload me!")
 func.firstRun = False

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/samplerobot.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.samplerobot

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal
import logging

from .robotbase import RobotBase
from .timer import Timer
from .livewindow import LiveWindow

__all__ = ["SampleRobot"]

[docs]class SampleRobot(RobotBase):
 """A simple robot base class that knows the standard FRC competition
 states (disabled, autonomous, or operator controlled).

 You can build a simple robot program off of this by overriding the
 :meth:`robotinit`, :meth:`disabled`, :meth:`autonomous` and
 :meth:`operatorControl` methods. The :meth:`startCompetition` method
 will call these methods (sometimes repeatedly) depending on the state
 of the competition.

 Alternatively you can override the :meth:`robotMain` method and manage all
 aspects of the robot yourself (not recommended).

 .. warning:: While it may look like a good choice to use for your code
 if you're inexperienced, don't. Unless you know what you
 are doing, complex code will be much more difficult under
 this system. Use :class:`.IterativeRobot` or command based
 instead if you're new.
 """

 #: A python logging object that you can use to send messages to the log. It
 #: is recommended to use this instead of print statements.
 logger = logging.getLogger("robot")

[docs] def robotInit(self):
 """Robot-wide initialization code should go here.

 Users should override this method for default Robot-wide initialization
 which will be called when the robot is first powered on. It will be
 called exactly 1 time.

 .. note:: It is simpler to override this function instead of defining
 a constructor for your robot class
 """
 self.logger.info("Default robotInit() method running, consider providing your own")

[docs] def disabled(self):
 """Disabled should go here.
 Users should overload this method to run code that should run while
 the field is disabled.

 Called once each time the robot enters the disabled state.
 """
 self.logger.info("Default disabled() method running, consider providing your own")

[docs] def autonomous(self):
 """Autonomous should go here.
 Users should add autonomous code to this method that should run while
 the field is in the autonomous period.

 Called once each time the robot enters the autonomous state.
 """
 self.logger.info("Default autonomous() method running, consider providing your own")

[docs] def operatorControl(self):
 """Operator control (tele-operated) code should go here.
 Users should add Operator Control code to this method that should run
 while the field is in the Operator Control (tele-operated) period.

 Called once each time the robot enters the operator-controlled state.
 """
 self.logger.warn("Default operatorControl() method running, consider providing your own")

[docs] def test(self):
 """Test code should go here.
 Users should add test code to this method that should run while the
 robot is in test mode.
 """
 self.logger.info("Default test() method running, consider providing your own")

[docs] def robotMain(self):
 """Robot main program for free-form programs.

 This should be overridden by user subclasses if the intent is to not
 use the autonomous() and operatorControl() methods. In that case, the
 program is responsible for sensing when to run the autonomous and
 operator control functions in their program.

 This method will be called immediately after the constructor is
 called. If it has not been overridden by a user subclass (i.e. the
 default version runs), then the robotInit(), disabled(), autonomous()
 and operatorControl() methods will be called.
 """
 self._no_robot_main = True

[docs] def startCompetition(self):
 """Start a competition.
 This code tracks the order of the field starting to ensure that
 everything happens in the right order. Repeatedly run the correct
 method, either Autonomous or OperatorControl when the robot is
 enabled. After running the correct method, wait for some state to
 change, either the other mode starts or the robot is disabled. Then
 go back and wait for the robot to be enabled again.
 """
 hal.HALReport(hal.HALUsageReporting.kResourceType_Framework,
 hal.HALUsageReporting.kFramework_Simple)

 self.robotMain()

 if hasattr(self, '_no_robot_main'):
 # first and one-time initialization
 LiveWindow.setEnabled(False)
 self.robotInit()

 while True:
 if self.isDisabled():
 self.ds.InDisabled(True)
 self.disabled()
 self.ds.InDisabled(False)
 while self.isDisabled():
 Timer.delay(0.01)
 elif self.isAutonomous():
 self.ds.InAutonomous(True)
 self.autonomous()
 self.ds.InAutonomous(False)
 while self.isAutonomous() and not self.isDisabled():
 Timer.delay(0.01)
 elif self.isTest():
 LiveWindow.setEnabled(True)
 self.ds.InTest(True)
 self.test()
 self.ds.InTest(False)
 while self.isTest() and self.isEnabled():
 Timer.delay(0.01)
 LiveWindow.setEnabled(False)
 else:
 self.ds.InOperatorControl(True)
 self.operatorControl()
 self.ds.InOperatorControl(False)
 while self.isOperatorControl() and not self.isDisabled():
 Timer.delay(0.01)

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/canjaguar.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.canjaguar

#--
Copyright (c) FIRST 2008-2014. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal
from hal import frccan
import struct
import warnings
import weakref

from .livewindowsendable import LiveWindowSendable
from .motorsafety import MotorSafety
from .resource import Resource
from .timer import Timer

from . import _canjaguar as _cj

__all__ = ["CANJaguar"]

def _packPercentage(value):
 if value < -1.0:
 value = -1.0
 if value > 1.0:
 value = 1.0
 return [x for x in struct.pack("<h", int(value * 32767.0))]

def _packFXP8_8(value):
 return [x for x in struct.pack("<h", int(value * 256.0))]

def _packFXP16_16(value):
 return [x for x in struct.pack("<i", int(value * 65536.0))]

def _packINT16(value):
 return [x for x in struct.pack("<h", int(value))]

def _packINT32(value):
 return [x for x in struct.pack("<i", int(value))]

def _unpackPercentage(buffer):
 return struct.unpack("<h", bytes(buffer[:2]))[0] / 32767.0

def _unpackFXP8_8(buffer):
 return struct.unpack("<h", bytes(buffer[:2]))[0] / 256.0

def _unpackFXP16_16(buffer):
 return struct.unpack("<i", bytes(buffer[:4]))[0] / 65536.0

def _unpackINT16(buffer):
 return struct.unpack("<h", bytes(buffer[:2]))[0]

def _unpackINT32(buffer):
 return struct.unpack("<i", bytes(buffer[:4]))[0]

def _FXP8_EQ(a, b):
 """Compare floats for equality as fixed point numbers"""
 return int(a * 256.0) == int(b * 256.0)

def _FXP16_EQ(a, b):
 """Compare floats for equality as fixed point numbers"""
 return int(a * 65536.0) == int(b * 65536.0)

def _sendMessageHelper(messageID, data, period):
 if (CANJaguar.kFullMessageIDMask & messageID) in CANJaguar.kTrustedMessages:
 # Make sure the data will still fit after adjusting for the token.
 if data is not None and len(data) > CANJaguar.kMaxMessageDataSize - 2:
 raise RuntimeError("CAN message has too much data.")

 trustedData = [0, 0] # token placeholder
 if data is not None:
 trustedData.extend(data)
 frccan.CANSessionMux_sendMessage(messageID, trustedData, period)
 else:
 frccan.CANSessionMux_sendMessage(messageID, data, period)

def _freeJaguar(deviceNumber, controlMode):
 # Cancel periodic messages to the Jaguar, effectively disabling it.
 # Disable periodic setpoints

 CANJaguar.allocated.free(deviceNumber-1)

 if controlMode == CANJaguar.ControlMode.PercentVbus:
 messageID = deviceNumber | _cj.LM_API_VOLT_T_SET
 elif controlMode == CANJaguar.ControlMode.Speed:
 messageID = deviceNumber | _cj.LM_API_SPD_T_SET
 elif controlMode == CANJaguar.ControlMode.Position:
 messageID = deviceNumber | _cj.LM_API_POS_T_SET
 elif controlMode == CANJaguar.ControlMode.Current:
 messageID = deviceNumber | _cj.LM_API_ICTRL_T_SET
 elif controlMode == CANJaguar.ControlMode.Voltage:
 messageID = deviceNumber | _cj.LM_API_VCOMP_T_SET
 else:
 return

 frccan.CANSessionMux_sendMessage(messageID, None,
 frccan.CAN_SEND_PERIOD_STOP_REPEATING)

 data = _packFXP8_8(CANJaguar.kApproxBusVoltage)
 _sendMessageHelper(_cj.LM_API_CFG_MAX_VOUT | deviceNumber, data, frccan.CAN_SEND_PERIOD_NO_REPEAT)

[docs]class CANJaguar(LiveWindowSendable, MotorSafety):
 """Texas Instruments Jaguar Speed Controller as a CAN device."""

 kMaxMessageDataSize = 8

 # The internal PID control loop in the Jaguar runs at 1kHz.
 kControllerRate = 1000
 kApproxBusVoltage = 12.0

 kReceiveStatusAttempts = 50

 allocated = Resource(63)

 kFullMessageIDMask = \
 _cj.CAN_MSGID_API_M | _cj.CAN_MSGID_MFR_M | _cj.CAN_MSGID_DTYPE_M
 kSendMessagePeriod = 20

 kTrustedMessages = set([
 _cj.LM_API_VOLT_T_EN, _cj.LM_API_VOLT_T_SET, _cj.LM_API_SPD_T_EN,
 _cj.LM_API_SPD_T_SET, _cj.LM_API_VCOMP_T_EN, _cj.LM_API_VCOMP_T_SET,
 _cj.LM_API_POS_T_EN, _cj.LM_API_POS_T_SET, _cj.LM_API_ICTRL_T_EN,
 _cj.LM_API_ICTRL_T_SET])

[docs] class Mode:
 """Control Mode."""

 #: Sets an encoder as the speed reference only.
 kEncoder = 0

 #: Sets a quadrature encoder as the position and speed reference.
 kQuadEncoder = 1

 #: Sets a potentiometer as the position reference only.
 kPotentiometer = 2

[docs] class ControlMode:
 """Determines how the Jaguar is controlled, used internally."""
 PercentVbus = 0
 Current = 1
 Speed = 2
 Position = 3
 Voltage = 4

 kCurrentFault = 1
 kTemperatureFault = 2
 kBusVoltageFault = 4
 kGateDriverFault = 8

 # Limit switch masks
 kForwardLimit = 1
 kReverseLimit = 2

[docs] class NeutralMode:
 """Determines how the Jaguar behaves when sending a zero signal."""

 #: Use the NeutralMode that is set by the jumper wire on the CAN device
 Jumper = 0

 #: Stop the motor's rotation by applying a force.
 Brake = 1

 #: Do not attempt to stop the motor. Instead allow it to coast
 #: to a stop without applying resistance.
 Coast = 2

[docs] class LimitMode:
 """Determines which sensor to use for position reference.
 Limit switches will always be used to limit the rotation. This can
 not be disabled.
 """

 #: Disables the soft position limits and only uses
 #: the limit switches to limit rotation. See `getForwardLimitOK`
 #: and `getReverseLimitOK`.
 SwitchInputsOnly = 0

 #: Enables the soft position limits on the Jaguar.
 #: These will be used in addition to the limit switches. This does
 #: not disable the behavior of the limit switch input.
 #: See `configSoftPositionLimits`.
 SoftPositionLimits = 1

 def __init__(self, deviceNumber):
 """Constructor for the CANJaguar device.

 By default the device is configured in Percent mode.
 The control mode can be changed by calling one of the control modes.

 :param deviceNumber: The address of the Jaguar on the CAN bus.
 """
 MotorSafety.__init__(self)

 try:
 CANJaguar.allocated.allocate(self, deviceNumber-1)
 except IndexError as e:
 raise IndexError("CANJaguar device %d in use (increment index by one)" % deviceNumber) from e

 self.deviceNumber = deviceNumber
 self.value = 0.0

 # Parameters/configuration
 self.controlMode = CANJaguar.ControlMode.PercentVbus
 self.speedReference = _cj.LM_REF_NONE
 self.positionReference = _cj.LM_REF_NONE
 self.p = 0.0
 self.i = 0.0
 self.d = 0.0
 self.neutralMode = CANJaguar.NeutralMode.Jumper
 self.encoderCodesPerRev = 0
 self.potentiometerTurns = 0
 self.limitMode = CANJaguar.LimitMode.SwitchInputsOnly
 self.forwardLimit = 0.0
 self.reverseLimit = 0.0
 self.maxOutputVoltage = CANJaguar.kApproxBusVoltage
 self.voltageRampRate = 0.0
 self.faultTime = 0.0

 # Which parameters have been verified since they were last set?
 self.controlModeVerified = True
 self.speedRefVerified = True
 self.posRefVerified = True
 self.pVerified = True
 self.iVerified = True
 self.dVerified = True
 self.neutralModeVerified = True
 self.encoderCodesPerRevVerified = True
 self.potentiometerTurnsVerified = True
 self.forwardLimitVerified = True
 self.reverseLimitVerified = True
 self.limitModeVerified = True
 self.maxOutputVoltageVerified = True
 self.voltageRampRateVerified = True
 self.faultTimeVerified = True

 # Status data
 self.busVoltage = 0.0
 self.outputVoltage = 0.0
 self.outputCurrent = 0.0
 self.temperature = 0.0
 self.position = 0.0
 self.speed = 0.0
 self.limits = 0
 self.faults = 0
 self.firmwareVersion = 0
 self.hardwareVersion = 0

 # Which periodic status messages have we received at least once?
 self.receivedStatusMessage0 = False
 self.receivedStatusMessage1 = False
 self.receivedStatusMessage2 = False

 self.controlEnabled = True

 receivedFirmwareVersion = False

 # Request firmware and hardware version only once
 self.requestMessage(frccan.CAN_IS_FRAME_REMOTE |
 _cj.CAN_MSGID_API_FIRMVER)
 self.requestMessage(_cj.LM_API_HWVER)

 # Establish finalizer
 self._canjaguar_finalizer = weakref.finalize(self, _freeJaguar,
 self.deviceNumber,
 self.controlMode)

 # Need this to free on unit test wpilib reset
 Resource._add_global_resource(self)

 # Wait until we've gotten all of the status data at least once.
 for i in range(CANJaguar.kReceiveStatusAttempts):
 Timer.delay(0.001)

 self.setupPeriodicStatus()
 self.updatePeriodicStatus()

 if not receivedFirmwareVersion:
 try:
 data = self.getMessage(_cj.CAN_MSGID_API_FIRMVER,
 _cj.CAN_MSGID_FULL_M)
 self.firmwareVersion = _unpackINT32(data)
 receivedFirmwareVersion = True
 except frccan.CANMessageNotFound:
 pass

 if (self.receivedStatusMessage0 and
 self.receivedStatusMessage1 and
 self.receivedStatusMessage2 and
 receivedFirmwareVersion):
 break
 else:
 raise frccan.CANMessageNotFound("message not found")

 try:
 data = self.getMessage(_cj.LM_API_HWVER, _cj.CAN_MSGID_FULL_M)
 self.hardwareVersion = data[0]
 except frccan.CANError:
 # Not all Jaguar firmware reports a hardware version.
 self.hardwareVersion = 0

 # 3330 was the first shipping RDK firmware version for the Jaguar
 if self.firmwareVersion >= 3330 or self.firmwareVersion < 108:
 from .driverstation import DriverStation
 if self.firmwareVersion < 3330:
 DriverStation.reportError("Jag %d firmware %d is too old (must be at least version 108 of the FIRST approved firmware)" % (self.deviceNumber, self.firmwareVersion), False)
 else:
 DriverStation.reportError("Jag %d firmware %d is not FIRST approved (must be at least version 108 of the FIRST approved firmware)" % (self.deviceNumber, self.firmwareVersion), False)

[docs] def free(self):
 """
 Cancel periodic messages to the Jaguar, effectively disabling it.
 No other methods should be called after this is called.
 """
 self._canjaguar_finalizer()

[docs] def getDeviceNumber(self):
 """:returns: The CAN ID passed in the constructor
 """
 return self.deviceNumber

[docs] def get(self):
 """Get the recently set outputValue set point.

 The scale and the units depend on the mode the Jaguar is in.

 - In percentVbus mode, the outputValue is from -1.0 to 1.0 (same as
 PWM Jaguar).
 - In voltage mode, the outputValue is in volts.
 - In current mode, the outputValue is in amps.
 - In speed mode, the outputValue is in rotations/minute.
 - In position mode, the outputValue is in rotations.

 :returns: The most recently set outputValue set point.
 """
 return self.value

[docs] def set(self, outputValue, syncGroup=0):
 """Sets the output set-point value.

 The scale and the units depend on the mode the Jaguar is in.

 - In percentVbus Mode, the outputValue is from -1.0 to 1.0 (same as
 PWM Jaguar).
 - In voltage Mode, the outputValue is in volts.
 - In current Mode, the outputValue is in amps.
 - In speed mode, the outputValue is in rotations/minute.
 - In position Mode, the outputValue is in rotations.

 :param outputValue: The set-point to sent to the motor controller.
 :param syncGroup: The update group to add this set() to, pending
 UpdateSyncGroup(). If 0 (default), update immediately.
 """
 if self.controlEnabled:
 if self.controlMode == self.ControlMode.PercentVbus:
 messageID = _cj.LM_API_VOLT_T_SET
 data = _packPercentage(outputValue)
 elif self.controlMode == self.ControlMode.Speed:
 messageID = _cj.LM_API_SPD_T_SET
 data = _packFXP16_16(outputValue)
 elif self.controlMode == self.ControlMode.Position:
 messageID = _cj.LM_API_POS_T_SET
 data = _packFXP16_16(outputValue)
 elif self.controlMode == self.ControlMode.Current:
 messageID = _cj.LM_API_ICTRL_T_SET
 data = _packFXP8_8(outputValue)
 elif self.controlMode == self.ControlMode.Voltage:
 messageID = _cj.LM_API_VCOMP_T_SET
 data = _packFXP8_8(outputValue)
 else:
 return

 if syncGroup != 0:
 data.append(syncGroup)

 self.sendMessage(messageID, data, self.kSendMessagePeriod)

 self.feed()

 self.value = outputValue

 self.verify()

[docs] def verify(self):
 """Check all unverified params and make sure they're equal to their
 local cached versions. If a value isn't available, it gets requested.
 If a value doesn't match up, it gets set again.
 """
 # If the Jaguar lost power, everything should be considered unverified
 try:
 data = self.getMessage(_cj.LM_API_STATUS_POWER,
 _cj.CAN_MSGID_FULL_M)
 if data[0] != 0: # power cycled
 # Clear the power cycled bit
 data[0] = 1
 self.sendMessage(_cj.LM_API_STATUS_POWER, data[:1])

 # Mark everything as unverified
 self.controlModeVerified = False
 self.speedRefVerified = False
 self.posRefVerified = False
 self.neutralModeVerified = False
 self.encoderCodesPerRevVerified = False
 self.potentiometerTurnsVerified = False
 self.forwardLimitVerified = False
 self.reverseLimitVerified = False
 self.limitModeVerified = False
 self.maxOutputVoltageVerified = False
 self.faultTimeVerified = False

 if (self.controlMode == self.ControlMode.PercentVbus or
 self.controlMode == self.ControlMode.Voltage):
 self.voltageRampRateVerified = False
 else:
 self.pVerified = False
 self.iVerified = False
 self.dVerified = False

 # Verify periodic status messages again
 self.receivedStatusMessage0 = False
 self.receivedStatusMessage1 = False
 self.receivedStatusMessage2 = False

 # Remove any old values from netcomms. Otherwise, parameters
 # are incorrectly marked as verified based on stale messages.
 messages = [
 _cj.LM_API_SPD_REF, _cj.LM_API_POS_REF,
 _cj.LM_API_SPD_PC, _cj.LM_API_POS_PC,
 _cj.LM_API_ICTRL_PC, _cj.LM_API_SPD_IC,
 _cj.LM_API_POS_IC, _cj.LM_API_ICTRL_IC,
 _cj.LM_API_SPD_DC, _cj.LM_API_POS_DC,
 _cj.LM_API_ICTRL_DC, _cj.LM_API_CFG_ENC_LINES,
 _cj.LM_API_CFG_POT_TURNS, _cj.LM_API_CFG_BRAKE_COAST,
 _cj.LM_API_CFG_LIMIT_MODE, _cj.LM_API_CFG_LIMIT_REV,
 _cj.LM_API_CFG_MAX_VOUT, _cj.LM_API_VOLT_SET_RAMP,
 _cj.LM_API_VCOMP_COMP_RAMP, _cj.LM_API_CFG_FAULT_TIME,
 _cj.LM_API_CFG_LIMIT_FWD]

 for message in messages:
 try:
 data = self.getMessage(message, _cj.CAN_MSGID_FULL_M)
 except frccan.CANMessageNotFound:
 pass
 except frccan.CANMessageNotFound:
 self.requestMessage(_cj.LM_API_STATUS_POWER)

 # Verify that any recently set parameters are correct
 if not self.controlModeVerified and self.controlEnabled:
 try:
 data = self.getMessage(_cj.LM_API_STATUS_CMODE,
 _cj.CAN_MSGID_FULL_M)
 mode = data[0]
 if self.controlMode == mode:
 self.controlModeVerified = True
 else:
 # Enable control again to resend the control mode
 self.enableControl()
 except frccan.CANMessageNotFound:
 # Verification is needed but not available - request it again.
 self.requestMessage(_cj.LM_API_STATUS_CMODE)

 if not self.speedRefVerified:
 try:
 data = self.getMessage(_cj.LM_API_SPD_REF, _cj.CAN_MSGID_FULL_M)
 speedRef = data[0]
 if self.speedReference == speedRef:
 self.speedRefVerified = True
 else:
 # It's wrong - set it again
 self.setSpeedReference(self.speedReference)
 except frccan.CANMessageNotFound:
 # Verification is needed but not available - request it again.
 self.requestMessage(_cj.LM_API_SPD_REF)

 if not self.posRefVerified:
 try:
 data = self.getMessage(_cj.LM_API_POS_REF, _cj.CAN_MSGID_FULL_M)
 posRef = data[0]
 if self.positionReference == posRef:
 self.posRefVerified = True
 else:
 # It's wrong - set it again
 self.setPositionReference(self.positionReference)
 except frccan.CANMessageNotFound:
 # Verification is needed but not available - request it again.
 self.requestMessage(_cj.LM_API_POS_REF)

 if not self.pVerified:
 message = 0
 if self.controlMode == self.ControlMode.Speed:
 message = _cj.LM_API_SPD_PC
 elif self.controlMode == self.ControlMode.Position:
 message = _cj.LM_API_POS_PC
 elif self.controlMode == self.ControlMode.Current:
 message = _cj.LM_API_ICTRL_PC

 if message != 0:
 try:
 data = self.getMessage(message, _cj.CAN_MSGID_FULL_M)
 p = _unpackFXP16_16(data)
 if _FXP16_EQ(self.p, p):
 self.pVerified = True
 else:
 # It's wrong - set it again
 self.setP(self.p)
 except frccan.CANMessageNotFound:
 # Verification is needed but not available - request it again.
 self.requestMessage(message)

 if not self.iVerified:
 message = 0
 if self.controlMode == self.ControlMode.Speed:
 message = _cj.LM_API_SPD_IC
 elif self.controlMode == self.ControlMode.Position:
 message = _cj.LM_API_POS_IC
 elif self.controlMode == self.ControlMode.Current:
 message = _cj.LM_API_ICTRL_IC

 if message != 0:
 try:
 data = self.getMessage(message, _cj.CAN_MSGID_FULL_M)
 i = _unpackFXP16_16(data)
 if _FXP16_EQ(self.i, i):
 self.iVerified = True
 else:
 # It's wrong - set it again
 self.setI(self.i)
 except frccan.CANMessageNotFound:
 # Verification is needed but not available - request it again.
 self.requestMessage(message)

 if not self.dVerified:
 message = 0
 if self.controlMode == self.ControlMode.Speed:
 message = _cj.LM_API_SPD_DC
 elif self.controlMode == self.ControlMode.Position:
 message = _cj.LM_API_POS_DC
 elif self.controlMode == self.ControlMode.Current:
 message = _cj.LM_API_ICTRL_DC

 if message != 0:
 try:
 data = self.getMessage(message, _cj.CAN_MSGID_FULL_M)
 d = _unpackFXP16_16(data)
 if _FXP16_EQ(self.d, d):
 self.dVerified = True
 else:
 # It's wrong - set it again
 self.setD(self.d)
 except frccan.CANMessageNotFound:
 # Verification is needed but not available - request it again.
 self.requestMessage(message)

 if not self.neutralModeVerified:
 try:
 data = self.getMessage(_cj.LM_API_CFG_BRAKE_COAST,
 _cj.CAN_MSGID_FULL_M)
 mode = data[0]
 if mode == self.neutralMode:
 self.neutralModeVerified = True
 else:
 #It's wrong - set it again
 self.configNeutralMode(self.neutralMode)
 except frccan.CANMessageNotFound:
 # Verification is needed but not available - request it again.
 self.requestMessage(_cj.LM_API_CFG_BRAKE_COAST)

 if not self.encoderCodesPerRevVerified:
 try:
 data = self.getMessage(_cj.LM_API_CFG_ENC_LINES,
 _cj.CAN_MSGID_FULL_M)
 codes = _unpackINT16(data)
 if codes == self.encoderCodesPerRev:
 self.encoderCodesPerRevVerified = True
 else:
 #It's wrong - set it again
 self.configEncoderCodesPerRev(self.encoderCodesPerRev)
 except frccan.CANMessageNotFound:
 # Verification is needed but not available - request it again.
 self.requestMessage(_cj.LM_API_CFG_ENC_LINES)

 if not self.potentiometerTurnsVerified:
 try:
 data = self.getMessage(_cj.LM_API_CFG_POT_TURNS,
 _cj.CAN_MSGID_FULL_M)
 turns = _unpackINT16(data)
 if turns == self.potentiometerTurns:
 self.potentiometerTurnsVerified = True
 else:
 #It's wrong - set it again
 self.configPotentiometerTurns(self.potentiometerTurns)
 except frccan.CANMessageNotFound:
 # Verification is needed but not available - request it again.
 self.requestMessage(_cj.LM_API_CFG_POT_TURNS)

 if not self.limitModeVerified:
 try:
 data = self.getMessage(_cj.LM_API_CFG_LIMIT_MODE,
 _cj.CAN_MSGID_FULL_M)
 mode = data[0]
 if mode == self.limitMode:
 self.limitModeVerified = True
 else:
 #It's wrong - set it again
 self.configLimitMode(self.limitMode)
 except frccan.CANMessageNotFound:
 # Verification is needed but not available - request it again.
 self.requestMessage(_cj.LM_API_CFG_LIMIT_MODE)

 if not self.forwardLimitVerified:
 try:
 data = self.getMessage(_cj.LM_API_CFG_LIMIT_FWD,
 _cj.CAN_MSGID_FULL_M)
 limit = _unpackFXP16_16(data)
 if _FXP16_EQ(limit, self.forwardLimit):
 self.forwardLimitVerified = True
 else:
 #It's wrong - set it again
 self.configForwardLimit(self.forwardLimit)
 except frccan.CANMessageNotFound:
 # Verification is needed but not available - request it again.
 self.requestMessage(_cj.LM_API_CFG_LIMIT_FWD)

 if not self.reverseLimitVerified:
 try:
 data = self.getMessage(_cj.LM_API_CFG_LIMIT_REV,
 _cj.CAN_MSGID_FULL_M)
 limit = _unpackFXP16_16(data)
 if _FXP16_EQ(limit, self.reverseLimit):
 self.reverseLimitVerified = True
 else:
 #It's wrong - set it again
 self.configReverseLimit(self.reverseLimit)
 except frccan.CANMessageNotFound:
 # Verification is needed but not available - request it again.
 self.requestMessage(_cj.LM_API_CFG_LIMIT_REV)

 if not self.maxOutputVoltageVerified:
 try:
 data = self.getMessage(_cj.LM_API_CFG_MAX_VOUT,
 _cj.CAN_MSGID_FULL_M)
 voltage = _unpackFXP8_8(data)
 # The returned max output voltage is sometimes slightly higher
 # or lower than what was sent. This should not trigger
 # resending the message.
 if abs(voltage - self.maxOutputVoltage) < 0.1:
 self.maxOutputVoltageVerified = True
 else:
 # It's wrong - set it again
 self.configMaxOutputVoltage(self.maxOutputVoltage)
 except frccan.CANMessageNotFound:
 # Verification is needed but not available - request it again.
 self.requestMessage(_cj.LM_API_CFG_MAX_VOUT)

 if not self.voltageRampRateVerified:
 if self.controlMode == CANJaguar.ControlMode.PercentVbus:
 try:
 data = self.getMessage(_cj.LM_API_VOLT_SET_RAMP,
 _cj.CAN_MSGID_FULL_M)
 rate = _unpackPercentage(data)
 if _FXP16_EQ(rate, self.voltageRampRate):
 self.voltageRampRateVerified = True
 else:
 # It's wrong - set it again
 self.setVoltageRampRate(self.voltageRampRate)
 except frccan.CANMessageNotFound:
 # Verification is needed but not available - request it again.
 self.requestMessage(_cj.LM_API_VOLT_SET_RAMP)
 elif self.controlMode == CANJaguar.ControlMode.Voltage:
 try:
 data = self.getMessage(_cj.LM_API_VCOMP_COMP_RAMP,
 _cj.CAN_MSGID_FULL_M)
 rate = _unpackFXP8_8(data)
 if _FXP8_EQ(rate, self.voltageRampRate):
 self.voltageRampRateVerified = True
 else:
 # It's wrong - set it again
 self.setVoltageRampRate(self.voltageRampRate)
 except frccan.CANMessageNotFound:
 # Verification is needed but not available - request it again.
 self.requestMessage(_cj.LM_API_VCOMP_COMP_RAMP)

 if not self.faultTimeVerified:
 try:
 data = self.getMessage(_cj.LM_API_CFG_FAULT_TIME,
 _cj.CAN_MSGID_FULL_M)
 faultTime = _unpackINT16(data)
 if int(self.faultTime * 1000.0) == faultTime:
 self.faultTimeVerified = True
 else:
 #It's wrong - set it again
 self.configFaultTime(self.faultTime)
 except frccan.CANMessageNotFound:
 # Verification is needed but not available - request it again.
 self.requestMessage(_cj.LM_API_CFG_FAULT_TIME)

 if (not self.receivedStatusMessage0 or
 not self.receivedStatusMessage1 or
 not self.receivedStatusMessage2):
 # If the periodic status messages haven't been verified as
 # received, request periodic status messages again and attempt
 # to unpack any available ones.
 self.setupPeriodicStatus()
 self.getTemperature()
 self.getPosition()
 self.getFaults()

[docs] def disable(self):
 """Common interface for disabling a motor.

 .. deprecated :: 2015
 Use :func:`disableControl` instead.
 """
 warnings.warn("use disableControl instead", DeprecationWarning)
 self.disableControl()

 # PIDOutput interface

[docs] def pidWrite(self, output):
 if self.controlMode == self.ControlMode.PercentVbus:
 self.set(output)
 else:
 raise ValueError("PID only supported in PercentVbus mode")

[docs] def setSpeedReference(self, reference):
 """Set the reference source device for speed controller mode.

 Choose encoder as the source of speed feedback when in speed control
 mode.

 :param reference: Specify a speed reference.
 """
 self.sendMessage(_cj.LM_API_SPD_REF, [reference])
 self.speedReference = reference
 self.speedRefVerified = False

[docs] def setPositionReference(self, reference):
 """Set the reference source device for position controller mode.

 Choose between using and encoder and using a potentiometer
 as the source of position feedback when in position control mode.

 :param reference: Specify a position reference.
 """
 self.sendMessage(_cj.LM_API_POS_REF, [reference])
 self.positionReference = reference
 self.posRefVerified = False

[docs] def setP(self, p):
 """Set the P constant for the closed loop modes.

 :param p: The proportional gain of the Jaguar's PID controller.
 """
 data = _packFXP16_16(p)

 if self.controlMode == self.ControlMode.Speed:
 self.sendMessage(_cj.LM_API_SPD_PC, data)
 elif self.controlMode == self.ControlMode.Position:
 self.sendMessage(_cj.LM_API_POS_PC, data)
 elif self.controlMode == self.ControlMode.Current:
 self.sendMessage(_cj.LM_API_ICTRL_PC, data)
 else:
 raise ValueError("PID constants only apply in Speed, Position, and Current mode")

 self.p = p
 self.pVerified = False

[docs] def setI(self, i):
 """Set the I constant for the closed loop modes.

 :param i: The integral gain of the Jaguar's PID controller.
 """
 data = _packFXP16_16(i)

 if self.controlMode == self.ControlMode.Speed:
 self.sendMessage(_cj.LM_API_SPD_IC, data)
 elif self.controlMode == self.ControlMode.Position:
 self.sendMessage(_cj.LM_API_POS_IC, data)
 elif self.controlMode == self.ControlMode.Current:
 self.sendMessage(_cj.LM_API_ICTRL_IC, data)
 else:
 raise ValueError("PID constants only apply in Speed, Position, and Current mode")

 self.i = i
 self.iVerified = False

[docs] def setD(self, d):
 """Set the D constant for the closed loop modes.

 :param d: The derivative gain of the Jaguar's PID controller.
 """
 data = _packFXP16_16(d)

 if self.controlMode == self.ControlMode.Speed:
 self.sendMessage(_cj.LM_API_SPD_DC, data)
 elif self.controlMode == self.ControlMode.Position:
 self.sendMessage(_cj.LM_API_POS_DC, data)
 elif self.controlMode == self.ControlMode.Current:
 self.sendMessage(_cj.LM_API_ICTRL_DC, data)
 else:
 raise ValueError("PID constants only apply in Speed, Position, and Current mode")

 self.d = d
 self.dVerified = False

[docs] def setPID(self, p, i, d):
 """Set the P, I, and D constants for the closed loop modes.

 :param p: The proportional gain of the Jaguar's PID controller.
 :param i: The integral gain of the Jaguar's PID controller.
 :param d: The differential gain of the Jaguar's PID controller.
 """
 self.setP(p)
 self.setI(i)
 self.setD(d)

[docs] def getP(self):
 """Get the Proportional gain of the controller.

 :returns: The proportional gain.
 """
 if (self.controlMode == self.ControlMode.PercentVbus or
 self.controlMode == self.ControlMode.Voltage):
 raise ValueError("PID does not apply in Percent or Voltage control modes")
 return self.p

[docs] def getI(self):
 """Get the Integral gain of the controller.

 :returns: The integral gain.
 """
 if (self.controlMode == self.ControlMode.PercentVbus or
 self.controlMode == self.ControlMode.Voltage):
 raise ValueError("PID does not apply in Percent or Voltage control modes")
 return self.i

[docs] def getD(self):
 """Get the Derivative gain of the controller.

 :returns: The derivative gain.
 """
 if (self.controlMode == self.ControlMode.PercentVbus or
 self.controlMode == self.ControlMode.Voltage):
 raise ValueError("PID does not apply in Percent or Voltage control modes")
 return self.d

[docs] def enableControl(self, encoderInitialPosition=0.0):
 """Enable the closed loop controller.

 Start actually controlling the output based on the feedback.
 If starting a position controller with an encoder reference,
 use the encoderInitialPosition parameter to initialize the
 encoder state.

 :param encoderInitialPosition: Encoder position to set if position
 with encoder reference (default of 0.0). Ignored otherwise.
 """
 if self.controlMode == self.ControlMode.PercentVbus:
 self.sendMessage(_cj.LM_API_VOLT_T_EN, None)
 elif self.controlMode == self.ControlMode.Speed:
 self.sendMessage(_cj.LM_API_SPD_T_EN, None)
 elif self.controlMode == self.ControlMode.Position:
 data = _packFXP16_16(encoderInitialPosition)
 self.sendMessage(_cj.LM_API_POS_T_EN, data)
 elif self.controlMode == self.ControlMode.Current:
 self.sendMessage(_cj.LM_API_ICTRL_T_EN, None)
 elif self.controlMode == self.ControlMode.Voltage:
 self.sendMessage(_cj.LM_API_VCOMP_T_EN, None)

 self.controlEnabled = True

[docs] def disableControl(self):
 """Disable the closed loop controller.

 Stop driving the output based on the feedback.
 """
 # Disable all control modes.
 self.sendMessage(_cj.LM_API_VOLT_DIS, None)
 self.sendMessage(_cj.LM_API_SPD_DIS, None)
 self.sendMessage(_cj.LM_API_POS_DIS, None)
 self.sendMessage(_cj.LM_API_ICTRL_DIS, None)
 self.sendMessage(_cj.LM_API_VCOMP_DIS, None)

 # Stop all periodic setpoints
 self.sendMessage(_cj.LM_API_VOLT_T_SET, None,
 frccan.CAN_SEND_PERIOD_STOP_REPEATING)
 self.sendMessage(_cj.LM_API_SPD_T_SET, None,
 frccan.CAN_SEND_PERIOD_STOP_REPEATING)
 self.sendMessage(_cj.LM_API_POS_T_SET, None,
 frccan.CAN_SEND_PERIOD_STOP_REPEATING)
 self.sendMessage(_cj.LM_API_ICTRL_T_SET, None,
 frccan.CAN_SEND_PERIOD_STOP_REPEATING)
 self.sendMessage(_cj.LM_API_VCOMP_T_SET, None,
 frccan.CAN_SEND_PERIOD_STOP_REPEATING)

 self.controlEnabled = False

[docs] def setPercentMode(self):
 """Enable controlling the motor voltage as a percentage of the bus
 voltage without any position or speed feedback.

 After calling this you must call :func:`enableControl` to enable
 the device.
 """
 self.changeControlMode(self.ControlMode.PercentVbus)
 self.setPositionReference(_cj.LM_REF_NONE)
 self.setSpeedReference(_cj.LM_REF_NONE)

[docs] def setPercentModeEncoder(self, codesPerRev):
 """Enable controlling the motor voltage as a percentage of the bus
 voltage, and enable speed sensing from a non-quadrature encoder.

 After calling this you must call :func:`enableControl` to enable
 the device.

 :param codesPerRev: The counts per revolution on the encoder
 """
 self.changeControlMode(self.ControlMode.PercentVbus)
 self.setPositionReference(_cj.LM_REF_NONE)
 self.setSpeedReference(_cj.LM_REF_ENCODER)
 self.configEncoderCodesPerRev(codesPerRev)

[docs] def setPercentModeQuadEncoder(self, codesPerRev):
 """Enable controlling the motor voltage as a percentage of the bus
 voltage, and enable position and speed sensing from a quadrature
 encoder.

 After calling this you must call :func:`enableControl` to enable
 the device.

 :param tag: The constant {@link CANJaguar#kQuadEncoder}
 :param codesPerRev: The counts per revolution on the encoder
 """
 self.changeControlMode(self.ControlMode.PercentVbus)
 self.setPositionReference(_cj.LM_REF_ENCODER)
 self.setSpeedReference(_cj.LM_REF_QUAD_ENCODER)
 self.configEncoderCodesPerRev(codesPerRev)

[docs] def setPercentModePotentiometer(self):
 """Enable controlling the motor voltage as a percentage of the bus
 voltage, and enable position sensing from a potentiometer and no
 speed feedback.

 After calling this you must call :func:`enableControl` to enable
 the device.

 :param tag: The constant {@link CANJaguar#kPotentiometer}
 """
 self.changeControlMode(self.ControlMode.PercentVbus)
 self.setPositionReference(_cj.LM_REF_POT)
 self.setSpeedReference(_cj.LM_REF_NONE)
 self.configPotentiometerTurns(1)

[docs] def setCurrentModePID(self, p, i, d):
 """Enable controlling the motor current with a PID loop.

 After calling this you must call :func:`enableControl` to enable
 the device.

 :param p: The proportional gain of the Jaguar's PID controller.
 :param i: The integral gain of the Jaguar's PID controller.
 :param d: The differential gain of the Jaguar's PID controller.
 """
 self.changeControlMode(self.ControlMode.Current)
 self.setPositionReference(_cj.LM_REF_NONE)
 self.setSpeedReference(_cj.LM_REF_NONE)
 self.setPID(p, i, d)

[docs] def setCurrentModeEncoder(self, codesPerRev, p, i, d):
 """Enable controlling the motor current with a PID loop, and enable
 speed sensing from a non-quadrature encoder.

 After calling this you must call :func:`enableControl` to enable
 the device.

 :param p: The proportional gain of the Jaguar's PID controller.
 :param i: The integral gain of the Jaguar's PID controller.
 :param d: The differential gain of the Jaguar's PID controller.
 """
 self.changeControlMode(self.ControlMode.Current)
 self.setPositionReference(_cj.LM_REF_NONE)
 self.setSpeedReference(_cj.LM_REF_NONE)
 self.configEncoderCodesPerRev(codesPerRev)
 self.setPID(p, i, d)

[docs] def setCurrentModeQuadEncoder(self, codesPerRev, p, i, d):
 """Enable controlling the motor current with a PID loop, and enable
 speed and position sensing from a quadrature encoder.

 After calling this you must call :func:`enableControl` to enable
 the device.

 :param codesPerRev: The counts per revolution on the encoder
 :param p: The proportional gain of the Jaguar's PID controller.
 :param i: The integral gain of the Jaguar's PID controller.
 :param d: The differential gain of the Jaguar's PID controller.
 """
 self.changeControlMode(self.ControlMode.Current)
 self.setPositionReference(_cj.LM_REF_ENCODER)
 self.setSpeedReference(_cj.LM_REF_QUAD_ENCODER)
 self.configEncoderCodesPerRev(codesPerRev)
 self.setPID(p, i, d)

[docs] def setCurrentModePotentiometer(self, p, i, d):
 """Enable controlling the motor current with a PID loop, and enable
 position sensing from a potentiometer.

 After calling this you must call :func:`enableControl` to enable
 the device.

 :param p: The proportional gain of the Jaguar's PID controller.
 :param i: The integral gain of the Jaguar's PID controller.
 :param d: The differential gain of the Jaguar's PID controller.
 """
 self.changeControlMode(self.ControlMode.Current)
 self.setPositionReference(_cj.LM_REF_POT)
 self.setSpeedReference(_cj.LM_REF_NONE)
 self.configPotentiometerTurns(1)
 self.setPID(p, i, d)

[docs] def setSpeedModeEncoder(self, codesPerRev, p, i, d):
 """Enable controlling the speed with a feedback loop from a
 non-quadrature encoder.

 After calling this you must call :func:`enableControl` to enable
 the device.

 :param codesPerRev: The counts per revolution on the encoder
 :param p: The proportional gain of the Jaguar's PID controller.
 :param i: The integral gain of the Jaguar's PID controller.
 :param d: The differential gain of the Jaguar's PID controller.
 """
 self.changeControlMode(self.ControlMode.Speed)
 self.setPositionReference(_cj.LM_REF_NONE)
 self.setSpeedReference(_cj.LM_REF_ENCODER)
 self.configEncoderCodesPerRev(codesPerRev)
 self.setPID(p, i, d)

[docs] def setSpeedModeQuadEncoder(self, codesPerRev, p, i, d):
 """Enable controlling the speed with a feedback loop from a
 quadrature encoder.

 After calling this you must call :func:`enableControl` to enable
 the device.

 :param codesPerRev: The counts per revolution on the encoder
 :param p: The proportional gain of the Jaguar's PID controller.
 :param i: The integral gain of the Jaguar's PID controller.
 :param d: The differential gain of the Jaguar's PID controller.
 """
 self.changeControlMode(self.ControlMode.Speed)
 self.setPositionReference(_cj.LM_REF_ENCODER)
 self.setSpeedReference(_cj.LM_REF_QUAD_ENCODER)
 self.configEncoderCodesPerRev(codesPerRev)
 self.setPID(p, i, d)

[docs] def setPositionModeQuadEncoder(self, codesPerRev, p, i, d):
 """Enable controlling the position with a feedback loop using an
 encoder.

 After calling this you must call :func:`enableControl` to enable
 the device.

 :param codesPerRev: The counts per revolution on the encoder
 :param p: The proportional gain of the Jaguar's PID controller.
 :param i: The integral gain of the Jaguar's PID controller.
 :param d: The differential gain of the Jaguar's PID controller.
 """
 self.changeControlMode(self.ControlMode.Position)
 self.setPositionReference(_cj.LM_REF_ENCODER)
 self.configEncoderCodesPerRev(codesPerRev)
 self.setPID(p, i, d)

[docs] def setPositionModePotentiometer(self, p, i, d):
 """Enable controlling the position with a feedback loop using a
 potentiometer.

 After calling this you must call :func:`enableControl` to enable
 the device.

 :param p: The proportional gain of the Jaguar's PID controller.
 :param i: The integral gain of the Jaguar's PID controller.
 :param d: The differential gain of the Jaguar's PID controller.
 """
 self.changeControlMode(self.ControlMode.Position)
 self.setPositionReference(_cj.LM_REF_POT)
 self.configPotentiometerTurns(1)
 self.setPID(p, i, d)

[docs] def setVoltageMode(self):
 """Enable controlling the motor voltage without any position or speed
 feedback.

 After calling this you must call :func:`enableControl` to enable
 the device.
 """
 self.changeControlMode(self.ControlMode.Voltage)
 self.setPositionReference(_cj.LM_REF_NONE)
 self.setSpeedReference(_cj.LM_REF_NONE)

[docs] def setVoltageModeEncoder(self, codesPerRev):
 """Enable controlling the motor voltage with speed feedback from a
 non-quadrature encoder and no position feedback.

 After calling this you must call :func:`enableControl` to enable
 the device.

 :param codesPerRev: The counts per revolution on the encoder
 """
 self.changeControlMode(self.ControlMode.Voltage)
 self.setPositionReference(_cj.LM_REF_NONE)
 self.setSpeedReference(_cj.LM_REF_ENCODER)
 self.configEncoderCodesPerRev(codesPerRev)

[docs] def setVoltageModeQuadEncoder(self, codesPerRev):
 """Enable controlling the motor voltage with position and speed
 feedback from a quadrature encoder.

 After calling this you must call :func:`enableControl` to enable
 the device.

 :param tag: The constant {@link CANJaguar#kQuadEncoder}
 :param codesPerRev: The counts per revolution on the encoder
 """
 self.changeControlMode(self.ControlMode.Voltage)
 self.setPositionReference(_cj.LM_REF_ENCODER)
 self.setSpeedReference(_cj.LM_REF_QUAD_ENCODER)
 self.configEncoderCodesPerRev(codesPerRev)

[docs] def setVoltageModePotentiometer(self):
 """Enable controlling the motor voltage with position feedback from a
 potentiometer and no speed feedback.

 After calling this you must call :func:`enableControl` to enable
 the device.
 """
 self.changeControlMode(self.ControlMode.Voltage)
 self.setPositionReference(_cj.LM_REF_POT)
 self.setSpeedReference(_cj.LM_REF_NONE)
 self.configPotentiometerTurns(1)

[docs] def changeControlMode(self, controlMode):
 """Used internally. In order to set the control mode see the methods
 listed below.

 Change the control mode of this Jaguar object.

 After changing modes, configure any PID constants or other settings
 needed and then EnableControl() to actually change the mode on the
 Jaguar.

 :param controlMode: The new mode.
 """
 # Disable the previous mode
 self.disableControl()

 # Update the local mode
 self.controlMode = controlMode
 self.controlModeVerified = False

 # Update the finalizer
 self._canjaguar_finalizer.detach()
 self._canjaguar_finalizer = weakref.finalize(self, _freeJaguar,
 self.deviceNumber,
 self.controlMode)

[docs] def getControlMode(self):
 """Get the active control mode from the Jaguar.

 Ask the Jagaur what mode it is in.

 :return ControlMode: that the Jag is in.
 """
 return self.controlMode

[docs] def getBusVoltage(self):
 """Get the voltage at the battery input terminals of the Jaguar.

 :returns: The bus voltage in Volts.
 """
 self.updatePeriodicStatus()
 return self.busVoltage

[docs] def getOutputVoltage(self):
 """Get the voltage being output from the motor terminals of the Jaguar.

 :returns: The output voltage in Volts.
 """
 self.updatePeriodicStatus()
 return self.outputVoltage

[docs] def getOutputCurrent(self):
 """Get the current through the motor terminals of the Jaguar.

 :returns: The output current in Amps.
 """
 self.updatePeriodicStatus()
 return self.outputCurrent

[docs] def getTemperature(self):
 """Get the internal temperature of the Jaguar.

 :returns: The temperature of the Jaguar in degrees Celsius.
 """
 self.updatePeriodicStatus()
 return self.temperature

[docs] def getPosition(self):
 """Get the position of the encoder or potentiometer.

 :returns: The position of the motor in rotations based on the
 configured feedback. See :func:`configPotentiometerTurns` and
 :func:`configEncoderCodesPerRev`.
 """
 self.updatePeriodicStatus()
 return self.position

[docs] def getSpeed(self):
 """Get the speed of the encoder.

 :returns: The speed of the motor in RPM based on the configured
 feedback.
 """
 self.updatePeriodicStatus()
 return self.speed

[docs] def getForwardLimitOK(self):
 """Get the status of the forward limit switch.

 :returns: True if the motor is allowed to turn in the forward direction.
 """
 self.updatePeriodicStatus()
 return (self.limits & self.kForwardLimit) != 0

[docs] def getReverseLimitOK(self):
 """Get the status of the reverse limit switch.

 :returns: True if the motor is allowed to turn in the reverse direction.
 """
 self.updatePeriodicStatus()
 return (self.limits & self.kReverseLimit) != 0

[docs] def getFaults(self):
 """Get the status of any faults the Jaguar has detected.

 :returns: A bit-mask of faults defined by the "Faults" constants.

 - `kCurrentFault`
 - `kBusVoltageFault`
 - `kTemperatureFault`
 - `GateDriverFault`
 """
 self.updatePeriodicStatus()
 return self.faults

[docs] def setVoltageRampRate(self, rampRate):
 """Set the maximum voltage change rate.

 When in PercentVbus or Voltage output mode, the rate at which the
 voltage changes can be limited to reduce current spikes. set this
 to 0.0 to disable rate limiting.

 :param rampRate: The maximum rate of voltage change in Percent
 Voltage mode in V/s.
 """
 if self.controlMode == self.ControlMode.PercentVbus:
 data = _packPercentage(rampRate / (self.maxOutputVoltage *
 self.kControllerRate))
 message = _cj.LM_API_VOLT_SET_RAMP
 elif self.controlMode == self.ControlMode.Voltage:
 data = _packFXP8_8(rampRate / self.kControllerRate)
 message = _cj.LM_API_VCOMP_COMP_RAMP
 else:
 raise ValueError("Voltage ramp rate only applies in Percentage and Voltage modes")

 self.sendMessage(message, data)

[docs] def getFirmwareVersion(self):
 """Get the version of the firmware running on the Jaguar.

 :returns: The firmware version. 0 if the device did not respond.
 """
 return self.firmwareVersion

[docs] def getHardwareVersion(self):
 """Get the version of the Jaguar hardware.

 :returns: The hardware version. 1: Jaguar, 2: Black Jaguar
 """
 return self.hardwareVersion

[docs] def configNeutralMode(self, mode):
 """Configure what the controller does to the H-Bridge when neutral
 (not driving the output).

 This allows you to override the jumper configuration for brake or coast.

 :param mode: Select to use the jumper setting or to override it to
 coast or brake (see `NeutralMode`).
 """
 self.sendMessage(_cj.LM_API_CFG_BRAKE_COAST, [mode])
 self.neutralMode = mode
 self.neutralModeVerified = False

[docs] def configEncoderCodesPerRev(self, codesPerRev):
 """Configure how many codes per revolution are generated by your
 encoder.

 :param codesPerRev: The number of counts per revolution in 1X mode.
 """
 data = _packINT16(codesPerRev)
 self.sendMessage(_cj.LM_API_CFG_ENC_LINES, data)
 self.encoderCodesPerRev = codesPerRev
 self.encoderCodesPerRevVerified = False

[docs] def configPotentiometerTurns(self, turns):
 """Configure the number of turns on the potentiometer.

 There is no special support for continuous turn potentiometers.
 Only integer numbers of turns are supported.

 :param turns: The number of turns of the potentiometer
 """
 data = _packINT16(turns)
 self.sendMessage(_cj.LM_API_CFG_POT_TURNS, data)
 self.potentiometerTurns = turns
 self.potentiometerTurnsVerified = False

[docs] def configSoftPositionLimits(self, forwardLimitPosition,
 reverseLimitPosition):
 """Configure Soft Position Limits when in Position Controller mode.

 When controlling position, you can add additional limits on top of
 the limit switch inputs that are based on the position feedback.
 If the position limit is reached or the switch is opened, that
 direction will be disabled.

 :param forwardLimitPosition: The position that, if exceeded, will
 disable the forward direction.
 :param reverseLimitPosition: The position that, if exceeded, will
 disable the reverse direction.
 """
 self.configLimitMode(self.LimitMode.SoftPositionLimits)
 self.configForwardLimit(forwardLimitPosition)
 self.configReverseLimit(reverseLimitPosition)

[docs] def disableSoftPositionLimits(self):
 """Disable Soft Position Limits if previously enabled.

 Soft Position Limits are disabled by default.
 """
 self.configLimitMode(self.LimitMode.SwitchInputsOnly)

[docs] def configLimitMode(self, mode):
 """Set the limit mode for position control mode.

 Use :func:`configSoftPositionLimits` or
 :func:`disableSoftPositionLimits` to set this automatically.

 :param mode: The `LimitMode` to use to limit the rotation of the device.
 """
 self.sendMessage(_cj.LM_API_CFG_LIMIT_MODE, [mode])

[docs] def configForwardLimit(self, forwardLimitPosition):
 """Set the position that, if exceeded, will disable the forward
 direction.

 Use :func:`configSoftPositionLimits` to set this and the
 `LimitMode` automatically.

 :param forwardLimitPosition: The position that, if exceeded, will
 disable the forward direction.
 """
 data = _packFXP16_16(forwardLimitPosition)
 data.append(1)
 self.sendMessage(_cj.LM_API_CFG_LIMIT_FWD, data)

 self.forwardLimit = forwardLimitPosition
 self.forwardLimitVerified = False

[docs] def configReverseLimit(self, reverseLimitPosition):
 """Set the position that, if exceeded, will disable the reverse
 direction.

 Use :func:`configSoftPositionLimits` to set this and the
 `LimitMode` automatically.

 :param reverseLimitPosition: The position that, if exceeded, will
 disable the reverse direction.
 """
 data = _packFXP16_16(reverseLimitPosition)
 data.append(1)
 self.sendMessage(_cj.LM_API_CFG_LIMIT_REV, data)

 self.reverseLimit = reverseLimitPosition
 self.reverseLimitVerified = False

[docs] def configMaxOutputVoltage(self, voltage):
 """Configure the maximum voltage that the Jaguar will ever output.

 This can be used to limit the maximum output voltage in all modes so
 that motors which cannot withstand full bus voltage can be used safely.

 :param voltage: The maximum voltage output by the Jaguar.
 """
 data = _packFXP8_8(voltage)
 self.sendMessage(_cj.LM_API_CFG_MAX_VOUT, data)

 self.maxOutputVoltage = voltage
 self.maxOutputVoltageVerified = False

[docs] def configFaultTime(self, faultTime):
 """Configure how long the Jaguar waits in the case of a fault before
 resuming operation.

 Faults include over temerature, over current, and bus under voltage.
 The default is 3.0 seconds, but can be reduced to as low as 0.5
 seconds.

 :param faultTime: The time to wait before resuming operation, in
 seconds.
 """
 if faultTime < 0.5:
 faultTime = 0.5
 elif faultTime > 3.0:
 faultTime = 3.0

 data = _packINT16(int(faultTime * 1000.0))
 self.sendMessage(_cj.LM_API_CFG_FAULT_TIME, data)

 self.faultTime = faultTime
 self.faultTimeVerified = False

[docs] def sendMessage(self, messageID, data,
 period=frccan.CAN_SEND_PERIOD_NO_REPEAT):
 """Send a message to the Jaguar.

 :param messageID: The messageID to be used on the CAN bus (device
 number is added internally)
 :param data: The up to 8 bytes of data to be sent with the message
 :param period: If positive, tell Network Communications to send the
 message every "period" milliseconds.
 """
 _sendMessageHelper(messageID | self.deviceNumber, data, period)

[docs] def requestMessage(self, messageID,
 period=frccan.CAN_SEND_PERIOD_NO_REPEAT):
 """Request a message from the Jaguar, but don't wait for it to arrive.

 :param messageID: The message to request
 :param periodic: If positive, tell Network Communications to request
 the message every "period" milliseconds.
 """
 _sendMessageHelper(messageID | self.deviceNumber, None, period)

[docs] def getMessage(self, messageID, messageMask):
 """Get a previously requested message.

 Jaguar always generates a message with the same message ID when
 replying.

 :param messageID: The messageID to read from the CAN bus (device
 number is added internally)
 :returns: The up to 8 bytes of data that was received with the message
 """
 messageID |= self.deviceNumber
 messageID &= _cj.CAN_MSGID_FULL_M

 # Get the data.
 messageID, data, timeStamp = \
 frccan.CANSessionMux_receiveMessage(messageID, messageMask)

 return data

[docs] def setupPeriodicStatus(self):
 """Enables periodic status updates from the Jaguar
 """
 # Message 0 returns bus voltage, output voltage, output current, and
 # temperature.
 kMessage0Data = [
 _cj.LM_PSTAT_VOLTBUS_B0, _cj.LM_PSTAT_VOLTBUS_B1,
 _cj.LM_PSTAT_VOLTOUT_B0, _cj.LM_PSTAT_VOLTOUT_B1,
 _cj.LM_PSTAT_CURRENT_B0, _cj.LM_PSTAT_CURRENT_B1,
 _cj.LM_PSTAT_TEMP_B0, _cj.LM_PSTAT_TEMP_B1]

 # Message 1 returns position and speed
 kMessage1Data = [
 _cj.LM_PSTAT_POS_B0, _cj.LM_PSTAT_POS_B1,
 _cj.LM_PSTAT_POS_B2, _cj.LM_PSTAT_POS_B3,
 _cj.LM_PSTAT_SPD_B0, _cj.LM_PSTAT_SPD_B1,
 _cj.LM_PSTAT_SPD_B2, _cj.LM_PSTAT_SPD_B3]

 # Message 2 returns limits and faults
 kMessage2Data = [
 _cj.LM_PSTAT_LIMIT_CLR,
 _cj.LM_PSTAT_FAULT,
 _cj.LM_PSTAT_END,
 0, 0, 0, 0, 0]

 data = _packINT16(int(self.kSendMessagePeriod))
 self.sendMessage(_cj.LM_API_PSTAT_PER_EN_S0, data)
 self.sendMessage(_cj.LM_API_PSTAT_PER_EN_S1, data)
 self.sendMessage(_cj.LM_API_PSTAT_PER_EN_S2, data)

 self.sendMessage(_cj.LM_API_PSTAT_CFG_S0, kMessage0Data)
 self.sendMessage(_cj.LM_API_PSTAT_CFG_S1, kMessage1Data)
 self.sendMessage(_cj.LM_API_PSTAT_CFG_S2, kMessage2Data)

[docs] def updatePeriodicStatus(self):
 """Check for new periodic status updates and unpack them into local
 variables.
 """
 # Check if a new bus voltage/output voltage/current/temperature message
 # has arrived and unpack the values into the cached member variables
 try:
 data = self.getMessage(_cj.LM_API_PSTAT_DATA_S0,
 _cj.CAN_MSGID_FULL_M)

 self.busVoltage = _unpackFXP8_8(data[0:2])
 self.outputVoltage = _unpackPercentage(data[2:4]) * self.busVoltage
 self.outputCurrent = _unpackFXP8_8(data[4:6])
 self.temperature = _unpackFXP8_8(data[6:8])

 self.receivedStatusMessage0 = True
 except frccan.CANMessageNotFound:
 pass

 # Check if a new position/speed message has arrived and do the same
 try:
 data = self.getMessage(_cj.LM_API_PSTAT_DATA_S1,
 _cj.CAN_MSGID_FULL_M)

 self.position = _unpackFXP16_16(data[0:4])
 self.speed = _unpackFXP16_16(data[4:8])

 self.receivedStatusMessage1 = True
 except frccan.CANMessageNotFound:
 pass

 # Check if a new limits/faults message has arrived and do the same
 try:
 data = self.getMessage(_cj.LM_API_PSTAT_DATA_S2,
 _cj.CAN_MSGID_FULL_M)
 self.limits = data[0]
 self.faults = data[1]

 self.receivedStatusMessage2 = True
 except frccan.CANMessageNotFound:
 pass

 @staticmethod
[docs] def updateSyncGroup(syncGroup):
 """Update all the motors that have pending sets in the syncGroup.

 :param syncGroup: A bitmask of groups to generate synchronous output.
 """
 _sendMessageHelper(_cj.CAN_MSGID_API_SYNC, [syncGroup],
 frccan.CAN_SEND_PERIOD_NO_REPEAT)

[docs] def getDescription(self):
 return "CANJaguar ID %d" % self.deviceNumber

[docs] def getDeviceID(self):
 return self.deviceNumber

[docs] def stopMotor(self):
 """Common interface for stopping a motor.
 """
 self.disableControl()

 # Live Window code, only does anything if live window is activated.

 def getSmartDashboardType(self):
 return "Speed Controller"

 def updateTable(self):
 table = self.getTable()
 if table is not None:
 table.putNumber("Value", self.get())

 def valueChanged(self, itable, key, value, bln):
 self.set(float(value))

 def startLiveWindowMode(self):
 self.set(0) # Stop for safety
 super(CANJaguar, self).startLiveWindowMode()

 def stopLiveWindowMode(self):
 super(CANJaguar, self).stopLiveWindowMode()
 self.set(0) # Stop for safety

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/adxl345_spi.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.adxl345_spi

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal

from .interfaces import Accelerometer
from .spi import SPI
from .sensorbase import SensorBase
from .livewindow import LiveWindow

__all__ = ["ADXL345_SPI"]

[docs]class ADXL345_SPI(SensorBase):
 """
 ADXL345 accelerometer device via spi

 .. not_implemented: init
 """

 kPowerCtlRegister = 0x2D
 kDataFormatRegister = 0x31
 kDataRegister = 0x32
 kGsPerLSB = 0.00390625

 kAddress_Read = 0x80
 kAddress_MultiByte = 0x40

 kPowerCtl_Link = 0x20
 kPowerCtl_AutoSleep = 0x10
 kPowerCtl_Measure = 0x08
 kPowerCtl_Sleep = 0x04

 kDataFormat_SelfTest = 0x80
 kDataFormat_SPI = 0x40
 kDataFormat_IntInvert = 0x20
 kDataFormat_FullRes = 0x08
 kDataFormat_Justify = 0x04

 Range = Accelerometer.Range

[docs] class Axes:
 kX = 0x00
 kY = 0x02
 kZ = 0x04

 def __init__(self, port, range):
 """Constructor. Use this when the device is the first/only device on
 the bus

 :param port: The SPI port that the accelerometer is connected to
 :param range: The range (+ or -) that the accelerometer will measure.
 """
 self.spi = SPI(port)
 self.spi.setClockRate(500000)
 self.spi.setMSBFirst()
 self.spi.setSampleDataOnFalling()
 self.spi.setClockActiveLow()
 self.spi.setChipSelectActiveHigh()

 # Turn on the measurements
 self.spi.write([self.kPowerCtlRegister, self.kPowerCtl_Measure])

 self.setRange(range)

 hal.HALReport(hal.HALUsageReporting.kResourceType_ADXL345,
 hal.HALUsageReporting.kADXL345_SPI)

 LiveWindow.addSensor("ADXL345_SPI", port, self)

 # Accelerometer interface

[docs] def setRange(self, range):
 """Set the measuring range of the accelerometer.

 :param range: The maximum acceleration, positive or negative, that
 the accelerometer will measure.
 :type range: :class:`ADXL345_SPI.Range`
 """
 if range == self.Range.k2G:
 value = 0
 elif range == self.Range.k4G:
 value = 1
 elif range == self.Range.k8G:
 value = 2
 elif range == self.Range.k16G:
 value = 3
 else:
 raise ValueError("Invalid range argument '%s'" % range)

 self.spi.write([self.kDataFormatRegister,
 self.kDataFormat_FullRes | value])

[docs] def getX(self):
 """Get the x axis acceleration

 :returns: The acceleration along the x axis in g-forces
 """
 return self.getAcceleration(self.Axes.kX)

[docs] def getY(self):
 """Get the y axis acceleration

 :returns: The acceleration along the y axis in g-forces
 """
 return self.getAcceleration(self.Axes.kY)

[docs] def getZ(self):
 """Get the z axis acceleration

 :returns: The acceleration along the z axis in g-forces
 """
 return self.getAcceleration(self.Axes.kZ)

[docs] def getAcceleration(self, axis):
 """Get the acceleration of one axis in Gs.

 :param axis: The axis to read from.
 :returns: An object containing the acceleration measured on each axis of the ADXL345 in Gs.
 """
 data = [(self.kAddress_Read | self.kAddress_MultiByte |
 self.kDataRegister) + axis, 0, 0]
 data = self.spi.transaction(data)
 # Sensor is little endian... swap bytes
 rawAccel = (data[2] << 8) | data[1]
 return rawAccel * self.kGsPerLSB

[docs] def getAccelerations(self):
 """Get the acceleration of all axes in Gs.

 :returns: X,Y,Z tuple of acceleration measured on all axes of the
 ADXL345 in Gs.
 """
 # Select the data address.
 data = [0] * 7
 data[0] = (self.kAddress_Read | self.kAddress_MultiByte |
 self.kDataRegister)
 data = self.spi.transaction(data)

 # Sensor is little endian... swap bytes
 rawData = []
 for i in range(3):
 rawData.append((data[i*2+2] << 8) | data[i*2+1])

 return (rawData[0] * self.kGsPerLSB,
 rawData[1] * self.kGsPerLSB,
 rawData[2] * self.kGsPerLSB)

 # Live Window code, only does anything if live window is activated.

 def getSmartDashboardType(self):
 return "3AxisAccelerometer"

 def initTable(self, subtable):
 self.table = subtable
 self.updateTable()

 def getTable(self):
 return self.table

 def updateTable(self):
 if self.table is not None:
 self.table.putNumber("X", self.getX())
 self.table.putNumber("Y", self.getY())
 self.table.putNumber("Z", self.getZ())

 def startLiveWindowMode(self):
 """
 ADXL345_SPI doesn't have to do anything special when entering the LiveWindow.
 """
 pass

 def stopLiveWindowMode(self):
 """
 ADXL345_SPI doesn't have to do anything special when exiting the LiveWindow.
 """
 pass

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/relay.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.relay

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal
import weakref

from .livewindow import LiveWindow
from .resource import Resource
from .sensorbase import SensorBase

__all__ = ["Relay"]

def _freeRelay(port):
 hal.setRelayForward(port, False)
 hal.setRelayReverse(port, False)
 hal.freeDIO(port)

[docs]class Relay(SensorBase):
 """Controls VEX Robotics Spike style relay outputs.

 Relays are intended to be connected to Spikes or similar relays. The relay
 channels controls a pair of pins that are either both off, one on, the
 other on, or both on. This translates into two Spike outputs at 0v, one at
 12v and one at 0v, one at 0v and the other at 12v, or two Spike outputs at
 12V. This allows off, full forward, or full reverse control of motors without
 variable speed. It also allows the two channels (forward and reverse) to
 be used independently for something that does not care about voltage
 polarity (like a solenoid).

 .. not_implemented: initRelay
 """

[docs] class Value:
 """The state to drive a Relay to."""

 #: Off
 kOff = 0

 #: On for relays with defined direction
 kOn = 1

 #: Forward
 kForward = 2

 #: Reverse
 kReverse = 3

[docs] class Direction:
 """The Direction(s) that a relay is configured to operate in."""

 #: Both directions are valid
 kBoth = 0

 #: Only forward is valid
 kForward = 1

 #: Only reverse is valid
 kReverse = 2

 relayChannels = Resource(SensorBase.kRelayChannels * 2)

 def __init__(self, channel, direction=None):
 """Relay constructor given a channel.

 Initially the relay is set to both lines at 0v.

 :param channel: The channel number for this relay (0-3)
 :type channel: int
 :param direction: The direction that the Relay object will control.
 If not specified, defaults to allowing both directions.
 :type direction: :class:`Relay.Direction`
 """
 if direction is None:
 direction = self.Direction.kBoth
 self.channel = channel
 self.direction = direction

 self._initRelay()

 LiveWindow.addActuatorChannel("Relay", self.channel, self)
 self.set(self.Value.kOff)

 def _initRelay(self):
 SensorBase.checkRelayChannel(self.channel)
 try:
 if (self.direction == self.Direction.kBoth or
 self.direction == self.Direction.kForward):
 Relay.relayChannels.allocate(self, self.channel * 2)
 hal.HALReport(hal.HALUsageReporting.kResourceType_Relay,
 self.channel)
 if (self.direction == self.Direction.kBoth or
 self.direction == self.Direction.kReverse):
 Relay.relayChannels.allocate(self, self.channel * 2 + 1)
 hal.HALReport(hal.HALUsageReporting.kResourceType_Relay,
 self.channel + 128)
 except IndexError as e:
 raise IndexError("Relay channel %d is already allocated" % self.channel) from e

 self._port = hal.initializeDigitalPort(hal.getPort(self.channel))
 self._port_finalizer = weakref.finalize(self, _freeRelay, self._port)

 @property
[docs] def port(self):
 if not self._port_finalizer.alive:
 return None
 return self._port

[docs] def free(self):
 if (self.direction == self.Direction.kBoth or
 self.direction == self.Direction.kForward):
 Relay.relayChannels.free(self.channel*2)
 if (self.direction == self.Direction.kBoth or
 self.direction == self.Direction.kReverse):
 Relay.relayChannels.free(self.channel*2 + 1)

 self._port_finalizer()

[docs] def set(self, value):
 """Set the relay state.

 Valid values depend on which directions of the relay are controlled by
 the object.

 When set to kBothDirections, the relay can be set to any of the four
 states: 0v-0v, 12v-0v, 0v-12v, 12v-12v

 When set to kForwardOnly or kReverseOnly, you can specify the constant
 for the direction or you can simply specify kOff and kOn. Using only
 kOff and kOn is recommended.

 :param value: The state to set the relay.
 :type value: :class:`Relay.Value`
 """
 if self.port is None:
 raise ValueError("operation on freed port")
 if value == self.Value.kOff:
 if (self.direction == self.Direction.kBoth or
 self.direction == self.Direction.kForward):
 hal.setRelayForward(self.port, False)
 if (self.direction == self.Direction.kBoth or
 self.direction == self.Direction.kReverse):
 hal.setRelayReverse(self.port, False)
 elif value == self.Value.kOn:
 if (self.direction == self.Direction.kBoth or
 self.direction == self.Direction.kForward):
 hal.setRelayForward(self.port, True)
 if (self.direction == self.Direction.kBoth or
 self.direction == self.Direction.kReverse):
 hal.setRelayReverse(self.port, True)
 elif value == self.Value.kForward:
 if self.direction == self.Direction.kReverse:
 raise ValueError("A relay configured for reverse cannot be set to forward")
 if (self.direction == self.Direction.kBoth or
 self.direction == self.Direction.kForward):
 hal.setRelayForward(self.port, True)
 if self.direction == self.Direction.kBoth:
 hal.setRelayReverse(self.port, False)
 elif value == self.Value.kReverse:
 if self.direction == self.Direction.kForward:
 raise ValueError("A relay configured for forward cannot be set to reverse")
 if self.direction == self.Direction.kBoth:
 hal.setRelayForward(self.port, False)
 if (self.direction == self.Direction.kBoth or
 self.direction == self.Direction.kReverse):
 hal.setRelayReverse(self.port, True)
 else:
 raise ValueError("Invalid value argument '%s'" % value)

[docs] def get(self):
 """Get the Relay State

 Gets the current state of the relay.

 When set to kForwardOnly or kReverseOnly, value is returned as kOn/kOff
 not kForward/kReverse (per the recommendation in Set)

 :returns: The current state of the relay
 :rtype: :class:`Relay.Value`
 """
 if self.port is None:
 raise ValueError("operation on freed port")
 if hal.getRelayForward(self.port):
 if hal.getRelayReverse(self.port):
 return self.Value.kOn
 else:
 if self.direction == self.Direction.kForward:
 return self.Value.kOn
 else:
 return self.Value.kForward
 else:
 if hal.getRelayReverse(self.port):
 if self.direction == self.Direction.kReverse:
 return self.Value.kOn
 else:
 return self.Value.kReverse
 else:
 return self.Value.kOff

[docs] def setDirection(self, direction):
 """Set the Relay Direction.

 Changes which values the relay can be set to depending on which
 direction is used.

 Valid inputs are kBothDirections, kForwardOnly, and kReverseOnly.

 :param direction: The direction for the relay to operate in
 :type direction: :class:`Relay.Direction`
 """
 if self.direction == direction:
 return

 if direction not in [self.Direction.kBoth,
 self.Direction.kForward,
 self.Direction.kReverse]:
 raise ValueError("Invalid direction argument '%s'" % direction)

 self.free()
 self.direction = direction
 self._initRelay()

 # Live Window code, only does anything if live window is activated.

 def getSmartDashboardType(self):
 return "Relay"

 def updateTable(self):
 table = self.getTable()
 if table is None:
 return
 v = self.get()
 if v == self.Value.kOn:
 table.putString("Value", "On")
 elif v == self.Value.kForward:
 table.putString("Value", "Forward")
 elif v == self.Value.kReverse:
 table.putString("Value", "Reverse")
 else:
 table.putString("Value", "Off")

 def valueChanged(self, itable, key, value, bln):
 if value == "Off":
 self.set(self.Value.kOff)
 elif value == "On":
 self.set(self.Value.kOn)
 elif value == "Forward":
 self.set(self.Value.kForward)
 elif value == "Reverse":
 self.set(self.Value.kReverse)

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/smartdashboard.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.smartdashboard

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal

__all__ = ["SmartDashboard"]

[docs]class SmartDashboard:
 """The bridge between robot programs and the SmartDashboard on the laptop

 When a value is put into the SmartDashboard, it pops up on the
 SmartDashboard on the remote host. Users can put values into and get values
 from the SmartDashboard.

 These values can also be accessed by a NetworkTables client via the
 'SmartDashboard' table::

 from networktables import NetworkTable
 sd = NetworkTable.getTable('SmartDashboard')

 # sd.putXXX and sd.getXXX work as expected here

 """
 # The NetworkTable used by SmartDashboard
 table = None
 # A table linking tables in the SmartDashboard to the SmartDashboardData
 # objects they came from.
 tablesToData = {}

 class _defaultValueSentry:
 pass

 @staticmethod
 def _reset():
 SmartDashboard.tablesToData = {}
 SmartDashboard.table = None

 @staticmethod
 def getTable():
 if SmartDashboard.table is None:
 from networktables import NetworkTable
 SmartDashboard.table = NetworkTable.getTable("SmartDashboard")
 hal.HALReport(hal.HALUsageReporting.kResourceType_SmartDashboard,
 hal.HALUsageReporting.kSmartDashboard_Instance)
 return SmartDashboard.table

 @staticmethod
[docs] def putData(*args, **kwargs):
 """Maps the specified key to the specified value in this table.
 The value can be retrieved by calling the get method with a key that
 is equal to the original key.

 Two argument formats are supported: key, data:

 :param key: the key (cannot be None)
 :type key: str
 :param data: the value

 Or the single argument "value":

 :param value: the named value (getName is called to retrieve the value)
 """
 # NOTE: mix of args and kwargs not allowed
 if kwargs and not args:
 if "value" in kwargs:
 data = kwargs["value"]
 key = data.getName()
 else:
 key = kwargs["key"]
 data = kwargs["data"]
 elif len(args) == 1 and not kwargs:
 data = args[0]
 key = data.getName()
 elif len(args) == 2 and not kwargs:
 key, data = args
 else:
 raise ValueError("only key, data or value accepted")

 table = SmartDashboard.getTable()
 dataTable = table.getSubTable(key)
 dataTable.putString("~TYPE~", data.getSmartDashboardType())
 data.initTable(dataTable)
 SmartDashboard.tablesToData[dataTable] = data

 @staticmethod
[docs] def getData(key):
 """Returns the value at the specified key.

 :param key: the key
 :type key: str
 :returns: the value

 :raises: :exc:`KeyError` if the key doesn't exist
 """
 table = SmartDashboard.getTable()
 subtable = table.getSubTable(key)
 data = SmartDashboard.tablesToData.get(subtable)
 if data is None:
 raise KeyError("SmartDashboard data does not exist: '%s'" % key)
 return data

 @staticmethod
[docs] def putBoolean(key, value):
 """Maps the specified key to the specified value in this table.
 The key can not be None.

 The value can be retrieved by calling the get method with a key that
 is equal to the original key.

 :param key: the key
 :type key: str
 :param value: the value
 """
 table = SmartDashboard.getTable()
 table.putBoolean(key, value)

 @staticmethod
[docs] def getBoolean(key, defaultValue=_defaultValueSentry):
 """Returns the value at the specified key.

 :param key: the key
 :type key: str
 :param defaultValue: returned if the key doesn't exist
 :returns: the value

 :raises: :exc:`KeyError` if the key doesn't exist and defaultValue
 is not provided.
 """
 table = SmartDashboard.getTable()
 if defaultValue is SmartDashboard._defaultValueSentry:
 return table.getBoolean(key)
 else:
 return table.getBoolean(key, defaultValue)

 @staticmethod
[docs] def putNumber(key, value):
 """Maps the specified key to the specified value in this table.
 The key can not be None.
 The value can be retrieved by calling the get method with a key that
 is equal to the original key.

 :param key: the key
 :type key: str
 :param value: the value
 :type value: int or float
 """
 table = SmartDashboard.getTable()
 table.putNumber(key, value)

 @staticmethod
[docs] def getNumber(key, defaultValue=_defaultValueSentry):
 """Returns the value at the specified key.

 :param key: the key
 :type key: str
 :param defaultValue: returned if the key doesn't exist
 :rtype: float

 :raises: :exc:`KeyError` if the key doesn't exist and defaultValue
 is not provided.
 """
 table = SmartDashboard.getTable()
 if defaultValue is SmartDashboard._defaultValueSentry:
 return table.getNumber(key)
 else:
 return table.getNumber(key, defaultValue)

 @staticmethod
[docs] def putString(key, value):
 """Maps the specified key to the specified value in this table.
 The key can not be None.
 The value can be retrieved by calling the get method with a key that
 is equal to the original key.

 :param key: the key
 :type key: str
 :param value: the value
 :type value: str
 """
 table = SmartDashboard.getTable()
 table.putString(key, value)

 @staticmethod
[docs] def getString(key, defaultValue=_defaultValueSentry):
 """Returns the value at the specified key.

 :param key: the key
 :type key: str
 :param defaultValue: returned if the key doesn't exist
 :rtype: str

 :raises: :exc:`KeyError` if the key doesn't exist and defaultValue
 is not provided.
 """
 table = SmartDashboard.getTable()
 if defaultValue is SmartDashboard._defaultValueSentry:
 return table.getString(key)
 else:
 return table.getString(key, defaultValue)

 # Deprecated Methods

 putInt = putNumber
 getInt = getNumber
 putDouble = putNumber
 getDouble = getNumber

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/digitaloutput.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.digitaloutput

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import weakref

import hal

from .digitalsource import DigitalSource
from .sensorbase import SensorBase

__all__ = ["DigitalOutput"]

def _freePWMGenerator(pwmGenerator):
 # Disable the output by routing to a dead bit.
 hal.setPWMOutputChannel(pwmGenerator, SensorBase.kDigitalChannels)
 hal.freePWM(pwmGenerator)

[docs]class DigitalOutput(DigitalSource):
 """Writes to a digital output

 Other devices that are implemented elsewhere will automatically allocate
 digital inputs and outputs as required.
 """

 def __init__(self, channel):
 """Create an instance of a digital output.

 :param channel: the DIO channel for the digital output. 0-9 are on-board, 10-25 are on the MXP
 """
 super().__init__(channel, False)
 self._pwmGenerator = None
 self._pwmGenerator_finalizer = None

 hal.HALReport(hal.HALUsageReporting.kResourceType_DigitalOutput,
 channel)

 @property
[docs] def pwmGenerator(self):
 if self._pwmGenerator_finalizer is None:
 return None
 if not self._pwmGenerator_finalizer.alive:
 return None
 return self._pwmGenerator

[docs] def free(self):
 """Free the resources associated with a digital output."""
 # finalize the pwm only if we have allocated it
 if self.pwmGenerator is not None:
 self._pwmGenerator_finalizer()
 super().free()

[docs] def set(self, value):
 """Set the value of a digital output.

 :param value: True is on, off is False
 :type value: bool
 """
 if self.port is None:
 raise ValueError("operation on freed port")
 hal.setDIO(self.port, 1 if value else 0)

[docs] def getChannel(self):
 """:returns: The GPIO channel number that this object represents.
 """
 return self.channel

[docs] def pulse(self, channel, pulseLength):
 """Generate a single pulse. Write a pulse to the specified digital
 output channel. There can only be a single pulse going at any time.

 :param channel: The channel to pulse.
 :param pulseLength: The length of the pulse.
 :type pulseLength: float
 """
 if self.port is None:
 raise ValueError("operation on freed port")
 hal.pulse(self.port, pulseLength)

[docs] def isPulsing(self):
 """Determine if the pulse is still going. Determine if a previously
 started pulse is still going.

 :returns: True if pulsing
 :rtype: bool
 """
 if self.port is None:
 raise ValueError("operation on freed port")
 return hal.isPulsing(self.port)

[docs] def setPWMRate(self, rate):
 """Change the PWM frequency of the PWM output on a Digital Output line.

 The valid range is from 0.6 Hz to 19 kHz. The frequency resolution is
 logarithmic.

 There is only one PWM frequency for all channnels.

 :param rate: The frequency to output all digital output PWM signals.
 :type rate: float
 """
 hal.setPWMRate(rate)

[docs] def enablePWM(self, initialDutyCycle):
 """Enable a PWM Output on this line.

 Allocate one of the 6 DO PWM generator resources.

 Supply the initial duty-cycle to output so as to avoid a glitch when
 first starting.

 The resolution of the duty cycle is 8-bit for low frequencies (1kHz or
 less) but is reduced the higher the frequency of the PWM signal is.

 :param initialDutyCycle: The duty-cycle to start generating. [0..1]
 :type initialDutyCycle: float
 """
 if self.pwmGenerator is not None:
 return
 self._pwmGenerator = hal.allocatePWM()
 hal.setPWMDutyCycle(self._pwmGenerator, initialDutyCycle)
 hal.setPWMOutputChannel(self._pwmGenerator, self.channel)
 self._pwmGenerator_finalizer = \
 weakref.finalize(self, _freePWMGenerator, self._pwmGenerator)

[docs] def disablePWM(self):
 """Change this line from a PWM output back to a static Digital Output
 line.

 Free up one of the 6 DO PWM generator resources that were in use.
 """
 if self.pwmGenerator is None:
 return
 self._pwmGenerator_finalizer()

[docs] def updateDutyCycle(self, dutyCycle):
 """Change the duty-cycle that is being generated on the line.

 The resolution of the duty cycle is 8-bit for low frequencies (1kHz or
 less) but is reduced the higher the frequency of the PWM signal is.

 :param dutyCycle: The duty-cycle to change to. [0..1]
 :type dutyCycle: float
 """
 if self.pwmGenerator is None:
 return
 hal.setPWMDutyCycle(self.pwmGenerator, dutyCycle)

 # Live Window code, only does anything if live window is activated.

 def getSmartDashboardType(self):
 return "Digital Output"

 def updateTable(self):
 # TODO: Put current value.
 pass

 def valueChanged(self, itable, key, value, bln):
 self.set(True if value else False)

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/preferences.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.preferences

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal
import threading

import logging
logger = logging.getLogger(__name__)

__all__ = ["Preferences"]

[docs]class Preferences:
 """Provides a relatively simple way to save important
 values to the RoboRIO to access the next time the RoboRIO is booted.

 This class loads and saves from a file inside the RoboRIO. The user can not
 access the file directly, but may modify values at specific fields which
 will then be saved to the file when :func:`save` is called.

 This class is thread safe.

 This will also interact with :class:`networktables.NetworkTable` by creating a table
 called "Preferences" with all the key-value pairs. To save using
 `NetworkTable`, simply set the boolean at position ~S A V E~ to true.
 Also, if the value of any variable is " in the `NetworkTable`, then
 that represents non-existence in the `Preferences` table.
 """

 # The Preferences table name
 TABLE_NAME = "Preferences"
 # The value of the save field
 SAVE_FIELD = "~S A V E~"
 # The file to save to
 FILE_NAME = "/home/lvuser/wpilib-preferences.ini"
 # The characters to put between a field and value
 VALUE_PREFIX = '="'
 # The characters to put after the value
 VALUE_SUFFIX = '"\n'
 # The newline character
 NEW_LINE = '\n'

 @staticmethod
[docs] def getInstance():
 """Returns the preferences instance.

 :returns: the preferences instance
 """
 if not hasattr(Preferences, "instance"):
 Preferences.instance = Preferences()
 return Preferences.instance

 def __init__(self):
 """Creates a preference class that will automatically read the file in
 a different thread. Any call to its methods will be blocked until the
 thread is finished reading.
 """
 # The actual values (str->str)
 self.values = {}
 # The keys in the order they were read from the file
 self.keylist = []
 # The comments that were in the file sorted by which key they appeared
 # over (str->str)
 self.comments = {}
 # The comment at the end of the file
 self.endComment = ""

 # The semaphore for beginning reads and writes to the file
 self.fileLock = threading.Condition()
 # The semaphore for reading from the table
 self.lock = threading.RLock()

 # We synchronized on fileLock and then wait
 # for it to know that the reading thread has started
 with self.fileLock:
 reader = threading.Thread(target=self._read,
 name="Preferences Read")
 reader.start()
 self.fileLock.wait()

 hal.HALReport(hal.HALUsageReporting.kResourceType_Preferences, 0)

[docs] def getKeys(self):
 """:returns: a list of the keys
 """
 with self.lock:
 return [x for x in self.keylist]

[docs] def keys(self):
 """Python style get list of keys.
 """
 with self.lock:
 return [x for x in self.keylist]

[docs] def put(self, key, value):
 """Puts the given value into the given key position

 :param key: the key
 :param value: the value
 """
 if any((c in key) for c in "=\n\r\t[] "):
 raise KeyError("improper preference key '%s'" % key)
 with self.lock:
 if key not in self.values:
 self.keylist.append(key)
 self.values[key] = value
 try:
 from networktables import NetworkTable
 NetworkTable.getTable(self.TABLE_NAME).putString(key, value)
 except ImportError:
 pass

[docs] def putString(self, key, value):
 """Puts the given string into the preferences table.

 The value may not have quotation marks, nor may the key have any
 whitespace nor an equals sign.

 This will NOT save the value to memory between power cycles, to
 do that you must call :func:`save` (which must be used with care)
 at some point after calling this.

 :param key: the key
 :param value: the value
 """
 if '"' in value:
 raise ValueError("Can not put string: '%s' because it contains quotation marks" % value)
 self.put(key, value)

[docs] def putInt(self, key, value):
 """Puts the given int into the preferences table.

 The key may not have any whitespace nor an equals sign.

 This will NOT save the value to memory between power cycles, to
 do that you must call :func:`save` (which must be used with care)
 at some point after calling this.

 :param key: the key
 :param value: the value
 """
 self.put(key, str(value))

[docs] def putFloat(self, key, value):
 """Puts the given float into the preferences table.

 The key may not have any whitespace nor an equals sign.

 This will NOT save the value to memory between power cycles, to
 do that you must call :func:`save` (which must be used with care)
 at some point after calling this.

 :param key: the key
 :param value: the value
 """
 self.put(key, str(value))

[docs] def putBoolean(self, key, value):
 """Puts the given float into the preferences table.

 The key may not have any whitespace nor an equals sign.

 This will NOT save the value to memory between power cycles, to
 do that you must call :func:`save` (which must be used with care)
 at some point after calling this.

 :param key: the key
 :param value: the value
 """
 self.put(key, str(value))

 def __setitem__(self, key, value):
 """Python style setting of key/value."""
 if isinstance(value, str):
 self.putString(key, value)
 else:
 self.put(key, str(value))

[docs] def get(self, key, d=None):
 """Returns the value at the given key.

 :param key: the key
 :param d: the return value if the key doesn't exist (default is None)
 :returns: the value (or d/None if none exists)
 """
 with self.lock:
 return self.values.get(key, d)

[docs] def containsKey(self, key):
 """Returns whether or not there is a key with the given name.

 :param key: the key
 :returns: True if there is a value at the given key
 """
 with self.lock:
 return key in self.values

 def __contains__(self, key):
 """Python style contains key."""
 with self.lock:
 return key in self.values

[docs] def has_key(self, key):
 """Python style contains key."""
 with self.lock:
 return key in self.values

[docs] def remove(self, key):
 """Remove a preference

 :param key: the key
 """
 with self.lock:
 self.values.pop(key, None)
 try:
 self.keylist.remove(key)
 except ValueError:
 pass

 def __delitem__(self, key):
 """Python style preference removal
 """
 with self.lock:
 del self.values[key]
 try:
 self.keylist.remove(key)
 except ValueError:
 raise KeyError(key)

[docs] def getString(self, key, backup):
 """Returns the string at the given key. If this table does not have a
 value for that position, then the given backup value will be returned.

 :param key: the key
 :param backup: the value to return if none exists in the table
 :returns: either the value in the table, or the backup
 """
 return self.get(key, backup)

[docs] def getInt(self, key, backup):
 """Returns the int at the given key. If this table does not have a
 value for that position, then the given backup value will be returned.

 :param key: the key
 :param backup: the value to return if none exists in the table
 :returns: either the value in the table, or the backup
 :raises: ValueError if value cannot be converted to integer
 """
 value = self.get(key)
 if value is None:
 return backup
 return int(value)

[docs] def getFloat(self, key, backup):
 """Returns the float at the given key. If this table does not have a
 value for that position, then the given backup value will be returned.

 :param key: the key
 :param backup: the value to return if none exists in the table
 :returns: either the value in the table, or the backup
 :raises: ValueError if value cannot be converted to integer
 """
 value = self.get(key)
 if value is None:
 return backup
 return float(value)

[docs] def getBoolean(self, key, backup):
 """Returns the boolean at the given key. If this table does not have a
 value for that position, then the given backup value will be returned.

 :param key: the key
 :param backup: the value to return if none exists in the table
 :returns: either the value in the table, or the backup
 :raises: ValueError if value cannot be converted to integer
 """
 value = self.get(key)
 if value is None:
 return backup
 if value.lower() == "true":
 return True
 elif value.lower() == "false":
 return False
 else:
 raise ValueError("invalid literal for boolean: '%s'" % value)

[docs] def save(self):
 """Saves the preferences to a file on the RoboRIO.

 This should NOT be called often. Too many writes can damage the
 RoboRIO's flash memory. While it is ok to save once or twice a match,
 this should never be called every run of
 :func:`IterativeRobot.teleopPeriodic`.

 The actual writing of the file is done in a separate thread. However,
 any call to a get or put method will wait until the table is fully
 saved before continuing.
 """
 with self.fileLock:
 writer = threading.Thread(target=self._write,
 name="Preferences Write")
 writer.start()
 self.fileLock.wait()

 def _write(self):
 """Internal method that actually writes the table to a file. This is
 called in its own thread when :func:`save` is called.
 """
 with self.lock:
 with self.fileLock:
 self.fileLock.notify_all()

 with open(self.FILE_NAME, "w") as output:
 output.write("[Preferences]\n")
 for key in self.keylist:
 value = self.values.get(key, "")
 comment = self.comments.get(key, "")
 if comment:
 output.write(comment)

 output.write(key)
 output.write(self.VALUE_PREFIX)
 output.write(value)
 output.write(self.VALUE_SUFFIX)

 output.write(self.endComment)

 try:
 from networktables import NetworkTable
 NetworkTable.getTable(self.TABLE_NAME).putBoolean(self.SAVE_FIELD, False)
 except ImportError:
 pass

[docs] def read(self):
 """The internal method to read from a file. This will be called in its
 own thread when the preferences singleton is first created.
 """

 with self.lock:
 with self.fileLock:
 self.fileLock.notify_all()

 comment = []

 try:
 with open(self.FILE_NAME) as f:
 for line in f:
 line = line.strip()
 if not line:
 comment.append(self.NEW_LINE)
 elif line[0] == ';':
 comment.append(line)
 comment.append(self.NEW_LINE)
 elif line[0] == '[':
 continue # throw it away
 else:
 name, value = line.partition('=')
 name = name.strip()
 value = value.strip()

 # Get between quotes if it starts with a quote
 if value and value[0] == '"':
 value = value[1:].partition('"')[0]

 self.keylist.append(name)
 self.values[name] = value
 try:
 from networktables import NetworkTable
 NetworkTable.getTable(self.TABLE_NAME).putString(name, value)
 except ImportError:
 pass

 if comment:
 self.comments[name] = "".join(comment)
 comment = []
 except FileNotFoundError:
 pass

 if comment:
 self.endComment = "".join(comment)

 logger.info("Done reading preferences")

 try:
 from networktables import NetworkTable
 NetworkTable.getTable(self.TABLE_NAME).putBoolean(self.SAVE_FIELD, False)
 # TODO: Verify that this works even though it changes with
 # subtables. Should work since preferences shouldn't have subtables.
 NetworkTable.getTable(self.TABLE_NAME).addTableListener(self.valueChanged)
 except ImportError:
 pass

 def valueChanged(self, source, key, value, isNew):
 if key == self.SAVE_FIELD:
 if value:
 self.save()
 else:
 with self.lock:
 if any((c in key) for c in "=\n\r\t[] ") or '"' in str(value):
 if key in self.values or key in self.keylist:
 self.values.pop(key, None)
 try:
 self.keylist.remove(key)
 except ValueError:
 pass
 try:
 from networktables import NetworkTable
 NetworkTable.getTable(self.TABLE_NAME).putString(key, '"')
 except ImportError:
 pass
 else:
 if key not in self.values:
 self.keylist.append(key)
 self.values[key] = str(value)

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/driverstation.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.driverstation

Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.

import threading

import hal
import sys
import traceback

from .motorsafety import MotorSafety
from .timer import Timer

__all__ = ["DriverStation"]

JOYSTICK_UNPLUGGED_MESSAGE_INTERVAL = 1.0

[docs]class DriverStation:
 """Provide access to the network communication data to / from the Driver
 Station."""

 #: The number of joystick ports
 kJoystickPorts = 6

[docs] class Alliance:
 """The robot alliance that the robot is a part of"""
 Red = 0
 Blue = 1
 Invalid = 2

 @staticmethod
 def _reset():
 if hasattr(DriverStation, 'instance'):
 ds = DriverStation.instance
 ds.release()
 hal.giveMultiWait(ds.packetDataAvailableSem)
 ds.thread.join()
 del DriverStation.instance

 @staticmethod
[docs] def getInstance():
 """Gets the global instance of the DriverStation

 :returns: :class:`DriverStation`
 """
 if not hasattr(DriverStation, "instance"):
 DriverStation.instance = None
 DriverStation.instance = DriverStation()
 return DriverStation.instance

 def __init__(self):
 """DriverStation constructor.

 The single DriverStation instance is created statically with the
 instance static member variable, you should never create a
 DriverStation instance.
 """

 if not hasattr(DriverStation, 'instance') or DriverStation.instance is not None:
 raise ValueError("Do not create DriverStation instances, use DriverStation.getInstance() instead")

 self.mutex = threading.RLock()
 self.dataSem = threading.Condition(self.mutex)

 self.packetDataAvailableMutex = hal.initializeMutexNormal()
 self.packetDataAvailableSem = hal.initializeMultiWait()
 hal.HALSetNewDataSem(self.packetDataAvailableSem)

 self.nextMessageTime = 0.0

 self.joystickAxes = []
 self.joystickPOVs = []
 self.joystickButtons = []
 for i in range(self.kJoystickPorts):
 self.joystickAxes.append([0]*hal.kMaxJoystickAxes)
 self.joystickPOVs.append([0]*hal.kMaxJoystickPOVs)
 self.joystickButtons.append(hal.HALJoystickButtons())

 self.userInDisabled = False
 self.userInAutonomous = False
 self.userInTeleop = False
 self.userInTest = False
 self.newControlData = False

 self.thread_keepalive = True

 self.thread = threading.Thread(target=self.task, name="FRCDriverStation")
 self.thread.daemon = True
 self.thread.start()

 def __del__(self):
 hal.deleteMultiWait(self.packetDataAvailableSem)
 hal.deleteMutex(self.packetDataAvailableMutex)

[docs] def release(self):
 """Kill the thread"""
 self.thread_keepalive = False

[docs] def task(self):
 """Provides the service routine for the DS polling thread."""
 safetyCounter = 0
 while self.thread_keepalive:
 hal.takeMultiWait(self.packetDataAvailableSem,
 self.packetDataAvailableMutex, 0)
 self.getData()
 with self.dataSem:
 self.dataSem.notify_all()
 safetyCounter += 1
 if safetyCounter >= 4:
 MotorSafety.checkMotors()
 safetyCounter = 0
 if self.userInDisabled:
 hal.HALNetworkCommunicationObserveUserProgramDisabled()
 if self.userInAutonomous:
 hal.HALNetworkCommunicationObserveUserProgramAutonomous()
 if self.userInTeleop:
 hal.HALNetworkCommunicationObserveUserProgramTeleop()
 if self.userInTest:
 hal.HALNetworkCommunicationObserveUserProgramTest()

[docs] def waitForData(self, timeout = None):
 """Wait for new data or for timeout, which ever comes first. If
 timeout is None, wait for new data only.

 :param timeout: The maximum time in milliseconds to wait.
 """
 with self.dataSem:
 self.dataSem.wait(timeout)

[docs] def getData(self):
 """Copy data from the DS task for the user.
 If no new data exists, it will just be returned, otherwise
 the data will be copied from the DS polling loop.
 """
 with self.mutex:
 # Get the status of all of the joysticks
 for stick in range(self.kJoystickPorts):
 self.joystickAxes[stick] = hal.HALGetJoystickAxes(stick)
 self.joystickPOVs[stick] = hal.HALGetJoystickPOVs(stick)
 self.joystickButtons[stick] = hal.HALGetJoystickButtons(stick)
 self.newControlData = True

[docs] def getBatteryVoltage(self):
 """Read the battery voltage.

 :returns: The battery voltage in Volts."""
 return hal.getVinVoltage()

 def _reportJoystickUnpluggedError(self, message):
 """
 Reports errors related to unplugged joysticks and throttles them so that they don't overwhelm the DS
 """
 currentTime = Timer.getFPGATimestamp()
 if currentTime > self.nextMessageTime:
 self.reportError(message, False)
 self.nextMessageTime = currentTime + JOYSTICK_UNPLUGGED_MESSAGE_INTERVAL

[docs] def getStickAxis(self, stick, axis):
 """Get the value of the axis on a joystick.
 This depends on the mapping of the joystick connected to the specified
 port.

 :param stick: The joystick port number
 :param axis: The analog axis value to read from the joystick.
 :returns: The value of the axis on the joystick.
 """
 if stick < 0 or stick >= self.kJoystickPorts:
 raise IndexError("Joystick index is out of range, should be 0-%s" % self.kJoystickPorts)

 if axis < 0 or axis >= hal.kMaxJoystickAxes:
 raise IndexError("Joystick axis is out of range")

 with self.mutex:
 joystickAxes = self.joystickAxes[stick]

 if axis >= len(joystickAxes):
 self._reportJoystickUnpluggedError("WARNING: Joystick axis %d on port %d not available, check if controller is plugged in\n" % (axis, stick))
 return 0.0
 value = joystickAxes[axis]
 if value < 0:
 return value / 128.0
 else:
 return value / 127.0

[docs] def getStickAxisCount(self, stick):
 """Returns the number of axes on a given joystick port

 :param stick: The joystick port number

 :returns: The number of axes on the indicated joystick
 """
 if stick < 0 or stick >= self.kJoystickPorts:
 raise IndexError("Joystick index is out of range, should be 0-%s" % self.kJoystickPorts)

 with self.mutex:
 return len(self.joystickAxes[stick])

[docs] def getStickPOV(self, stick, pov):
 """Get the state of a POV on the joystick.

 :param stick: The joystick port number
 :param pov: which POV
 :returns: The angle of the POV in degrees, or -1 if the POV is not
 pressed.
 """
 if stick < 0 or stick >= self.kJoystickPorts:
 raise IndexError("Joystick index is out of range, should be 0-%s" % self.kJoystickPorts)

 if pov < 0 or pov >= hal.kMaxJoystickPOVs:
 raise IndexError("Joystick POV is out of range")

 with self.mutex:
 joystickPOVs = self.joystickPOVs[stick]

 if pov >= len(joystickPOVs):
 self._reportJoystickUnpluggedError("WARNING: Joystick POV %d on port %d not available, check if controller is plugged in\n" % (pov, stick))
 return 0.0
 return joystickPOVs[pov]

[docs] def getStickPOVCount(self, stick):
 """Returns the number of POVs on a given joystick port

 :param stick: The joystick port number

 :returns: The number of POVs on the indicated joystick
 """
 if stick < 0 or stick >= self.kJoystickPorts:
 raise IndexError("Joystick index is out of range, should be 0-%s" % self.kJoystickPorts)

 with self.mutex:
 return len(self.joystickPOVs[stick])

[docs] def getStickButtons(self, stick):
 """The state of all the buttons on the joystick.

 :param stick: The joystick port number
 :returns: The state of all buttons, as a bit array.
 """
 if stick < 0 or stick >= self.kJoystickPorts:
 raise IndexError("Joystick index is out of range, should be 0-%s" % self.kJoystickPorts)

 with self.mutex:
 return self.joystickButtons[stick]

[docs] def getStickButton(self, stick, button):
 """The state of a button on the joystick.

 :param stick: The joystick port number
 :param button: The button number to be read.
 :returns: The state of the button.
 """
 if stick < 0 or stick >= self.kJoystickPorts:
 raise IndexError("Joystick index is out of range, should be 0-%s" % self.kJoystickPorts)

 with self.mutex:
 buttons = self.joystickButtons[stick]
 if button > buttons.count:
 self._reportJoystickUnpluggedError("WARNING: Joystick Button %d on port %d not available, check if controller is plugged in\n" % (button, stick))
 return False
 if button <= 0:
 self._reportJoystickUnpluggedError("ERROR: Button indexes begin at 1 for WPILib\n")
 return False
 return ((0x1 << (button - 1)) & buttons.buttons) != 0

[docs] def getStickButtonCount(self, stick):
 """Gets the number of buttons on a joystick

 :param stick: The joystick port number

 :returns: The number of buttons on the indicated joystick.
 """
 if stick < 0 or stick >= self.kJoystickPorts:
 raise IndexError("Joystick index is out of range, should be 0-%s" % self.kJoystickPorts)

 with self.mutex:
 return self.joystickButtons[stick].count

[docs] def isEnabled(self):
 """Gets a value indicating whether the Driver Station requires the
 robot to be enabled.

 :returns: True if the robot is enabled, False otherwise.
 """
 controlWord = hal.HALGetControlWord()
 return controlWord.enabled != 0 and controlWord.dsAttached != 0

[docs] def isDisabled(self):
 """Gets a value indicating whether the Driver Station requires the
 robot to be disabled.

 :returns: True if the robot should be disabled, False otherwise.
 """
 return not self.isEnabled()

[docs] def isAutonomous(self):
 """Gets a value indicating whether the Driver Station requires the
 robot to be running in autonomous mode.

 :returns: True if autonomous mode should be enabled, False otherwise.
 """
 controlWord = hal.HALGetControlWord()
 return controlWord.autonomous != 0

[docs] def isTest(self):
 """Gets a value indicating whether the Driver Station requires the
 robot to be running in test mode.

 :returns: True if test mode should be enabled, False otherwise.
 """
 controlWord = hal.HALGetControlWord()
 return controlWord.test != 0

[docs] def isOperatorControl(self):
 """Gets a value indicating whether the Driver Station requires the
 robot to be running in operator-controlled mode.

 :returns: True if operator-controlled mode should be enabled,
 False otherwise.
 """
 controlWord = hal.HALGetControlWord()
 return not (controlWord.autonomous != 0 or controlWord.test != 0)

[docs] def isSysActive(self):
 """
 Gets a value indicating whether the FPGA outputs are enabled. The outputs may be disabled
 if the robot is disabled or e-stopped, the watdhog has expired, or if the roboRIO browns out.

 :returns: True if the FPGA outputs are enabled.
 """
 return hal.HALGetSystemActive()

[docs] def isBrownedOut(self):
 """
 Check if the system is browned out.

 :returns: True if the system is browned out.
 """
 return hal.HALGetBrownedOut()

[docs] def isNewControlData(self):
 """Has a new control packet from the driver station arrived since the
 last time this function was called?

 :returns: True if the control data has been updated since the last
 call.
 """
 with self.mutex:
 result = self.newControlData
 self.newControlData = False
 return result

[docs] def getAlliance(self):
 """Get the current alliance from the FMS.

 :returns: The current alliance
 :rtype: :class:`DriverStation.Alliance`
 """
 allianceStationID = hal.HALGetAllianceStation()
 if allianceStationID in (hal.kHALAllianceStationID_red1,
 hal.kHALAllianceStationID_red2,
 hal.kHALAllianceStationID_red3):
 return self.Alliance.Red
 elif allianceStationID in (hal.kHALAllianceStationID_blue1,
 hal.kHALAllianceStationID_blue2,
 hal.kHALAllianceStationID_blue3):
 return self.Alliance.Blue
 else:
 return self.Alliance.Invalid

[docs] def getLocation(self):
 """Gets the location of the team's driver station controls.

 :returns: The location of the team's driver station controls:
 1, 2, or 3
 """
 allianceStationID = hal.HALGetAllianceStation()
 if allianceStationID in (hal.kHALAllianceStationID_red1,
 hal.kHALAllianceStationID_blue1):
 return 1
 elif allianceStationID in (hal.kHALAllianceStationID_red2,
 hal.kHALAllianceStationID_blue2):
 return 2
 elif allianceStationID in (hal.kHALAllianceStationID_red3,
 hal.kHALAllianceStationID_blue3):
 return 3
 else:
 return 0

[docs] def isFMSAttached(self):
 """Is the driver station attached to a Field Management System?

 :returns: True if the robot is competing on a field being controlled
 by a Field Management System
 """
 controlWord = hal.HALGetControlWord()
 return controlWord.fmsAttached != 0

[docs] def isDSAttached(self):
 """Is the driver station attached to the robot?

 :returns: True if the robot is being controlled by a driver station.
 """
 controlWord = hal.HALGetControlWord()
 return controlWord.dsAttached != 0

[docs] def getMatchTime(self):
 """Return the approximate match time.
 The FMS does not currently send the official match time to the robots, but
 does send an approximate match time. The value will count down the time
 remaining in the current period (auto or teleop).

 .. warning::

 This is not an official time (so it cannot be used to argue with
 referees or guarantee that a function will trigger before a match ends).

 The Practice Match function of the DS approximates the behaviour seen on the field.

 :returns: Time remaining in current match period (auto or teleop) in seconds
 """
 return hal.HALGetMatchTime()

 @staticmethod
[docs] def reportError(error, printTrace):
 """Report error to Driver Station, and also prints error to `sys.stderr`.
 Optionally appends stack trace to error message.

 :param printTrace: If True, append stack trace to error string
 """
 errorString = error
 if printTrace:
 exc = sys.exc_info()[0]
 stack = traceback.extract_stack()[:-1] # last one is this func
 if exc is not None: # i.e. if an exception is present
 # remove call of full_stack, the printed exception
 # will contain the caught exception caller instead
 del stack[-1]
 trc = 'Traceback (most recent call last):\n'
 stackstr = trc + ''.join(traceback.format_list(stack))
 if exc is not None:
 stackstr += ' ' + traceback.format_exc().lstrip(trc)
 errorString += ':\n' + stackstr
 #print(errorString, file=sys.stderr)
 controlWord = hal.HALGetControlWord()
 if controlWord.dsAttached != 0:
 hal.HALSetErrorData(errorString, 0)

[docs] def InDisabled(self, entering):
 """Only to be used to tell the Driver Station what code you claim to
 be executing for diagnostic purposes only.

 :param entering: If True, starting disabled code; if False, leaving
 disabled code
 """
 self.userInDisabled = entering

[docs] def InAutonomous(self, entering):
 """Only to be used to tell the Driver Station what code you claim to
 be executing for diagnostic purposes only.

 :param entering: If True, starting autonomous code; if False, leaving
 autonomous code
 """
 self.userInAutonomous = entering

[docs] def InOperatorControl(self, entering):
 """Only to be used to tell the Driver Station what code you claim to
 be executing for diagnostic purposes only.

 :param entering: If True, starting teleop code; if False, leaving
 teleop code
 """
 self.userInTeleop = entering

[docs] def InTest(self, entering):
 """Only to be used to tell the Driver Station what code you claim to
 be executing for diagnostic purposes only.

 :param entering: If True, starting test code; if False, leaving test
 code
 """
 self.userInTest = entering

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/command/waitcommand.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.command.waitcommand

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

from .command import Command

__all__ = ["WaitCommand"]

[docs]class WaitCommand(Command):
 """A WaitCommand will wait for a certain amount of time before finishing.
 It is useful if you want a :class:`.CommandGroup` to pause for a moment.

 .. seealso:: :class:`.CommandGroup`
 """

 def __init__(self, timeout, name=None):
 """Instantiates a WaitCommand with the given timeout.

 :param timeout: the time the command takes to run
 :param name: the name of the command (optional)
 """
 if name is None:
 super().__init__("Wait(%s)" % timeout, timeout)
 else:
 super().__init__(name, timeout)

[docs] def isFinished(self):
 return self.isTimedOut()

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/command/pidcommand.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.command.pidcommand

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

from .command import Command

from ..pidcontroller import PIDController

__all__ = ["PIDCommand"]

[docs]class PIDCommand(Command):
 """This class defines a Command which interacts heavily with a PID loop.

 It provides some convenience methods to run an internal PIDController.
 It will also start and stop said PIDController when the PIDCommand is
 first initialized and ended/interrupted.
 """

 def __init__(self, p, i, d, period=None, f=0.0, name=None):
 """Instantiates a PIDCommand that will use the given p, i and d values.
 It will use the class name as its name unless otherwise specified.
 It will also space the time between PID loop calculations to be equal
 to the given period.

 :param p: the proportional value
 :param i: the integral value
 :param d: the derivative value
 :param period: the time (in seconds) between calculations (optional)
 :param f: the feed forward value
 :param name: the name (optional)
 """
 super().__init__(name)
 self.controller = PIDController(p, i, d, f, self.returnPIDInput,
 self.usePIDOutput, period)

[docs] def getPIDController(self):
 """Returns the PIDController used by this PIDCommand.
 Use this if you would like to fine tune the pid loop.

 Notice that calling setSetpoint(...) on the controller
 will not result in the setpoint being trimmed to be in
 the range defined by setSetpointRange(...).

 :returns: the PIDController used by this PIDCommand
 """
 return self.controller

 def _initialize(self):
 self.controller.enable()

 def _end(self):
 self.controller.disable()

 def _interrupted(self):
 self._end()

[docs] def setSetpointRelative(self, deltaSetpoint):
 """Adds the given value to the setpoint.
 If :meth:`setRange` was used, then the bounds will still be honored by
 this method.

 :param deltaSetpoint: the change in the setpoint
 """
 self.setSetpoint(self.getSetpoint() + deltaSetpoint)

[docs] def setSetpoint(self, setpoint):
 """Sets the setpoint to the given value. If :meth:`setRange` was called,
 then the given setpoint will be trimmed to fit within the range.

 :param setpoint: the new setpoint
 """
 self.controller.setSetpoint(setpoint)

[docs] def getSetpoint(self):
 """Returns the setpoint.

 :returns: the setpoint
 """
 return self.controller.getSetpoint()

[docs] def getPosition(self):
 """Returns the current position

 :returns: the current position
 """
 return self.returnPIDInput()

[docs] def returnPIDInput(self):
 """Returns the input for the pid loop.

 It returns the input for the pid loop, so if this command was based
 off of a gyro, then it should return the angle of the gyro

 All subclasses of PIDCommand must override this method.

 This method will be called in a different thread then the :class:`.Scheduler`
 thread.

 :returns: the value the pid loop should use as input
 """
 raise NotImplementedError

[docs] def usePIDOutput(self, output):
 """Uses the value that the pid loop calculated. The calculated value
 is the "output" parameter.
 This method is a good time to set motor values, maybe something along
 the lines of `driveline.tankDrive(output, -output)`.

 All subclasses of PIDCommand should override this method.

 This method will be called in a different thread then the Scheduler
 thread.

 :param output: the value the pid loop calculated
 """
 pass

 def getSmartDashboardType(self):
 return "PIDCommand"

 def initTable(self, table):
 self.controller.initTable(table)
 super().initTable(table)

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/gyro.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.gyro

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal

from .analoginput import AnalogInput
from .interfaces import PIDSource
from .livewindow import LiveWindow
from .sensorbase import SensorBase
from .timer import Timer

__all__ = ["Gyro"]

[docs]class Gyro(SensorBase):
 """Interface to a gyro device via an :class:`.AnalogInput`

 Use a rate gyro to return the robots heading relative to a starting
 position. The Gyro class tracks the robots heading based on the starting
 position. As the robot rotates the new heading is computed by integrating
 the rate of rotation returned by the sensor. When the class is
 instantiated, it does a short calibration routine where it samples the
 gyro while at rest to determine the default offset. This is subtracted
 from each sample to determine the heading.

 .. not_implemented: initGyro
 """

 kOversampleBits = 10
 kAverageBits = 0
 kSamplesPerSecond = 50.0
 kCalibrationSampleTime = 5.0
 kDefaultVoltsPerDegreePerSecond = 0.007

 def __init__(self, channel):
 """Gyro constructor.

 Also initializes the gyro. Calibrate the gyro by running for a number
 of samples and computing the center value. Then use the
 center value as the Accumulator center value for subsequent
 measurements. It's important to make sure that the robot is not
 moving while the centering calculations are in progress, this is
 typically done when the robot is first turned on while it's sitting
 at rest before the competition starts.

 :param channel: The analog channel index or AnalogInput object that
 the gyro is connected to. Gyros can only be used on on-board channels 0-1.
 """
 if not hasattr(channel, "initAccumulator"):
 channel = AnalogInput(channel)
 self.analog = channel

 self.voltsPerDegreePerSecond = Gyro.kDefaultVoltsPerDegreePerSecond
 self.analog.setAverageBits(Gyro.kAverageBits)
 self.analog.setOversampleBits(Gyro.kOversampleBits)
 sampleRate = Gyro.kSamplesPerSecond \
 * (1 << (Gyro.kAverageBits + Gyro.kOversampleBits))
 AnalogInput.setGlobalSampleRate(sampleRate)
 Timer.delay(1.0)

 self.analog.initAccumulator()
 self.analog.resetAccumulator()

 # Only do this on a real robot
 if not hal.HALIsSimulation():
 Timer.delay(Gyro.kCalibrationSampleTime)

 value, count = self.analog.getAccumulatorOutput()

 self.center = int(float(value) / float(count) + .5)

 self.offset = (float(value) / float(count)) - self.center

 self.analog.setAccumulatorCenter(self.center)
 self.analog.resetAccumulator()

 self.setDeadband(0.0)

 self.pidSource = PIDSource.PIDSourceParameter.kAngle

 hal.HALReport(hal.HALUsageReporting.kResourceType_Gyro,
 self.analog.getChannel())
 LiveWindow.addSensorChannel("Gyro", self.analog.getChannel(), self)

[docs] def reset(self):
 """Reset the gyro. Resets the gyro to a heading of zero. This can be
 used if there is significant drift in the gyro and it needs to be
 recalibrated after it has been running.
 """
 if self.analog is None:
 return
 self.analog.resetAccumulator()

[docs] def free(self):
 """Delete (free) the accumulator and the analog components used for the
 gyro.
 """
 if self.analog is not None:
 self.analog.free()
 self.analog = None

[docs] def getAngle(self):
 """Return the actual angle in degrees that the robot is currently
 facing.

 The angle is based on the current accumulator value corrected by the
 oversampling rate, the gyro type and the A/D calibration values. The
 angle is continuous, that is it will continue from 360 to 361 degrees. This allows
 algorithms that wouldn't want to see a discontinuity in the gyro output
 as it sweeps past from 360 to 0 on the second time around.

 :returns: The current heading of the robot in degrees. This heading is
 based on integration of the returned rate from the gyro.
 :rtype: float
 """
 if self.analog is None:
 return 0.0
 value, count = self.analog.getAccumulatorOutput()

 value -= count * self.offset

 return (value
 * 1e-9
 * self.analog.getLSBWeight()
 * (1 << self.analog.getAverageBits())
 / (AnalogInput.getGlobalSampleRate() * self.voltsPerDegreePerSecond))

[docs] def getRate(self):
 """Return the rate of rotation of the gyro

 The rate is based on the most recent reading of the gyro analog value

 :returns: the current rate in degrees per second
 :rtype: float
 """
 if self.analog is None:
 return 0.0
 else:
 return ((self.analog.getAverageValue() - (self.center + self.offset))
 * 1e-9
 * self.analog.getLSBWeight()
 / ((1 << self.analog.getOversampleBits()) * self.voltsPerDegreePerSecond))

[docs] def setSensitivity(self, voltsPerDegreePerSecond):
 """Set the gyro sensitivity. This takes the number of
 volts/degree/second sensitivity of the gyro and uses it in subsequent
 calculations to allow the code to work with multiple gyros. This value
 is typically found in the gyro datasheet.

 :param voltsPerDegreePerSecond:
 The sensitivity in Volts/degree/second
 :type voltsPerDegreePerSecond: float
 """
 self.voltsPerDegreePerSecond = voltsPerDegreePerSecond

[docs] def setDeadband(self, volts):
 """Set the size of the neutral zone. Any voltage from the gyro less
 than this amount from the center is considered stationary. Setting a
 deadband will decrease the amount of drift when the gyro isn't
 rotating, but will make it less accurate.

 :param volts: The size of the deadband in volts
 :type volts: float
 """
 if self.analog is None:
 return
 deadband = int(volts * 1e9 / self.analog.getLSBWeight() *
 (1 << self.analog.getOversampleBits()))
 self.analog.setAccumulatorDeadband(deadband)

[docs] def setPIDSourceParameter(self, pidSource):
 """Set which parameter of the gyro you are using as a process
 control variable. The Gyro class supports the rate and angle
 parameters.

 :param pidSource: An enum to select the parameter.
 :type pidSource: :class:`.PIDSource.PIDSourceParameter`
 """
 if pidSource not in (PIDSource.PIDSourceParameter.kRate,
 PIDSource.PIDSourceParameter.kAngle):
 raise ValueError("Must be kRate or kAngle")
 self.pidSource = pidSource

[docs] def pidGet(self):
 """Get the output of the gyro for use with PIDControllers

 :returns: the current angle according to the gyro
 :rtype: float
 """
 if self.pidSource == PIDSource.PIDSourceParameter.kRate:
 return self.getRate()
 elif self.pidSource == PIDSource.PIDSourceParameter.kAngle:
 return self.getAngle()
 else:
 return 0.0

 # Live Window code, only does anything if live window is activated.

 def getSmartDashboardType(self):
 return "Gyro"

 def updateTable(self):
 table = self.getTable()
 if table is not None:
 table.putNumber("Value", self.getAngle())

 def startLiveWindowMode(self):
 pass

 def stopLiveWindowMode(self):
 pass

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/analogpotentiometer.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.analogpotentiometer

#--*/
Copyright (c) FIRST 2008-2014. All Rights Reserved. */
Open Source Software - may be modified and shared by FRC teams. The code */
must be accompanied by the FIRST BSD license file in the root directory of */
the project. */
#--*/

import hal

from .analoginput import AnalogInput
from .livewindowsendable import LiveWindowSendable

__all__ = ["AnalogPotentiometer"]

[docs]class AnalogPotentiometer(LiveWindowSendable):
 """Reads a potentiometer via an :class:`.AnalogInput`

 Analog potentiometers read
 in an analog voltage that corresponds to a position. The position is in
 whichever units you choose, by way of the scaling and offset constants
 passed to the constructor.

 .. not_implemented: initPot
 """

 def __init__(self, channel, fullRange=1.0, offset=0.0):
 """AnalogPotentiometer constructor.

 Use the fullRange and offset values so that the output produces
 meaningful values. I.E: you have a 270 degree potentiometer and
 you want the output to be degrees with the halfway point as 0
 degrees. The fullRange value is 270.0(degrees) and the offset is
 -135.0 since the halfway point after scaling is 135 degrees.

 :param channel: The analog channel this potentiometer is plugged into.
 :type channel: int or :class:`.AnalogInput`
 :param fullRange: The scaling to multiply the fraction by to get a
 meaningful unit. Defaults to 1.0 if unspecified.
 :type fullRange: float
 :param offset: The offset to add to the scaled value for controlling
 the zero value. Defaults to 0.0 if unspecified.
 :type offset: float
 """

 if not hasattr(channel, "getVoltage"):
 channel = AnalogInput(channel)
 self.analog_input = channel
 self.fullRange = fullRange
 self.offset = offset
 self.init_analog_input = True

[docs] def get(self):
 """Get the current reading of the potentiometer.

 :returns: The current position of the potentiometer.
 :rtype: float
 """
 return (self.analog_input.getVoltage() / hal.getUserVoltage5V()) * self.fullRange + self.offset

[docs] def pidGet(self):
 """Implement the PIDSource interface.

 :returns: The current reading.
 :rtype: float
 """
 return self.get()

 # Live Window code, only does anything if live window is activated.

 def getSmartDashboardType(self):
 return "Analog Input"

 def updateTable(self):
 table = self.getTable()
 if table is not None:
 table.putNumber("Value", self.get())

 def startLiveWindowMode(self):
 # don't have to do anything special when entering the LiveWindow
 pass

 def stopLiveWindowMode(self):
 # don't have to do anything special when exiting the LiveWindow
 pass

[docs] def free(self):
 if self.init_analog_input:
 self.analog_input.free()
 del self.analog_input
 self.init_analog_input = False

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/victor.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.victor

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal

from .livewindow import LiveWindow
from .safepwm import SafePWM

__all__ = ["Victor"]

[docs]class Victor(SafePWM):
 """
 VEX Robotics Victor 888 Speed Controller via PWM

 The Vex Robotics Victor 884 Speed Controller can also be used with this
 class but may need to be calibrated per the Victor 884 user manual.

 .. note ::

 The Victor uses the following bounds for PWM values. These
 values were determined empirically and optimized for the Victor
 888. These values should work reasonably well for Victor 884
 controllers also but if users experience issues such as
 asymmetric behaviour around the deadband or inability to saturate
 the controller in either direction, calibration is recommended.
 The calibration procedure can be found in the Victor 884 User
 Manual available from VEX Robotics:
 http://content.vexrobotics.com/docs/ifi-v884-users-manual-9-25-06.pdf

 - 2.027ms = full "forward"
 - 1.525ms = the "high end" of the deadband range
 - 1.507ms = center of the deadband range (off)
 - 1.49ms = the "low end" of the deadband range
 - 1.026ms = full "reverse"

 .. not_implemented: initVictor
 """

 def __init__(self, channel):
 """Constructor.

 :param channel: The PWM channel that the Victor is attached to. 0-9 are on-board, 10-19 are on the MXP port
 :type channel: int
 """
 super().__init__(channel)
 self.setBounds(2.027, 1.525, 1.507, 1.49, 1.026)
 self.setPeriodMultiplier(self.PeriodMultiplier.k2X)
 self.setRaw(self.centerPwm)
 self.setZeroLatch()

 LiveWindow.addActuatorChannel("Victor", self.getChannel(), self)
 hal.HALReport(hal.HALUsageReporting.kResourceType_Victor,
 self.getChannel())

[docs] def set(self, speed, syncGroup=0):
 """Set the PWM value.

 The PWM value is set using a range of -1.0 to 1.0, appropriately
 scaling the value for the FPGA.

 :param speed: The speed to set. Value should be between -1.0 and 1.0.
 :type speed: float
 :param syncGroup: The update group to add this set to, pending
 updateSyncGroup(). If 0, update immediately.
 """
 self.setSpeed(speed)
 self.feed()

[docs] def get(self):
 """Get the recently set value of the PWM.

 :returns: The most recently set value for the PWM between -1.0 and 1.0.
 :rtype: float
 """
 return self.getSpeed()

[docs] def pidWrite(self, output):
 """Write out the PID value as seen in the PIDOutput base object.

 :param output: Write out the PWM value as was found in the
 :class:`PIDController`.
 :type output: float
 """
 self.set(output)

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/interfaces/speedcontroller.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.interfaces.speedcontroller

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

from .pidoutput import PIDOutput

__all__ = ["SpeedController"]

[docs]class SpeedController(PIDOutput):
 """Interface for speed controlling devices."""

[docs] def get(self):
 """Common interface for getting the current set speed of a speed
 controller.

 :returns: The current set speed. Value is between -1.0 and 1.0.
 """
 raise NotImplementedError

[docs] def set(self, speed, syncGroup=0):
 """Common interface for setting the speed of a speed controller.

 :param speed: The speed to set. Value should be between -1.0 and 1.0.
 :param syncGroup: The update group to add this set() to, pending
 updateSyncGroup(). If 0 (or unspecified), update
 immediately.
 """
 raise NotImplementedError

[docs] def disable(self):
 """Disable the speed controller."""
 raise NotImplementedError

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/interfaces/accelerometer.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.interfaces.accelerometer

#--
Copyright (c) FIRST 2014. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in $(WIND_BASE)/WPILib.
#--

__all__ = ["Accelerometer"]

[docs]class Accelerometer:
 """Interface for 3-axis accelerometers"""

[docs] class Range:
 k2G = 0
 k4G = 1
 k8G = 2
 k16G = 3

[docs] def setRange(self, range):
 """Common interface for setting the measuring range of an
 accelerometer.

 :param range: The maximum acceleration, positive or negative, that
 the accelerometer will measure. Not all accelerometers
 support all ranges.
 """
 raise NotImplementedError

[docs] def getX(self):
 """Common interface for getting the x axis acceleration

 :returns: The acceleration along the x axis in g-forces
 """
 raise NotImplementedError

[docs] def getY(self):
 """Common interface for getting the y axis acceleration

 :returns: The acceleration along the y axis in g-forces
 """
 raise NotImplementedError

[docs] def getZ(self):
 """Common interface for getting the z axis acceleration

 :returns: The acceleration along the z axis in g-forces
 """
 raise NotImplementedError

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_static/comment.png

_static/minus.png

_static/comment-close.png

_static/up.png

_modules/wpilib/buttons/internalbutton.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.buttons.internalbutton

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

from .button import Button

__all__ = ["InternalButton"]

[docs]class InternalButton(Button):
 """This class is intended to be used within a program. The programmer can
 manually set its value. Includes a setting for whether or not it should
 invert its value.
 """

 def __init__(self, inverted=False):
 """Creates an InternalButton which is inverted depending on the input.

 :param inverted: If False, then this button is pressed when set to
 True, otherwise it is pressed when set to False.
 """
 self.pressed = inverted
 self.inverted = inverted

[docs] def setInverted(self, inverted):
 self.inverted = inverted

[docs] def setPressed(self, pressed):
 self.pressed = pressed

[docs] def get(self):
 return self.pressed ^ self.inverted

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/buttons/trigger.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.buttons.trigger

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

__all__ = ["Trigger"]

[docs]class Trigger:
 """This class provides an easy way to link commands to inputs.

 It is very easy to link a button to a command. For instance, you could
 link the trigger button of a joystick to a "score" command.

 It is encouraged that teams write a subclass of Trigger if they want to
 have something unusual (for instance, if they want to react to the user
 holding a button while the robot is reading a certain sensor input).
 For this, they only have to write the :func:`get` method to get the full
 functionality of the Trigger class.
 """
[docs] def get(self):
 """Returns whether or not the trigger is active

 This method will be called repeatedly a command is linked to the
 Trigger.

 :returns: whether or not the trigger condition is active.
 """
 raise NotImplementedError

[docs] def grab(self):
 """Returns whether :meth:`get` returns True or the internal table for
 :class:`.SmartDashboard` use is pressed.
 """
 table = self.getTable()
 #return self.get() or (table is not None and table.isConnected() and table.getBoolean("pressed", False)) #FIXME make is connected work?
 return self.get() or (table is not None and
 table.getBoolean("pressed", False))

[docs] def whenActive(self, command):
 """Starts the given command whenever the trigger just becomes active.

 :param command: the command to start
 """
 def execute():
 if self.grab():
 if not execute.pressedLast:
 execute.pressedLast = True
 command.start()
 else:
 execute.pressedLast = False

 execute.pressedLast = self.grab()
 from ..command import Scheduler
 Scheduler.getInstance().addButton(execute)

[docs] def whileActive(self, command):
 """Constantly starts the given command while the button is held.

 :meth:`Command.start` will be called repeatedly while the trigger is
 active, and will be canceled when the trigger becomes inactive.

 :param command: the command to start
 """
 def execute():
 if self.grab():
 execute.pressedLast = True
 command.start()
 else:
 if execute.pressedLast:
 execute.pressedLast = False
 command.cancel()

 execute.pressedLast = self.grab()
 from ..command import Scheduler
 Scheduler.getInstance().addButton(execute)

[docs] def whenInactive(self, command):
 """Starts the command when the trigger becomes inactive.

 :param command: the command to start
 """
 def execute():
 if self.grab():
 execute.pressedLast = True
 else:
 if execute.pressedLast:
 execute.pressedLast = False
 command.start()

 execute.pressedLast = self.grab()
 from ..command import Scheduler
 Scheduler.getInstance().addButton(execute)

[docs] def toggleWhenActive(self, command):
 """Toggles a command when the trigger becomes active.

 :param command: the command to toggle
 """
 def execute():
 if self.grab():
 if not execute.pressedLast:
 execute.pressedLast = True
 if command.isRunning():
 command.cancel()
 else:
 command.start()
 else:
 execute.pressedLast = False

 execute.pressedLast = self.grab()
 from ..command import Scheduler
 Scheduler.getInstance().addButton(execute)

[docs] def cancelWhenActive(self, command):
 """Cancels a command when the trigger becomes active.

 :param command: the command to cancel
 """
 def execute():
 if self.grab():
 if not execute.pressedLast:
 execute.pressedLast = True
 command.cancel()
 else:
 execute.pressedLast = False

 execute.pressedLast = self.grab()
 from ..command import Scheduler
 Scheduler.getInstance().addButton(execute)

 def getSmartDashboardType(self):
 """These methods continue to return the "Button" :class:`.SmartDashboard` type
 until we decided to create a Trigger widget type for the dashboard.
 """
 return "Button"

 def initTable(self, table):
 self.table = table
 if table is not None:
 table.putBoolean("pressed", self.get())

 def getTable(self):
 return getattr(self, "table", None)

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/interfaces/pidsource.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.interfaces.pidsource

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

__all__ = ["PIDSource"]

[docs]class PIDSource:
 """This interface allows for :class:`.PIDController` to automatically read from this
 object.
 """

[docs] class PIDSourceParameter:
 """A description for the type of output value to provide to a
 :class:`.PIDController`"""
 kDistance = 0
 kRate = 1
 kAngle = 2

[docs] def pidGet(self):
 """Get the result to use in :class:`.PIDController`

 :returns: the result to use in PIDController
 """
 raise NotImplementedError

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/_impl/dummycamera.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib._impl.dummycamera

import threading

__all__ = ["USBCamera", "CameraServer"]

[docs]class USBCamera:
 kDefaultCameraName = b"cam0"

[docs] class WhiteBalance:
 kFixedIndoor = 3000
 kFixedOutdoor1 = 4000
 kFixedOutdoor2 = 5000
 kFixedFluorescent1 = 5100
 kFixedFlourescent2 = 5200

 def __init__(self, name=None):
 if name is None:
 name = USBCamera.kDefaultCameraName
 self.name = name
 self.id = None
 self.active = False
 self.useJpeg = True

 self.mutex = threading.RLock()

 self.width = 320
 self.height = 240
 self.fps = 30
 self.whiteBalance = "auto"
 self.whiteBalanceValue = None
 self.exposure = "auto"
 self.exposureValue = None
 self.brightness = 50
 self.needSettingsUpdate = True

 self.openCamera()

[docs] def openCamera(self):
 pass

[docs] def closeCamera(self):
 pass

[docs] def startCapture(self):
 self.active = True

[docs] def stopCapture(self):
 self.active = False

[docs] def updateSettings(self):
 pass

[docs] def setFPS(self, fps):
 with self.mutex:
 if fps != self.fps:
 self.needSettingsUpdate = True
 self.fps = fps

[docs] def setSize(self, width, height):
 with self.mutex:
 if width != self.width or height != self.height:
 self.needSettingsUpdate = True
 self.width = width
 self.height = height

[docs] def setBrightness(self, brightness):
 """Set the brightness, as a percentage (0-100).
 """
 with self.mutex:
 if brightness > 100:
 self.brightness = 100
 elif brightness < 0:
 self.brightness = 0
 else:
 self.brightness = brightness
 self.needSettingsUpdate = True

[docs] def getBrightness(self):
 """Get the brightness, as a percentage (0-100).
 """
 with self.mutex:
 return self.brightness

[docs] def setWhiteBalanceAuto(self):
 """Set the white balance to auto.
 """
 with self.mutex:
 self.whiteBalance = "auto"
 self.whiteBalanceValue = None
 self.needSettingsUpdate = True

[docs] def setWhiteBalanceHoldCurrent(self):
 """Set the white balance to hold current.
 """
 with self.mutex:
 self.whiteBalance = "manual"
 self.whiteBalanceValue = None
 self.needSettingsUpdate = True

[docs] def setWhiteBalanceManual(self, value):
 """Set the white balance to manual, with specified color temperature.
 """
 with self.mutex:
 self.whiteBalance = "manual"
 self.whiteBalanceValue = value
 self.needSettingsUpdate = True

[docs] def setExposureAuto(self):
 """Set the exposure to auto aperature.
 """
 with self.mutex:
 self.exposure = "auto"
 self.exposureValue = None
 self.needSettingsUpdate = True

[docs] def setExposureHoldCurrent(self):
 """Set the exposure to hold current.
 """
 with self.mutex:
 self.exposure = "manual"
 self.exposureValue = None
 self.needSettingsUpdate = True

[docs] def setExposureManual(self, value):
 """Set the exposure to manual, as a percentage (0-100).
 """
 with self.mutex:
 self.exposure = "manual"
 if value > 100:
 self.exposureValue = 100
 elif value < 0:
 self.exposureValue = 0
 else:
 self.exposureValue = value
 self.needSettingsUpdate = True

[docs] def getImage(self, image):
 with self.mutex:
 if self.needSettingsUpdate or self.useJpeg:
 self.needSettingsUpdate = False
 self.useJpeg = False
 self.updateSettings()
 raise NotImplementedError

[docs] def getImageData(self, data, maxsize):
 with self.mutex:
 if self.needSettingsUpdate or not self.useJpeg:
 self.needSettingsUpdate = False
 self.useJpeg = True
 self.updateSettings()
 return 0

[docs]class CameraServer:
 kPort = 1180
 kSize640x480 = 0
 kSize320x240 = 1
 kSize160x120 = 2

 server = None

 @staticmethod
[docs] def getInstance():
 if CameraServer.server is None:
 CameraServer.server = CameraServer()
 return CameraServer.server

 def __init__(self):
 self.mutex = threading.RLock()
 self.ready = threading.Event()
 self.quality = 50
 self.camera = None

[docs] def setImage(self, image):
 pass

[docs] def startAutomaticCapture(self, camera):
 """Start automatically capturing images to send to the dashboard.

 You should call this method to just see a camera feed on the dashboard
 without doing any vision processing on the roboRIO. {@link #setImage}
 shouldn't be called after this is called.

 :param camera: The camera interface (e.g. a USBCamera instance)
 """
 if self.camera is not None:
 return

 self.camera = camera
 self.camera.startCapture()

[docs] def isAutoCaptureStarted(self):
 """check if auto capture is started
 """
 with self.mutex:
 return self.camera is not None

[docs] def setSize(self, size):
 if size == self.kSize160x120:
 self.camera.setSize(160, 120)
 elif size == self.kSize320x240:
 self.camera.setSize(320, 240)
 elif size == self.kSize640x480:
 self.camera.setSize(640, 480)
 else:
 return

[docs] def setQuality(self, quality):
 """Set the quality of the compressed image sent to the dashboard

 :param quality: The quality of the JPEG image, from 0 to 100
 """
 with self.mutex:
 if quality > 100:
 self.quality = 100
 elif quality < 0:
 self.quality = 0
 else:
 self.quality = quality

[docs] def getQuality(self):
 """Get the quality of the compressed image sent to the dashboard

 :returns: The quality, from 0 to 100
 """
 with self.mutex:
 return self.quality

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/interfaces/potentiometer.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.interfaces.potentiometer

#--
Copyright (c) FIRST 2008-2014. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

from .pidsource import PIDSource

__all__ = ["Potentiometer"]

[docs]class Potentiometer(PIDSource):
[docs] def get(self):
 raise NotImplementedError

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/interfaces/namedsendable.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.interfaces.namedsendable

from ..sendable import Sendable

__all__ = ["NamedSendable"]

[docs]class NamedSendable(Sendable):
 """The interface for sendable objects that gives the sendable a default
 name in the Smart Dashboard.
 """

[docs] def getName(self):
 """
 :returns: The name of the subtable of SmartDashboard that the
 :class:`.Sendable` object will use
 """
 raise NotImplementedError

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/interfaces/pidoutput.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.interfaces.pidoutput

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

__all__ = ["PIDOutput"]

[docs]class PIDOutput:
 """This interface allows :class:`.PIDController` to write its results to
 its output.
 """

[docs] def pidWrite(self, output):
 """Set the output to the value calculated by :class:`.PIDController`.

 :param output: the value calculated by PIDController
 """
 raise NotImplementedError

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/interfaces/generichid.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.interfaces.generichid

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

__all__ = ["GenericHID"]

[docs]class GenericHID:
 """GenericHID Interface"""

[docs] class Hand:
 """Which hand the Human Interface Device is associated with."""

 #: Left hand
 kLeft = 0

 #: Right hand
 kRight = 1

[docs] def getX(self, hand=None):
 """Get the x position of HID.

 :param hand: which hand, left or right (default right)
 :returns: the x position
 """
 raise NotImplementedError

[docs] def getY(self, hand=None):
 """Get the y position of the HID.

 :param hand: which hand, left or right (default right)
 :returns: the y position
 """
 raise NotImplementedError

[docs] def getZ(self, hand=None):
 """Get the z position of the HID.

 :param hand: which hand, left or right (default right)
 :returns: the z position
 """
 raise NotImplementedError

[docs] def getTwist(self):
 """Get the twist value.

 :returns: the twist value
 """
 raise NotImplementedError

[docs] def getThrottle(self):
 """Get the throttle.

 :returns: the throttle value
 """
 raise NotImplementedError

[docs] def getRawAxis(self, which):
 """Get the raw axis.

 :param which: index of the axis
 :returns: the raw value of the selected axis
 """
 raise NotImplementedError

[docs] def getTrigger(self, hand=None):
 """Is the trigger pressed

 :param hand: which hand (default right)
 :returns: True if the trigger for the given hand is pressed
 """
 raise NotImplementedError

[docs] def getTop(self, hand=None):
 """Is the top button pressed

 :param hand: which hand (default right)
 :returns: True if the top button for the given hand is pressed
 """
 raise NotImplementedError

[docs] def getBumper(self, hand=None):
 """Is the bumper pressed?

 :param hand: which hand (default right)
 :returns: True if the bumper is pressed
 """
 raise NotImplementedError

[docs] def getRawButton(self, button):
 """Is the given button pressed?

 :param button: which button number
 :returns: True if the button is pressed
 """
 raise NotImplementedError

[docs] def getPOV(self, pov=0):
 """Get the state of a POV.

 :param pov: which POV (default is 0)
 :returns: The angle of the POV in degrees, or -1 if the POV is not
 pressed.
 """
 raise NotImplementedError

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/interfaces/controller.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.interfaces.controller

__all__ = ["Controller"]

[docs]class Controller:
 """An interface for controllers. Controllers run control loops, the most
 command are PID controllers and there variants, but this includes anything
 that is controlling an actuator in a separate thread.
 """
[docs] def enable(self):
 """Allows the control loop to run."""
 raise NotImplementedError

[docs] def disable(self):
 """Stops the control loop from running until explicitly re-enabled by
 calling :meth:`enable`.
 """
 raise NotImplementedError

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/interfaces/counterbase.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.interfaces.counterbase

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

__all__ = ["CounterBase"]

[docs]class CounterBase:
 """Interface for counting the number of ticks on a digital input channel.
 Encoders, Gear tooth sensors, and counters should all subclass this so it
 can be used to build more advanced classes for control and driving.

 All counters will immediately start counting - :meth:`reset` them if you
 need them to be zeroed before use.
 """

[docs] class EncodingType:
 """The number of edges for the counterbase to increment or decrement on"""

 #: Count only the rising edge
 k1X = 0

 #: Count both the rising and falling edge
 k2X = 1

 #: Count rising and falling on both channels
 k4X = 2

[docs] def get(self):
 """Get the count

 :returns: the count
 """
 raise NotImplementedError

[docs] def reset(self):
 """Reset the count to zero"""
 raise NotImplementedError

[docs] def getPeriod(self):
 """Get the time between the last two edges counted

 :returns: the time beteween the last two ticks in seconds
 """
 raise NotImplementedError

[docs] def setMaxPeriod(self, maxPeriod):
 """Set the maximum time between edges to be considered stalled

 :param maxPeriod: the maximum period in seconds
 """
 raise NotImplementedError

[docs] def getStopped(self):
 """Determine if the counter is not moving

 :returns: True if the counter has not changed for the max period
 """
 raise NotImplementedError

[docs] def getDirection(self):
 """Determine which direction the counter is going

 :returns: True for one direction, False for the other
 """
 raise NotImplementedError

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/buttons/button.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.buttons.button

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

from .trigger import Trigger

__all__ = ["Button"]

[docs]class Button(Trigger):
 """This class provides an easy way to link commands to OI inputs.

 It is very easy to link a button to a command. For instance, you could
 link the trigger button of a joystick to a "score" command.

 This class represents a subclass of :class:`.Trigger` that is specifically aimed at
 buttons on an operator interface as a common use case of the more
 generalized Trigger objects. This is a simple wrapper around Trigger with
 the method names renamed to fit the Button object use.
 """

[docs] def whenPressed(self, command):
 """Starts the given command whenever the button is newly pressed.

 :param command: the command to start
 """
 self.whenActive(command)

[docs] def whileHeld(self, command):
 """Constantly starts the given command while the button is held.

 :meth:`.Command.start` will be called repeatedly while the button is
 held, and will be canceled when the button is released.

 :param command: the command to start
 """
 self.whileActive(command)

[docs] def whenReleased(self, command):
 """Starts the command when the button is released.

 :param command: the command to start
 """
 self.whenInactive(command)

[docs] def toggleWhenPressed(self, command):
 """Toggles the command whenever the button is pressed (on then off
 then on).

 :param command:
 """
 self.toggleWhenActive(command)

[docs] def cancelWhenPressed(self, command):
 """Cancel the command when the button is pressed.

 :param command:
 """
 self.cancelWhenActive(command)

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/talonsrx.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.talonsrx

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal

from .livewindow import LiveWindow
from .safepwm import SafePWM

__all__ = ["TalonSRX"]

[docs]class TalonSRX(SafePWM):
 """
 Cross the Road Electronics (CTRE) Talon SRX Speed Controller via PWM

 .. seealso:: See :class:`.CANTalon` for CAN control of Talon SRX.

 .. not_implemented: initTalonSRX
 """

 def __init__(self, channel):
 """Constructor for a TalonSRX connected via PWM.

 :param channel: The PWM channel that the TalonSRX is attached to. 0-9 are on-board, 10-19 are on the MXP port.
 :type channel: int

 .. note ::

 The TalonSRX uses the following bounds for PWM values. These values
 should work reasonably well for most controllers, but if users
 experience issues such as asymmetric behavior around the deadband
 or inability to saturate the controller in either direction,
 calibration is recommended. The calibration procedure can be
 found in the TalonSRX User Manual available from CTRE.

 - 2.004ms = full "forward"
 - 1.520ms = the "high end" of the deadband range
 - 1.500ms = center of the deadband range (off)
 - 1.480ms = the "low end" of the deadband range
 - 0.997ms = full "reverse"
 """
 super().__init__(channel)
 self.setBounds(2.004, 1.52, 1.50, 1.48, .997)
 self.setPeriodMultiplier(self.PeriodMultiplier.k1X)
 self.setRaw(self.centerPwm)
 self.setZeroLatch()

 LiveWindow.addActuatorChannel("TalonSRX", self.getChannel(), self)
 hal.HALReport(hal.HALUsageReporting.kResourceType_TalonSRX,
 self.getChannel())

[docs] def set(self, speed, syncGroup=0):
 """Set the PWM value.

 The PWM value is set using a range of -1.0 to 1.0, appropriately
 scaling the value for the FPGA.

 :param speed: The speed to set. Value should be between -1.0 and 1.0.
 :type speed: float
 :param syncGroup: The update group to add this set() to, pending
 updateSyncGroup(). If 0, update immediately.
 """
 self.setSpeed(speed)
 self.feed()

[docs] def get(self):
 """Get the recently set value of the PWM.

 :returns: The most recently set value for the PWM between -1.0 and 1.0.
 :rtype: float
 """
 return self.getSpeed()

[docs] def pidWrite(self, output):
 """Write out the PID value as seen in the PIDOutput base object.

 :param output: Write out the PWM value as was found in the
 :class:`PIDController`.
 :type output: float
 """
 self.set(output)

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/analogoutput.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.analogoutput

#--
Copyright (c) FIRST 2014. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal

from .livewindow import LiveWindow
from .resource import Resource
from .sensorbase import SensorBase

__all__ = ["AnalogOutput"]

[docs]class AnalogOutput(SensorBase):
 """Analog output"""

 channels = Resource(SensorBase.kAnalogOutputChannels)

 def __init__(self, channel):
 """Construct an analog output on a specified MXP channel.

 :param channel: The channel number to represent.
 """
 if not hal.checkAnalogOutputChannel(channel):
 raise IndexError("Analog output channel %d cannot be allocated. Channel is not present." % channel)
 try:
 AnalogOutput.channels.allocate(self, channel)
 except IndexError as e:
 raise IndexError("Analog output channel %d is already allocated" % channel) from e

 self.channel = channel

 port = hal.getPort(channel)
 self.port = hal.initializeAnalogOutputPort(port)

 LiveWindow.addSensorChannel("AnalogOutput", channel, self)
 hal.HALReport(hal.HALUsageReporting.kResourceType_AnalogChannel,
 channel, 1)

[docs] def free(self):
 """Channel destructor.
 """
 if self.channel is None:
 return
 AnalogOutput.channels.free(self.channel)
 self.channel = None

[docs] def setVoltage(self, voltage):
 hal.setAnalogOutput(self.port, voltage)

[docs] def getVoltage(self):
 return hal.getAnalogOutput(self.port)

 # Live Window code, only does anything if live window is activated.

 def getSmartDashboardType(self):
 return "Analog Output"

 def updateTable(self):
 table = self.getTable()
 if table is not None:
 table.putNumber("Value", self.getVoltage())

 def startLiveWindowMode(self):
 # Analog Channels don't have to do anything special when entering the
 # LiveWindow.
 pass

 def stopLiveWindowMode(self):
 # Analog Channels don't have to do anything special when exiting the
 # LiveWindow.
 pass

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/analoginput.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.analoginput

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal

from .livewindow import LiveWindow
from .resource import Resource
from .sensorbase import SensorBase
from .timer import Timer

__all__ = ["AnalogInput"]

[docs]class AnalogInput(SensorBase):
 """Analog input

 Each analog channel is read from hardware as a 12-bit number representing
 0V to 5V.

 Connected to each analog channel is an averaging and oversampling engine.
 This engine accumulates the specified (by :func:`setAverageBits` and
 :func:`setOversampleBits`) number of samples before returning a new value.
 This is not a sliding window average. The only difference between the
 oversampled samples and the averaged samples is that the oversampled
 samples are simply accumulated effectively increasing the resolution,
 while the averaged samples are divided by the number of samples to retain
 the resolution, but get more stable values.
 """

 kAccumulatorSlot = 1
 kAccumulatorChannels = (0, 1)
 channels = Resource(SensorBase.kAnalogInputChannels)

 def __init__(self, channel):
 """Construct an analog channel.
 :param channel: The channel number to represent. 0-3 are on-board 4-7 are on the MXP port.
 """
 if not hal.checkAnalogInputChannel(channel):
 raise IndexError("Analog input channel %d cannot be allocated. Channel is not present." % channel)
 try:
 AnalogInput.channels.allocate(self, channel)
 except IndexError as e:
 raise IndexError("Analog input channel %d is already allocated" % channel) from e

 self.channel = channel
 self.accumulatorOffset = 0

 port = hal.getPort(channel)
 self.port = hal.initializeAnalogInputPort(port)

 LiveWindow.addSensorChannel("AnalogInput", channel, self)
 hal.HALReport(hal.HALUsageReporting.kResourceType_AnalogChannel,
 channel)

[docs] def free(self):
 if self.channel is None:
 return
 AnalogInput.channels.free(self.channel)
 self.channel = None
 self.accumulatorOffset = 0

[docs] def getValue(self):
 """Get a sample straight from this channel. The sample is a 12-bit
 value representing the 0V to 5V range of the A/D converter. The units
 are in A/D converter codes. Use :func:`getVoltage` to get the analog
 value in calibrated units.

 :returns: A sample straight from this channel.
 """
 return hal.getAnalogValue(self.port)

[docs] def getAverageValue(self):
 """Get a sample from the output of the oversample and average engine
 for this channel. The sample is 12-bit + the bits configured in
 :func:`setOversampleBits`. The value configured in
 :func:`setAverageBits` will cause this value to be averaged 2**bits
 number of samples. This is not a sliding window. The sample will not
 change until 2^(OversampleBits + AverageBits) samples have been
 acquired from this channel. Use :func:`getAverageVoltage` to get the
 analog value in calibrated units.

 :returns: A sample from the oversample and average engine for this
 channel.
 """
 return hal.getAnalogAverageValue(self.port)

[docs] def getVoltage(self):
 """Get a scaled sample straight from this channel. The value is scaled
 to units of Volts using the calibrated scaling data from
 :func:`getLSBWeight` and :func:`getOffset`.

 :returns: A scaled sample straight from this channel.
 """
 return hal.getAnalogVoltage(self.port)

[docs] def getAverageVoltage(self):
 """Get a scaled sample from the output of the oversample and average
 engine for this channel. The value is scaled to units of Volts using
 the calibrated scaling data from :func:`getLSBWeight` and
 :func:`getOffset`. Using oversampling will cause this value to be
 higher resolution, but it will update more slowly. Using averaging
 will cause this value to be more stable, but it will update more
 slowly.

 :returns: A scaled sample from the output of the oversample and average
 engine for this channel.
 """
 return hal.getAnalogAverageVoltage(self.port)

[docs] def getLSBWeight(self):
 """Get the factory scaling least significant bit weight constant. The
 least significant bit weight constant for the channel that was
 calibrated in manufacturing and stored in an eeprom.

 Volts = ((LSB_Weight * 1e-9) * raw) - (Offset * 1e-9)

 :returns: Least significant bit weight.
 """
 return hal.getAnalogLSBWeight(self.port)

[docs] def getOffset(self):
 """Get the factory scaling offset constant. The offset constant for the
 channel that was calibrated in manufacturing and stored in an eeprom.

 Volts = ((LSB_Weight * 1e-9) * raw) - (Offset * 1e-9)

 :returns: Offset constant.
 """
 return hal.getAnalogOffset(self.port)

[docs] def getChannel(self):
 """Get the channel number.

 :returns: The channel number.
 """
 return self.channel

[docs] def setAverageBits(self, bits):
 """Set the number of averaging bits. This sets the number of
 averaging bits. The actual number of averaged samples is 2^bits.
 The averaging is done automatically in the FPGA.

 :param bits: The number of averaging bits.
 """
 hal.setAnalogAverageBits(self.port, bits)

[docs] def getAverageBits(self):
 """Get the number of averaging bits. This gets the number of averaging
 bits from the FPGA. The actual number of averaged samples is 2^bits.
 The averaging is done automatically in the FPGA.

 :returns: The number of averaging bits.
 """
 return hal.getAnalogAverageBits(self.port)

[docs] def setOversampleBits(self, bits):
 """Set the number of oversample bits. This sets the number of
 oversample bits. The actual number of oversampled values is 2^bits.
 The oversampling is done automatically in the FPGA.

 :param bits: The number of oversample bits.
 """
 hal.setAnalogOversampleBits(self.port, bits)

[docs] def getOversampleBits(self):
 """Get the number of oversample bits. This gets the number of
 oversample bits from the FPGA. The actual number of oversampled values
 is 2^bits. The oversampling is done automatically in the FPGA.

 :returns: The number of oversample bits.
 """
 return hal.getAnalogOversampleBits(self.port)

[docs] def initAccumulator(self):
 """Initialize the accumulator.
 """
 if not self.isAccumulatorChannel():
 raise IndexError(
 "Accumulators are only available on slot %d on channels %s"
 % (AnalogInput.kAccumulatorSlot,
 ",".join(str(c) for c in AnalogInput.kAccumulatorChannels)))
 self.accumulatorOffset = 0
 hal.initAccumulator(self.port)

[docs] def setAccumulatorInitialValue(self, initialValue):
 """Set an initial value for the accumulator.

 This will be added to all values returned to the user.

 :param initialValue:
 The value that the accumulator should start from when reset.
 """
 self.accumulatorOffset = initialValue

[docs] def resetAccumulator(self):
 """Resets the accumulator to the initial value.
 """
 hal.resetAccumulator(self.port)

 # Wait until the next sample, so the next call to getAccumulator*()
 # won't have old values.
 sampleTime = 1.0 / AnalogInput.getGlobalSampleRate()
 overSamples = 1 << self.getOversampleBits()
 averageSamples = 1 << self.getAverageBits()
 Timer.delay(sampleTime * overSamples * averageSamples)

[docs] def setAccumulatorCenter(self, center):
 """Set the center value of the accumulator.

 The center value is subtracted from each A/D value before it is added
 to the accumulator. This is used for the center value of devices like
 gyros and accelerometers to make integration work and to take the
 device offset into account when integrating.

 This center value is based on the output of the oversampled and
 averaged source from channel 1. Because of this, any non-zero
 oversample bits will affect the size of the value for this field.
 """
 hal.setAccumulatorCenter(self.port, center)

[docs] def setAccumulatorDeadband(self, deadband):
 """Set the accumulator's deadband.
 """
 hal.setAccumulatorDeadband(self.port, deadband)

[docs] def getAccumulatorValue(self):
 """Read the accumulated value.

 Read the value that has been accumulating. The accumulator
 is attached after the oversample and average engine.

 :returns: The 64-bit value accumulated since the last :func:`reset`.
 """
 return hal.getAccumulatorValue(self.port) + self.accumulatorOffset

[docs] def getAccumulatorCount(self):
 """Read the number of accumulated values.

 Read the count of the accumulated values since the accumulator was
 last :func:`reset`.

 :returns: The number of times samples from the channel were
 accumulated.
 """
 return hal.getAccumulatorCount(self.port)

[docs] def getAccumulatorOutput(self):
 """Read the accumulated value and the number of accumulated values
 atomically.

 This function reads the value and count from the FPGA atomically. This
 can be used for averaging.

 :returns: tuple of (value, count)
 """
 if not self.isAccumulatorChannel():
 raise IndexError("Channel %d is not an accumulator channel." % self.channel)
 return hal.getAccumulatorOutput(self.port)

[docs] def isAccumulatorChannel(self):
 """Is the channel attached to an accumulator.

 :returns: The analog channel is attached to an accumulator.
 """
 return self.channel in AnalogInput.kAccumulatorChannels

 @staticmethod
[docs] def setGlobalSampleRate(samplesPerSecond):
 """Set the sample rate per channel.

 This is a global setting for all channels.
 The maximum rate is 500kS/s divided by the number of channels in use.
 This is 62500 samples/s per channel if all 8 channels are used.

 :param samplesPerSecond: The number of samples per second.
 """
 hal.setAnalogSampleRate(float(samplesPerSecond))

 @staticmethod
[docs] def getGlobalSampleRate():
 """Get the current sample rate.

 This assumes one entry in the scan list. This is a global setting for
 all channels.

 :returns: Sample rate.
 """
 return hal.getAnalogSampleRate()

[docs] def pidGet(self):
 """Get the average voltage for use with PIDController

 :returns: the average voltage
 """
 return self.getAverageVoltage()

 # Live Window code, only does anything if live window is activated.

 def getSmartDashboardType(self):
 return "Analog Input"

 def updateTable(self):
 table = self.getTable()
 if table is not None:
 table.putNumber("Value", self.getAverageVoltage())

 def startLiveWindowMode(self):
 # Analog Channels don't have to do anything special when entering the
 # LiveWindow.
 pass

 def stopLiveWindowMode(self):
 # Analog Channels don't have to do anything special when exiting the
 # LiveWindow.
 pass

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/talon.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.talon

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal

from .livewindow import LiveWindow
from .safepwm import SafePWM

__all__ = ["Talon"]

[docs]class Talon(SafePWM):
 """
 Cross the Road Electronics (CTRE) Talon and Talon SR Speed Controller via PWM

 .. not_implemented: initTalon
 """

 def __init__(self, channel):
 """Constructor for a Talon (original or Talon SR)

 :param channel: The PWM channel that the Talon is attached to. 0-9 are on-board, 10-19 are on the MXP port
 :type channel: int

 .. note ::

 The Talon uses the following bounds for PWM values. These values
 should work reasonably well for most controllers, but if users
 experience issues such as asymmetric behavior around the deadband
 or inability to saturate the controller in either direction,
 calibration is recommended. The calibration procedure can be
 found in the Talon User Manual available from CTRE.

 - 2.037ms = full "forward"
 - 1.539ms = the "high end" of the deadband range
 - 1.513ms = center of the deadband range (off)
 - 1.487ms = the "low end" of the deadband range
 - 0.989ms = full "reverse"
 """
 super().__init__(channel)
 self.setBounds(2.037, 1.539, 1.513, 1.487, 0.989)
 self.setPeriodMultiplier(self.PeriodMultiplier.k1X)
 self.setRaw(self.centerPwm)
 self.setZeroLatch()

 LiveWindow.addActuatorChannel("Talon", self.getChannel(), self)
 hal.HALReport(hal.HALUsageReporting.kResourceType_Talon,
 self.getChannel())

[docs] def set(self, speed, syncGroup=0):
 """Set the PWM value.

 The PWM value is set using a range of -1.0 to 1.0, appropriately
 scaling the value for the FPGA.

 :param speed: The speed to set. Value should be between -1.0 and 1.0.
 :type speed: float
 :param syncGroup: The update group to add this set() to, pending
 updateSyncGroup(). If 0, update immediately.
 """
 self.setSpeed(speed)
 self.feed()

[docs] def get(self):
 """Get the recently set value of the PWM.

 :returns: The most recently set value for the PWM between -1.0 and 1.0.
 :rtype: float
 """
 return self.getSpeed()

[docs] def pidWrite(self, output):
 """Write out the PID value as seen in the PIDOutput base object.

 :param output: Write out the PWM value as was found in the
 :class:`PIDController`.
 :type output: float
 """
 self.set(output)

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/cantalon.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.cantalon

import hal
import weakref

from .motorsafety import MotorSafety
from .resource import Resource
from .timer import Timer

__all__ = ["CANTalon"]

def _freeCANTalon(handle):
 hal.TalonSRX_Destroy(handle)

[docs]class CANTalon(MotorSafety):
 """Talon SRX device as a CAN device

 The TALON SRX is designed to instrument all runtime signals periodically.
 The default periods are chosen to support 16 TALONs with 10ms update rate
 for control (throttle or setpoint). However these can be overridden with
 :meth:`setStatusFrameRate`.

 Likewise most control signals are sent periodically using the
 fire-and-forget CAN API.

 Signals that are not available in an unsolicited fashion are the Close
 Loop gains. For teams that have a single profile for their TALON close
 loop they can use either the webpage to configure their TALONs once or
 set the PIDF,Izone,CloseLoopRampRate,etc... once in the robot application.
 These parameters are saved to flash so once they are loaded in the TALON,
 they will persist through power cycles and mode changes.

 For teams that have one or two profiles to switch between, they can use
 the same strategy since there are two slots to choose from and the
 ProfileSlotSelect is periodically sent in the 10 ms control frame.

 For teams that require changing gains frequently, they can use the
 soliciting API to get and set those parameters. Most likely they will
 only need to set them in a periodic fashion as a function of what motion
 the application is attempting. If this API is used, be mindful of the CAN
 utilization reported in the driver station.

 Encoder position is measured in encoder edges. Every edge is counted
 (similar to roboRIO 4X mode). Analog position is 10 bits, meaning 1024
 ticks per rotation (0V => 3.3V). Use :meth:`setFeedbackDevice` to select
 which sensor type you need. Once you do that you can use
 :meth:`getSensorPosition` and :meth:`getSensorVelocity`. These signals
 are updated on CANBus every 20ms (by default). If a relative sensor is
 selected, you can zero (or change the current value) using
 :meth:`setSensorPosition`.

 Analog Input and quadrature position (and velocity) are also explicitly
 reported in :meth:`getEncPosition`, :meth:`getEncVelocity`,
 :meth:`getAnalogInPosition`, :meth:`getAnalogInRaw`,
 :meth:`getAnalogInVelocity`.
 These signals are available all the time, regardless of what sensor is
 selected at a rate of 100ms. This allows easy instrumentation for "in the
 pits" checking of all sensors regardless of modeselect. The 100ms rate is
 overridable for teams who want to acquire sensor data for processing, not
 just instrumentation. Or just select the sensor using
 :meth:`setFeedbackDevice` to get it at 20ms.

 Velocity is in position ticks / 100ms.

 All output units are in respect to duty cycle (throttle) which is
 -1023(full reverse) to +1023 (full forward). This includes demand (which
 specifies duty cycle when in duty cycle mode) and rampRamp, which is in
 throttle units per 10ms (if nonzero).

 When in (default) PercentVBus mode, set() and get() are automatically
 scaled to a -1.0 to +1.0 range to match other motor controllers.

 Pos and velocity close loops are calc'd as::

 err = target - posOrVel
 iErr += err
 if IZone != 0 and abs(err) > IZone:
 ClearIaccum()
 output = P * err + I * iErr + D * dErr + F * target
 dErr = err - lastErr

 P, I, and D gains are always positive. F can be negative.

 Motor direction can be reversed using :meth:`reverseOutput` if sensor
 and motor are out of phase. Similarly feedback sensor can also be reversed
 (multiplied by -1) using :meth:`reverseSensor` if you prefer the sensor to
 be inverted.

 P gain is specified in throttle per error tick. For example, a value of
 102 is ~9.9% (which is 102/1023) throttle per 1 ADC unit(10bit) or 1
 quadrature encoder edge depending on selected sensor.

 I gain is specified in throttle per integrated error. For example, a value
 of 10 equates to ~0.99% (which is 10/1023) for each accumulated ADC
 unit(10bit) or 1 quadrature encoder edge depending on selected sensor.
 Close loop and integral accumulator runs every 1ms.

 D gain is specified in throttle per derivative error. For example a value
 of 102 equates to ~9.9% (which is 102/1023) per change of 1 unit (ADC or
 encoder) per ms.

 I Zone is specified in the same units as sensor position (ADC units or
 quadrature edges). If pos/vel error is outside of this value, the
 integrated error will auto-clear::

 if IZone != 0 and abs(err) > IZone:
 ClearIaccum()

 This is very useful in preventing integral windup and is highly
 recommended if using full PID to keep stability low.

 CloseLoopRampRate is in throttle units per 1ms. Set to zero to disable
 ramping. Works the same as RampThrottle but only is in effect when a
 close loop mode and profile slot is selected.
 """

[docs] class ControlMode:
 PercentVbus = hal.TalonSRXConst.kMode_DutyCycle
 Position = hal.TalonSRXConst.kMode_PositionCloseLoop
 Speed = hal.TalonSRXConst.kMode_VelocityCloseLoop
 Current = hal.TalonSRXConst.kMode_CurrentCloseLoop
 Voltage = hal.TalonSRXConst.kMode_VoltCompen
 Follower = hal.TalonSRXConst.kMode_SlaveFollower
 Disabled = hal.TalonSRXConst.kMode_NoDrive

[docs] class FeedbackDevice:
 QuadEncoder = hal.TalonSRXConst.kFeedbackDev_DigitalQuadEnc
 AnalogPot = hal.TalonSRXConst.kFeedbackDev_AnalogPot
 AnalogEncoder = hal.TalonSRXConst.kFeedbackDev_AnalogEncoder
 EncRising = hal.TalonSRXConst.kFeedbackDev_CountEveryRisingEdge
 EncFalling = hal.TalonSRXConst.kFeedbackDev_CountEveryFallingEdge

[docs] class StatusFrameRate:
 """enumerated types for frame rate ms"""
 General = hal.TalonSRXConst.kStatusFrame_General
 Feedback = hal.TalonSRXConst.kStatusFrame_Feedback
 QuadEncoder = hal.TalonSRXConst.kStatusFrame_Encoder
 AnalogTempVbat = hal.TalonSRXConst.kStatusFrame_AnalogTempVbat

 kDelayForSolicitedSignals = 0.004

 def __init__(self, deviceNumber,
 controlPeriodMs=hal.TalonSRXConst.kDefaultControlPeriodMs):
 MotorSafety.__init__(self)

 self.deviceNumber = deviceNumber
 # HAL bounds period to be within [1 ms,95 ms]
 self._handle = hal.TalonSRX_Create(deviceNumber, controlPeriodMs)
 self._handle_finalizer = weakref.finalize(self, _freeCANTalon,
 self._handle)
 self.controlEnabled = True
 self.profile = 0
 self.setPoint = 0.0
 self.setProfile(self.profile)
 self._applyControlMode(self.ControlMode.PercentVbus)

 # Need this to free on unit test wpilib reset
 Resource._add_global_resource(self)

 @property
[docs] def handle(self):
 if not self._handle_finalizer.alive:
 raise ValueError("operation on freed port")
 return self._handle

[docs] def free(self):
 self._handle_finalizer()

[docs] def pidWrite(self, output):
 if self.getControlMode() == self.ControlMode.PercentVbus:
 self.set(output)
 else:
 raise ValueError("PID only supported in PercentVbus mode")

[docs] def set(self, outputValue, syncGroup=0):
 """
 Sets the appropriate output on the talon, depending on the mode.

 In PercentVbus, the output is between -1.0 and 1.0, with 0.0 as stopped.

 In Follower mode, the output is the integer device ID of the talon to
 duplicate.

 In Voltage mode, outputValue is in volts.

 In Current mode, outputValue is in amperes.

 In Speed mode, outputValue is in position change / 10ms.

 In Position mode, outputValue is in encoder ticks or an analog value,
 depending on the sensor.

 :param outputValue: The setpoint value, as described above.
 """
 if not self.controlEnabled:
 return
 self.setPoint = outputValue
 if self.controlMode == self.ControlMode.PercentVbus:
 if outputValue > 1:
 outputValue = 1
 elif outputValue < -1:
 outputValue = -1
 hal.TalonSRX_SetDemand(self.handle, int(1023*outputValue))
 elif self.controlMode == self.ControlMode.Follower:
 hal.TalonSRX_SetDemand(self.handle, int(outputValue))
 elif self.controlMode == self.ControlMode.Voltage:
 # Voltage is an 8.8 fixed point number.
 volts = int(outputValue * 256)
 hal.TalonSRX_SetDemand(self.handle, volts)
 elif self.controlMode == self.ControlMode.Speed:
 hal.TalonSRX_SetDemand(self.handle, int(outputValue))
 elif self.controlMode == self.ControlMode.Position:
 hal.TalonSRX_SetDemand(self.handle, int(outputValue))
 hal.TalonSRX_SetModeSelect(self.handle, self.controlMode)

[docs] def reverseSensor(self, flip):
 """
 Flips the sign (multiplies by negative one) the sensor values going
 into the talon.

 This only affects position and velocity closed loop control. Allows for
 situations where you may have a sensor flipped and going in the wrong
 direction.

 :param flip: True if sensor input should be flipped; False if not.
 """
 hal.TalonSRX_SetRevFeedbackSensor(self.handle, 1 if flip else 0)

[docs] def reverseOutput(self, flip):
 """
 Flips the sign (multiplies by negative one) the throttle values going
 into the motor on the talon in closed loop modes.

 :param flip: True if motor output should be flipped; False if not.
 """
 hal.TalonSRX_SetRevMotDuringCloseLoopEn(self.handle, 1 if flip else 0)

[docs] def get(self):
 """
 Gets the current status of the Talon (usually a sensor value).

 In Current mode: returns output current.

 In Speed mode: returns current speed.

 In Position omde: returns current sensor position.

 In Throttle and Follower modes: returns current applied throttle.

 :returns: The current sensor value of the Talon.
 """
 if self.controlMode == self.ControlMode.Voltage:
 return self.getOutputVoltage()
 elif self.controlMode == self.ControlMode.Current:
 return self.getOutputCurrent()
 elif self.controlMode == self.ControlMode.Speed:
 return float(hal.TalonSRX_GetSensorVelocity(self.handle))
 elif self.controlMode == self.ControlMode.Position:
 return float(hal.TalonSRX_GetSensorPosition(self.handle))
 else: # PercentVbus
 return hal.TalonSRX_GetAppliedThrottle(self.handle) / 1023.0

[docs] def getEncPosition(self):
 """
 Get the current encoder position, regardless of whether it is the
 current feedback device.

 :returns: The current position of the encoder.
 """
 return hal.TalonSRX_GetEncPosition(self.handle)

[docs] def getEncVelocity(self):
 """
 Get the current encoder velocity, regardless of whether it is the
 current feedback device.

 :returns: The current speed of the encoder.
 """
 return hal.TalonSRX_GetEncVel(self.handle)

[docs] def getNumberOfQuadIdxRises(self):
 """
 Get the number of of rising edges seen on the index pin.

 :returns: number of rising edges on idx pin.
 """
 return hal.TalonSRX_GetEncIndexRiseEvents(self.handle)

[docs] def getPinStateQuadA(self):
 """
 :returns: IO level of QUADA pin.
 """
 return hal.TalonSRX_GetQuadApin(self.handle)

[docs] def getPinStateQuadB(self):
 """
 :returns: IO level of QUADB pin.
 """
 return hal.TalonSRX_GetQuadBpin(self.handle)

[docs] def getPinStateQuadIdx(self):
 """
 :returns: IO level of QUAD Index pin.
 """
 return hal.TalonSRX_GetQuadIdxpin(self.handle)

[docs] def getAnalogInPosition(self):
 """
 Get the current analog in position, regardless of whether it is the
 current feedback device.

 :returns: The 24bit analog position. The bottom ten bits is the ADC
 (0 - 1023) on the analog pin of the Talon. The upper 14 bits
 tracks the overflows and underflows (continuous sensor).
 """
 return hal.TalonSRX_GetAnalogInWithOv(self.handle)

[docs] def getAnalogInRaw(self):
 """
 Get the current analog in position, regardless of whether it is the
 current feedback device.
 :returns: The ADC (0 - 1023) on analog pin of the Talon.
 """
 return self.getAnalogInPosition() & 0x3FF

[docs] def getAnalogInVelocity(self):
 """
 Get the current encoder velocity, regardless of whether it is the
 current feedback device.

 :returns: The current speed of the analog in device.
 """
 return hal.TalonSRX_GetAnalogInVel(self.handle)

[docs] def getClosedLoopError(self):
 """
 Get the current difference between the setpoint and the sensor value.

 :returns: The error, in whatever units are appropriate.
 """
 return hal.TalonSRX_GetCloseLoopErr(self.handle)

[docs] def isFwdLimitSwitchClosed(self):
 """Returns True if limit switch is closed. False if open."""
 return hal.TalonSRX_GetLimitSwitchClosedFor(self.handle) == 0

[docs] def isRevLimitSwitchClosed(self):
 """Returns True if limit switch is closed. False if open."""
 return hal.TalonSRX_GetLimitSwitchClosedRev(self.handle) == 0

[docs] def getBrakeEnableDuringNeutral(self):
 """Returns True if break is enabled during neutral. False if coast."""
 return hal.TalonSRX_GetBrakeIsEnabled(self.handle) != 0

[docs] def getTemp(self):
 """Returns temperature of Talon, in degrees Celsius."""
 return hal.TalonSRX_GetTemp(self.handle)

[docs] def getSensorPosition(self):
 return hal.TalonSRX_GetSensorPosition(self.handle)

[docs] def getSensorVelocity(self):
 return hal.TalonSRX_GetSensorVelocity(self.handle)

[docs] def getOutputCurrent(self):
 """Returns the current going through the Talon, in Amperes."""
 return hal.TalonSRX_GetCurrent(self.handle)

[docs] def getOutputVoltage(self):
 """
 :returns: The voltage being output by the Talon, in Volts.
 """
 return self.getBusVoltage() * hal.TalonSRX_GetAppliedThrottle(self.handle) / 1023.0

[docs] def getBusVoltage(self):
 """
 :returns: The voltage at the battery terminals of the Talon, in Volts.
 """
 return hal.TalonSRX_GetBatteryV(self.handle)

[docs] def getPosition(self):
 return hal.TalonSRX_GetSensorPosition(self.handle)

[docs] def setPosition(self, pos):
 hal.TalonSRX_SetParam(self.handle, hal.TalonSRXParam.eSensorPosition,
 int(pos))

[docs] def getSpeed(self):
 return hal.TalonSRX_GetSensorVelocity(self.handle)

[docs] def getControlMode(self):
 return self.controlMode

 def _applyControlMode(self, controlMode):
 """
 Fixup the self.controlMode so set() serializes the correct demand value.
 Also fills the modeSelecet in the control frame to disabled.
 :param controlMode: Control mode to ultimately enter once user calls
 set().
 """
 self.controlMode = controlMode
 if controlMode == self.ControlMode.Disabled:
 self.controlEnabled = False
 # Disable until set() is called.
 hal.TalonSRX_SetModeSelect(self.handle, self.ControlMode.Disabled)

[docs] def changeControlMode(self, controlMode):
 # if we already are in this mode, don't perform disable workaround
 if self.controlMode != controlMode:
 self._applyControlMode(controlMode)

[docs] def setFeedbackDevice(self, device):
 hal.TalonSRX_SetFeedbackDeviceSelect(self.handle, device)

[docs] def setStatusFrameRateMs(self, stateFrame, periodMs):
 """Change the periodMs of a TALON's status frame. See StatusFrameRate
 enum for what's available."""
 hal.TalonSRX_SetStatusFrameRate(self.handle, stateFrame, periodMs)

[docs] def enableControl(self):
 self.changeControlMode(self.controlMode)
 self.controlEnabled = True

[docs] def disableControl(self):
 hal.TalonSRX_SetModeSelect(self.handle, self.ControlMode.Disabled)
 self.controlEnabled = False

[docs] def isControlEnabled(self):
 return self.controlEnabled

 def _getParam(self, paramEnum):
 # Update the information that we have.
 hal.TalonSRX_RequestParam(self.handle, paramEnum)

 # Briefly wait for new values from the Talon.
 Timer.delay(self.kDelayForSolicitedSignals)

 return hal.TalonSRX_GetParamResponse(self.handle, paramEnum)

 def _getParamInt(self, paramEnum):
 # Update the information that we have.
 hal.TalonSRX_RequestParam(self.handle, paramEnum)

 # Briefly wait for new values from the Talon.
 Timer.delay(self.kDelayForSolicitedSignals)

 return hal.TalonSRX_GetParamResponseInt32(self.handle, paramEnum)

[docs] def getP(self):
 """
 Get the current proportional constant.

 :returns: double proportional constant for current profile.
 """
 if self.profile == 0:
 return self._getParam(hal.TalonSRXParam.eProfileParamSlot0_P)
 else:
 return self._getParam(hal.TalonSRXParam.eProfileParamSlot1_P)

[docs] def getI(self):
 if self.profile == 0:
 return self._getParam(hal.TalonSRXParam.eProfileParamSlot0_I)
 else:
 return self._getParam(hal.TalonSRXParam.eProfileParamSlot1_I)

[docs] def getD(self):
 if self.profile == 0:
 return self._getParam(hal.TalonSRXParam.eProfileParamSlot0_D)
 else:
 return self._getParam(hal.TalonSRXParam.eProfileParamSlot1_D)

[docs] def getF(self):
 if self.profile == 0:
 return self._getParam(hal.TalonSRXParam.eProfileParamSlot0_F)
 else:
 return self._getParam(hal.TalonSRXParam.eProfileParamSlot1_F)

[docs] def getIZone(self):
 if self.profile == 0:
 return self._getParamInt(hal.TalonSRXParam.eProfileParamSlot0_IZone)
 else:
 return self._getParamInt(hal.TalonSRXParam.eProfileParamSlot1_IZone)

[docs] def getCloseLoopRampRate(self):
 """
 Get the closed loop ramp rate for the current profile.

 Limits the rate at which the throttle will change.
 Only affects position and speed closed loop modes.

 :returns: rampRate Maximum change in voltage, in volts / sec.

 :see: #setProfile For selecting a certain profile.
 """
 if self.profile == 0:
 throttlePerMs = self._getParamInt(hal.TalonSRXParam.eProfileParamSlot0_CloseLoopRampRate)
 else:
 throttlePerMs = self._getParamInt(hal.TalonSRXParam.eProfileParamSlot1_CloseLoopRampRate)

 return throttlePerMs / 1023.0 * 12.0 * 1000.0

[docs] def getFirmwareVersion(self):
 """
 :returns: The version of the firmware running on the Talon
 """
 return self._getParamInt(hal.TalonSRXParam.eFirmVers)

[docs] def getIaccum(self):
 return self._getParamInt(hal.TalonSRXParam.ePidIaccum)

[docs] def clearIaccum(self):
 """
 Clear the accumulator for I gain.
 """
 hal.TalonSRX_SetParam(self.handle, hal.TalonSRXParam.ePidIaccum, 0)

[docs] def setP(self, p):
 """
 Set the proportional value of the currently selected profile.

 :param p: Proportional constant for the currently selected PID profile.
 :see: #setProfile For selecting a certain profile.
 """
 if self.profile == 0:
 hal.TalonSRX_SetParam(self.handle, hal.TalonSRXParam.eProfileParamSlot0_P, p)
 else:
 hal.TalonSRX_SetParam(self.handle, hal.TalonSRXParam.eProfileParamSlot1_P, p)

[docs] def setI(self, i):
 """
 Set the integration constant of the currently selected profile.

 :param i: Integration constant for the currently selected PID profile.
 :see: #setProfile For selecting a certain profile.
 """
 if self.profile == 0:
 hal.TalonSRX_SetParam(self.handle, hal.TalonSRXParam.eProfileParamSlot0_I, i)
 else:
 hal.TalonSRX_SetParam(self.handle, hal.TalonSRXParam.eProfileParamSlot1_I, i)

[docs] def setD(self, d):
 """
 Set the derivative constant of the currently selected profile.

 :param d: Derivative constant for the currently selected PID profile.
 :see: #setProfile For selecting a certain profile.
 """
 if self.profile == 0:
 hal.TalonSRX_SetParam(self.handle, hal.TalonSRXParam.eProfileParamSlot0_D, d)
 else:
 hal.TalonSRX_SetParam(self.handle, hal.TalonSRXParam.eProfileParamSlot1_D, d)

[docs] def setF(self, f):
 """
 Set the feedforward value of the currently selected profile.

 :param f: Feedforward constant for the currently selected PID profile.
 :see: #setProfile For selecting a certain profile.
 """
 if self.profile == 0:
 hal.TalonSRX_SetParam(self.handle, hal.TalonSRXParam.eProfileParamSlot0_F, f)
 else:
 hal.TalonSRX_SetParam(self.handle, hal.TalonSRXParam.eProfileParamSlot1_F, f)

[docs] def setIZone(self, izone):
 """
 Set the integration zone of the current Closed Loop profile.

 Whenever the error is larger than the izone value, the accumulated
 integration error is cleared so that high errors aren't racked up when
 at high errors.

 An izone value of 0 means no difference from a standard PIDF loop.

 :param izone: Width of the integration zone.
 :see: #setProfile For selecting a certain profile.
 """
 if self.profile == 0:
 hal.TalonSRX_SetParam(self.handle, hal.TalonSRXParam.eProfileParamSlot0_IZone, izone)
 else:
 hal.TalonSRX_SetParam(self.handle, hal.TalonSRXParam.eProfileParamSlot1_IZone, izone)

[docs] def setCloseLoopRampRate(self, rampRate):
 """
 Set the closed loop ramp rate for the current profile.

 Limits the rate at which the throttle will change.
 Only affects position and speed closed loop modes.

 :param rampRate: Maximum change in voltage, in volts / sec.
 :see: #setProfile For selecting a certain profile.
 """
 # CanTalonSRX takes units of Throttle (0 - 1023) / 1ms.
 rate = int(rampRate * 1023.0 / 12.0 / 1000.0)
 if self.profile == 0:
 hal.TalonSRX_SetParam(self.handle, hal.TalonSRXParam.eProfileParamSlot0_CloseLoopRampRate, rate)
 else:
 hal.TalonSRX_SetParam(self.handle, hal.TalonSRXParam.eProfileParamSlot1_CloseLoopRampRate, rate)

[docs] def setVoltageRampRate(self, rampRate):
 """
 Set the voltage ramp rate for the current profile.

 Limits the rate at which the throttle will change.
 Affects all modes.

 :param rampRate: Maximum change in voltage, in volts / sec.
 """
 # CanTalonSRX takes units of Throttle (0 - 1023) / 10ms.
 rate = int(rampRate * 1023.0 / 12.0 /100.0)
 hal.TalonSRX_SetRampThrottle(self.handle, rate)

[docs] def setPID(self, p, i, d, f=0, izone=0, closeLoopRampRate=0,
 profile=None):
 """
 Sets control values for closed loop control.

 :param p: Proportional constant.
 :param i: Integration constant.
 :param d: Differential constant.
 :param f: Feedforward constant.
 :param izone: Integration zone -- prevents accumulation of integration
 error with large errors. Setting this to zero will ignore any
 izone stuff.
 :param closeLoopRampRate: Closed loop ramp rate. Maximum change in
 voltage, in volts / sec.
 :param profile: which profile to set the pid constants for. You can
 have two profiles, with values of 0 or 1, allowing you to keep a
 second set of values on hand in the talon. In order to switch
 profiles without recalling setPID, you must call setProfile().
 """
 if profile is not None:
 self.setProfile(profile)
 self.setP(p)
 self.setI(i)
 self.setD(d)
 self.setF(f)
 self.setIZone(izone)
 self.setCloseLoopRampRate(closeLoopRampRate)

[docs] def getSetpoint(self):
 """
 :returns: The latest value set using set().
 """
 return self.setPoint

[docs] def setProfile(self, profile):
 """
 Select which closed loop profile to use, and uses whatever PIDF gains
 and the such that are already there.
 """
 if profile not in (0, 1):
 raise ValueError("Talon PID profile must be 0 or 1.")
 self.profile = profile
 hal.TalonSRX_SetProfileSlotSelect(self.handle, self.profile)

[docs] def stopMotor(self):
 """
 Common interface for stopping a motor.
 """
 self.disableControl()

[docs] def disable(self):
 self.disableControl()

[docs] def getDeviceID(self):
 return self.deviceNumber

 # TODO: Documentation for all these accessors/setters for misc. stuff.

[docs] def setSensorPosition(self, pos):
 hal.TalonSRX_SetParam(self.handle, hal.TalonSRXParam.eSensorPosition, pos)

[docs] def setForwardSoftLimit(self, forwardLimit):
 hal.TalonSRX_SetParam(self.handle, hal.TalonSRXParam.eProfileParamSoftLimitForThreshold, forwardLimit)

[docs] def enableForwardSoftLimit(self, enable):
 hal.TalonSRX_SetParam(self.handle, hal.TalonSRXParam.eProfileParamSoftLimitForEnable, 1 if enable else 0)

[docs] def setReverseSoftLimit(self, reverseLimit):
 hal.TalonSRX_SetParam(self.handle, hal.TalonSRXParam.eProfileParamSoftLimitRevThreshold, reverseLimit)

[docs] def enableReverseSoftLimit(self, enable):
 hal.TalonSRX_SetParam(self.handle, hal.TalonSRXParam.eProfileParamSoftLimitRevEnable, 1 if enable else 0)

[docs] def clearStickyFaults(self):
 hal.TalonSRX_ClearStickyFaults(self.handle)

[docs] def enableLimitSwitch(self, forward, reverse):
 mask = 4 + (2 if forward else 0) + (1 if reverse else 0)
 hal.TalonSRX_SetOverrideLimitSwitchEn(self.handle, mask)

[docs] def configFwdLimitSwitchNormallyOpen(self, normallyOpen):
 """
 Configure the fwd limit switch to be normally open or normally closed.
 Talon will disable momentarilly if the Talon's current setting
 is dissimilar to the caller's requested setting.

 Since Talon saves setting to flash this should only affect
 a given Talon initially during robot install.

 :param normallyOpen: True for normally open. False for normally closed.
 """
 hal.TalonSRX_SetParam(self.handle, hal.TalonSRXParam.eOnBoot_LimitSwitch_Forward_NormallyClosed, 0 if normallyOpen else 1)

[docs] def configRevLimitSwitchNormallyOpen(self, normallyOpen):
 """
 * Configure the rev limit switch to be normally open or normally closed.
 * Talon will disable momentarilly if the Talon's current setting
 * is dissimilar to the caller's requested setting.
 *
 * Since Talon saves setting to flash this should only affect
 * a given Talon initially during robot install.
 *
 * @param normallyOpen true for normally open. false for normally closed.
 """
 hal.TalonSRX_SetParam(self.handle, hal.TalonSRXParam.eOnBoot_LimitSwitch_Reverse_NormallyClosed, 0 if normallyOpen else 1)

[docs] def enableBrakeMode(self, brake):
 hal.TalonSRX_SetOverrideBrakeType(self.handle, 2 if brake else 1)

[docs] def getFaultOverTemp(self):
 return hal.TalonSRX_GetFault_OverTemp(self.handle)

[docs] def getFaultUnderVoltage(self):
 return hal.TalonSRX_GetFault_UnderVoltage(self.handle)

[docs] def getFaultForLim(self):
 return hal.TalonSRX_GetFault_ForLim(self.handle)

[docs] def getFaultRevLim(self):
 return hal.TalonSRX_GetFault_RevLim(self.handle)

[docs] def getFaultHardwareFailure(self):
 return hal.TalonSRX_GetFault_HardwareFailure(self.handle)

[docs] def getFaultForSoftLim(self):
 return hal.TalonSRX_GetFault_ForSoftLim(self.handle)

[docs] def getFaultRevSoftLim(self):
 return hal.TalonSRX_GetFault_RevSoftLim(self.handle)

[docs] def getStickyFaultOverTemp(self):
 return hal.TalonSRX_GetStckyFault_OverTemp(self.handle)

[docs] def getStickyFaultUnderVoltage(self):
 return hal.TalonSRX_GetStckyFault_UnderVoltage(self.handle)

[docs] def getStickyFaultForLim(self):
 return hal.TalonSRX_GetStckyFault_ForLim(self.handle)

[docs] def getStickyFaultRevLim(self):
 return hal.TalonSRX_GetStckyFault_RevLim(self.handle)

[docs] def getStickyFaultForSoftLim(self):
 return hal.TalonSRX_GetStckyFault_ForSoftLim(self.handle)

[docs] def getStickyFaultRevSoftLim(self):
 return hal.TalonSRX_GetStckyFault_RevSoftLim(self.handle)

[docs] def getDescription(self):
 return "CANTalon ID %d" % self.deviceNumber

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/jaguar.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.jaguar

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal

from .livewindow import LiveWindow
from .safepwm import SafePWM

__all__ = ["Jaguar"]

[docs]class Jaguar(SafePWM):
 """
 Texas Instruments / Vex Robotics Jaguar Speed Controller as a PWM device.

 .. seealso::

 :class:`.CANJaguar` for CAN control of a Jaguar

 .. not_implemented: initJaguar
 """

 def __init__(self, channel):
 """Constructor.

 :param channel: The PWM channel that the Jaguar is attached to. 0-9 are on-board, 10-19 are on the MXP port
 """
 super().__init__(channel)
 # Input profile defined by Luminary Micro.
 #
 # Full reverse ranges from 0.671325ms to 0.6972211ms
 # Proportional reverse ranges from 0.6972211ms to 1.4482078ms
 # Neutral ranges from 1.4482078ms to 1.5517922ms
 # Proportional forward ranges from 1.5517922ms to 2.3027789ms
 # Full forward ranges from 2.3027789ms to 2.328675ms
 self.setBounds(2.31, 1.55, 1.507, 1.454, 0.697)
 self.setPeriodMultiplier(self.PeriodMultiplier.k1X)
 self.setRaw(self.centerPwm)
 self.setZeroLatch()

 hal.HALReport(hal.HALUsageReporting.kResourceType_Jaguar,
 self.getChannel())
 LiveWindow.addActuatorChannel("Jaguar", self.getChannel(), self)

[docs] def set(self, speed, syncGroup=0):
 """Set the PWM value.

 The PWM value is set using a range of -1.0 to 1.0, appropriately
 scaling the value for the FPGA.

 :param speed: The speed to set. Value should be between -1.0 and 1.0.
 :type speed: float
 :param syncGroup: The update group to add this set() to, pending
 updateSyncGroup(). If 0, update immediately.
 """
 self.setSpeed(speed)
 self.feed()

[docs] def get(self):
 """Get the recently set value of the PWM.

 :returns: The most recently set value for the PWM between -1.0 and 1.0.
 :rtype: float
 """
 return self.getSpeed()

[docs] def pidWrite(self, output):
 """Write out the PID value as seen in the PIDOutput base object.

 :param output: Write out the PWM value as was found in the
 :class:`PIDController`.
 :type output: float
 """
 self.set(output)

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/servo.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.servo

#--
Copyright (c) FIRST 2008-2014. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal

from .livewindow import LiveWindow
from .pwm import PWM

__all__ = ["Servo"]

[docs]class Servo(PWM):
 """Standard hobby style servo

 The range parameters default to the appropriate values for the Hitec
 HS-322HD servo provided in the FIRST Kit of Parts in 2008.

 .. not_implemented: initServo
 """

 kMaxServoAngle = 180.0
 kMinServoAngle = 0.0

 kDefaultMaxServoPWM = 2.4
 kDefaultMinServoPWM = .6

 def __init__(self, channel):
 """Constructor.

 * By default `kDefaultMaxServoPWM` ms is used as the maxPWM value
 * By default `kDefaultMinServoPWM` ms is used as the minPWM value

 :param channel: The PWM channel to which the servo is attached. 0-9 are on-board, 10-19 are on the MXP port.
 :type channel: int
 """
 super().__init__(channel)
 self.setBounds(self.kDefaultMaxServoPWM, 0, 0, 0,
 self.kDefaultMinServoPWM)
 self.setPeriodMultiplier(self.PeriodMultiplier.k4X)

 LiveWindow.addActuatorChannel("Servo", self.getChannel(), self)
 hal.HALReport(hal.HALUsageReporting.kResourceType_Servo,
 self.getChannel())

[docs] def set(self, value):
 """Set the servo position.

 Servo values range from 0.0 to 1.0 corresponding to the range of
 full left to full right.

 :param value: Position from 0.0 to 1.0.
 :type value: float
 """
 self.setPosition(value)

[docs] def get(self):
 """Get the servo position.

 Servo values range from 0.0 to 1.0 corresponding to the range of
 full left to full right.

 :returns: Position from 0.0 to 1.0.
 :rtype: float
 """
 return self.getPosition()

[docs] def setAngle(self, degrees):
 """Set the servo angle.

 Assumes that the servo angle is linear with respect to the PWM value
 (big assumption, need to test).

 Servo angles that are out of the supported range of the servo simply
 "saturate" in that direction In other words, if the servo has a range
 of (X degrees to Y degrees) than angles of less than X result in an
 angle of X being set and angles of more than Y degrees result in an
 angle of Y being set.

 :param degrees: The angle in degrees to set the servo.
 :type degrees: float
 """
 if degrees < self.kMinServoAngle:
 degrees = self.kMinServoAngle
 elif degrees > self.kMaxServoAngle:
 degrees = self.kMaxServoAngle

 self.setPosition(((degrees - self.kMinServoAngle)) /
 self.getServoAngleRange())

[docs] def getAngle(self):
 """Get the servo angle.

 Assume that the servo angle is linear with respect to the PWM value
 (big assumption, need to test).

 :returns: The angle in degrees to which the servo is set.
 :rtype: float
 """
 return self.getPosition() * self.getServoAngleRange() + self.kMinServoAngle

[docs] def getServoAngleRange(self):
 return self.kMaxServoAngle - self.kMinServoAngle

 # Live Window code, only does anything if live window is activated.

 def getSmartDashboardType(self):
 return "Servo"

 def updateTable(self):
 table = self.getTable()
 if table is not None:
 table.putNumber("Value", self.get())

 def valueChanged(self, itable, key, value, bln):
 self.set(float(value))

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/pidcontroller.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.pidcontroller

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import threading
import warnings

import hal

from .livewindowsendable import LiveWindowSendable
from .resource import Resource
from ._impl.timertask import TimerTask
from ._impl.utils import match_arglist, HasAttribute

__all__ = ["PIDController"]

[docs]class PIDController(LiveWindowSendable):
 """Can be used to control devices via a PID Control Loop.

 Creates a separate thread which reads the given :class:`.PIDSource` and takes
 care of the integral calculations, as well as writing the given
 :class:`.PIDOutput`.
 """
 kDefaultPeriod = .05
 instances = 0

 # Tolerance is the type of tolerance used to specify if the PID controller
 # is on target. The various implementations of this such as
 # PercentageTolerance and AbsoluteTolerance specify types of tolerance
 # specifications to use.
[docs] def PercentageTolerance_onTarget(self, percentage):
 with self.mutex:
 return (abs(self.getError()) < percentage / 100
 * (self.maximumInput - self.minimumInput))

[docs] def AbsoluteTolerance_onTarget(self, value):
 with self.mutex:
 return abs(self.getError()) < value

 def __init__(self, *args, **kwargs):
 """Allocate a PID object with the given constants for P, I, D, and F

 Arguments can be structured as follows:

 - Kp, Ki, Kd, Kf, PIDSource, PIDOutput, period
 - Kp, Ki, Kd, PIDSource, PIDOutput, period
 - Kp, Ki, Kd, PIDSource, PIDOutput
 - Kp, Ki, Kd, Kf, PIDSource, PIDOutput

 :param Kp: the proportional coefficient
 :type Kp: float or int
 :param Ki: the integral coefficient
 :type Ki: float or int
 :param Kd: the derivative coefficient
 :type Kd: float or int
 :param Kf: the feed forward term
 :type Kf: float or int
 :param source: Called to get values
 :type source: A function, or an object that implements :class:`.PIDSource`
 :param output: Receives the output percentage
 :type output: A function, or an object that implements :class:`.PIDOutput`
 :param period: the loop time for doing calculations. This particularly
 effects calculations of the integral and differential terms.
 The default is 50ms.
 :type period: float or int
 """

 p_arg = ("Kp", [float, int])
 i_arg = ("Ki", [float, int])
 d_arg = ("Kd", [float, int])
 f_arg = ("kf", [float, int])
 source_arg = ("source", [HasAttribute("pidGet"), HasAttribute("__call__")])
 output_arg = ("output", [HasAttribute("pidWrite"), HasAttribute("__call__")])
 period_arg = ("period", [float, int])

 templates = [[p_arg, i_arg, d_arg, f_arg, source_arg, output_arg, period_arg],
 [p_arg, i_arg, d_arg, source_arg, output_arg, period_arg],
 [p_arg, i_arg, d_arg, source_arg, output_arg],
 [p_arg, i_arg, d_arg, f_arg, source_arg, output_arg]]

 _, results = match_arglist('PIDController.__init__',
 args, kwargs, templates)

 self.P = results.pop("Kp") # factor for "proportional" control
 self.I = results.pop("Ki") # factor for "integral" control
 self.D = results.pop("Kd") # factor for "derivative" control
 self.F = results.pop("Kf", 0.0)# factor for feedforward term
 self.pidOutput = results.pop("output")
 self.pidInput = results.pop("source")
 self.period = results.pop("period", PIDController.kDefaultPeriod)

 self.maximumOutput = 1.0 # |maximum output|
 self.minimumOutput = -1.0 # |minimum output|
 self.maximumInput = 0.0 # maximum input - limit setpoint to this
 self.minimumInput = 0.0 # minimum input - limit setpoint to this
 self.continuous = False # do the endpoints wrap around? eg. Absolute encoder
 self.enabled = False #is the pid controller enabled
 self.prevError = 0.0 # the prior sensor input (used to compute velocity)
 self.totalError = 0.0 #the sum of the errors for use in the integral calc
 self.setpoint = 0.0
 self.error = 0.0
 self.result = 0.0

 self.mutex = threading.RLock()

 self.pid_task = TimerTask('PIDTask%d' % PIDController.instances, self.period, self.calculate)
 self.pid_task.start()

 # Need this to free on unit test wpilib reset
 Resource._add_global_resource(self)

 PIDController.instances += 1
 hal.HALReport(hal.HALUsageReporting.kResourceType_PIDController,
 PIDController.instances)

[docs] def free(self):
 """Free the PID object"""
 # TODO: is this useful in Python? Should make TableListener weakref.
 with self.mutex:
 self.pid_task.cancel()
 self.pidInput = None
 self.pidOutput = None

[docs] def calculate(self):
 """Read the input, calculate the output accordingly, and write to the
 output. This should only be called by the PIDTask and is created
 during initialization."""
 with self.mutex:
 if self.pidInput is None:
 return
 if self.pidOutput is None:
 return
 enabled = self.enabled # take snapshot of these values...
 pidInput = self.pidInput

 if enabled:
 with self.mutex:
 input = pidInput()
 self.error = self.setpoint - input
 if self.continuous:
 if abs(self.error) > ((self.maximumInput - self.minimumInput) / 2.0):
 if self.error > 0:
 self.error = self.error \
 - self.maximumInput + self.minimumInput
 else:
 self.error = self.error \
 + self.maximumInput - self.minimumInput

 if self.I != 0:
 potentialIGain = (self.totalError + self.error) * self.I
 if potentialIGain < self.maximumOutput:
 if potentialIGain > self.minimumOutput:
 self.totalError += self.error
 else:
 self.totalError = self.minimumOutput / self.I
 else:
 self.totalError = self.maximumOutput / self.I

 self.result = self.P * self.error + \
 self.I * self.totalError + \
 self.D * (self.error - self.prevError) + \
 self.setpoint * self.F
 self.prevError = self.error

 if self.result > self.maximumOutput:
 self.result = self.maximumOutput
 elif self.result < self.minimumOutput:
 self.result = self.minimumOutput
 pidOutput = self.pidOutput
 result = self.result

 pidOutput(result)

[docs] def setPID(self, p, i, d, f=None):
 """Set the PID Controller gain parameters.
 Set the proportional, integral, and differential coefficients.

 :param p: Proportional coefficient
 :param i: Integral coefficient
 :param d: Differential coefficient
 :param f: Feed forward coefficient (optional)
 """
 with self.mutex:
 self.P = p
 self.I = i
 self.D = d
 if f is not None:
 self.F = f

 table = self.getTable()
 if table is not None:
 table.putNumber("p", p)
 table.putNumber("i", i)
 table.putNumber("d", d)
 if f is not None:
 table.putNumber("f", f)

[docs] def getP(self):
 """Get the Proportional coefficient.

 :returns: proportional coefficient
 """
 with self.mutex:
 return self.P

[docs] def getI(self):
 """Get the Integral coefficient

 :returns: integral coefficient
 """
 with self.mutex:
 return self.I

[docs] def getD(self):
 """Get the Differential coefficient.

 :returns: differential coefficient
 """
 with self.mutex:
 return self.D

[docs] def getF(self):
 """Get the Feed forward coefficient.

 :returns: feed forward coefficient
 """
 with self.mutex:
 return self.F

[docs] def get(self):
 """Return the current PID result.
 This is always centered on zero and constrained the the max and min
 outs.

 :returns: the latest calculated output
 """
 with self.mutex:
 return self.result

[docs] def setContinuous(self, continuous=True):
 """Set the PID controller to consider the input to be continuous.
 Rather then using the max and min in as constraints, it considers them
 to be the same point and automatically calculates the shortest route
 to the setpoint.

 :param continuous: Set to True turns on continuous, False turns off
 continuous
 """
 with self.mutex:
 self.continuous = continuous

[docs] def setInputRange(self, minimumInput, maximumInput):
 """Sets the maximum and minimum values expected from the input.

 :param minimumInput: the minimum percentage expected from the input
 :param maximumInput: the maximum percentage expected from the output
 """
 with self.mutex:
 if minimumInput > maximumInput:
 raise ValueError("Lower bound is greater than upper bound")
 self.minimumInput = minimumInput
 self.maximumInput = maximumInput
 self.setSetpoint(self.setpoint)

[docs] def setOutputRange(self, minimumOutput, maximumOutput):
 """Sets the minimum and maximum values to write.

 :param minimumOutput: the minimum percentage to write to the output
 :param maximumOutput: the maximum percentage to write to the output
 """
 with self.mutex:
 if minimumOutput > maximumOutput:
 raise ValueError("Lower bound is greater than upper bound")
 self.minimumOutput = minimumOutput
 self.maximumOutput = maximumOutput

[docs] def setSetpoint(self, setpoint):
 """Set the setpoint for the PIDController.

 :param setpoint: the desired setpoint
 """
 with self.mutex:
 if self.maximumInput > self.minimumInput:
 if setpoint > self.maximumInput:
 newsetpoint = self.maximumInput
 elif setpoint < self.minimumInput:
 newsetpoint = self.minimumInput
 else:
 newsetpoint = setpoint
 else:
 newsetpoint = setpoint
 self.setpoint = newsetpoint

 table = self.getTable()
 if table is not None:
 table.putNumber("setpoint", newsetpoint)

[docs] def getSetpoint(self):
 """Returns the current setpoint of the PIDController.

 :returns: the current setpoint
 """
 with self.mutex:
 return self.setpoint

[docs] def getError(self):
 """Returns the current difference of the input from the setpoint.

 :return: the current error
 """
 with self.mutex:
 #return self.error
 return self.getSetpoint() - self.pidInput()

[docs] def setTolerance(self, percent):
 """Set the percentage error which is considered tolerable for use with
 :func:`onTarget`. (Input of 15.0 = 15 percent)

 :param percent: error which is tolerable

 .. deprecated:: 2015.1

 Use :func:`setPercentTolerance` or :func:`setAbsoluteTolerance`
 instead.
 """
 warnings.warn("use setPercentTolerance or setAbsoluteTolerance instead",
 DeprecationWarning)
 with self.mutex:
 self.onTarget = lambda: \
 self.PercentageTolerance_onTarget(percent)

[docs] def setAbsoluteTolerance(self, absvalue):
 """Set the absolute error which is considered tolerable for use with
 :func:`onTarget`.

 :param absvalue: absolute error which is tolerable in the units of the
 input object
 """
 with self.mutex:
 self.onTarget = lambda: \
 self.AbsoluteTolerance_onTarget(absvalue)

[docs] def setPercentTolerance(self, percentage):
 """Set the percentage error which is considered tolerable for use with
 :func:`onTarget`. (Input of 15.0 = 15 percent)

 :param percentage: percent error which is tolerable
 """
 with self.mutex:
 self.onTarget = lambda: \
 self.PercentageTolerance_onTarget(percentage)

[docs] def onTarget(self):
 """Return True if the error is within the percentage of the total input
 range, determined by setTolerance. This assumes that the maximum and
 minimum input were set using :func:`setInput`.

 :returns: True if the error is less than the tolerance
 """
 raise ValueError("No tolerance value set when using PIDController.onTarget()")

[docs] def enable(self):
 """Begin running the PIDController."""
 with self.mutex:
 self.enabled = True

 table = self.getTable()
 if table is not None:
 table.putBoolean("enabled", True)

[docs] def disable(self):
 """Stop running the PIDController, this sets the output to zero before
 stopping."""
 with self.mutex:
 self.pidOutput(0)
 self.enabled = False

 table = self.getTable()
 if table is not None:
 table.putBoolean("enabled", False)

[docs] def isEnable(self):
 """Return True if PIDController is enabled."""
 with self.mutex:
 return self.enabled

[docs] def reset(self):
 """Reset the previous error, the integral term, and disable the
 controller."""
 with self.mutex:
 self.disable()
 self.prevError = 0
 self.totalError = 0
 self.result = 0

 def getSmartDashboardType(self):
 return "PIDController"

 def valueChanged(self, table, key, value, isNew):
 if key == "p" or key == "i" or key == "d" or key == "f":
 Kp = table.getNumber("p", 0.0)
 Ki = table.getNumber("i", 0.0)
 Kd = table.getNumber("d", 0.0)
 Kf = table.getNumber("f", 0.0)
 if (self.getP() != Kp or self.getI() != Ki or self.getD() != Kd or
 self.getF() != Kf):
 self.setPID(Kp, Ki, Kd, Kf)
 elif key == "setpoint":
 if self.getSetpoint() != float(value):
 self.setSetpoint(float(value))
 elif key == "enabled":
 if self.isEnable() != bool(value):
 if bool(value):
 self.enable()
 else:
 self.disable()

 def initTable(self, table):
 oldtable = self.getTable()
 if oldtable is not None:
 oldtable.removeTableListener(self.valueChanged)
 self.table = table
 if table is not None:
 table.putNumber("p", self.getP())
 table.putNumber("i", self.getI())
 table.putNumber("d", self.getD())
 table.putNumber("f", self.getF())
 table.putNumber("setpoint", self.getSetpoint())
 table.putBoolean("enabled", self.isEnable())
 table.addTableListener(self.valueChanged, False)

 def startLiveWindowMode(self):
 self.disable()

 def stopLiveWindowMode(self):
 pass

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/victorsp.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.victorsp

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal

from .livewindow import LiveWindow
from .safepwm import SafePWM

__all__ = ["VictorSP"]

[docs]class VictorSP(SafePWM):
 """
 VEX Robotics Victor SP Speed Controller via PWM

 .. not_implemented: initVictorSP
 """

 def __init__(self, channel):
 """Constructor.

 :param channel: The PWM channel that the VictorSP is attached to. 0-9 are on-board, 10-19 are on the MXP port.
 :type channel: int

 .. note ::

 The Talon uses the following bounds for PWM values. These values
 should work reasonably well for most controllers, but if users
 experience issues such as asymmetric behavior around the deadband
 or inability to saturate the controller in either direction,
 calibration is recommended. The calibration procedure can be
 found in the VictorSP User Manual.

 - 2.004ms = full "forward"
 - 1.520ms = the "high end" of the deadband range
 - 1.500ms = center of the deadband range (off)
 - 1.480ms = the "low end" of the deadband range
 - 0.997ms = full "reverse"
 """
 super().__init__(channel)
 self.setBounds(2.004, 1.52, 1.50, 1.48, .997)
 self.setPeriodMultiplier(self.PeriodMultiplier.k1X)
 self.setRaw(self.centerPwm)
 self.setZeroLatch()

 LiveWindow.addActuatorChannel("VictorSP", self.getChannel(), self)
 hal.HALReport(hal.HALUsageReporting.kResourceType_VictorSP,
 self.getChannel())

[docs] def set(self, speed, syncGroup=0):
 """Set the PWM value.

 The PWM value is set using a range of -1.0 to 1.0, appropriately
 scaling the value for the FPGA.

 :param speed: The speed to set. Value should be between -1.0 and 1.0.
 :type speed: float
 :param syncGroup: The update group to add this set() to, pending
 updateSyncGroup(). If 0, update immediately.
 """
 self.setSpeed(speed)
 self.feed()

[docs] def get(self):
 """Get the recently set value of the PWM.

 :returns: The most recently set value for the PWM between -1.0 and 1.0.
 :rtype: float
 """
 return self.getSpeed()

[docs] def pidWrite(self, output):
 """Write out the PID value as seen in the PIDOutput base object.

 :param output: Write out the PWM value as was found in the
 :class:`PIDController`.
 :type output: float
 """
 self.set(output)

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/timer.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.timer

Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.

import threading

import hal

__all__ = ["Timer"]

[docs]class Timer:
 """
 Provides time-related functionality for the robot

 .. note:: Prefer to use this module for time functions, instead of
 the :mod:`time` module in the standard library. This will
 make it easier for your code to work properly in simulation.
 """

 @staticmethod
[docs] def getFPGATimestamp():
 """Return the system clock time in seconds. Return the time from the
 FPGA hardware clock in seconds since the FPGA started.

 :returns: Robot running time in seconds.
 :rtype: float
 """
 return hal.getFPGATime() / 1000000.0

 @staticmethod
[docs] def getMatchTime():
 """Return the approximate match time.
 The FMS does not currently send the official match time to the robots.
 This returns the time since the enable signal sent from the Driver
 Station.
 At the beginning of autonomous, the time is reset to 0.0 seconds.
 At the beginning of teleop, the time is reset to +15.0 seconds.
 If the robot is disabled, this returns 0.0 seconds.

 .. warning::

 This is not an official time (so it cannot be used to argue with
 referees).

 :returns: Match time in seconds since the beginning of autonomous
 :rtype: float
 """
 from .driverstation import DriverStation
 return DriverStation.getInstance().getMatchTime()

 @staticmethod
[docs] def delay(seconds):
 """Pause the thread for a specified time. Pause the execution of the
 thread for a specified period of time given in seconds. Motors will
 continue to run at their last assigned values, and sensors will
 continue to update. Only the thread containing the wait will pause
 until the wait time is expired.

 :param seconds: Length of time to pause
 :type seconds: float

 .. warning:: If you're tempted to use this function for autonomous
 mode to time transitions between actions, don't do it!

 Delaying the main robot thread for more than a few
 milliseconds is generally discouraged, and will cause
 problems and possibly leave the robot unresponsive.

 """
 hal.delaySeconds(float(seconds))

 def __init__(self):
 self.mutex = threading.RLock()
 self.startTime = self.getMsClock()
 self.accumulatedTime = 0.0
 self.running = False

[docs] def getMsClock(self):
 """
 :returns: the system clock time in milliseconds.
 :rtype: int
 """
 return hal.getFPGATime() / 1000

[docs] def get(self):
 """Get the current time from the timer. If the clock is running it is
 derived from the current system clock the start time stored in the
 timer class. If the clock is not running, then return the time when
 it was last stopped.

 :returns: Current time value for this timer in seconds
 :rtype: float
 """
 with self.mutex:
 if self.running:
 return ((self.getMsClock() - self.startTime) + self.accumulatedTime) / 1000.0
 else:
 return self.accumulatedTime

[docs] def reset(self):
 """Reset the timer by setting the time to 0.
 Make the timer startTime the current time so new requests will be
 relative now.
 """
 with self.mutex:
 self.accumulatedTime = 0.0
 self.startTime = self.getMsClock()

[docs] def start(self):
 """Start the timer running.
 Just set the running flag to true indicating that all time requests
 should be relative to the system clock.
 """
 with self.mutex:
 self.startTime = self.getMsClock()
 self.running = True

[docs] def stop(self):
 """Stop the timer.
 This computes the time as of now and clears the running flag, causing
 all subsequent time requests to be read from the accumulated time
 rather than looking at the system clock.
 """
 with self.mutex:
 temp = self.get()
 self.accumulatedTime = temp
 self.running = False

[docs] def hasPeriodPassed(self, period):
 """Check if the period specified has passed and if it has, advance the start
 time by that period. This is useful to decide if it's time to do periodic
 work without drifting later by the time it took to get around to checking.

 :param period: The period to check for (in seconds).
 :returns: If the period has passed.
 :rtype: bool
 """

 with self.mutex:
 if self.get() > period:
 # Advance the start time by the period
 # Don't set it to the current time... we want to avoid drift
 self.startTime += (period * 1000)
 return True

 return False

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/counter.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.counter

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal
import warnings
import weakref

from .interfaces.counterbase import CounterBase
from .interfaces.pidsource import PIDSource
from .analogtriggeroutput import AnalogTriggerOutput
from .digitalinput import DigitalInput
from .livewindow import LiveWindow
from .sensorbase import SensorBase
from ._impl.utils import match_arglist, HasAttribute

__all__ = ["Counter"]

def _freeCounter(counter):
 hal.setCounterUpdateWhenEmpty(counter, True)
 hal.clearCounterUpSource(counter)
 hal.clearCounterDownSource(counter)
 hal.freeCounter(counter)

[docs]class Counter(SensorBase):
 """Counts the number of ticks on a :class:`.DigitalInput` channel.

 This is a general purpose class for counting repetitive events. It can return
 the number of counts, the period of the most recent cycle, and detect when
 the signal being counted has stopped by supplying a maximum cycle time.

 All counters will immediately start counting - :meth:`reset` them if you need
 them to be zeroed before use.

 .. not_implemented: initCounter
 """

[docs] class Mode:
 """Mode determines how and what the counter counts"""

 #: two pulse mode
 kTwoPulse = 0

 #: semi period mode
 kSemiperiod = 1

 #: pulse length mode
 kPulseLength = 2

 #: external direction mode
 kExternalDirection = 3

 EncodingType = CounterBase.EncodingType
 PIDSourceParameter = PIDSource.PIDSourceParameter
 allocatedUpSource = False
 allocatedDownSource = False

 def __init__(self, *args, **kwargs):
 """Counter constructor.

 The counter will start counting immediately.

 Positional arguments may be either channel numbers, :class:`.DigitalSource`
 sources, or :class:`.AnalogTrigger` sources in the following order:

 A "source" is any valid single-argument input to :meth:`setUpSource` and :meth:`setDownSource`

 - (none)
 - upSource
 - upSource, down source
 And, to keep consistency with Java wpilib.
 - encodingType, up source, down source, inverted

 If the passed object has a
 `getChannelForRouting` function, it is assumed to be a DigitalSource.
 If the passed object has a `createOutput` function, it is assumed to
 be an AnalogTrigger.

 In addition, extra keyword parameters may be provided for mode, inverted,
 and encodingType.

 :param upSource: The source (channel num, DigitalInput, or AnalogTrigger)
 that should be used for up counting.
 :param downSource: The source (channel num, DigitalInput, or AnalogTrigger)
 that should be used for down counting or direction control.
 :param mode:
 How and what the counter counts (see :class:`.Mode`). Defaults to
 `Mode.kTwoPulse` for zero or one source, and
 `Mode.kExternalDirection` for two sources.
 :param inverted:
 Flips the direction of counting. Defaults to False if unspecified.
 Only used when two sources are specified.
 :param encodingType:
 Either k1X or k2X to indicate 1X or 2X decoding. 4X decoding
 is not supported by Counter; use `Encoder` instead. Defaults
 to k1X if unspecified. Only used when two sources are specified.
 """

 source_identifier = [int, HasAttribute("getChannelForRouting"), HasAttribute("createOutput")]

 argument_templates = [[],
 [("upSource", source_identifier),],
 [("upSource", source_identifier), ("downSource", source_identifier)],
 [("encodingType", None), ("upSource", source_identifier),
 ("downSource", source_identifier), ("inverted", bool)],]

 _, results = match_arglist('Counter.__init__',
 args, kwargs, argument_templates, allow_extra_kwargs=True)

 # extract arguments
 upSource = results.pop("upSource", None)
 downSource = results.pop("downSource", None)

 encodingType = results.pop("encodingType", None)
 inverted = results.pop("inverted", False)
 mode = results.pop("mode", None)

 if mode is None:
 #Get the mode
 if upSource is not None and downSource is not None:
 mode = self.Mode.kExternalDirection
 else:
 mode = self.Mode.kTwoPulse

 # save some variables
 self.distancePerPulse = 1.0 # distance of travel for each tick
 self.pidSource = PIDSource.PIDSourceParameter.kDistance

 # create counter
 self._counter, self.index = hal.initializeCounter(mode)
 self._counter_finalizer = \
 weakref.finalize(self, _freeCounter, self._counter)

 self.setMaxPeriod(.5)

 hal.HALReport(hal.HALUsageReporting.kResourceType_Counter, self.index,
 mode)

 #Set sources
 if upSource is not None:
 self.setUpSource(upSource)

 if downSource is not None:
 self.setDownSource(downSource)

 # when given two sources, set edges
 if upSource is not None and downSource is not None:
 if encodingType == self.EncodingType.k1X:
 self.setUpSourceEdge(True, False)
 hal.setCounterAverageSize(self._counter, 1)
 else:
 self.setUpSourceEdge(True, True)
 hal.setCounterAverageSize(self._counter, 2)
 self.setDownSourceEdge(inverted, True)

 @property
[docs] def counter(self):
 if not self._counter_finalizer.alive:
 return None
 return self._counter

[docs] def free(self):
 self.setUpdateWhenEmpty(True)
 self.clearUpSource()

 self.clearDownSource()
 self._counter_finalizer()

[docs] def getFPGAIndex(self):
 """
 :returns: The Counter's FPGA index.
 """
 return self.index

[docs] def setUpSource(self, *args, **kwargs):
 """Set the up counting source for the counter.

 This function accepts either a digital channel index, a
 `DigitalSource`, or an `AnalogTrigger` as positional arguments:

 - source
 - channel
 - analogTrigger
 - analogTrigger, triggerType

 For positional arguments, if the passed object has a
 `getChannelForRouting` function, it is assumed to be a DigitalSource.
 If the passed object has a `createOutput` function, it is assumed to
 be an AnalogTrigger.

 Alternatively, sources and/or channels may be passed as keyword
 arguments. The behavior of specifying both a source and a number
 for the same channel is undefined, as is passing both a positional
 and a keyword argument for the same channel.

 :param channel: the DIO channel to use as the up source. 0-9 are on-board, 10-25 are on the MXP
 :type channel: int
 :param source: The digital source to count
 :type source: DigitalInput
 :param analogTrigger:
 The analog trigger object that is used for the Up Source
 :type analogTrigger: AnalogTrigger
 :param triggerType:
 The analog trigger output that will trigger the counter.
 Defaults to kState if not specified.
 :type triggerType: AnalogTriggerType
 """

 #TODO Both this and the java implementation should probably not allow setting a source if one is already set.

 if self.counter is None:
 raise ValueError("operation on freed port")

 argument_templates = [[("channel", int)],
 [("source", HasAttribute("getChannelForRouting")),],
 [("analogTrigger", HasAttribute("createOutput"))],
 [("analogTrigger", HasAttribute("createOutput")), ("triggerType", None)]]

 _, results = match_arglist('Counter.setUpSource',
 args, kwargs, argument_templates)

 # extract arguments
 source = results.pop("source", None)
 channel = results.pop("channel", None)
 analogTrigger = results.pop("analogTrigger", None)
 triggerType = results.pop("triggerType", AnalogTriggerOutput.AnalogTriggerType.kState)

 # If we don't have source, generate it from other arguments.
 if source is None:
 if channel is not None:
 source = DigitalInput(channel)
 self.allocatedUpSource = True
 elif analogTrigger is not None and triggerType is not None:
 source = analogTrigger.createOutput(triggerType)
 else:
 raise ValueError("No usable source.")

 # save and set
 self.upSource = source
 hal.setCounterUpSource(self.counter,
 self.upSource.getChannelForRouting(),
 self.upSource.getAnalogTriggerForRouting())

[docs] def setUpSourceEdge(self, risingEdge, fallingEdge):
 """Set the edge sensitivity on an up counting source. Set the up
 source to either detect rising edges or falling edges.

 :param risingEdge: True to count rising edge
 :type risingEdge: bool
 :param fallingEdge: True to count falling edge
 :type fallingEdge: bool
 """
 if self.upSource is None:
 raise ValueError("Up Source must be set before setting the edge")
 if self.counter is None:
 raise ValueError("operation on freed port")
 hal.setCounterUpSourceEdge(self.counter, risingEdge, fallingEdge)

[docs] def clearUpSource(self):
 """Disable the up counting source to the counter."""
 if self.upSource is not None and self.allocatedUpSource:
 self.upSource.free()
 self.allocatedUpSource = False
 self.upSource = None

 if self.counter is None:
 return
 hal.clearCounterUpSource(self.counter)

[docs] def setDownSource(self, *args, **kwargs):
 """Set the down counting source for the counter.

 This function accepts either a digital channel index, a
 `DigitalSource`, or an `AnalogTrigger` as positional arguments:

 - source
 - channel
 - analogTrigger
 - analogTrigger, triggerType

 For positional arguments, if the passed object has a
 `getChannelForRouting` function, it is assumed to be a DigitalSource.
 If the passed object has a `createOutput` function, it is assumed to
 be an AnalogTrigger.

 Alternatively, sources and/or channels may be passed as keyword
 arguments. The behavior of specifying both a source and a number
 for the same channel is undefined, as is passing both a positional
 and a keyword argument for the same channel.

 :param channel: the DIO channel to use as the down source. 0-9 are on-board, 10-25 are on the MXP
 :type channel: int
 :param source: The digital source to count
 :type source: DigitalInput
 :param analogTrigger:
 The analog trigger object that is used for the Up Source
 :type analogTrigger: AnalogTrigger
 :param triggerType:
 The analog trigger output that will trigger the counter.
 Defaults to kState if not specified.
 :type triggerType: AnalogTriggerType
 """

 #TODO Both this and the java implementation should probably not allow setting a source if one is already set.

 if self.counter is None:
 raise ValueError("operation on freed port")

 argument_templates = [[("channel", int)],
 [("source", HasAttribute("getChannelForRouting")),],
 [("analogTrigger", HasAttribute("createOutput")),],
 [("analogTrigger", HasAttribute("createOutput")), ("triggerType", None)]]

 _, results = match_arglist('Counter.setUpSource',
 args, kwargs, argument_templates)

 # extract arguments
 source = results.pop("source", None)
 channel = results.pop("channel", None)
 analogTrigger = results.pop("analogTrigger", None)
 triggerType = results.pop("triggerType", AnalogTriggerOutput.AnalogTriggerType.kState)

 # If we don't have source, generate it from other arguments.
 if source is None:
 if channel is not None:
 source = DigitalInput(channel)
 self.allocatedDownSource = True
 elif analogTrigger is not None and triggerType is not None:
 source = analogTrigger.createOutput(triggerType)
 else:
 raise ValueError("No usable source.")

 # save and set
 self.downSource = source
 hal.setCounterDownSource(self.counter,
 self.downSource.getChannelForRouting(),
 self.downSource.getAnalogTriggerForRouting())

[docs] def setDownSourceEdge(self, risingEdge, fallingEdge):
 """Set the edge sensitivity on an down counting source. Set the down
 source to either detect rising edges or falling edges.

 :param risingEdge: True to count rising edge
 :type risingEdge: bool
 :param fallingEdge: True to count falling edge
 :type fallingEdge: bool
 """
 if self.downSource is None:
 raise ValueError("Down Source must be set before setting the edge")
 if self.counter is None:
 raise ValueError("operation on freed port")
 hal.setCounterDownSourceEdge(self.counter, risingEdge, fallingEdge)

[docs] def clearDownSource(self):
 """Disable the down counting source to the counter.
 """
 if self.downSource is not None and self.allocatedDownSource:
 self.downSource.free()
 self.allocatedDownSource = False
 self.downSource = None

 if self.counter is None:
 return
 hal.clearCounterDownSource(self.counter)

[docs] def setUpDownCounterMode(self):
 """Set standard up / down counting mode on this counter. Up and down
 counts are sourced independently from two inputs.
 """
 if self.counter is None:
 raise ValueError("operation on freed port")
 hal.setCounterUpDownMode(self.counter)

[docs] def setExternalDirectionMode(self):
 """Set external direction mode on this counter. Counts are sourced on
 the Up counter input. The Down counter input represents the direction
 to count.
 """
 if self.counter is None:
 raise ValueError("operation on freed port")
 hal.setCounterExternalDirectionMode(self.counter)

[docs] def setSemiPeriodMode(self, highSemiPeriod):
 """Set Semi-period mode on this counter. Counts up on both rising and
 falling edges.

 :param highSemiPeriod: True to count up on both rising and falling
 :type highSemiPeriod: bool
 """
 if self.counter is None:
 raise ValueError("operation on freed port")
 hal.setCounterSemiPeriodMode(self.counter, highSemiPeriod)

[docs] def setPulseLengthMode(self, threshold):
 """Configure the counter to count in up or down based on the length
 of the input pulse. This mode is most useful for direction sensitive
 gear tooth sensors.

 :param threshold: The pulse length beyond which the counter counts the
 opposite direction. Units are seconds.
 :type threshold: float, int
 """
 if self.counter is None:
 raise ValueError("operation on freed port")
 hal.setCounterPulseLengthMode(self.counter, float(threshold))

[docs] def get(self):
 """Read the current counter value. Read the value at this instant. It
 may still be running, so it reflects the current value. Next time it
 is read, it might have a different value.
 """
 if self.counter is None:
 raise ValueError("operation on freed port")
 return hal.getCounter(self.counter)

[docs] def getDistance(self):
 """Read the current scaled counter value. Read the value at this
 instant, scaled by the distance per pulse (defaults to 1).

 :returns: Scaled value
 :rtype: float
 """
 return self.get() * self.distancePerPulse

[docs] def reset(self):
 """Reset the Counter to zero. Set the counter value to zero. This
 doesn't effect the running state of the counter, just sets the
 current value to zero.
 """
 if self.counter is None:
 raise ValueError("operation on freed port")
 hal.resetCounter(self.counter)

[docs] def setMaxPeriod(self, maxPeriod):
 """Set the maximum period where the device is still considered
 "moving". Sets the maximum period where the device is considered
 moving. This value is used to determine the "stopped" state of the
 counter using the :func:`getStopped` method.

 :param maxPeriod: The maximum period where the counted device is
 considered moving in seconds.
 :type maxPeriod: float or int
 """
 if self.counter is None:
 raise ValueError("operation on freed port")
 hal.setCounterMaxPeriod(self.counter, float(maxPeriod))

[docs] def setUpdateWhenEmpty(self, enabled):
 """Select whether you want to continue updating the event timer
 output when there are no samples captured. The output of the event
 timer has a buffer of periods that are averaged and posted to a
 register on the FPGA. When the timer detects that the event source
 has stopped (based on the MaxPeriod) the buffer of samples to be
 averaged is emptied. If you enable update when empty, you will be
 notified of the stopped source and the event time will report 0
 samples. If you disable update when empty, the most recent average
 will remain on the output until a new sample is acquired. You will
 never see 0 samples output (except when there have been no events
 since an FPGA reset) and you will likely not see the stopped bit
 become true (since it is updated at the end of an average and
 there are no samples to average).

 :param enabled: True to continue updating
 :type enabled: bool
 """
 if self.counter is None:
 raise ValueError("operation on freed port")
 hal.setCounterUpdateWhenEmpty(self.counter, enabled)

[docs] def getStopped(self):
 """Determine if the clock is stopped. Determine if the clocked input
 is stopped based on the MaxPeriod value set using the
 :func:`setMaxPeriod` method. If the clock exceeds the MaxPeriod,
 then the device (and counter) are assumed to be stopped and it
 returns True.

 :returns: Returns True if the most recent counter period exceeds the
 MaxPeriod value set by SetMaxPeriod.
 :rtype: bool
 """
 if self.counter is None:
 raise ValueError("operation on freed port")
 return hal.getCounterStopped(self.counter)

[docs] def getDirection(self):
 """The last direction the counter value changed.

 :returns: The last direction the counter value changed.
 :rtype: bool
 """
 if self.counter is None:
 raise ValueError("operation on freed port")
 return hal.getCounterDirection(self.counter)

[docs] def setReverseDirection(self, reverseDirection):
 """Set the Counter to return reversed sensing on the direction. This
 allows counters to change the direction they are counting in the case
 of 1X and 2X quadrature encoding only. Any other counter mode isn't
 supported.

 :param reverseDirection: True if the value counted should be negated.
 :type reverseDirection: bool
 """
 if self.counter is None:
 raise ValueError("operation on freed port")
 hal.setCounterReverseDirection(self.counter, reverseDirection)

[docs] def getPeriod(self):
 """Get the Period of the most recent count. Returns the time interval
 of the most recent count. This can be used for velocity calculations
 to determine shaft speed.

 :returns: The period of the last two pulses in units of seconds.
 :rtype: float
 """
 if self.counter is None:
 raise ValueError("operation on freed port")
 return hal.getCounterPeriod(self.counter)

[docs] def getRate(self):
 """Get the current rate of the Counter. Read the current rate of the
 counter accounting for the distance per pulse value. The default
 value for distance per pulse (1) yields units of pulses per second.

 :returns: The rate in units/sec
 :rtype: float
 """
 return self.distancePerPulse / self.getPeriod()

[docs] def setSamplesToAverage(self, samplesToAverage):
 """Set the Samples to Average which specifies the number of samples
 of the timer to average when calculating the period. Perform averaging
 to account for mechanical imperfections or as oversampling to increase
 resolution.

 :param samplesToAverage: The number of samples to average from 1 to 127.
 :type samplesToAverage: int
 """
 if self.counter is None:
 raise ValueError("operation on freed port")
 hal.setCounterSamplesToAverage(self.counter, samplesToAverage)

[docs] def getSamplesToAverage(self):
 """Get the Samples to Average which specifies the number of samples
 of the timer to average when calculating the period. Perform averaging
 to account for mechanical imperfections or as oversampling to increase
 resolution.

 :returns: The number of samples being averaged (from 1 to 127)
 :rtype: int
 """
 if self.counter is None:
 raise ValueError("operation on freed port")
 return hal.getCounterSamplesToAverage(self.counter)

[docs] def setDistancePerPulse(self, distancePerPulse):
 """Set the distance per pulse for this counter. This sets the
 multiplier used to determine the distance driven based on the count
 value from the encoder. Set this value based on the Pulses per
 Revolution and factor in any gearing reductions. This distance can be
 in any units you like, linear or angular.

 :param distancePerPulse:
 The scale factor that will be used to convert pulses to useful
 units.
 :type distancePerPulse: float
 """
 self.distancePerPulse = distancePerPulse

[docs] def setPIDSourceParameter(self, pidSource):
 """Set which parameter of the encoder you are using as a process
 control variable. The counter class supports the rate and distance
 parameters.

 :param pidSource: An enum to select the parameter.
 :type pidSource: :class:`Counter.PIDSourceParameter`
 """
 if pidSource not in (self.PIDSourceParameter.kDistance,
 self.PIDSourceParameter.kRate):
 raise ValueError("Invalid pidSource argument '%s'" % pidSource)
 self.pidSource = pidSource

[docs] def pidGet(self):
 if self.pidSource == self.PIDSourceParameter.kDistance:
 return self.getDistance()
 elif self.pidSource == self.PIDSourceParameter.kRate:
 return self.getRate()
 else:
 return 0.0

 # Live Window code, only does anything if live window is activated.

 def getSmartDashboardType(self):
 return "Counter"

 def updateTable(self):
 table = self.getTable()
 if table is not None:
 table.putNumber("Value", self.get())

 def startLiveWindowMode(self):
 pass

 def stopLiveWindowMode(self):
 pass

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/analogtrigger.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.analogtrigger

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal
import weakref

from .analogtriggeroutput import AnalogTriggerOutput
from .resource import Resource

__all__ = ["AnalogTrigger"]

def _freeAnalogTrigger(port):
 hal.cleanAnalogTrigger(port)

[docs]class AnalogTrigger:
 """
 Converts an analog signal into a digital signal

 An analog trigger is a way to convert an analog signal into a digital
 signal using resources built into the FPGA. The resulting digital
 signal can then be used directly or fed into other digital components
 of the FPGA such as the counter or encoder modules. The analog trigger
 module works by comparing analog signals to a voltage range set by
 the code. The specific return types and meanings depend on the analog
 trigger mode in use.

 .. not_implemented: initTrigger
 """

 AnalogTriggerType = AnalogTriggerOutput.AnalogTriggerType

 def __init__(self, channel):
 """Constructor for an analog trigger given a channel number or analog
 input.

 :param channel: the port index or :class:`.AnalogInput` to use for the analog
 trigger. Treated as an AnalogInput if the provided object has a
 getChannel function.
 """
 if hasattr(channel, "getChannel"):
 channel = channel.getChannel()

 port = hal.getPort(channel)
 self._port, self.index = hal.initializeAnalogTrigger(port)
 self._analogtrigger_finalizer = \
 weakref.finalize(self, _freeAnalogTrigger, self._port)

 # Need this to free on unit test wpilib reset
 Resource._add_global_resource(self)

 hal.HALReport(hal.HALUsageReporting.kResourceType_AnalogTrigger,
 channel)

 @property
[docs] def port(self):
 if not self._analogtrigger_finalizer.alive:
 return None
 return self._port

[docs] def free(self):
 """Release the resources used by this object"""
 self._analogtrigger_finalizer()

[docs] def setLimitsRaw(self, lower, upper):
 """Set the upper and lower limits of the analog trigger. The limits are
 given in ADC codes. If oversampling is used, the units must be scaled
 appropriately.

 :param lower: the lower raw limit
 :param upper: the upper raw limit
 """
 if lower > upper:
 raise ValueError("Lower bound is greater than upper")
 if self.port is None:
 raise ValueError("operation on freed port")
 hal.setAnalogTriggerLimitsRaw(self.port, lower, upper)

[docs] def setLimitsVoltage(self, lower, upper):
 """Set the upper and lower limits of the analog trigger. The limits are
 given as floating point voltage values.

 :param lower: the lower voltage limit
 :param upper: the upper voltage limit
 """
 if lower > upper:
 raise ValueError("Lower bound is greater than upper")
 if self.port is None:
 raise ValueError("operation on freed port")
 hal.setAnalogTriggerLimitsVoltage(self.port, float(lower), float(upper))

[docs] def setAveraged(self, useAveragedValue):
 """Configure the analog trigger to use the averaged vs. raw values. If
 the value is true, then the averaged value is selected for the analog
 trigger, otherwise the immediate value is used.

 :param useAveragedValue: True to use an averaged value, False otherwise
 """
 if self.port is None:
 raise ValueError("operation on freed port")
 hal.setAnalogTriggerAveraged(self.port, useAveragedValue)

[docs] def setFiltered(self, useFilteredValue):
 """Configure the analog trigger to use a filtered value. The analog
 trigger will operate with a 3 point average rejection filter. This is
 designed to help with 360 degree pot applications for the period where
 the pot crosses through zero.

 :param useFilteredValue: True to use a filterd value, False otherwise
 """
 if self.port is None:
 raise ValueError("operation on freed port")
 hal.setAnalogTriggerFiltered(self.port, useFilteredValue)

[docs] def getIndex(self):
 """Return the index of the analog trigger. This is the FPGA index of
 this analog trigger instance.

 :returns: The index of the analog trigger.
 """
 if self.port is None:
 raise ValueError("operation on freed port")
 return self.index

[docs] def getInWindow(self):
 """Return the InWindow output of the analog trigger. True if the
 analog input is between the upper and lower limits.

 :returns: The InWindow output of the analog trigger.
 """
 if self.port is None:
 raise ValueError("operation on freed port")
 return hal.getAnalogTriggerInWindow(self.port)

[docs] def getTriggerState(self):
 """Return the TriggerState output of the analog trigger. True if above
 upper limit. False if below lower limit. If in Hysteresis, maintain
 previous state.

 :returns: The TriggerState output of the analog trigger.
 """
 if self.port is None:
 raise ValueError("operation on freed port")
 return hal.getAnalogTriggerTriggerState(self.port)

[docs] def createOutput(self, type):
 """Creates an :class:`.AnalogTriggerOutput` object. Gets an output object that
 can be used for routing. Caller is responsible for deleting the
 AnalogTriggerOutput object.

 :param type: An enum of the type of output object to create.
 :returns: An AnalogTriggerOutput object.
 """
 if self.port is None:
 raise ValueError("operation on freed port")
 return AnalogTriggerOutput(self, type)

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/spi.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.spi

import hal
import weakref

__all__ = ["SPI"]

def _freeSPI(port):
 hal.spiClose(port)

[docs]class SPI:
 """Represents a SPI bus port"""

[docs] class Port:
 kOnboardCS0 = 0
 kOnboardCS1 = 1
 kOnboardCS2 = 2
 kOnboardCS3 = 3
 kMXP = 4

 devices = 0

 @staticmethod
 def _reset():
 SPI.devices = 0

 def __init__(self, port):
 """Constructor

 :param port: the physical SPI port
 """
 self.port = port
 self.bitOrder = 0
 self.clockPolarity = 0
 self.dataOnTrailing = 0

 hal.spiInitialize(self.port)
 self._spi_finalizer = weakref.finalize(self, _freeSPI, self.port)

 SPI.devices += 1
 hal.HALReport(hal.HALUsageReporting.kResourceType_SPI, SPI.devices)

[docs] def setClockRate(self, hz):
 """Configure the rate of the generated clock signal.
 The default value is 500,000 Hz.
 The maximum value is 4,000,000 Hz.

 :param hz: The clock rate in Hertz.
 """
 hal.spiSetSpeed(self.port, hz)

[docs] def setMSBFirst(self):
 """Configure the order that bits are sent and received on the wire
 to be most significant bit first.
 """
 self.bitOrder = 1
 hal.spiSetOpts(self.port, self.bitOrder, self.dataOnTrailing,
 self.clockPolarity)

[docs] def setLSBFirst(self):
 """Configure the order that bits are sent and received on the wire
 to be least significant bit first.
 """
 self.bitOrder = 0
 hal.spiSetOpts(self.port, self.bitOrder, self.dataOnTrailing,
 self.clockPolarity)

[docs] def setClockActiveLow(self):
 """Configure the clock output line to be active low.
 This is sometimes called clock polarity high or clock idle high.
 """
 self.clockPolarity = 1
 hal.spiSetOpts(self.port, self.bitOrder, self.dataOnTrailing,
 self.clockPolarity)

[docs] def setClockActiveHigh(self):
 """Configure the clock output line to be active high.
 This is sometimes called clock polarity low or clock idle low.
 """
 self.clockPolarity = 0
 hal.spiSetOpts(self.port, self.bitOrder, self.dataOnTrailing,
 self.clockPolarity)

[docs] def setSampleDataOnFalling(self):
 """Configure that the data is stable on the falling edge and the data
 changes on the rising edge.
 """
 self.dataOnTrailing = 1
 hal.spiSetOpts(self.port, self.bitOrder, self.dataOnTrailing,
 self.clockPolarity)

[docs] def setSampleDataOnRising(self):
 """Configure that the data is stable on the rising edge and the data
 changes on the falling edge.
 """
 self.dataOnTrailing = 0
 hal.spiSetOpts(self.port, self.bitOrder, self.dataOnTrailing,
 self.clockPolarity)

[docs] def setChipSelectActiveHigh(self):
 """Configure the chip select line to be active high.
 """
 hal.spiSetChipSelectActiveHigh(self.port)

[docs] def setChipSelectActiveLow(self):
 """Configure the chip select line to be active low.
 """
 hal.spiSetChipSelectActiveLow(self.port)

[docs] def write(self, dataToSend):
 """Write data to the slave device. Blocks until there is space in the
 output FIFO.

 If not running in output only mode, also saves the data received
 on the MISO input during the transfer into the receive FIFO.

 :param dataToSend: Data to send (bytes)
 """
 hal.spiWrite(self.port, dataToSend)

[docs] def read(self, initiate, size):
 """Read a word from the receive FIFO.

 Waits for the current transfer to complete if the receive FIFO is
 empty.

 If the receive FIFO is empty, there is no active transfer, and
 initiate is False, errors.

 :param initiate: If True, this function pushes "0" into the
 transmit buffer and initiates a transfer. If False, this function
 assumes that data is already in the receive FIFO from a previous
 write.
 :param size: Number of bytes to read.

 :returns: received data bytes
 """
 if initiate:
 return hal.spiTransaction(self.port, [0]*size)
 else:
 return hal.spiRead(self.port, size)

[docs] def transaction(self, dataToSend):
 """Perform a simultaneous read/write transaction with the device

 :param dataToSend: The data to be written out to the device

 :returns: data received from the device
 """
 return hal.spiTransaction(self.port, dataToSend)

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/robotdrive.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.robotdrive

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal
import math
import warnings
import weakref

from .motorsafety import MotorSafety
from .talon import Talon
from .canjaguar import CANJaguar

__all__ = ["RobotDrive"]

def _freeRobotDrive(allocatedSpeedControllers):
 """
 Free the speed controllers if they were allocated locally
 """
 for sc in allocatedSpeedControllers:
 if hasattr(sc, "free"):
 sc.free()

[docs]class RobotDrive(MotorSafety):
 """Operations on a robot drivetrain based on a definition of the motor
 configuration.

 The robot drive class handles basic driving for a robot. Currently, 2
 and 4 motor tank and mecanum drive trains are supported. In the future
 other drive types like swerve might be implemented. Motor channel numbers
 are passed supplied on creation of the class. Those are used for either
 the drive function (intended for hand created drive code, such as
 autonomous) or with the Tank/Arcade functions intended to be used for
 Operator Control driving.
 """

[docs] class MotorType:
 """The location of a motor on the robot for the purpose of driving."""

 #: Front left
 kFrontLeft = 0

 #: Front right
 kFrontRight = 1

 #: Rear left
 kRearLeft = 2

 #: Rear right
 kRearRight = 3

 kDefaultExpirationTime = 0.1
 kDefaultSensitivity = 0.5
 kDefaultMaxOutput = 1.0

 kMaxNumberOfMotors = 4

 kArcadeRatioCurve_Reported = False
 kTank_Reported = False
 kArcadeStandard_Reported = False
 kMecanumCartesian_Reported = False
 kMecanumPolar_Reported = False

 def __init__(self, *args, **kwargs):
 """Constructor for RobotDrive.

 Either 2 or 4 motors can be passed to the constructor to implement
 a two or four wheel drive system, respectively.

 When positional arguments are used, these are the two accepted orders:

 - leftMotor, rightMotor
 - frontLeftMotor, rearLeftMotor, frontRightMotor, rearRightMotor

 Alternatively, the above names can be used as keyword arguments.

 Either channel numbers or motor controllers can be passed (determined
 by whether the passed object has a `set` function). If channel
 numbers are passed, the motorController keyword argument, if present,
 is the motor controller class to use; if unspecified, :class:`.Talon` is used.
 """
 super().__init__()

 # keyword arguments
 self.frontLeftMotor = kwargs.pop("frontLeftMotor", None)
 self.rearLeftMotor = kwargs.pop("rearLeftMotor", None)
 self.frontRightMotor = kwargs.pop("frontRightMotor", None)
 self.rearRightMotor = kwargs.pop("rearRightMotor", None)

 if "leftMotor" in kwargs:
 self.rearLeftMotor = kwargs.pop("leftMotor")
 if "rightMotor" in kwargs:
 self.rearRightMotor = kwargs.pop("rightMotor")

 controllerClass = kwargs.pop("motorController", None)
 if controllerClass is None:
 controllerClass = Talon

 if kwargs:
 warnings.warn("unknown keyword arguments: %s" % kwargs.keys(),
 RuntimeWarning)

 # positional arguments
 if len(args) == 2:
 self.rearLeftMotor = args[0]
 self.rearRightMotor = args[1]
 elif len(args) == 4:
 self.frontLeftMotor = args[0]
 self.rearLeftMotor = args[1]
 self.frontRightMotor = args[2]
 self.rearRightMotor = args[3]
 elif len(args) != 0:
 raise ValueError("don't know how to handle %d positional arguments" % len(args))

 self.allocatedSpeedControllers = list()

 # convert channel number into motor controller if needed
 if (self.frontLeftMotor is not None and
 not hasattr(self.frontLeftMotor, "set")):
 self.frontLeftMotor = controllerClass(self.frontLeftMotor)
 self.allocatedSpeedControllers.append(self.frontLeftMotor)
 if (self.rearLeftMotor is not None and
 not hasattr(self.rearLeftMotor, "set")):
 self.rearLeftMotor = controllerClass(self.rearLeftMotor)
 self.allocatedSpeedControllers.append(self.rearLeftMotor)
 if (self.frontRightMotor is not None and
 not hasattr(self.frontRightMotor, "set")):
 self.frontRightMotor = controllerClass(self.frontRightMotor)
 self.allocatedSpeedControllers.append(self.frontRightMotor)
 if (self.rearRightMotor is not None and
 not hasattr(self.rearRightMotor, "set")):
 self.rearRightMotor = controllerClass(self.rearRightMotor)
 self.allocatedSpeedControllers.append(self.rearRightMotor)

 # all motors start non-inverted
 self.invertedMotors = [1]*self.kMaxNumberOfMotors

 # other defaults
 self.maxOutput = RobotDrive.kDefaultMaxOutput
 self.sensitivity = RobotDrive.kDefaultSensitivity

 self.syncGroup = 0x0

 # set up motor safety
 self.setExpiration(self.kDefaultExpirationTime)
 self.setSafetyEnabled(True)

 #Setup Finalizer
 self._RobotDrive_finalizer = weakref.finalize(self, _freeRobotDrive, self.allocatedSpeedControllers)

 # start off not moving
 self.drive(0, 0)

[docs] def drive(self, outputMagnitude, curve):
 """Drive the motors at "speed" and "curve".

 The speed and curve are -1.0 to +1.0 values where 0.0 represents
 stopped and not turning. The algorithm for adding in the direction
 attempts to provide a constant turn radius for differing speeds.

 This function will most likely be used in an autonomous routine.

 :param outputMagnitude: The forward component of the output magnitude
 to send to the motors.
 :param curve: The rate of turn, constant for different forward speeds.
 """
 if not RobotDrive.kArcadeRatioCurve_Reported:
 hal.HALReport(hal.HALUsageReporting.kResourceType_RobotDrive,
 self.getNumMotors(),
 hal.HALUsageReporting.kRobotDrive_ArcadeRatioCurve)
 RobotDrive.kArcadeRatioCurve_Reported = True
 if curve < 0:
 value = math.log(-curve)
 ratio = (value - self.sensitivity) / (value + self.sensitivity)
 if ratio == 0:
 ratio = .0000000001
 leftOutput = outputMagnitude / ratio
 rightOutput = outputMagnitude
 elif curve > 0:
 value = math.log(curve)
 ratio = (value - self.sensitivity) / (value + self.sensitivity)
 if ratio == 0:
 ratio = .0000000001
 leftOutput = outputMagnitude
 rightOutput = outputMagnitude / ratio
 else:
 leftOutput = outputMagnitude
 rightOutput = outputMagnitude
 self.setLeftRightMotorOutputs(leftOutput, rightOutput)

[docs] def tankDrive(self, *args, **kwargs):
 """Provide tank steering using the stored robot configuration.

 Either two joysticks (with optional specified axis) or two raw values
 may be passed positionally, along with an optional squaredInputs
 boolean. The valid positional combinations are:

 - leftStick, rightStick
 - leftStick, rightStick, squaredInputs
 - leftStick, leftAxis, rightStick, rightAxis
 - leftStick, leftAxis, rightStick, rightAxis, squaredInputs
 - leftValue, rightValue
 - leftValue, rightValue, squaredInputs

 Alternatively, the above names can be used as keyword arguments.
 The behavior of mixes of keyword arguments in other than the
 combinations above is undefined.

 If specified positionally, the value and joystick versions are
 disambiguated by looking for a `getY` function.

 :param leftStick: The joystick to control the left side of the robot.
 :param leftAxis: The axis to select on the left side Joystick object
 (defaults to the Y axis if unspecified).
 :param rightStick: The joystick to control the right side of the robot.
 :param rightAxis: The axis to select on the right side Joystick object
 (defaults to the Y axis if unspecified).
 :param leftValue: The value to control the left side of the robot.
 :param rightValue: The value to control the right side of the robot.
 :param squaredInputs: Setting this parameter to True decreases the
 sensitivity at lower speeds. Defaults to True if unspecified.
 """
 # keyword arguments
 leftStick = kwargs.pop("leftStick", None)
 rightStick = kwargs.pop("rightStick", None)
 leftAxis = kwargs.pop("leftAxis", None)
 rightAxis = kwargs.pop("rightAxis", None)
 leftValue = kwargs.pop("leftValue", None)
 rightValue = kwargs.pop("rightValue", None)
 squaredInputs = kwargs.pop("squaredInputs", None)

 if kwargs:
 warnings.warn("unknown keyword arguments: %s" % kwargs.keys(),
 RuntimeWarning)

 # positional arguments
 if len(args) == 2 or len(args) == 3:
 left, right = args[0:2]
 if len(args) == 3:
 squaredInputs = args[2]
 # determine if stick or value
 if hasattr(left, "getY"):
 leftStick = left
 else:
 leftValue = left
 if hasattr(right, "getY"):
 rightStick = right
 else:
 rightValue = right
 elif len(args) == 4:
 leftStick, leftAxis, rightStick, rightAxis = args
 elif len(args) == 5:
 leftStick, leftAxis, rightStick, rightAxis, squaredInputs = args
 elif len(args) != 0:
 raise ValueError("don't know how to handle %d positional arguments" % len(args))

 # get value from stick if only stick provided
 if leftValue is None:
 if leftAxis is None:
 leftValue = leftStick.getY()
 else:
 leftValue = leftStick.getRawAxis(leftAxis)
 if rightValue is None:
 if rightAxis is None:
 rightValue = rightStick.getY()
 else:
 rightValue = rightStick.getRawAxis(rightAxis)

 # default to squared inputs if unspecified
 if squaredInputs is None:
 squaredInputs = True

 # usage reporting
 if not RobotDrive.kTank_Reported:
 hal.HALReport(hal.HALUsageReporting.kResourceType_RobotDrive,
 self.getNumMotors(),
 hal.HALUsageReporting.kRobotDrive_Tank)
 RobotDrive.kTank_Reported = True

 # square the inputs (while preserving the sign) to increase fine
 # control while permitting full power
 leftValue = RobotDrive.limit(leftValue)
 rightValue = RobotDrive.limit(rightValue)
 if squaredInputs:
 if leftValue >= 0.0:
 leftValue = (leftValue * leftValue)
 else:
 leftValue = -(leftValue * leftValue)
 if rightValue >= 0.0:
 rightValue = (rightValue * rightValue)
 else:
 rightValue = -(rightValue * rightValue)
 self.setLeftRightMotorOutputs(leftValue, rightValue)

[docs] def arcadeDrive(self, *args, **kwargs):
 """Provide tank steering using the stored robot configuration.

 Either one or two joysticks (with optional specified axis) or two raw
 values may be passed positionally, along with an optional
 squaredInputs boolean. The valid positional combinations are:

 - stick
 - stick, squaredInputs
 - moveStick, moveAxis, rotateStick, rotateAxis
 - moveStick, moveAxis, rotateStick, rotateAxis, squaredInputs
 - moveValue, rotateValue
 - moveValue, rotateValue, squaredInputs

 Alternatively, the above names can be used as keyword arguments.
 The behavior of mixes of keyword arguments in other than the
 combinations above is undefined.

 If specified positionally, the value and joystick versions are
 disambiguated by looking for a `getY` function on the stick.

 :param stick: The joystick to use for Arcade single-stick driving.
 The Y-axis will be selected for forwards/backwards and the
 X-axis will be selected for rotation rate.
 :param moveStick: The Joystick object that represents the
 forward/backward direction.
 :param moveAxis: The axis on the moveStick object to use for
 forwards/backwards (typically Y_AXIS).
 :param rotateStick: The Joystick object that represents the rotation
 value.
 :param rotateAxis: The axis on the rotation object to use for the
 rotate right/left (typically X_AXIS).
 :param moveValue: The value to use for forwards/backwards.
 :param rotateValue: The value to use for the rotate right/left.
 :param squaredInputs: Setting this parameter to True decreases the
 sensitivity at lower speeds. Defaults to True if unspecified.
 """
 # keyword arguments
 stick = kwargs.pop("stick", None)
 moveStick = kwargs.pop("moveStick", None)
 rotateStick = kwargs.pop("rotateStick", None)
 moveAxis = kwargs.pop("moveAxis", None)
 rotateAxis = kwargs.pop("rotateAxis", None)
 moveValue = kwargs.pop("moveValue", None)
 rotateValue = kwargs.pop("rotateValue", None)
 squaredInputs = kwargs.pop("squaredInputs", None)

 if kwargs:
 warnings.warn("unknown keyword arguments: %s" % kwargs.keys(),
 RuntimeWarning)

 # positional arguments
 if len(args) == 1:
 stick = args[0]
 elif len(args) == 2:
 # determine if stick or value
 if hasattr(args[0], "getY"):
 stick, squaredInputs = args
 else:
 moveValue, rotateValue = args
 elif len(args) == 3:
 moveValue, rotateValue, squaredInputs = args
 elif len(args) == 4:
 moveStick, moveAxis, rotateStick, rotateAxis = args
 elif len(args) == 5:
 moveStick, moveAxis, rotateStick, rotateAxis, squaredInputs = args
 elif len(args) != 0:
 raise ValueError("don't know how to handle %d positional arguments" % len(args))

 # get value from stick if only stick provided
 if moveValue is None:
 if moveStick is None:
 moveValue = stick.getY()
 else:
 moveValue = moveStick.getRawAxis(moveAxis)
 if rotateValue is None:
 if rotateStick is None:
 rotateValue = stick.getX()
 else:
 rotateValue = rotateStick.getRawAxis(rotateAxis)

 # default to squared inputs if unspecified
 if squaredInputs is None:
 squaredInputs = True

 # local variables to hold the computed PWM values for the motors
 if not RobotDrive.kArcadeStandard_Reported:
 hal.HALReport(hal.HALUsageReporting.kResourceType_RobotDrive,
 self.getNumMotors(),
 hal.HALUsageReporting.kRobotDrive_ArcadeStandard)
 RobotDrive.kArcadeStandard_Reported = True

 moveValue = RobotDrive.limit(moveValue)
 rotateValue = RobotDrive.limit(rotateValue)

 if squaredInputs:
 # square the inputs (while preserving the sign) to increase fine
 # control while permitting full power
 if moveValue >= 0.0:
 moveValue = (moveValue * moveValue)
 else:
 moveValue = -(moveValue * moveValue)
 if rotateValue >= 0.0:
 rotateValue = (rotateValue * rotateValue)
 else:
 rotateValue = -(rotateValue * rotateValue)

 if moveValue > 0.0:
 if rotateValue > 0.0:
 leftMotorSpeed = moveValue - rotateValue
 rightMotorSpeed = max(moveValue, rotateValue)
 else:
 leftMotorSpeed = max(moveValue, -rotateValue)
 rightMotorSpeed = moveValue + rotateValue
 else:
 if rotateValue > 0.0:
 leftMotorSpeed = -max(-moveValue, rotateValue)
 rightMotorSpeed = moveValue + rotateValue
 else:
 leftMotorSpeed = moveValue - rotateValue
 rightMotorSpeed = -max(-moveValue, -rotateValue)

 self.setLeftRightMotorOutputs(leftMotorSpeed, rightMotorSpeed)

[docs] def mecanumDrive_Cartesian(self, x, y, rotation, gyroAngle):
 """Drive method for Mecanum wheeled robots.

 A method for driving with Mecanum wheeled robots. There are 4 wheels
 on the robot, arranged so that the front and back wheels are toed in
 45 degrees. When looking at the wheels from the top, the roller
 axles should form an X across the robot.

 This is designed to be directly driven by joystick axes.

 :param x: The speed that the robot should drive in the X direction.
 [-1.0..1.0]
 :param y: The speed that the robot should drive in the Y direction.
 This input is inverted to match the forward == -1.0 that
 joysticks produce. [-1.0..1.0]
 :param rotation: The rate of rotation for the robot that is
 completely independent of the translation. [-1.0..1.0]
 :param gyroAngle: The current angle reading from the gyro. Use this
 to implement field-oriented controls.
 """
 if not RobotDrive.kMecanumCartesian_Reported:
 hal.HALReport(hal.HALUsageReporting.kResourceType_RobotDrive,
 self.getNumMotors(),
 hal.HALUsageReporting.kRobotDrive_MecanumCartesian)
 RobotDrive.kMecanumCartesian_Reported = True
 xIn = x
 yIn = y
 # Negate y for the joystick.
 yIn = -yIn
 # Compenstate for gyro angle.
 xIn, yIn = RobotDrive.rotateVector(xIn, yIn, gyroAngle)

 wheelSpeeds = [0]*self.kMaxNumberOfMotors
 wheelSpeeds[self.MotorType.kFrontLeft] = xIn + yIn + rotation
 wheelSpeeds[self.MotorType.kFrontRight] = -xIn + yIn - rotation
 wheelSpeeds[self.MotorType.kRearLeft] = -xIn + yIn + rotation
 wheelSpeeds[self.MotorType.kRearRight] = xIn + yIn - rotation

 RobotDrive.normalize(wheelSpeeds)

 self.frontLeftMotor.set(wheelSpeeds[self.MotorType.kFrontLeft] * self.invertedMotors[self.MotorType.kFrontLeft] * self.maxOutput, self.syncGroup)
 self.frontRightMotor.set(wheelSpeeds[self.MotorType.kFrontRight] * self.invertedMotors[self.MotorType.kFrontRight] * self.maxOutput, self.syncGroup)
 self.rearLeftMotor.set(wheelSpeeds[self.MotorType.kRearLeft] * self.invertedMotors[self.MotorType.kRearLeft] * self.maxOutput, self.syncGroup)
 self.rearRightMotor.set(wheelSpeeds[self.MotorType.kRearRight] * self.invertedMotors[self.MotorType.kRearRight] * self.maxOutput, self.syncGroup)

 if self.syncGroup != 0:
 CANJaguar.updateSyncGroup(self.syncGroup)
 self.feed()

[docs] def mecanumDrive_Polar(self, magnitude, direction, rotation):
 """Drive method for Mecanum wheeled robots.

 A method for driving with Mecanum wheeled robots. There are 4 wheels
 on the robot, arranged so that the front and back wheels are toed in
 45 degrees. When looking at the wheels from the top, the roller
 axles should form an X across the robot.

 :param magnitude: The speed that the robot should drive in a given
 direction.
 :param direction: The direction the robot should drive in degrees.
 The direction and maginitute are independent of the rotation rate.
 :param rotation: The rate of rotation for the robot that is completely
 independent of the magnitute or direction. [-1.0..1.0]
 """
 if not RobotDrive.kMecanumPolar_Reported:
 hal.HALReport(hal.HALUsageReporting.kResourceType_RobotDrive,
 self.getNumMotors(),
 hal.HALUsageReporting.kRobotDrive_MecanumPolar)
 RobotDrive.kMecanumPolar_Reported = True
 # Normalized for full power along the Cartesian axes.
 magnitude = RobotDrive.limit(magnitude) * math.sqrt(2.0)
 # The rollers are at 45 degree angles.
 dirInRad = math.radians(direction + 45.0)
 cosD = math.cos(dirInRad)
 sinD = math.sin(dirInRad)

 wheelSpeeds = [0]*self.kMaxNumberOfMotors
 wheelSpeeds[self.MotorType.kFrontLeft] = sinD * magnitude + rotation
 wheelSpeeds[self.MotorType.kFrontRight] = cosD * magnitude - rotation
 wheelSpeeds[self.MotorType.kRearLeft] = cosD * magnitude + rotation
 wheelSpeeds[self.MotorType.kRearRight] = sinD * magnitude - rotation

 RobotDrive.normalize(wheelSpeeds)

 self.frontLeftMotor.set(wheelSpeeds[self.MotorType.kFrontLeft] * self.invertedMotors[self.MotorType.kFrontLeft] * self.maxOutput, self.syncGroup)
 self.frontRightMotor.set(wheelSpeeds[self.MotorType.kFrontRight] * self.invertedMotors[self.MotorType.kFrontRight] * self.maxOutput, self.syncGroup)
 self.rearLeftMotor.set(wheelSpeeds[self.MotorType.kRearLeft] * self.invertedMotors[self.MotorType.kRearLeft] * self.maxOutput, self.syncGroup)
 self.rearRightMotor.set(wheelSpeeds[self.MotorType.kRearRight] * self.invertedMotors[self.MotorType.kRearRight] * self.maxOutput, self.syncGroup)

 if self.syncGroup != 0:
 CANJaguar.updateSyncGroup(self.syncGroup)
 self.feed()

[docs] def holonomicDrive(self, magnitude, direction, rotation):
 """Holonomic Drive method for Mecanum wheeled robots.

 This is an alias to :func:`mecanumDrive_Polar` for backward
 compatibility.

 :param magnitude: The speed that the robot should drive in a given
 direction. [-1.0..1.0]
 :param direction: The direction the robot should drive. The direction
 and magnitude are independent of the rotation rate.
 :param rotation: The rate of rotation for the robot that is
 completely independent of the magnitude or direction. [-1.0..1.0]
 """
 self.mecanumDrive_Polar(magnitude, direction, rotation)

[docs] def setLeftRightMotorOutputs(self, leftOutput, rightOutput):
 """Set the speed of the right and left motors.

 This is used once an appropriate drive setup function is called such as
 twoWheelDrive(). The motors are set to "leftSpeed" and "rightSpeed"
 and includes flipping the direction of one side for opposing motors.

 :param leftOutput: The speed to send to the left side of the robot.
 :param rightOutput: The speed to send to the right side of the robot.
 """
 if self.rearLeftMotor is None or self.rearRightMotor is None:
 raise ValueError("Null motor provided")

 leftOutput = RobotDrive.limit(leftOutput) * self.maxOutput
 rightOutput = RobotDrive.limit(rightOutput) * self.maxOutput

 if self.frontLeftMotor is not None:
 self.frontLeftMotor.set(leftOutput * self.invertedMotors[self.MotorType.kFrontLeft], self.syncGroup)
 self.rearLeftMotor.set(leftOutput * self.invertedMotors[self.MotorType.kRearLeft], self.syncGroup)

 if self.frontRightMotor is not None:
 self.frontRightMotor.set(-rightOutput * self.invertedMotors[self.MotorType.kFrontRight], self.syncGroup)
 self.rearRightMotor.set(-rightOutput * self.invertedMotors[self.MotorType.kRearRight], self.syncGroup)

 if self.syncGroup != 0:
 CANJaguar.updateSyncGroup(self.syncGroup)
 self.feed()

 @staticmethod
[docs] def limit(num):
 """Limit motor values to the -1.0 to +1.0 range."""
 if num > 1.0:
 return 1.0
 if num < -1.0:
 return -1.0
 return num

 @staticmethod
[docs] def normalize(wheelSpeeds):
 """Normalize all wheel speeds if the magnitude of any wheel is greater
 than 1.0.
 """
 maxMagnitude = max(abs(x) for x in wheelSpeeds)
 if maxMagnitude > 1.0:
 for i in range(len(wheelSpeeds)):
 wheelSpeeds[i] = wheelSpeeds[i] / maxMagnitude

 @staticmethod
[docs] def rotateVector(x, y, angle):
 """Rotate a vector in Cartesian space."""
 cosA = math.cos(math.radians(angle))
 sinA = math.sin(math.radians(angle))
 return (x * cosA - y * sinA), (x * sinA + y * cosA)

[docs] def setInvertedMotor(self, motor, isInverted):
 """Invert a motor direction.

 This is used when a motor should run in the opposite direction as
 the drive code would normally run it. Motors that are direct drive
 would be inverted, the drive code assumes that the motors are geared
 with one reversal.

 :param motor: The motor index to invert.
 :param isInverted: True if the motor should be inverted when operated.
 """
 self.invertedMotors[motor] = -1 if isInverted else 1

[docs] def setSensitivity(self, sensitivity):
 """Set the turning sensitivity.

 This only impacts the drive() entry-point.

 :param sensitivity: Effectively sets the turning sensitivity (or turn
 radius for a given value)
 """
 self.sensitivity = sensitivity

[docs] def setMaxOutput(self, maxOutput):
 """Configure the scaling factor for using RobotDrive with motor
 controllers in a mode other than PercentVbus.

 :param maxOutput: Multiplied with the output percentage computed by
 the drive functions.
 """
 self.maxOutput = maxOutput

[docs] def getDescription(self):
 return "Robot Drive"

[docs] def stopMotor(self):
 if self.frontLeftMotor is not None:
 self.frontLeftMotor.set(0.0)
 if self.frontRightMotor is not None:
 self.frontRightMotor.set(0.0)
 if self.rearLeftMotor is not None:
 self.rearLeftMotor.set(0.0)
 if self.rearRightMotor is not None:
 self.rearRightMotor.set(0.0)
 self.feed()

[docs] def getNumMotors(self):
 motors = 0
 if self.frontLeftMotor is not None: motors += 1
 if self.frontRightMotor is not None: motors += 1
 if self.rearLeftMotor is not None: motors += 1
 if self.rearRightMotor is not None: motors += 1
 return motors

[docs] def setCANJaguarSyncGroup(self, syncGroup):
 """
 Set the number of the sync group for the motor controllers. If the motor controllers are :class:`CANJaguar`s,
 then they will be added to this sync group, causing them to update their values at the same time.

 :param syncGroup: The update group to add the motor controllers to.
 """
 self.syncGroup = syncGroup

[docs] def free(self):
 self._RobotDrive_finalizer()
 self.frontLeftMotor = None
 self.frontRightMotor = None
 self.rearLeftMotor = None
 self.rearRightMotor = None
 self.allocatedSpeedControllers = list()
 self.setSafetyEnabled(False)

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/digitalsource.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.digitalsource

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal
import weakref

from .resource import Resource
from .sensorbase import SensorBase
from .interruptablesensorbase import InterruptableSensorBase

__all__ = ["DigitalSource"]

[docs]class DigitalSource(InterruptableSensorBase):
 """DigitalSource Interface. The DigitalSource represents all the possible
 inputs for a counter or a quadrature encoder. The source may be either a
 digital input or an analog input. If the caller just provides a channel,
 then a digital input will be constructed and freed when finished for the
 source. The source can either be a digital input or analog trigger but
 not both.
 """

 channels = Resource(SensorBase.kDigitalChannels)

 def __init__(self, channel, input):
 """
 :param channel: Port for the digital input
 :type channel: int
 :param input: True if input, False otherwise
 :type input: int
 """
 super().__init__()

 self.channel = channel

 # XXX: Replace with hal.checkDigitalChannel when implemented
 SensorBase.checkDigitalChannel(channel)

 try:
 DigitalSource.channels.allocate(self, channel)
 except IndexError as e:
 raise IndexError("Digital input %d is already allocated" % self.channel) from e

 self._port = hal.initializeDigitalPort(hal.getPort(channel))
 hal.allocateDIO(self._port, True if input else False)

 self._port_finalizer = weakref.finalize(self, hal.freeDIO, self._port)

 @property
[docs] def port(self):
 if not self._port_finalizer.alive:
 return None
 return self._port

[docs] def free(self):
 if self.channel is None:
 return
 DigitalSource.channels.free(self.channel)
 self._port_finalizer()
 self.channel = None

[docs] def getChannelForRouting(self):
 """Get the channel routing number

 :returns: channel routing number
 """
 return self.channel

[docs] def getModuleForRouting(self):
 """Get the module routing number

 :returns: 0
 """
 return 0

[docs] def getAnalogTriggerForRouting(self):
 """Is this an analog trigger

 :returns: True if this is an analog trigger
 """
 return False

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/livewindow.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.livewindow

from networktables import NetworkTable
from .command import Scheduler

import logging
logger = logging.getLogger(__name__)

__all__ = ["LiveWindow"]

class _LiveWindowComponent:
 """A LiveWindow component is a device (sensor or actuator) that should be
 added to the SmartDashboard in test mode. The components are cached until
 the first time the robot enters Test mode. This allows the components to
 be inserted, then renamed."""
 def __init__(self, subsystem, name, isSensor):
 self.subsystem = subsystem
 self.name = str(name)
 self.isSensor = isSensor

class LiveWindow:
[docs] """The public interface for putting sensors and
 actuators on the LiveWindow."""

 sensors = set()
 #actuators = set()
 components = {}
 livewindowTable = None
 statusTable = None
 liveWindowEnabled = False
 firstTime = True

 @staticmethod
 def _reset():
 LiveWindow.sensors = set()
 LiveWindow.components = {}
 LiveWindow.livewindowTable = None
 LiveWindow.statusTable = None
 LiveWindow.liveWindowEnabled = False
 LiveWindow.firstTime = True

 @staticmethod
 def initializeLiveWindowComponents():
[docs] """Initialize all the LiveWindow elements the first time we enter
 LiveWindow mode. By holding off creating the NetworkTable entries, it
 allows them to be redefined before the first time in LiveWindow mode.
 This allows default sensor and actuator values to be created that are
 replaced with the custom names from users calling addActuator and
 addSensor.
 """
 logger.info("Initializing the components first time")
 LiveWindow.livewindowTable = NetworkTable.getTable("LiveWindow")
 LiveWindow.statusTable = LiveWindow.livewindowTable.getSubTable("~STATUS~")
 for component, c in LiveWindow.components.items():
 logger.info("Initializing table for '%s' '%s'" % (c.subsystem, c.name))
 LiveWindow.livewindowTable.getSubTable(c.subsystem).putString("~TYPE~", "LW Subsystem")
 table = LiveWindow.livewindowTable.getSubTable(c.subsystem).getSubTable(c.name)
 table.putString("~TYPE~", component.getSmartDashboardType())
 table.putString("Name", c.name)
 table.putString("Subsystem", c.subsystem)
 component.initTable(table)
 if c.isSensor:
 LiveWindow.sensors.add(component)

 @staticmethod

 def setEnabled(enabled):
[docs] """Set the enabled state of LiveWindow. If it's being enabled, turn
 off the scheduler and remove all the commands from the queue and
 enable all the components registered for LiveWindow. If it's being
 disabled, stop all the registered components and reenable the
 scheduler.

 TODO: add code to disable PID loops when enabling LiveWindow. The
 commands should reenable the PID loops themselves when they get
 rescheduled. This prevents arms from starting to move around, etc.
 after a period of adjusting them in LiveWindow mode.
 """
 if LiveWindow.liveWindowEnabled != enabled:
 if enabled:
 logger.info("Starting live window mode.")
 if LiveWindow.firstTime:
 LiveWindow.initializeLiveWindowComponents()
 LiveWindow.firstTime = False
 Scheduler.getInstance().disable()
 Scheduler.getInstance().removeAll()
 for component in LiveWindow.components.keys():
 component.startLiveWindowMode()
 else:
 logger.info("Stopping live window mode.")
 for component in LiveWindow.components.keys():
 component.stopLiveWindowMode()
 Scheduler.getInstance().enable()
 LiveWindow.liveWindowEnabled = enabled
 LiveWindow.statusTable.putBoolean("LW Enabled", enabled)

 @staticmethod

 def run():
[docs] """The run method is called repeatedly to keep the values refreshed
 on the screen in test mode.
 """
 LiveWindow.updateValues()

 @staticmethod

 def addSensor(subsystem, name, component):
[docs] """Add a Sensor associated with the subsystem and with call it by the
 given name.

 :param subsystem: The subsystem this component is part of.
 :param name: The name of this component.
 :param component: A LiveWindowSendable component that represents a
 sensor.
 """
 LiveWindow.components[component] = \
 _LiveWindowComponent(subsystem, name, True)
 LiveWindow.sensors.add(component)

 @staticmethod

 def addActuator(subsystem, name, component):
[docs] """Add an Actuator associated with the subsystem and with call it by
 the given name.

 :param subsystem: The subsystem this component is part of.
 :param name: The name of this component.
 :param component: A LiveWindowSendable component that represents a
 actuator.
 """
 LiveWindow.components[component] = \
 _LiveWindowComponent(subsystem, name, False)

 @staticmethod

 def updateValues():
[docs] """Puts all sensor values on the live window."""
 # TODO: gross - needs to be sped up
 for lws in LiveWindow.sensors:
 lws.updateTable()
 # TODO: Add actuators?
 # TODO: Add better rate limiting.

 @staticmethod

 def addSensorChannel(moduleType, channel, component):
[docs] """Add Sensor to LiveWindow. The components are shown with the type
 and channel like this: Gyro[0] for a gyro object connected to the
 first analog channel.

 :param moduleType: A string indicating the type of the module used in
 the naming (above)
 :param channel: The channel number the device is connected to
 :param component: A reference to the object being added
 """
 LiveWindow.addSensor("Ungrouped", "%s[%s]" % (moduleType, channel),
 component)

 @staticmethod

 def addActuatorChannel(moduleType, channel, component):
[docs] """Add Actuator to LiveWindow. The components are shown with the
 module type, slot and channel like this: Servo[0,2] for a servo
 object connected to the first digital module and PWM port 2.

 :param moduleType: A string that defines the module name in the label
 for the value
 :param channel: The channel number the device is plugged into
 (usually PWM)
 :param component: The reference to the object being added
 """
 LiveWindow.addActuator("Ungrouped", "%s[%s]" % (moduleType, channel),
 component)

 @staticmethod

 def addActuatorModuleChannel(moduleType, moduleNumber, channel, component):
[docs] """Add Actuator to LiveWindow. The components are shown with the
 module type, slot and channel like this: Servo[0,2] for a servo
 object connected to the first digital module and PWM port 2.

 :param moduleType: A string that defines the module name in the label
 for the value
 :param moduleNumber: The number of the particular module type
 :param channel: The channel number the device is plugged into
 (usually PWM)
 :param component: The reference to the object being added
 """
 LiveWindow.addActuator(
 "Ungrouped",
 "%s[%s,%s]" % (moduleType, moduleNumber, channel),
 component)

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/pwm.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.pwm

#--
Copyright (c) FIRST 2008-2014. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal
import weakref

from .livewindowsendable import LiveWindowSendable
from .resource import Resource
from .sensorbase import SensorBase

__all__ = ["PWM"]

def _freePWM(port):
 hal.setPWM(port, 0)
 hal.freePWMChannel(port)
 hal.freeDIO(port)

[docs]class PWM(LiveWindowSendable):
 """Raw interface to PWM generation in the FPGA.

 The values supplied as arguments for PWM outputs range from -1.0 to 1.0. They
 are mapped to the hardware dependent values, in this case 0-2000 for the
 FPGA. Changes are immediately sent to the FPGA, and the update occurs at
 the next FPGA cycle. There is no delay.

 As of revision 0.1.10 of the FPGA, the FPGA interprets the 0-2000 values as
 follows:

 - 2000 = full "forward"
 - 1999 to 1001 = linear scaling from "full forward" to "center"
 - 1000 = center value
 - 999 to 2 = linear scaling from "center" to "full reverse"
 - 1 = minimum pulse width (currently .5ms)
 - 0 = disabled (i.e. PWM output is held low)

 kDefaultPwmPeriod is the 1x period (5.05 ms). In hardware, the period
 scaling is implemented as an output squelch to get longer periods for old
 devices.

 - 20ms periods (50 Hz) are the "safest" setting in that this works for all
 devices
 - 20ms periods seem to be desirable for Vex Motors
 - 20ms periods are the specified period for HS-322HD servos, but work
 reliably down to 10.0 ms; starting at about 8.5ms, the servo sometimes
 hums and get hot; by 5.0ms the hum is nearly continuous
 - 10ms periods work well for Victor 884
 - 5ms periods allows higher update rates for Luminary Micro Jaguar speed
 controllers. Due to the shipping firmware on the Jaguar, we can't run the
 update period less than 5.05 ms.

 .. not_implemented: initPWM
 """
[docs] class PeriodMultiplier:
 """Represents the amount to multiply the minimum servo-pulse pwm
 period by.
 """
 k1X = 1
 k2X = 2
 k4X = 4

 #: the default PWM period measured in ms.

 kDefaultPwmPeriod = 5.05

 #: the PWM range center in ms
 kDefaultPwmCenter = 1.5

 #: the number of PWM steps below the centerpoint
 kDefaultPwmStepsDown = 1000

 #: the value to use to disable
 kPwmDisabled = 0

 def __init__(self, channel):
 """Allocate a PWM given a channel.

 :param channel: The PWM channel number. 0-9 are on-board, 10-19 are on the MXP port
 :type channel: int
 """
 SensorBase.checkPWMChannel(channel)
 self.channel = channel
 self._port = hal.initializeDigitalPort(hal.getPort(channel))

 if not hal.allocatePWMChannel(self._port):
 raise IndexError("PWM channel %d is already allocated" % channel)

 # Need this to free on unit test wpilib reset
 Resource._add_global_resource(self)

 hal.setPWM(self._port, 0)

 self._pwm_finalizer = weakref.finalize(self, _freePWM, self._port)

 self.eliminateDeadband = False

 hal.HALReport(hal.HALUsageReporting.kResourceType_PWM, channel)

 @property
[docs] def port(self):
 if not self._pwm_finalizer.alive:
 return None
 return self._port

[docs] def free(self):
 """Free the PWM channel.

 Free the resource associated with the PWM channel and set the value
 to 0.
 """
 self._pwm_finalizer()

[docs] def enableDeadbandElimination(self, eliminateDeadband):
 """Optionally eliminate the deadband from a speed controller.

 :param eliminateDeadband: If True, set the motor curve on the Jaguar
 to eliminate the deadband in the middle of the range. Otherwise, keep
 the full range without modifying any values.
 :type eliminateDeadband: bool
 """
 self.eliminateDeadband = eliminateDeadband

[docs] def setBounds(self, max, deadbandMax, center, deadbandMin, min):
 """Set the bounds on the PWM pulse widths.

 This sets the bounds on the PWM values for a particular type of
 controller. The values determine the upper and lower speeds as well
 as the deadband bracket.

 :param max: The max PWM pulse width in ms
 :type max: float
 :param deadbandMax: The high end of the deadband range pulse width in ms
 :type deadbandMax: float
 :param center: The center (off) pulse width in ms
 :type center: float
 :param deadbandMin: The low end of the deadband pulse width in ms
 :type deadbandMin: float
 :param min: The minimum pulse width in ms
 :type min: float
 """
 loopTime = hal.getLoopTiming()/(SensorBase.kSystemClockTicksPerMicrosecond*1e3)

 self.maxPwm = int((max-self.kDefaultPwmCenter)/loopTime+self.kDefaultPwmStepsDown-1)
 self.deadbandMaxPwm = int((deadbandMax-self.kDefaultPwmCenter)/loopTime+self.kDefaultPwmStepsDown-1)
 self.centerPwm = int((center-self.kDefaultPwmCenter)/loopTime+self.kDefaultPwmStepsDown-1)
 self.deadbandMinPwm = int((deadbandMin-self.kDefaultPwmCenter)/loopTime+self.kDefaultPwmStepsDown-1)
 self.minPwm = int((min-self.kDefaultPwmCenter)/loopTime+self.kDefaultPwmStepsDown-1)

[docs] def getChannel(self):
 """Gets the channel number associated with the PWM Object.

 :returns: The channel number.
 :rtype: int
 """
 return self.channel

[docs] def setPosition(self, pos):
 """Set the PWM value based on a position.

 This is intended to be used by servos.

 .. note::

 :func:`setBounds` must be called first.

 :param pos: The position to set the servo between 0.0 and 1.0.
 :type pos: float
 """
 if pos < 0.0:
 pos = 0.0
 elif pos > 1.0:
 pos = 1.0

 rawValue = int(pos * self.getFullRangeScaleFactor() + self.getMinNegativePwm())

 # send the computed pwm value to the FPGA
 self.setRaw(rawValue)

[docs] def getPosition(self):
 """Get the PWM value in terms of a position.

 This is intended to be used by servos.

 .. note::

 :func:`setBounds` must be called first.

 :returns: The position the servo is set to between 0.0 and 1.0.
 :rtype: float
 """
 value = self.getRaw()
 if value < self.getMinNegativePwm():
 return 0.0
 elif value > self.getMaxPositivePwm():
 return 1.0
 else:
 return float(value - self.getMinNegativePwm()) / self.getFullRangeScaleFactor()

[docs] def setSpeed(self, speed):
 """Set the PWM value based on a speed.

 This is intended to be used by speed controllers.

 .. note::

 :func:`setBounds` must be called first.

 :param speed: The speed to set the speed controller between -1.0 and
 1.0.
 :type speed: float
 """
 # clamp speed to be in the range 1.0 >= speed >= -1.0
 if speed < -1.0:
 speed = -1.0
 elif speed > 1.0:
 speed = 1.0

 # calculate the desired output pwm value by scaling the speed
 # appropriately
 if speed == 0.0:
 rawValue = self.getCenterPwm()
 elif speed > 0.0:
 rawValue = int(speed * self.getPositiveScaleFactor() +
 self.getMinPositivePwm() + 0.5)
 else:
 rawValue = int(speed * self.getNegativeScaleFactor() +
 self.getMaxNegativePwm() + 0.5)

 # send the computed pwm value to the FPGA
 self.setRaw(rawValue)

[docs] def getSpeed(self):
 """Get the PWM value in terms of speed.

 This is intended to be used by speed controllers.

 .. note::

 :func:`setBounds` must be called first.

 :returns: The most recently set speed between -1.0 and 1.0.
 :rtype: float
 """
 value = self.getRaw()
 if value > self.getMaxPositivePwm():
 return 1.0
 elif value < self.getMinNegativePwm():
 return -1.0
 elif value > self.getMinPositivePwm():
 return float(value - self.getMinPositivePwm()) / self.getPositiveScaleFactor()
 elif value < self.getMaxNegativePwm():
 return float(value - self.getMaxNegativePwm()) / self.getNegativeScaleFactor()
 else:
 return 0.0

[docs] def setRaw(self, value):
 """Set the PWM value directly to the hardware.

 Write a raw value to a PWM channel.

 :param value: Raw PWM value. Range 0 - 255.
 :type value: int
 """
 if self.port is None:
 raise ValueError("operation on freed port")
 hal.setPWM(self.port, value)

[docs] def getRaw(self):
 """Get the PWM value directly from the hardware.

 Read a raw value from a PWM channel.

 :returns: Raw PWM control value. Range: 0 - 255.
 :rtype: int
 """
 if self.port is None:
 raise ValueError("operation on freed port")
 return hal.getPWM(self.port)

[docs] def setPeriodMultiplier(self, mult):
 """Slow down the PWM signal for old devices.

 :param mult: The period multiplier to apply to this channel
 :type mult: PWM.PeriodMultiplier
 """
 if self.port is None:
 raise ValueError("operation on freed port")
 if mult == PWM.PeriodMultiplier.k4X:
 # Squelch 3 out of 4 outputs
 hal.setPWMPeriodScale(self.port, 3)
 elif mult == PWM.PeriodMultiplier.k2X:
 # Squelch 1 out of 2 outputs
 hal.setPWMPeriodScale(self.port, 1)
 elif mult == PWM.PeriodMultiplier.k1X:
 # Don't squelch any outputs
 hal.setPWMPeriodScale(self.port, 0)
 else:
 raise ValueError("Invalid mult argument '%s'" % mult)

[docs] def setZeroLatch(self):
 if self.port is None:
 raise ValueError("operation on freed port")
 hal.latchPWMZero(self.port)

[docs] def getMaxPositivePwm(self):
 return self.maxPwm

[docs] def getMinPositivePwm(self):
 if self.eliminateDeadband:
 return self.deadbandMaxPwm
 else:
 return self.centerPwm + 1

[docs] def getCenterPwm(self):
 return self.centerPwm

[docs] def getMaxNegativePwm(self):
 if self.eliminateDeadband:
 return self.deadbandMinPwm
 else:
 return self.centerPwm - 1

[docs] def getMinNegativePwm(self):
 return self.minPwm

[docs] def getPositiveScaleFactor(self):
 """Get the scale for positive speeds."""
 return self.getMaxPositivePwm() - self.getMinPositivePwm()

[docs] def getNegativeScaleFactor(self):
 """Get the scale for negative speeds."""
 return self.getMaxNegativePwm() - self.getMinNegativePwm()

[docs] def getFullRangeScaleFactor(self):
 """Get the scale for positions."""
 return self.getMaxPositivePwm() - self.getMinNegativePwm()

 # Live Window code, only does anything if live window is activated.

 def getSmartDashboardType(self):
 return "Speed Controller"

 def updateTable(self):
 table = self.getTable()
 if table is not None:
 table.putNumber("Value", self.getSpeed())

 def valueChanged(self, itable, key, value, bln):
 self.setSpeed(float(value))

 def startLiveWindowMode(self):
 self.setSpeed(0) # Stop for safety
 super().startLiveWindowMode()

 def stopLiveWindowMode(self):
 super().stopLiveWindowMode()
 self.setSpeed(0) # Stop for safety

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/controllerpower.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.controllerpower

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal

__all__ = ['ControllerPower']

[docs]class ControllerPower:
 """Provides access to power levels on the RoboRIO"""

 @staticmethod
[docs] def getInputVoltage():
 """
 Get the input voltage to the robot controller

 :returns: The controller input voltage value in Volts
 :rtype: float
 """
 return hal.getVinVoltage()

 @staticmethod
[docs] def getInputCurrent():
 """
 Get the input current to the robot controller

 :returns: The controller input current value in Amps
 :rtype: float
 """
 return hal.getVinCurrent()

 @staticmethod
[docs] def getVoltage3V3():
 """
 Get the voltage of the 3.3V rail

 :returns: The controller 3.3V rail voltage value in Volts
 :rtype: float
 """
 return hal.getUserVoltage3V3()

 @staticmethod
[docs] def getCurrent3V3():
 """
 Get the current output of the 3.3V rail

 :returns: The controller 3.3V rail output current value in Amps
 :rtype: float
 """
 return hal.getUserCurrent3V3()

 @staticmethod
[docs] def getEnabled3V3():
 """
 Get the enabled state of the 3.3V rail. The rail may be
 disabled due to a controller brownout, a short circuit on the
 rail, or controller over-voltage

 :returns: True if enabled, False otherwise
 :rtype: bool
 """
 return hal.getUserActive3V3();

 @staticmethod
[docs] def getFaultCount3V3():
 """
 Get the count of the total current faults on the 3.3V rail since
 the controller has booted

 :returns: The number of faults
 :rtype: int
 """
 return hal.getUserCurrentFaults3V3()

 @staticmethod
[docs] def getVoltage5V():
 """
 Get the voltage of the 5V rail

 :returns: The controller 5V rail voltage value in Volts
 :rtype: float
 """
 return hal.getUserVoltage5V()

 @staticmethod
[docs] def getCurrent5V():
 """
 Get the current output of the 5V rail

 :returns: The controller 5V rail output current value in Amps
 :rtype: float
 """
 return hal.getUserCurrent5V()

 @staticmethod
[docs] def getEnabled5V():
 """
 Get the enabled state of the 5V rail. The rail may be disabled
 due to a controller brownout, a short circuit on the rail, or
 controller over-voltage

 :returns: True if enabled, False otherwise
 :rtype: bool
 """
 return hal.getUserActive5V()

 @staticmethod
[docs] def getFaultCount5V():
 """
 Get the count of the total current faults on the 5V rail since
 the controller has booted

 :returns: The number of faults
 :rtype: int
 """
 return hal.getUserCurrentFaults5V()

 @staticmethod
[docs] def getVoltage6V():
 """
 Get the voltage of the 6V rail

 :returns: The controller 6V rail voltage value in Volts
 :rtype: float
 """
 return hal.getUserVoltage6V()

 @staticmethod
[docs] def getCurrent6V():
 """
 Get the current output of the 6V rail

 :returns: The controller 6V rail output current value in Amps
 :rtype: float
 """
 return hal.getUserCurrent6V()

 @staticmethod
[docs] def getEnabled6V():
 """
 Get the enabled state of the 6V rail. The rail may be disabled
 due to a controller brownout, a short circuit on the rail, or
 controller over-voltage

 :returns: True if enabled, False otherwise
 :rtype: bool
 """
 return hal.getUserActive6V()

 @staticmethod
[docs] def getFaultCount6V():
 """
 Get the count of the total current faults on the 6V rail since
 the controller has booted

 :returns: The number of faults
 :rtype: int
 """
 return hal.getUserCurrentFaults6V()

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/sendablechooser.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.sendablechooser

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

from .sendable import Sendable

__all__ = ["SendableChooser"]

[docs]class SendableChooser(Sendable):
 """A useful tool for presenting a selection of options to be displayed on
 the SmartDashboard

 For instance, you may wish to be able to select between multiple
 autonomous modes. You can do this by putting every possible Command
 you want to run as an autonomous into a SendableChooser and then put
 it into the SmartDashboard to have a list of options appear on the
 laptop. Once autonomous starts, simply ask the SendableChooser what
 the selected value is.

 Example::

 # This shows the user two options on the SmartDashboard
 chooser = wpilib.SendableChooser()
 chooser.addOption('option1', '1')
 chooser.addOption('option2', '2')

 wpilib.SmartDashboard.putData('Choice', chooser)

 # .. later, ask to see what the user selected?
 value = chooser.getSelected()

 """

 # The key for the default value
 DEFAULT = "default"
 # The key for the selected option
 SELECTED = "selected"
 # The key for the option array
 OPTIONS = "options"
 # A table linking strings to the objects the represent

 def __init__(self):
 """Instantiates a SendableChooser.
 """
 from networktables import StringArray
 self.choices = StringArray()
 self.values = []
 self.defaultChoice = None
 self.defaultValue = None

[docs] def addObject(self, name, object):
 """Adds the given object to the list of options. On the
 SmartDashboard on the desktop, the object will appear as the
 given name.

 :param name: the name of the option
 :param object: the option
 """
 # if we don't have a default, set the default automatically
 if self.defaultChoice is None:
 self.addDefault(name, object)
 return
 for i, choice in enumerate(self.choices):
 if choice == name:
 self.values[i] = object
 return
 # not found
 self.choices.append(name)
 self.values.append(object)
 table = self.getTable()
 if table is not None:
 table.putValue(self.OPTIONS, self.choices)

[docs] def addDefault(self, name, object):
 """Add the given object to the list of options and marks it as the
 default. Functionally, this is very close to addObject(...) except
 that it will use this as the default option if none other is
 explicitly selected.

 :param name: the name of the option
 :param object: the option
 """
 if name is None:
 raise ValueError("Name cannot be None")
 self.defaultChoice = name
 self.defaultValue = object
 table = self.getTable()
 if table is not None:
 table.putString(self.DEFAULT, self.defaultChoice)
 self.addObject(name, object)

[docs] def getSelected(self):
 """Returns the object associated with the selected option. If there
 is none selected, it will return the default. If there is none
 selected and no default, then it will return None.

 :returns: the object associated with the selected option
 """
 table = self.getTable()
 if table is None:
 return self.defaultValue
 selected = table.getString(self.SELECTED, None)
 for i, choice in enumerate(self.choices):
 if choice == selected:
 return self.values[i]
 return self.defaultValue

 def getSmartDashboardType(self):
 return "String Chooser"

 def initTable(self, table):
 self.table = table
 if table is not None:
 table.putValue(self.OPTIONS, self.choices)
 if self.defaultChoice is not None:
 table.putString(self.DEFAULT, self.defaultChoice)

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/robotbase.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.robotbase

Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.

import hal
import warnings

import logging
logger = logging.getLogger('robotpy')

__all__ = ["RobotBase"]

[docs]class RobotBase:
 """Implement a Robot Program framework.

 The RobotBase class is intended to be subclassed by a user creating a
 robot program. Overridden autonomous() and operatorControl() methods
 are called at the appropriate time as the match proceeds. In the current
 implementation, the Autonomous code will run to completion before the
 OperatorControl code could start. In the future the Autonomous code might
 be spawned as a task, then killed at the end of the Autonomous period.

 User code should be placed in the constructor that runs before the
 Autonomous or Operator Control period starts. The constructor will
 run to completion before Autonomous is entered.

 .. warning:: If you override __init__ in your robot class, you must call
 the base class constructor. This must be used to ensure that
 the communications code starts.
 """

 def __init__(self):
 # TODO: StartCAPI()
 # TODO: See if the next line is necessary
 # Resource.RestartProgram()

 try:
 from networktables import NetworkTable
 #NetworkTable.setServerMode() -- don't set this explicitly, it's the default.
 except ImportError:
 warnings.warn("networktables not found", ImportWarning)
 NetworkTable = None

 from .driverstation import DriverStation
 self.ds = DriverStation.getInstance()

 if NetworkTable is not None:
 NetworkTable.getTable("") # forces network tables to initialize
 NetworkTable.getTable("LiveWindow").getSubTable("~STATUS~").putBoolean("LW Enabled", False)

 self.__initialized = True

[docs] def prestart(self):
 """
 This hook is called right before :meth:`startCompetition`. By default, tell
 the DS that the robot is now ready to be enabled. If you don't want the
 robot to be enabled yet, you can override this method to do nothing.
 If you do so, you will need to call hal.HALNetworkCommunicationObserveUserProgramStarting()
 from your code when you are ready for the robot to be enabled.
 """
 hal.HALNetworkCommunicationObserveUserProgramStarting()

[docs] def free(self):
 """Free the resources for a RobotBase class."""
 # TODO: delete?
 pass

 @staticmethod
[docs] def isSimulation():
 """
 :returns: If the robot is running in simulation.
 :rtype: bool
 """
 return hal.HALIsSimulation()

 @staticmethod
[docs] def isReal():
 """
 :returns: If the robot is running in the real world.
 :rtype: bool
 """
 return not hal.HALIsSimulation()

[docs] def isDisabled(self):
 """Determine if the Robot is currently disabled.

 :returns: True if the Robot is currently disabled by the field
 controls.
 :rtype: bool
 """
 return self.ds.isDisabled()

[docs] def isEnabled(self):
 """Determine if the Robot is currently enabled.

 :returns: True if the Robot is currently enabled by the field
 controls.
 :rtype: bool
 """
 return self.ds.isEnabled()

[docs] def isAutonomous(self):
 """Determine if the robot is currently in Autonomous mode.

 :returns: True if the robot is currently operating Autonomously as
 determined by the field controls.
 :rtype: bool
 """
 return self.ds.isAutonomous()

[docs] def isTest(self):
 """Determine if the robot is currently in Test mode.

 :returns: True if the robot is currently operating in Test mode as
 determined by the driver station.
 :rtype: bool
 """
 return self.ds.isTest()

[docs] def isOperatorControl(self):
 """Determine if the robot is currently in Operator Control mode.

 :returns: True if the robot is currently operating in Tele-Op mode as
 determined by the field controls.
 :rtype: bool
 """
 return self.ds.isOperatorControl()

[docs] def isNewDataAvailable(self):
 """Indicates if new data is available from the driver station.

 :returns: Has new data arrived over the network since the last time
 this function was called?
 :rtype: bool
 """
 return self.ds.isNewControlData()

[docs] def startCompetition(self):
 """Provide an alternate "main loop" via startCompetition()."""
 raise NotImplementedError

 @staticmethod
[docs] def initializeHardwareConfiguration():
 """Common initialization for all robot programs."""
 hal.HALInitialize()

 from .driverstation import DriverStation
 from .robotstate import RobotState
 RobotState.impl = DriverStation.getInstance()

 @staticmethod
[docs] def main(robot_cls):
 """Starting point for the applications."""
 RobotBase.initializeHardwareConfiguration()

 hal.HALReport(hal.HALUsageReporting.kResourceType_Language,
 hal.HALUsageReporting.kLanguage_Python)

 try:
 robot = robot_cls()
 robot.prestart()
 except:
 from .driverstation import DriverStation
 DriverStation.reportError("ERROR Could not instantiate robot", True)
 logger.exception("Robots don't quit!")
 logger.exception("Could not instantiate robot "+robot_cls.__name__+"!")
 return False

 # Add a check to see if the user forgot to call super().__init__()
 if not hasattr(robot, '_RobotBase__initialized'):
 logger.error("If your robot class has an __init__ function, it must call super().__init__()!")
 return False

 if not hal.HALIsSimulation():
 try:
 import wpilib
 with open('/tmp/frc_versions/FRC_Lib_Version.ini', 'w') as fp:
 fp.write('RobotPy %s' % wpilib.__version__)
 except:
 logger.warning("Could not write FRC version file to disk")

 try:
 robot.startCompetition()
 except KeyboardInterrupt:
 logger.exception("THIS IS NOT AN ERROR: The user hit CTRL-C to kill the robot")
 logger.info("Exiting because of keyboard interrupt")
 return True
 except:
 from .driverstation import DriverStation
 DriverStation.reportError("ERROR Unhandled exception", True)
 logger.warn("Robots don't quit!")
 logger.exception("---> The startCompetition() method (or methods called by it) should have handled the exception.")
 return False
 else:
 # startCompetition never returns unless exception occurs....
 from .driverstation import DriverStation
 DriverStation.reportError("ERROR startCompetition() returned", False)
 logger.warn("Robots don't quit!")
 logger.error("---> Unexpected return from startCompetition() method.")
 return False

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/motorsafety.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.motorsafety

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import weakref

from .robotstate import RobotState
from .timer import Timer

import logging
logger = logging.getLogger(__name__)

__all__ = ["MotorSafety"]

[docs]class MotorSafety:
 """Provides mechanisms to safely shutdown motors if they aren't updated
 often enough.

 The MotorSafety object is constructed for every object that wants to
 implement the Motor Safety protocol. The helper object has the code to
 actually do the timing and call the motors stop() method when the timeout
 expires. The motor object is expected to call the feed() method whenever
 the motors value is updated.
 """
 DEFAULT_SAFETY_EXPIRATION = 0.1
 helpers = weakref.WeakSet()

 def __init__(self):
 """The constructor for a MotorSafety object.
 The helper object is constructed for every object that wants to
 implement the Motor Safety protocol. The helper object has the code
 to actually do the timing and call the motors stop() method when the
 timeout expires. The motor object is expected to call the feed()
 method whenever the motors value is updated.
 """
 self.safetyEnabled = False
 self.safetyExpiration = MotorSafety.DEFAULT_SAFETY_EXPIRATION
 self.safetyStopTime = Timer.getFPGATimestamp()
 MotorSafety.helpers.add(self)

[docs] def feed(self):
 """Feed the motor safety object.
 Resets the timer on this object that is used to do the timeouts.
 """
 self.safetyStopTime = Timer.getFPGATimestamp() + self.safetyExpiration

[docs] def setExpiration(self, expirationTime):
 """Set the expiration time for the corresponding motor safety object.

 :param expirationTime: The timeout value in seconds.
 :type expirationTime: float
 """
 self.safetyExpiration = expirationTime

[docs] def getExpiration(self):
 """Retrieve the timeout value for the corresponding motor safety
 object.

 :returns: the timeout value in seconds.
 :rtype: float
 """
 return self.safetyExpiration

[docs] def isAlive(self):
 """Determine of the motor is still operating or has timed out.

 :returns: True if the motor is still operating normally and hasn't
 timed out.
 :rtype: float
 """
 return not self.safetyEnabled or self.safetyStopTime > Timer.getFPGATimestamp()

[docs] def check(self):
 """Check if this motor has exceeded its timeout.
 This method is called periodically to determine if this motor has
 exceeded its timeout value. If it has, the stop method is called,
 and the motor is shut down until its value is updated again.
 """
 if not self.safetyEnabled or RobotState.isDisabled() or RobotState.isTest():
 return
 if self.safetyStopTime < Timer.getFPGATimestamp():
 logger.warn("%s... Output not updated often enough." %
 self.getDescription())

 self.stopMotor()

[docs] def setSafetyEnabled(self, enabled):
 """Enable/disable motor safety for this device.
 Turn on and off the motor safety option for this PWM object.

 :param enabled: True if motor safety is enforced for this object
 :type enabled: bool
 """
 self.safetyEnabled = bool(enabled)

[docs] def isSafetyEnabled(self):
 """Return the state of the motor safety enabled flag.
 Return if the motor safety is currently enabled for this device.

 :returns: True if motor safety is enforced for this device
 :rtype: bool
 """
 return self.safetyEnabled

 @staticmethod
[docs] def checkMotors():
 """Check the motors to see if any have timed out.
 This static method is called periodically to poll all the motors and
 stop any that have timed out.
 """
 # TODO: these should be synchronized with the setting methods
 # in case it's called from a different thread
 for msh in MotorSafety.helpers:
 msh.check()

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/solenoidbase.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.solenoidbase

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal
import threading

from .resource import Resource
from .sensorbase import SensorBase

__all__ = ["SolenoidBase"]

[docs]class SolenoidBase(SensorBase):
 """SolenoidBase class is the common base class for the Solenoid and
 DoubleSolenoid classes."""

 # global to all instances, keyed by module number
 all_allocated = {}
 all_ports = {}
 all_mutex = {}

 @staticmethod
 def _reset():
 SolenoidBase.all_allocated = {}
 SolenoidBase.all_ports = {}
 SolenoidBase.all_mutex = {}

 def __init__(self, moduleNumber):
 """Constructor.

 :param moduleNumber: The PCM CAN ID
 """
 self.moduleNumber = moduleNumber

 if moduleNumber not in self.all_ports:
 self.all_ports[moduleNumber] = []

 for i in range(SensorBase.kSolenoidChannels):
 port = hal.getPortWithModule(moduleNumber, i)
 self.all_ports[moduleNumber].append(hal.initializeSolenoidPort(port))

 if moduleNumber not in self.all_mutex:
 self.all_mutex[moduleNumber] = threading.Lock()

 if moduleNumber not in self.all_allocated:
 self.all_allocated[moduleNumber] = Resource(SensorBase.kSolenoidChannels)

 self.allocated = self.all_allocated[moduleNumber]
 self.ports = self.all_ports[moduleNumber]
 self.mutex = self.all_mutex[moduleNumber]

[docs] def set(self, value, mask):
 """Set the value of a solenoid.

 :param value: The value you want to set on the module.
 :param mask: The channels you want to be affected.
 """
 with self.mutex:
 for i in range(SensorBase.kSolenoidChannels):
 local_mask = 1 << i
 if (mask & local_mask) != 0:
 hal.setSolenoid(self.ports[i], (value & local_mask) != 0)

[docs] def getAll(self):
 """Read all 8 solenoids from the module used by this solenoid as a
 single byte.

 :returns: The current value of all 8 solenoids on this module.
 """
 with self.mutex:
 value = 0
 for i in range(SensorBase.kSolenoidChannels):
 value |= (1 if hal.getSolenoid(self.ports[i]) else 0) << i
 return value

[docs] def getPCMSolenoidBlackList(self):
 """
 Reads complete solenoid blacklist for all 8 solenoids as a single byte.
 If a solenoid is shorted, it is added to the blacklist and
 disabled until power cycle, or until faults are cleared. See
 :meth:`clearAllPCMStickyFaults`

 :returns: The solenoid blacklist of all 8 solenoids on the module.
 """
 return hal.getPCMSolenoidBlackList(self.ports[0])

[docs] def getPCMSolenoidVoltageStickyFault(self):
 """
 :returns: True if PCM Sticky fault is set : The common
 highside solenoid voltage rail is too low, most likely
 a solenoid channel has been shorted.
 """
 return hal.getPCMSolenoidVoltageStickyFault()

[docs] def getPCMSolenoidVoltageFault(self):
 """
 :returns: True if PCM is in fault state : The common
 highside solenoid voltage rail is too low, most likely
 a solenoid channel has been shorted.
 """
 return hal.getPCMSolenoidVoltageFault()

[docs] def clearAllPCMStickyFaults(self):
 """
 Clear ALL sticky faults inside the PCM that Solenoid is wired to.

 If a sticky fault is set, then it will be persistently cleared. Compressor drive
 maybe momentarily disable while flages are being cleared. Care should be
 taken to not call this too frequently, otherwise normal compressor functionality
 may be prevented.

 If no sticky faults are set then this call will have no effect.
 """
 hal.clearAllPCMStickyFaults()

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/digitalinput.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.digitalinput

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal

from .digitalsource import DigitalSource
from .livewindow import LiveWindow

__all__ = ["DigitalInput"]

[docs]class DigitalInput(DigitalSource):
 """Reads a digital input.

 This class will read digital inputs and return the current value on the
 channel. Other devices such as encoders, gear tooth sensors, etc. that
 are implemented elsewhere will automatically allocate digital inputs
 and outputs as required. This class is only for devices like switches
 etc. that aren't implemented anywhere else.
 """

 def __init__(self, channel):
 """Create an instance of a Digital Input class. Creates a digital
 input given a channel.

 :param channel: the DIO channel for the digital input. 0-9 are on-board, 10-25 are on the MXP
 :type channel: int
 """
 super().__init__(channel, True)

 hal.HALReport(hal.HALUsageReporting.kResourceType_DigitalInput,
 channel)
 LiveWindow.addSensorChannel("DigitalInput", channel, self)

[docs] def get(self):
 """Get the value from a digital input channel. Retrieve the value of
 a single digital input channel from the FPGA.

 :returns: the state of the digital input
 :rtype: bool
 """
 if self.port is None:
 raise ValueError("operation on freed port")
 return hal.getDIO(self.port)

[docs] def getChannel(self):
 """Get the channel of the digital input

 :returns: The GPIO channel number that this object represents.
 :rtype: int
 """
 return self.channel

[docs] def getAnalogTriggerForRouting(self):
 return False

 # Live Window code, only does anything if live window is activated.

 def getSmartDashboardType(self):
 return "Digital Input"

 def updateTable(self):
 table = self.getTable()
 if table is not None:
 table.putBoolean("Value", self.get())

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/sensorbase.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.sensorbase

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

from .livewindowsendable import LiveWindowSendable

__all__ = ["SensorBase"]

[docs]class SensorBase(LiveWindowSendable): # TODO: Refactor
 """Base class for all sensors

 Stores most recent status information as well as containing utility
 functions for checking channels and error processing.
 """

 # TODO: Move this to the HAL

 #: Ticks per microsecond
 kSystemClockTicksPerMicrosecond = 40

 #: Number of digital channels per roboRIO
 kDigitalChannels = 26

 #: Number of analog input channels
 kAnalogInputChannels = 8

 #: Number of analog output channels
 kAnalogOutputChannels = 2

 #: Number of solenoid channels per module
 kSolenoidChannels = 8

 #: Number of solenoid modules
 kSolenoidModules = 2

 #: Number of PWM channels per roboRIO
 kPwmChannels = 20

 #: Number of relay channels per roboRIO
 kRelayChannels = 4

 #: Number of power distribution channels
 kPDPChannels = 16

 #: Default solenoid module
 defaultSolenoidModule = 0

 @staticmethod
[docs] def setDefaultSolenoidModule(moduleNumber):
 """Set the default location for the Solenoid module.

 :param moduleNumber: The number of the solenoid module to use.
 """
 SensorBase.checkSolenoidModule(moduleNumber)
 SensorBase.defaultSolenoidModule = moduleNumber

 @staticmethod
[docs] def checkSolenoidModule(moduleNumber):
 """Verify that the solenoid module is correct.

 :param moduleNumber: The solenoid module module number to check.
 """
 pass
 #if hal.checkSolenoidModule(moduleNumber - 1) != 0:
 # print("Solenoid module %d is not present." % moduleNumber)

 @staticmethod
[docs] def checkDigitalChannel(channel):
 """Check that the digital channel number is valid.
 Verify that the channel number is one of the legal channel numbers.
 Channel numbers are 0-based.

 :param channel: The channel number to check.
 """
 if channel < 0 or channel >= SensorBase.kDigitalChannels:
 raise IndexError("Requested digital channel number %d is out of range." % channel)

 @staticmethod
[docs] def checkRelayChannel(channel):
 """Check that the digital channel number is valid.
 Verify that the channel number is one of the legal channel numbers.
 Channel numbers are 0-based.

 :param channel: The channel number to check.
 """
 if channel < 0 or channel >= SensorBase.kRelayChannels:
 raise IndexError("Requested relay channel number %d is out of range." % channel)

 @staticmethod
[docs] def checkPWMChannel(channel):
 """Check that the digital channel number is valid.
 Verify that the channel number is one of the legal channel numbers.
 Channel numbers are 0-based.

 :param channel: The channel number to check.
 """
 if channel < 0 or channel >= SensorBase.kPwmChannels:
 raise IndexError("Requested PWM channel number %d is out of range." % channel)

 @staticmethod
[docs] def checkAnalogInputChannel(channel):
 """Check that the analog input number is value.
 Verify that the analog input number is one of the legal channel
 numbers. Channel numbers are 0-based.

 :param channel: The channel number to check.
 """
 if channel < 0 or channel >= SensorBase.kAnalogInputChannels:
 raise IndexError("Requested analog input channel number %d is out of range." % channel)

 @staticmethod
[docs] def checkAnalogOutputChannel(channel):
 """Check that the analog input number is value.
 Verify that the analog input number is one of the legal channel
 numbers. Channel numbers are 0-based.

 :param channel: The channel number to check.
 """
 if channel < 0 or channel >= SensorBase.kAnalogOutputChannels:
 raise IndexError("Requested analog output channel number %d is out of range." % channel)

 @staticmethod
[docs] def checkSolenoidChannel(channel):
 """Verify that the solenoid channel number is within limits. Channel
 numbers are 0-based.

 :param channel: The channel number to check.
 """
 if channel < 0 or channel >= SensorBase.kSolenoidChannels:
 raise IndexError("Requested solenoid channel number %d is out of range." % channel)

 @staticmethod
[docs] def checkPDPChannel(channel):
 """Verify that the power distribution channel number is within limits.
 Channel numbers are 0-based.

 :param channel: The channel number to check.
 """
 if channel < 0 or channel >= SensorBase.kPDPChannels:
 raise IndexError("Requested PDP channel number %d is out of range." % channel)

 @staticmethod
[docs] def getDefaultSolenoidModule():
 """Get the number of the default solenoid module.

 :returns: The number of the default solenoid module.
 """
 return SensorBase.defaultSolenoidModule

[docs] def free(self):
 """Free the resources used by this object"""
 # TODO: delete?
 pass

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/resource.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.resource

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import weakref

__all__ = ["Resource"]

[docs]class Resource:
 """Tracks resources in the program.

 The Resource class is a convenient way of keeping track of allocated
 arbitrary resources in the program. Resources are just indices that
 have an lower and upper bound that are tracked by this class. In the
 library they are used for tracking allocation of hardware channels
 but this is purely arbitrary. The resource class does not do any actual
 allocation, but simply tracks if a given index is currently in use.
 """

 _resource_objects = []
 _global_resources = []

 @staticmethod
 def _reset():
 '''
 This clears all resources in the program and calls free() on any
 objects that have a free method.
 '''

 for resource in Resource._resource_objects:

 # free all the resources, if a free method is defined
 for ref in resource.numAllocated:
 if ref is None:
 continue
 obj = ref()
 if obj is not None and hasattr(obj, 'free'):
 obj.free()

 resource.numAllocated = [None]*len(resource.numAllocated)

 for ref in Resource._global_resources:
 obj = ref()
 if obj is not None and hasattr(obj, 'free'):
 obj.free()

 @staticmethod
 def _add_global_resource(obj):
 Resource._global_resources.append(weakref.ref(obj))

 def __init__(self, size):
 """Allocate storage for a new instance of Resource.
 Allocate a bool array of values that will get initialized to
 indicate that no resources have been allocated yet. The indicies
 of the resources are 0..size-1.

 :param size: The number of blocks to allocate
 """
 Resource._resource_objects.append(self)
 self.numAllocated = [None]*size

[docs] def allocate(self, obj, index=None):
 """Allocate a resource.

 When index is None or unspecified, a free resource value within the
 range is located and returned after it is marked allocated.
 Otherwise, it is verified unallocated, then returned.

 :param obj: The object requesting the resource.
 :param index: The resource to allocate
 :returns: The index of the allocated block.
 :raises IndexError: If there are no resources available to be
 allocated or the specified index is already used.
 """
 if index is None:
 for i in range(len(self.numAllocated)):
 r = self.numAllocated[i]
 if r is None or r() is None:
 self.numAllocated[i] = weakref.ref(obj)
 return i
 raise IndexError("No available resources")

 if index >= len(self.numAllocated) or index < 0:
 raise IndexError("Index %d out of range" % index)
 r = self.numAllocated[index]
 if r is not None and r() is not None:
 raise IndexError("Resource at index %d already allocated" % index)
 self.numAllocated[index] = weakref.ref(obj)
 return index

[docs] def free(self, index):
 """Force-free an allocated resource.
 After a resource is no longer needed, for example a destructor is
 called for a channel assignment class, free will release the resource
 value so it can be reused somewhere else in the program.

 :param index: The index of the resource to free.
 """
 self.numAllocated[index] = None

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/joystick.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.joystick

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal
import math

__all__ = ["Joystick"]

[docs]class Joystick:
 """Handle input from standard Joysticks connected to the Driver Station.

 This class handles standard input that comes from the Driver Station. Each
 time a value is requested the most recent value is returned. There is a
 single class instance for each joystick and the mapping of ports to
 hardware buttons depends on the code in the driver station.
 """

 kDefaultXAxis = 0
 kDefaultYAxis = 1
 kDefaultZAxis = 2
 kDefaultTwistAxis = 2
 kDefaultThrottleAxis = 3
 kDefaultTriggerButton = 1
 kDefaultTopButton = 2

[docs] class AxisType:
 """Represents an analog axis on a joystick."""
 kX = 0
 kY = 1
 kZ = 2
 kTwist = 3
 kThrottle = 4
 kNumAxis = 5

[docs] class ButtonType:
 """Represents a digital button on the Joystick"""
 kTrigger = 0
 kTop = 1
 kNumButton = 2

[docs] class RumbleType:
 """Represents a rumble output on the Joystick"""
 kLeftRumble_val = 0
 kRightRumble_val = 1

 def __init__(self, port, numAxisTypes=None, numButtonTypes=None):
 """Construct an instance of a joystick.

 The joystick index is the usb port on the drivers station.

 This constructor is intended for use by subclasses to configure the
 number of constants for axes and buttons.

 :param port: The port on the driver station that the joystick is
 plugged into.
 :type port: int
 :param numAxisTypes: The number of axis types.
 :type numAxisTypes: int
 :param numButtonTypes: The number of button types.
 :type numButtonTypes: int
 """
 from .driverstation import DriverStation
 self.ds = DriverStation.getInstance()
 self.port = port

 if numAxisTypes is None:
 self.axes = [0]*self.AxisType.kNumAxis
 self.axes[self.AxisType.kX] = self.kDefaultXAxis
 self.axes[self.AxisType.kY] = self.kDefaultYAxis
 self.axes[self.AxisType.kZ] = self.kDefaultZAxis
 self.axes[self.AxisType.kTwist] = self.kDefaultTwistAxis
 self.axes[self.AxisType.kThrottle] = self.kDefaultThrottleAxis
 else:
 self.axes = [0]*numAxisTypes

 if numButtonTypes is None:
 self.buttons = [0]*self.ButtonType.kNumButton
 self.buttons[self.ButtonType.kTrigger] = self.kDefaultTriggerButton
 self.buttons[self.ButtonType.kTop] = self.kDefaultTopButton
 else:
 self.buttons = [0]*numButtonTypes

 self.outputs = 0
 self.leftRumble = 0
 self.rightRumble = 0

 hal.HALReport(hal.HALUsageReporting.kResourceType_Joystick, port)

[docs] def getX(self, hand=None):
 """Get the X value of the joystick.

 This depends on the mapping of the joystick connected to the current
 port.

 :param hand: Unused
 :returns: The X value of the joystick.
 :rtype: float
 """
 return self.getRawAxis(self.axes[self.AxisType.kX])

[docs] def getY(self, hand=None):
 """Get the Y value of the joystick.

 This depends on the mapping of the joystick connected to the current
 port.

 :param hand: Unused
 :returns: The Y value of the joystick.
 :rtype: float
 """
 return self.getRawAxis(self.axes[self.AxisType.kY])

[docs] def getZ(self, hand=None):
 """Get the Z value of the joystick.

 This depends on the mapping of the joystick connected to the current
 port.

 :param hand: Unused
 :returns: The Z value of the joystick.
 :rtype: float
 """
 return self.getRawAxis(self.axes[self.AxisType.kZ])

[docs] def getTwist(self):
 """Get the twist value of the current joystick.

 This depends on the mapping of the joystick connected to the current
 port.

 :returns: The Twist value of the joystick.
 :rtype: float
 """
 return self.getRawAxis(self.axes[self.AxisType.kTwist])

[docs] def getThrottle(self):
 """Get the throttle value of the current joystick.

 This depends on the mapping of the joystick connected to the current
 port.

 :returns: The Throttle value of the joystick.
 :rtype: float
 """
 return self.getRawAxis(self.axes[self.AxisType.kThrottle])

[docs] def getRawAxis(self, axis):
 """Get the value of the axis.

 :param axis: The axis to read, starting at 0.
 :type axis: int
 :returns: The value of the axis.
 :rtype: float
 """
 return self.ds.getStickAxis(self.port, axis)

[docs] def getAxis(self, axis):
 """For the current joystick, return the axis determined by the
 argument.

 This is for cases where the joystick axis is returned programmatically,
 otherwise one of the previous functions would be preferable (for
 example :func:`getX`).

 :param axis: The axis to read.
 :type axis: :class:`Joystick.AxisType`
 :returns: The value of the axis.
 :rtype: float
 """
 if axis == self.AxisType.kX:
 return self.getX()
 elif axis == self.AxisType.kY:
 return self.getY()
 elif axis == self.AxisType.kZ:
 return self.getZ()
 elif axis == self.AxisType.kTwist:
 return self.getTwist()
 elif axis == self.AxisType.kThrottle:
 return self.getThrottle()
 else:
 raise ValueError("Invalid axis specified! Must be one of wpilib.Joystick.AxisType, or use getRawAxis instead")

[docs] def getAxisCount(self):
 """For the current joystick, return the number of axis"""
 return self.ds.getStickAxisCount(self.port)

[docs] def getTrigger(self, hand=None):
 """Read the state of the trigger on the joystick.

 Look up which button has been assigned to the trigger and read its
 state.

 :param hand: This parameter is ignored for the Joystick class and is
 only here to complete the GenericHID interface.
 :returns: The state of the trigger.
 :rtype: bool
 """
 return self.getRawButton(self.buttons[self.ButtonType.kTrigger])

[docs] def getTop(self, hand=None):
 """Read the state of the top button on the joystick.

 Look up which button has been assigned to the top and read its state.

 :param hand: This parameter is ignored for the Joystick class and is
 only here to complete the GenericHID interface.
 :returns: The state of the top button.
 :rtype: bool
 """
 return self.getRawButton(self.buttons[self.ButtonType.kTop])

[docs] def getBumper(self, hand=None):
 """This is not supported for the Joystick.

 This method is only here to complete the GenericHID interface.

 :param hand: This parameter is ignored for the Joystick class and is
 only here to complete the GenericHID interface.
 :returns: The state of the bumper (always False)
 :rtype: bool
 """
 return False

[docs] def getRawButton(self, button):
 """Get the button value (starting at button 1).

 The buttons are returned in a single 16 bit value with one bit
 representing the state of each button. The appropriate button is
 returned as a boolean value.

 :param button: The button number to be read (starting at 1).
 :type button: int
 :returns: The state of the button.
 :rtype: bool
 """
 return self.ds.getStickButton(self.port, button)

[docs] def getButtonCount(self):
 """For the current joystick, return the number of buttons

 :rtype int
 """
 return self.ds.getStickButtonCount(self.port)

[docs] def getPOV(self, pov=0):
 """Get the state of a POV on the joystick.

 :param pov: which POV (default is 0)
 :type pov: int
 :returns: The angle of the POV in degrees, or -1 if the POV is not
 pressed.
 :rtype: float
 """
 return self.ds.getStickPOV(self.port, pov)

[docs] def getPOVCount(self):
 """For the current joystick, return the number of POVs

 :rtype: int
 """
 return self.ds.getStickPOVCount(self.port)

[docs] def getButton(self, button):
 """Get buttons based on an enumerated type.

 The button type will be looked up in the list of buttons and then read.

 :param button: The type of button to read.
 :type button: :class:`.Joystick.ButtonType`
 :returns: The state of the button.
 :rtype: bool
 """
 if button == self.ButtonType.kTrigger:
 return self.getTrigger()
 elif button == self.ButtonType.kTop:
 return self.getTop()
 else:
 raise ValueError("Invalid button specified! Must be one of wpilib.Joystick.ButtonType, or use getRawButton instead")

[docs] def getMagnitude(self):
 """Get the magnitude of the direction vector formed by the joystick's
 current position relative to its origin.

 :returns: The magnitude of the direction vector
 :rtype: float
 """
 return math.sqrt(math.pow(self.getX(), 2) + math.pow(self.getY(), 2))

[docs] def getDirectionRadians(self):
 """Get the direction of the vector formed by the joystick and its
 origin in radians.

 :returns: The direction of the vector in radians
 :rtype: float
 """
 return math.atan2(self.getX(), -self.getY())

[docs] def getDirectionDegrees(self):
 """Get the direction of the vector formed by the joystick and its
 origin in degrees.

 :returns: The direction of the vector in degrees
 :rtype: float
 """
 return math.degrees(self.getDirectionRadians())

[docs] def getAxisChannel(self, axis):
 """Get the channel currently associated with the specified axis.

 :param axis: The axis to look up the channel for.
 :type axis: int
 :returns: The channel for the axis.
 :rtype: int
 """
 return self.axes[axis]

[docs] def setAxisChannel(self, axis, channel):
 """Set the channel associated with a specified axis.

 :param axis: The axis to set the channel for.
 :type axis: int
 :param channel: The channel to set the axis to.
 :type channel: int
 """
 self.axes[axis] = channel

[docs] def setRumble(self, type, value):
 """Set the rumble output for the joystick. The DS currently supports 2 rumble values,
 left rumble and right rumble

 :param type: Which rumble value to set
 :type type: :class:`.Joystick.RumbleType`
 :param value: The normalized value (0 to 1) to set the rumble to
 :type value: float
 """
 if value < 0:
 value = 0
 elif value > 1:
 value = 1
 if type == self.RumbleType.kLeftRumble_val:
 self.leftRumble = int(value*65535)
 elif type == self.RumbleType.kRightRumble_val:
 self.rightRumble = int(value*65535)
 else:
 raise ValueError("Invalid wpilib.Joystick.RumbleType: {}".format(type))
 self.flush_outputs()

[docs] def setOutput(self, outputNumber, value):
 """Set a single HID output value for the joystick.

 :param outputNumber: The index of the output to set (1-32)
 :param value: The value to set the output to.
 """
 self.outputs = (self.outputs & ~(value << (outputNumber-1))) | (value << (outputNumber-1))
 self.flush_outputs()

[docs] def setOutputs(self, value):
 """Set all HID output values for the joystick.

 :param value: The 32 bit output value (1 bit for each output)
 :type value: int
 """
 self.outputs = value
 self.flush_outputs()

[docs] def flush_outputs(self):
 """Flush all joystick HID & rumble output values to the HAL"""
 hal.HALSetJoystickOutputs(self.port, self.outputs, self.leftRumble, self.rightRumble)

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 All modules for which code is available

		wpilib._impl.dummycamera

		wpilib.adxl345_i2c

		wpilib.adxl345_spi

		wpilib.analogaccelerometer

		wpilib.analoginput

		wpilib.analogoutput

		wpilib.analogpotentiometer

		wpilib.analogtrigger

		wpilib.analogtriggeroutput

		wpilib.builtinaccelerometer

		wpilib.buttons.button

		wpilib.buttons.internalbutton

		wpilib.buttons.joystickbutton

		wpilib.buttons.networkbutton

		wpilib.buttons.trigger

		wpilib.canjaguar

		wpilib.cantalon

		wpilib.command.command

		wpilib.command.commandgroup

		wpilib.command.pidcommand

		wpilib.command.pidsubsystem

		wpilib.command.printcommand

		wpilib.command.scheduler

		wpilib.command.startcommand

		wpilib.command.subsystem

		wpilib.command.waitcommand

		wpilib.command.waitforchildren

		wpilib.command.waituntilcommand

		wpilib.compressor

		wpilib.controllerpower

		wpilib.counter

		wpilib.digitalinput

		wpilib.digitaloutput

		wpilib.digitalsource

		wpilib.doublesolenoid

		wpilib.driverstation

		wpilib.encoder

		wpilib.geartooth

		wpilib.gyro

		wpilib.i2c

		wpilib.interfaces.accelerometer

		wpilib.interfaces.controller

		wpilib.interfaces.counterbase

		wpilib.interfaces.generichid

		wpilib.interfaces.namedsendable

		wpilib.interfaces.pidoutput

		wpilib.interfaces.pidsource

		wpilib.interfaces.potentiometer

		wpilib.interfaces.speedcontroller

		wpilib.interruptablesensorbase

		wpilib.iterativerobot

		wpilib.jaguar

		wpilib.joystick

		wpilib.livewindow

		wpilib.livewindowsendable

		wpilib.motorsafety

		wpilib.pidcontroller

		wpilib.powerdistributionpanel

		wpilib.preferences

		wpilib.pwm

		wpilib.relay

		wpilib.resource

		wpilib.robotbase

		wpilib.robotdrive

		wpilib.robotstate

		wpilib.safepwm

		wpilib.samplerobot

		wpilib.sendable

		wpilib.sendablechooser

		wpilib.sensorbase

		wpilib.servo

		wpilib.smartdashboard

		wpilib.solenoid

		wpilib.solenoidbase

		wpilib.spi

		wpilib.talon

		wpilib.talonsrx

		wpilib.timer

		wpilib.ultrasonic

		wpilib.utility

		wpilib.victor

		wpilib.victorsp

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/safepwm.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.safepwm

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

from .motorsafety import MotorSafety
from .pwm import PWM

__all__ = ["SafePWM"]

[docs]class SafePWM(PWM, MotorSafety):
 """A raw PWM interface that implements the :class:`.MotorSafety` interface

 .. not_implemented: initSafePWM
 """

 def __init__(self, channel):
 """Constructor for a SafePWM object taking a channel number.

 :param channel: The channel number to be used for the underlying PWM
 object. 0-9 are on-board, 10-19 are on the MXP port.
 :type channel: int
 """
 MotorSafety.__init__(self)
 PWM.__init__(self, channel)
 self.setExpiration(0.0)
 self.setSafetyEnabled(False)

[docs] def stopMotor(self):
 """Stop the motor associated with this PWM object.
 This is called by the MotorSafety object when it has a timeout for
 this PWM and needs to stop it from running.
 """
 self.disable()

[docs] def getDescription(self):
 return "PWM %d" % self.getChannel()

[docs] def disable(self):
 self.setRaw(self.kPwmDisabled)

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/robotstate.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.robotstate

__all__ = ["RobotState"]

[docs]class RobotState:
 """Provides an interface to determine the current operating state of the
 robot code.
 """

 impl = None

 @staticmethod
[docs] def isDisabled():
 return RobotState.impl.isDisabled()

 @staticmethod
[docs] def isEnabled():
 return RobotState.impl.isEnabled()

 @staticmethod
[docs] def isOperatorControl():
 return RobotState.impl.isOperatorControl()

 @staticmethod
[docs] def isAutonomous():
 return RobotState.impl.isAutonomous()

 @staticmethod
[docs] def isTest():
 return RobotState.impl.isTest()

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/geartooth.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.geartooth

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal

from .counter import Counter
from .livewindow import LiveWindow

__all__ = ["GearTooth"]

[docs]class GearTooth(Counter):
 """Interface to the gear tooth sensor supplied by FIRST

 Currently there is no reverse sensing on the gear tooth sensor, but in
 future versions we might implement the necessary timing in the FPGA to
 sense direction.
 """

 kGearToothThreshold = 55e-6

[docs] def enableDirectionSensing(self, directionSensitive):
 if directionSensitive:
 self.setPulseLengthMode(GearTooth.kGearToothThreshold)

 def __init__(self, channel, directionSensitive=False):
 """Construct a GearTooth sensor.

 :param channel: The DIO channel index or DigitalSource that the sensor
 is connected to.
 :type channel: int
 :param directionSensitive: True to enable the pulse length decoding in
 hardware to specify count direction. Defaults to False.
 :type directionSensitive: bool
 """
 super().__init__(channel)
 self.enableDirectionSensing(directionSensitive)
 if hasattr(self.upSource, "getChannel"):
 if directionSensitive:
 hal.HALReport(hal.HALUsageReporting.kResourceType_GearTooth,
 self.upSource.getChannel(), 0, "D")
 else:
 hal.HALReport(hal.HALUsageReporting.kResourceType_GearTooth,
 self.upSource.getChannel(), 0)
 LiveWindow.addSensorChannel("GearTooth", self.upSource.getChannel(),
 self)

 # Live Window code, only does anything if live window is activated.

 def getSmartDashboardType(self):
 return "Gear Tooth"

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/i2c.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.i2c

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal
import weakref

__all__ = ["I2C"]

def _freeI2C(port):
 hal.i2CClose(port)

[docs]class I2C:
 """I2C bus interface class.

 This class is intended to be used by sensor (and other I2C device) drivers.
 It probably should not be used directly.
 """
[docs] class Port:
 kOnboard = 0
 kMXP = 1

 def __init__(self, port, deviceAddress):
 """Constructor.

 :param port: The I2C port the device is connected to.
 :param deviceAddress: The address of the device on the I2C bus.
 """
 self.port = port
 self.deviceAddress = deviceAddress

 hal.i2CInitialize(self.port)
 self._i2c_finalizer = weakref.finalize(self, _freeI2C, self.port)

 hal.HALReport(hal.HALUsageReporting.kResourceType_I2C, deviceAddress)

[docs] def transaction(self, dataToSend, receiveSize):
 """Generic transaction.

 This is a lower-level interface to the I2C hardware giving you more
 control over each transaction.

 :param dataToSend:
 Data to send as part of the transaction.
 :param receiveSize:
 Number of bytes to read from the device. [0..7]
 :returns: Data received from the device.
 """
 return hal.i2CTransaction(self.port, self.deviceAddress,
 dataToSend, receiveSize)

[docs] def addressOnly(self):
 """Attempt to address a device on the I2C bus.

 This allows you to figure out if there is a device on the I2C bus that
 responds to the address specified in the constructor.

 :returns: Transfer Aborted... False for success, True for aborted.
 """
 try:
 self.transaction([], 0)
 except IOError:
 return True
 return False

[docs] def write(self, registerAddress, data):
 """Execute a write transaction with the device.

 Write a single byte to a register on a device and wait until the
 transaction is complete.

 :param registerAddress:
 The address of the register on the device to be written.
 :param data: The byte to write to the register on the device.
 :returns: Transfer Aborted... False for success, True for aborted.
 """
 try:
 hal.i2CWrite(self.port, self.deviceAddress, [registerAddress, data])
 except IOError:
 return True
 return False

[docs] def writeBulk(self, data):
 """Execute a write transaction with the device.

 Write multiple bytes to a register on a device and wait until the
 transaction is complete.

 :param data: The data to write to the device.
 :returns: Transfer Aborted... False for success, True for aborted.
 """
 try:
 hal.i2CWrite(self.port, self.deviceAddress, data)
 except IOError:
 return True
 return False

[docs] def read(self, registerAddress, count):
 """Execute a read transaction with the device.

 Read 1 to 7 bytes from a device. Most I2C devices will auto-increment
 the register pointer internally allowing you to read up to 7
 consecutive registers on a device in a single transaction.

 :param registerAddress: The register to read first in the transaction.
 :param count: The number of bytes to read in the transaction. [1..7]
 :returns: The data read from the device.
 """
 if count < 1 or count > 7:
 raise ValueError("count must be between 1 and 7")
 return self.transaction([registerAddress], count)

[docs] def readOnly(self, count):
 """Execute a read only transaction with the device.

 Read 1 to 7 bytes from a device. This method does not write any data
 to prompt the device.

 :param count: The number of bytes to read in the transaction. [1..7]
 :returns: The data read from the device.
 """
 if count < 1 or count > 7:
 raise ValueError("count must be between 1 and 7")
 hal.i2CRead(self.port, self.deviceAddress, count)

[docs] def broadcast(self, registerAddress, data):
 """Send a broadcast write to all devices on the I2C bus.

 .. warning:: This is not currently implemented!

 :param registerAddress:
 The register to write on all devices on the bus.
 :param data: The value to write to the devices.
 """
 raise NotImplementedError

[docs] def verifySensor(self, registerAddress, expected):
 """Verify that a device's registers contain expected values.

 Most devices will have a set of registers that contain a known value
 that can be used to identify them. This allows an I2C device driver
 to easily verify that the device contains the expected value.

 The device must support and be configured to use register
 auto-increment.

 :param registerAddress:
 The base register to start reading from the device.
 :param expected: The values expected from the device.
 :returns: True if the sensor was verified to be connected
 """
 # TODO: Make use of all 7 read bytes
 count = len(expected)
 for i in range(0, count, 4):
 toRead = 4
 if (count - i) < 4:
 toRead = count - i
 # Read the chunk of data. Return False if the sensor does not
 # respond.
 try:
 deviceData = self.read(registerAddress, toRead)
 except IOError:
 return False

 for j in range(toRead):
 if deviceData[j] != expected[i + j]:
 return False

 registerAddress += count

 return True

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/encoder.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.encoder

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal
import warnings
import weakref

from .interfaces.counterbase import CounterBase
from .interfaces.pidsource import PIDSource
from .counter import Counter
from .digitalinput import DigitalInput
from .livewindow import LiveWindow
from .resource import Resource
from .sensorbase import SensorBase

from ._impl.utils import match_arglist, HasAttribute

__all__ = ["Encoder"]

def _freeEncoder(encoder):
 hal.freeEncoder(encoder)

[docs]class Encoder(SensorBase):
 """Reads from quadrature encoders.

 Quadrature encoders are devices that count
 shaft rotation and can sense direction. The output of the QuadEncoder class
 is an integer that can count either up or down, and can go negative for
 reverse direction counting. When creating QuadEncoders, a direction is
 supplied that changes the sense of the output to make code more readable
 if the encoder is mounted such that forward movement generates negative
 values. Quadrature encoders have two digital outputs, an A Channel and a
 B Channel that are out of phase with each other to allow the FPGA to do
 direction sensing.

 All encoders will immediately start counting - reset() them if you need
 them to be zeroed before use.

 Instance variables:

 - aSource: The A phase of the quad encoder
 - bSource: The B phase of the quad encoder
 - indexSource: The index source (available on some encoders)

 .. not_implemented: initEncoder
 """

[docs] class IndexingType:
 kResetWhileHigh = 0
 kResetWhileLow = 1
 kResetOnFallingEdge = 2
 kResetOnRisingEdge = 3

 EncodingType = CounterBase.EncodingType
 PIDSourceParameter = PIDSource.PIDSourceParameter

 def __init__(self, *args, **kwargs):
 """Encoder constructor. Construct a Encoder given a and b channels
 and optionally an index channel.

 The encoder will start counting immediately.

 The a, b, and optional index channel arguments may be either channel
 numbers or `DigitalSource` sources. There may also be a boolean
 reverseDirection, and an encodingType according to the following
 list.

 - aSource, bSource
 - aSource, bSource, reverseDirection
 - aSource, bSource, reverseDirection, encodingType
 - aSource, bSource, indexSource, reverseDirection
 - aSource, bSource, indexSource
 - aChannel, bChannel
 - aChannel, bChannel, reverseDirection
 - aChannel, bChannel, reverseDirection, encodingType
 - aChannel, bChannel, indexChannel, reverseDirection
 - aChannel, bChannel, indexChannel

 For positional arguments, if the passed object has a
 `getChannelForRouting` function, it is assumed to be a DigitalSource.

 Alternatively, sources and/or channels may be passed as keyword
 arguments. The behavior of specifying both a source and a number
 for the same channel is undefined, as is passing both a positional
 and a keyword argument for the same channel.

 In addition, keyword parameters may be provided for reverseDirection
 and inputType.

 :param aSource: The source that should be used for the a channel.
 :param bSource: The source that should be used for the b channel.
 :param indexSource: The source that should be used for the index
 channel.
 :param aChannel: The digital input index that should be used for
 the a channel.
 :param bChannel: The digital input index that should be used for
 the b channel.
 :param indexChannel: The digital input index that should be used
 for the index channel.
 :param reverseDirection:
 Represents the orientation of the encoder and inverts the
 output values if necessary so forward represents positive
 values. Defaults to False if unspecified.
 :param encodingType:
 Either k1X, k2X, or k4X to indicate 1X, 2X or 4X decoding. If
 4X is selected, then an encoder FPGA object is used and the
 returned counts will be 4x the encoder spec'd value since all
 rising and falling edges are counted. If 1X or 2X are selected
 then a counter object will be used and the returned value will
 either exactly match the spec'd count or be double (2x) the
 spec'd count. Defaults to k4X if unspecified.
 :type encodingType: :class:`Encoder.EncodingType`
 """
 a_source_arg = ("aSource", HasAttribute("getChannelForRouting"))
 b_source_arg = ("bSource", HasAttribute("getChannelForRouting"))
 index_source_arg = ("indexSource", HasAttribute("getChannelForRouting"))
 a_channel_arg = ("aChannel", int)
 b_channel_arg = ("bChannel", int)
 index_channel_arg = ("indexChannel", int)

 argument_templates = [[a_source_arg, b_source_arg],
 [a_source_arg, b_source_arg, ("reverseDirection", bool)],
 [a_source_arg, b_source_arg, ("reverseDirection", bool), ("encodingType", int)],
 [a_source_arg, b_source_arg, index_source_arg],
 [a_source_arg, b_source_arg, index_source_arg, ("reverseDirection", bool)],
 [a_channel_arg, b_channel_arg],
 [a_channel_arg, b_channel_arg, ("reverseDirection", bool)],
 [a_channel_arg, b_channel_arg, ("reverseDirection", bool), ("encodingType", int)],
 [a_channel_arg, b_channel_arg, index_channel_arg],
 [a_channel_arg, b_channel_arg, index_channel_arg, ("reverseDirection", bool)]]

 _, results = match_arglist('Encoder.__init__',
 args, kwargs, argument_templates)

 # keyword arguments
 aSource = results.pop("aSource", None)
 bSource = results.pop("bSource", None)
 indexSource = results.pop("indexSource", None)
 aChannel = results.pop("aChannel", None)
 bChannel = results.pop("bChannel", None)
 indexChannel = results.pop("indexChannel", None)
 reverseDirection = results.pop("reverseDirection", False)
 encodingType = results.pop("encodingType", self.EncodingType.k4X)

 # convert channels into sources
 self.allocatedA = False
 self.allocatedB = False
 self.allocatedIndex = False

 if aSource is None:
 if aChannel is None:
 raise ValueError("didn't specify A channel")
 aSource = DigitalInput(aChannel)
 self.allocatedA = True
 if bSource is None:
 if bChannel is None:
 raise ValueError("didn't specify B channel")
 bSource = DigitalInput(bChannel)
 self.allocatedB = True
 if indexSource is None and indexChannel is not None:
 indexSource = DigitalInput(indexChannel)
 self.allocatedIndex = True

 # save to instance variables
 self.aSource = aSource
 self.bSource = bSource
 self.indexSource = indexSource
 self.encodingType = encodingType
 self.distancePerPulse = 1.0 # distance of travel for each encoder tick
 self.pidSource = PIDSource.PIDSourceParameter.kDistance
 self._encoder = None
 self.counter = None
 self.index = 0

 if encodingType == self.EncodingType.k4X:
 self._encoder, self.index = hal.initializeEncoder(
 aSource.getModuleForRouting(),
 aSource.getChannelForRouting(),
 aSource.getAnalogTriggerForRouting(),
 bSource.getModuleForRouting(),
 bSource.getChannelForRouting(),
 bSource.getAnalogTriggerForRouting(),
 reverseDirection)
 self._encoder_finalizer = \
 weakref.finalize(self, _freeEncoder, self._encoder)
 self.setMaxPeriod(.5)
 self.encodingScale = 4
 elif encodingType in (self.EncodingType.k2X, self.EncodingType.k1X):
 # Use Counter object for 1x and 2x encoding
 self.counter = Counter(encodingType, aSource, bSource,
 reverseDirection)
 if encodingType == self.encodingType.k2X:
 self.encodingScale = 2
 else:
 self.encodingScale = 1
 self.index = self.counter.getFPGAIndex()
 else:
 raise ValueError("unrecognized encodingType: %s" % encodingType)

 # Need this to free on unit test wpilib reset
 Resource._add_global_resource(self)

 if self.indexSource is not None:
 self.setIndexSource(self.indexSource)

 hal.HALReport(hal.HALUsageReporting.kResourceType_Encoder,
 self.index, encodingType)
 LiveWindow.addSensorChannel("Encoder", aSource.getChannelForRouting(),
 self)

 @property
[docs] def encoder(self):
 if not self._encoder_finalizer.alive:
 return None
 return self._encoder

[docs] def getFPGAIndex(self):
 """
 :returns: The Encoder's FPGA index
 """
 return self.index

[docs] def getEncodingScale(self):
 """
 :returns: The encoding scale factor 1x, 2x, or 4x, per the requested
 encodingType. Used to divide raw edge counts down to spec'd counts.
 """
 return self.encodingScale

[docs] def free(self):
 if self.aSource is not None and self.allocatedA:
 self.aSource.free()
 self.allocatedA = False
 if self.bSource is not None and self.allocatedB:
 self.bSource.free()
 self.allocatedB = False
 if self.indexSource is not None and self.allocatedIndex:
 self.indexSource.free()
 self.allocatedIndex = False
 self.aSource = None
 self.bSource = None
 self.indexSource = None
 if self.counter is not None:
 self.counter.free()
 self.counter = None
 else:
 self._encoder_finalizer()

[docs] def getRaw(self):
 """Gets the raw value from the encoder. The raw value is the actual
 count unscaled by the 1x, 2x, or 4x scale factor.

 :returns: Current raw count from the encoder
 """
 if self.counter is not None:
 return self.counter.get()
 return hal.getEncoder(self.encoder)

[docs] def get(self):
 """Gets the current count. Returns the current count on the Encoder.
 This method compensates for the decoding type.

 :returns: Current count from the Encoder adjusted for the 1x, 2x, or
 4x scale factor.
 """
 return int(self.getRaw() * self.decodingScaleFactor())

[docs] def reset(self):
 """Reset the Encoder distance to zero. Resets the current count to
 zero on the encoder.
 """
 if self.counter is not None:
 self.counter.reset()
 elif self.encoder is not None:
 hal.resetEncoder(self.encoder)
 else:
 raise ValueError("operation on freed port")

[docs] def getPeriod(self):
 """Returns the period of the most recent pulse. Returns the period of
 the most recent Encoder pulse in seconds. This method compensates for
 the decoding type.

 .. deprecated::
 Use :func:`getRate` in favor of this method. This returns unscaled
 periods and :func:`getRate` scales using value from
 :func:`getDistancePerPulse`.

 :returns: Period in seconds of the most recent pulse.
 """
 warnings.warn("use getRate instead", DeprecationWarning)
 if self.counter is not None:
 measuredPeriod = self.counter.getPeriod() / self.decodingScaleFactor()
 elif self.encoder is not None:
 measuredPeriod = hal.getEncoderPeriod(self.encoder)
 else:
 raise ValueError("operation on freed port")
 return measuredPeriod

[docs] def setMaxPeriod(self, maxPeriod):
 """Sets the maximum period for stopped detection. Sets the value that
 represents the maximum period of the Encoder before it will assume
 that the attached device is stopped. This timeout allows users to
 determine if the wheels or other shaft has stopped rotating. This
 method compensates for the decoding type.

 :param maxPeriod: The maximum time between rising and falling edges
 before the FPGA will report the device stopped. This is expressed
 in seconds.
 """
 if self.counter is not None:
 self.counter.setMaxPeriod(maxPeriod * self.decodingScaleFactor())
 elif self.encoder is not None:
 hal.setEncoderMaxPeriod(self.encoder, maxPeriod)
 else:
 raise ValueError("operation on freed port")

[docs] def getStopped(self):
 """Determine if the encoder is stopped. Using the MaxPeriod value, a
 boolean is returned that is True if the encoder is considered stopped
 and False if it is still moving. A stopped encoder is one where the
 most recent pulse width exceeds the MaxPeriod.

 :returns: True if the encoder is considered stopped.
 """
 if self.counter is not None:
 return self.counter.getStopped()
 elif self.encoder is not None:
 return hal.getEncoderStopped(self.encoder)
 else:
 raise ValueError("operation on freed port")

[docs] def getDirection(self):
 """The last direction the encoder value changed.

 :returns: The last direction the encoder value changed.
 """
 if self.counter is not None:
 return self.counter.getDirection()
 return hal.getEncoderDirection(self.encoder)

[docs] def decodingScaleFactor(self):
 """The scale needed to convert a raw counter value into a number of
 encoder pulses.
 """
 if self.encodingType == self.EncodingType.k1X:
 return 1.0
 elif self.encodingType == self.EncodingType.k2X:
 return 0.5
 elif self.encodingType == self.EncodingType.k4X:
 return 0.25
 else:
 raise ValueError("unexpected encodingType: %d" % self.encodingType)

[docs] def getDistance(self):
 """Get the distance the robot has driven since the last reset.

 :returns: The distance driven since the last reset as scaled by the
 value from :func:`setDistancePerPulse`.
 """
 return self.getRaw() * self.decodingScaleFactor() * self.distancePerPulse

[docs] def getRate(self):
 """Get the current rate of the encoder. Units are distance per second
 as scaled by the value from :func:`setDistancePerPulse`.

 :returns: The current rate of the encoder.
 """
 return self.distancePerPulse / self.getPeriod()

[docs] def setMinRate(self, minRate):
 """Set the minimum rate of the device before the hardware reports it
 stopped.

 :param minRate: The minimum rate. The units are in distance per
 second as scaled by the value from :func:`setDistancePerPulse`.
 """
 self.setMaxPeriod(self.distancePerPulse / minRate)

[docs] def setDistancePerPulse(self, distancePerPulse):
 """Set the distance per pulse for this encoder. This sets the
 multiplier used to determine the distance driven based on the count
 value from the encoder. Do not include the decoding type in this
 scale. The library already compensates for the decoding type. Set
 this value based on the encoder's rated Pulses per Revolution and
 factor in gearing reductions following the encoder shaft. This
 distance can be in any units you like, linear or angular.

 :param distancePerPulse: The scale factor that will be used to convert
 pulses to useful units.
 """
 self.distancePerPulse = distancePerPulse

[docs] def setReverseDirection(self, reverseDirection):
 """Set the direction sensing for this encoder. This sets the direction
 sensing on the encoder so that it could count in the correct software
 direction regardless of the mounting.

 :param reverseDirection: True if the encoder direction should be
 reversed
 """
 if self.counter is not None:
 self.counter.setReverseDirection(reverseDirection)
 else:
 raise NotImplementedError # FIXME?

[docs] def setSamplesToAverage(self, samplesToAverage):
 """Set the Samples to Average which specifies the number of samples
 of the timer to average when calculating the period. Perform averaging
 to account for mechanical imperfections or as oversampling to increase
 resolution.

 TODO: Should this raise an exception, so that the user has to
 deal with giving an incorrect value?

 :param samplesToAverage: The number of samples to average from 1 to
 127.
 """
 if self.encodingType == self.EncodingType.k4X:
 hal.setEncoderSamplesToAverage(self.encoder, samplesToAverage)
 elif self.encodingType in (self.EncodingType.k2X,
 self.EncodingType.k1X):
 self.counter.setSamplesToAverage(samplesToAverage)

[docs] def getSamplesToAverage(self):
 """Get the Samples to Average which specifies the number of samples
 of the timer to average when calculating the period. Perform averaging
 to account for mechanical imperfections or as oversampling to increase
 resolution.

 :returns: The number of samples being averaged (from 1 to 127)
 """
 if self.encodingType.value == self.EncodingType.k4X:
 return hal.getEncoderSamplesToAverage(self.encoder)
 elif self.encodingType in (self.EncodingType.k2X,
 self.EncodingType.k1X):
 return self.counter.getSamplesToAverage()
 else:
 return 1

[docs] def setPIDSourceParameter(self, pidSource):
 """Set which parameter of the encoder you are using as a process
 control variable. The encoder class supports the rate and distance
 parameters.

 :param pidSource: An enum to select the parameter.
 """
 if pidSource not in (0, 1):
 raise ValueError("invalid pidSource: %s" % pidSource)
 self.pidSource = pidSource

[docs] def pidGet(self):
 """Implement the PIDSource interface.

 :returns: The current value of the selected source parameter.
 """
 if self.pidSource == self.PIDSourceParameter.kDistance:
 return self.getDistance()
 elif self.pidSource == self.PIDSourceParameter.kRate:
 return self.getRate()
 else:
 return 0.0

[docs] def setIndexSource(self, source, indexing_type=IndexingType.kResetOnRisingEdge):
 """
 Set the index source for the encoder. When this source rises, the encoder count automatically resets.

 :param source: Either an initialized DigitalSource or a DIO channel number
 :type: Either a :class:`wpilib.DigitalInput` or number
 :param indexing_type: The state that will cause the encoder to reset
 :type: A value from :class:`wpilib.DigitalInput.IndexingType`
 """
 if hasattr(source, "getChannelForRouting"):
 self.indexSource = source
 else:
 self.indexSource = DigitalInput(source)

 activeHigh = (indexing_type == self.IndexingType.kResetWhileHigh or indexing_type == self.IndexingType.kResetOnRisingEdge)
 edgeSensitive = (indexing_type == self.IndexingType.kResetOnFallingEdge or indexing_type == self.IndexingType.kResetOnRisingEdge)

 hal.setEncoderIndexSource(self.encoder, self.indexSource.getChannelForRouting(),
 self.indexSource.getAnalogTriggerForRouting(), activeHigh, edgeSensitive)

 # Live Window code, only does anything if live window is activated.

 def getSmartDashboardType(self):
 if self.encodingType == self.EncodingType.k4X:
 return "Quadrature Encoder"
 return "Encoder"

 def updateTable(self):
 table = self.getTable()
 if table is not None:
 table.putNumber("Speed", self.getRate())
 table.putNumber("Distance", self.getDistance())
 table.putNumber("Distance per Tick", self.distancePerPulse)

 def startLiveWindowMode(self):
 pass

 def stopLiveWindowMode(self):
 pass

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/sendable.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.sendable

__all__ = ["Sendable"]

[docs]class Sendable:
 """The base interface for objects that can be sent over the network
 through network tables"""

 def initTable(self, subtable):
 """Initializes a table for this sendable object.

 :param subtable: The table to put the values in.
 """
 self.table = subtable
 if hasattr(self, "updateTable"):
 self.updateTable()

 def getTable(self):
 """:returns: the table that is currently associated with the sendable"""
 return getattr(self, "table", None)

 def getSmartDashboardType(self):
 """
 :returns: the string representation of the named data type that
 will be used by the smart dashboard for this sendable
 """
 raise NotImplementedError

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/ultrasonic.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.ultrasonic

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal
import threading
import weakref

from .counter import Counter
from .livewindow import LiveWindow
from .sensorbase import SensorBase
from .timer import Timer

__all__ = ["Ultrasonic"]

[docs]class Ultrasonic(SensorBase):
 """Ultrasonic rangefinder control

 The Ultrasonic rangefinder measures
 absolute distance based on the round-trip time of a ping generated by
 the controller. These sensors use two transducers, a speaker and a
 microphone both tuned to the ultrasonic range. A common ultrasonic
 sensor, the Daventech SRF04 requires a short pulse to be generated on
 a digital channel. This causes the chirp to be emmitted. A second line
 becomes high as the ping is transmitted and goes low when the echo is
 received. The time that the line is high determines the round trip
 distance (time of flight).

 .. not_implemented: initialize
 """

[docs] class Unit:
 """The units to return when PIDGet is called"""
 kInches = 0
 kMillimeters = 1

 #: Time (sec) for the ping trigger pulse.

 kPingTime = 10 * 1e-6

 #: Priority that the ultrasonic round robin task runs.
 kPriority = 90

 #: Max time (ms) between readings.
 kMaxUltrasonicTime = 0.1
 kSpeedOfSoundInchesPerSec = 1130.0 * 12.0

 _static_mutex = threading.RLock()

 #: ultrasonic sensor list
 sensors = weakref.WeakSet()

 #: Automatic round robin mode
 automaticEnabled = False
 instances = 0
 _thread = None

 @staticmethod
[docs] def isAutomaticMode():
 with Ultrasonic._static_mutex:
 return Ultrasonic.automaticEnabled

 @staticmethod
[docs] def ultrasonicChecker():
 """Background task that goes through the list of ultrasonic sensors
 and pings each one in turn. The counter is configured to read the
 timing of the returned echo pulse.

 .. warning:: DANGER WILL ROBINSON, DANGER WILL ROBINSON: This code runs
 as a task and assumes that none of the ultrasonic sensors will
 change while it's running. If one does, then this will certainly
 break. Make sure to disable automatic mode before changing
 anything with the sensors!!
 """
 while Ultrasonic.isAutomaticMode():
 count = 0
 for u in Ultrasonic.sensors:
 if not Ultrasonic.isAutomaticMode():
 return
 if u is None:
 continue
 count += 1
 if u.isEnabled():
 # do the ping
 u.pingChannel.pulse(u.pingChannel.channel,
 Ultrasonic.kPingTime)
 Timer.delay(.1) # wait for ping to return
 if not count:
 return

 def __init__(self, pingChannel, echoChannel, units=Unit.kInches):
 """Create an instance of the Ultrasonic Sensor.
 This is designed to supchannel the Daventech SRF04 and Vex ultrasonic
 sensors.

 :param pingChannel: The digital output channel that sends the pulse
 to initiate the sensor sending the ping.
 :param echoChannel: The digital input channel that receives the echo.
 The length of time that the echo is high represents the round
 trip time of the ping, and the distance.
 :param units: The units returned in either kInches or kMillimeters
 """
 # Convert to DigitalInput and DigitalOutput if necessary
 if not hasattr(pingChannel, 'channel'):
 from .digitaloutput import DigitalOutput
 pingChannel = DigitalOutput(pingChannel)
 if not hasattr(echoChannel, 'channel'):
 from .digitalinput import DigitalInput
 echoChannel = DigitalInput(echoChannel)
 self.pingChannel = pingChannel
 self.echoChannel = echoChannel
 self.units = units
 self.enabled = True # make it available for round robin scheduling

 if Ultrasonic._thread is None or not Ultrasonic._thread.is_alive():
 Ultrasonic._thread = threading.Thread(
 target=Ultrasonic.ultrasonicChecker,
 name="ultrasonicChecker")
 Ultrasonic.daemon = True

 # set up counter for this sensor
 self.counter = Counter(self.echoChannel)
 self.counter.setMaxPeriod(1.0)
 self.counter.setSemiPeriodMode(True)
 self.counter.reset()
 Ultrasonic.sensors.add(self)

 Ultrasonic.instances += 1
 hal.HALReport(hal.HALUsageReporting.kResourceType_Ultrasonic,
 Ultrasonic.instances)
 LiveWindow.addSensor("Ultrasonic", self.echoChannel.getChannel(), self)

[docs] def setAutomaticMode(self, enabling):
 """Turn Automatic mode on/off. When in Automatic mode, all sensors
 will fire in round robin, waiting a set time between each sensor.

 :param enabling:
 Set to true if round robin scheduling should start for all the
 ultrasonic sensors. This scheduling method assures that the
 sensors are non-interfering because no two sensors fire at the
 same time. If another scheduling algorithm is preffered, it
 can be implemented by pinging the sensors manually and waiting
 for the results to come back.
 :type enabling: bool
 """
 if enabling and Ultrasonic.isAutomaticMode():
 return # ignore the case of no change
 with Ultrasonic._static_mutex:
 Ultrasonic.automaticEnabled = enabling

 if enabling:
 # enabling automatic mode.
 # Clear all the counters so no data is valid
 for u in Ultrasonic.sensors:
 if u is not None:
 u.counter.reset()
 # Start round robin task
 Ultrasonic._thread.start()
 else:
 # disabling automatic mode. Wait for background task to stop
 # running.
 while Ultrasonic._thread.is_alive():
 # wait just a little longer than the ping time for
 # round-robin to stop
 Timer.delay(.15)
 # clear all the counters (data now invalid) since automatic mode
 # is stopped
 for u in Ultrasonic.sensors:
 if u is not None:
 u.counter.reset()

[docs] def ping(self):
 """Single ping to ultrasonic sensor. Send out a single ping to the
 ultrasonic sensor. This only works if automatic (round robin) mode is
 disabled. A single ping is sent out, and the counter should count the
 semi-period when it comes in. The counter is reset to make the current
 value invalid.
 """
 # turn off automatic round robin if pinging single sensor
 self.setAutomaticMode(False)
 # reset the counter to zero (invalid data now)
 self.counter.reset()
 # do the ping to start getting a single range
 self.pingChannel.pulse(self.pingChannel.channel, Ultrasonic.kPingTime)

[docs] def isRangeValid(self):
 """Check if there is a valid range measurement. The ranges are
 accumulated in a counter that will increment on each edge of the
 echo (return) signal. If the count is not at least 2, then the range
 has not yet been measured, and is invalid.

 :returns: True if the range is valid
 :rtype: bool
 """
 return self.counter.get() > 1

[docs] def getRangeInches(self):
 """Get the range in inches from the ultrasonic sensor.

 :returns: Range in inches of the target returned from the ultrasonic
 sensor. If there is no valid value yet, i.e. at least one
 measurement hasn't completed, then return 0.
 :rtype: float
 """
 if self.isRangeValid():
 return self.counter.getPeriod() * \
 Ultrasonic.kSpeedOfSoundInchesPerSec / 2.0
 else:
 return 0

[docs] def getRangeMM(self):
 """Get the range in millimeters from the ultrasonic sensor.

 :returns: Range in millimeters of the target returned by the
 ultrasonic sensor. If there is no valid value yet, i.e. at least
 one measurement hasn't complted, then return 0.
 :rtype: float
 """
 return self.getRangeInches() * 25.4

[docs] def pidGet(self):
 """Get the range in the current DistanceUnit (PIDSource interface).

 :returns: The range in DistanceUnit
 :rtype: float
 """
 if self.units == Ultrasonic.Unit.kInches:
 return self.getRangeInches()
 elif self.units == Ultrasonic.Unit.kMillimeters:
 return self.getRangeMM()
 else:
 return 0.0

[docs] def setDistanceUnits(self, units):
 """Set the current DistanceUnit that should be used for the
 PIDSource interface.

 :param units: The DistanceUnit that should be used.
 """

 if units not in [self.Unit.kInches, self.Unit.kMillimeters]:
 raise ValueError("Invalid units argument '%s'" % units)

 self.units = units

[docs] def getDistanceUnits(self):
 """Get the current DistanceUnit that is used for the PIDSource
 interface.

 :returns: The type of DistanceUnit that is being used.
 """
 return self.units

[docs] def isEnabled(self):
 """Is the ultrasonic enabled.

 :returns: True if the ultrasonic is enabled
 """
 return self.enabled

[docs] def setEnabled(self, enable):
 """Set if the ultrasonic is enabled.

 :param enable: set to True to enable the ultrasonic
 :type enable: bool
 """
 self.enabled = bool(enable)

 # Live Window code, only does anything if live window is activated.

 def getSmartDashboardType(self):
 return "Ultrasonic"

 def updateTable(self):
 table = self.getTable()
 if table is not None:
 table.putNumber("Value", self.getRangeInches())

 def startLiveWindowMode(self):
 pass

 def stopLiveWindowMode(self):
 pass

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/analogtriggeroutput.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.analogtriggeroutput

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal

__all__ = ["AnalogTriggerOutput"]

[docs]class AnalogTriggerOutput:
 """Represents a specific output from an :class:`.AnalogTrigger`

 This class is used to get the current output value and also as a
 :class:`.DigitalSource` to provide routing of an output to digital
 subsystems on the FPGA such as :class:`.Counter`, :class:`.Encoder:,
 and :class:`.Interrupt`.

 The TriggerState output indicates the primary output value of the trigger.
 If the analog signal is less than the lower limit, the output is False. If
 the analog value is greater than the upper limit, then the output is True.
 If the analog value is in between, then the trigger output state maintains
 its most recent value.

 The InWindow output indicates whether or not the analog signal is inside
 the range defined by the limits.

 The RisingPulse and FallingPulse outputs detect an instantaneous transition
 from above the upper limit to below the lower limit, and vise versa. These
 pulses represent a rollover condition of a sensor and can be routed to an
 up / down couter or to interrupts. Because the outputs generate a pulse,
 they cannot be read directly. To help ensure that a rollover condition is
 not missed, there is an average rejection filter available that operates on
 the upper 8 bits of a 12 bit number and selects the nearest outlyer of 3
 samples. This will reject a sample that is (due to averaging or sampling)
 errantly between the two limits. This filter will fail if more than one
 sample in a row is errantly in between the two limits. You may see this
 problem if attempting to use this feature with a mechanical rollover
 sensor, such as a 360 degree no-stop potentiometer without signal
 conditioning, because the rollover transition is not sharp / clean enough.
 Using the averaging engine may help with this, but rotational speeds of the
 sensor will then be limited.
 """

 def __init__(self, trigger, outputType):
 """Create an object that represents one of the four outputs from an
 analog trigger.

 Because this class derives from DigitalSource, it can be passed into
 routing functions for Counter, Encoder, etc.

 :param trigger: The trigger for which this is an output.
 :param outputType: An enum that specifies the output on the trigger
 to represent.
 """
 self.trigger = trigger
 self.outputType = outputType

 hal.HALReport(hal.HALUsageReporting.kResourceType_AnalogTriggerOutput,
 trigger.index, outputType)

[docs] def free(self):
 pass

[docs] def get(self):
 """Get the state of the analog trigger output.

 :returns: The state of the analog trigger output.
 :rtype: :class:`.AnalogTriggerType`
 """
 return hal.getAnalogTriggerOutput(self.trigger.port, self.outputType)

[docs] def getChannelForRouting(self):
 return (self.trigger.index << 2) + self.outputType

[docs] def getModuleForRouting(self):
 return (self.trigger.index >> 2)

[docs] def getAnalogTriggerForRouting(self):
 return True

[docs] class AnalogTriggerType:
 """Defines the state in which the :class:`.AnalogTrigger` triggers"""
 kInWindow = hal.AnalogTriggerType.kInWindow
 kState = hal.AnalogTriggerType.kState
 kRisingPulse = hal.AnalogTriggerType.kRisingPulse
 kFallingPulse = hal.AnalogTriggerType.kFallingPulse

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/solenoid.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.solenoid

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal
import warnings

from .livewindow import LiveWindow
from .sensorbase import SensorBase
from .solenoidbase import SolenoidBase

__all__ = ["Solenoid"]

[docs]class Solenoid(SolenoidBase):
 """Solenoid class for running high voltage Digital Output.

 The Solenoid class is typically used for pneumatics solenoids, but could
 be used for any device within the current spec of the PCM.

 .. not_implemented: initSolenoid
 """

 def __init__(self, *args, **kwargs):
 """Constructor.

 Arguments can be supplied as positional or keyword. Acceptable
 positional argument combinations are:

 - channel
 - moduleNumber, channel

 Alternatively, the above names can be used as keyword arguments.

 :param moduleNumber: The CAN ID of the PCM the solenoid is attached to
 :type moduleNumber: int
 :param channel: The channel on the PCM to control (0..7)
 :type channel: int
 """
 # keyword arguments
 channel = kwargs.pop("channel", None)
 moduleNumber = kwargs.pop("moduleNumber", None)

 if kwargs:
 warnings.warn("unknown keyword arguments: %s" % kwargs.keys(),
 RuntimeWarning)

 # positional arguments
 if len(args) == 1:
 channel = args[0]
 elif len(args) == 2:
 moduleNumber, channel = args
 elif len(args) != 0:
 raise ValueError("don't know how to handle %d positional arguments" % len(args))

 if moduleNumber is None:
 moduleNumber = SensorBase.getDefaultSolenoidModule()
 if channel is None:
 raise ValueError("must specify channel")

 SensorBase.checkSolenoidModule(moduleNumber)
 SensorBase.checkSolenoidChannel(channel)

 super().__init__(moduleNumber)
 self.channel = channel

 try:
 self.allocated.allocate(self, channel)
 except IndexError as e:
 raise IndexError("Solenoid channel %d on module %d is already allocated" % (channel, moduleNumber)) from e

 self.port = self.ports[channel]

 LiveWindow.addActuatorModuleChannel("Solenoid", moduleNumber, channel,
 self)
 hal.HALReport(hal.HALUsageReporting.kResourceType_Solenoid, channel,
 moduleNumber)

[docs] def free(self):
 """Mark the solenoid as freed."""
 self.allocated.free(self.channel)

[docs] def set(self, on):
 """Set the value of a solenoid.

 :param on: Turn the solenoid output off or on.
 :type on: bool
 """
 with self.mutex:
 hal.setSolenoid(self.port, on)

[docs] def get(self):
 """Read the current value of the solenoid.

 :returns: The current value of the solenoid.
 :rtype: bool
 """
 with self.mutex:
 return hal.getSolenoid(self.port)

[docs] def isBlackListed(self):
 """
 Check if the solenoid is blacklisted.
 If a solenoid is shorted, it is added to the blacklist and disabled until power cycle, or until faults are
 cleared. See :meth:`clearAllPCMStickyFaults`

 :returns: If solenoid is disabled due to short.
 """
 value = self.getPCMSolenoidBlackList() & (1 << self.channel)
 return value != 0

 # Live Window code, only does anything if live window is activated.

 def getSmartDashboardType(self):
 return "Solenoid"

 def updateTable(self):
 table = self.getTable()
 if table is not None:
 table.putBoolean("Value", self.get())

 def valueChanged(self, itable, key, value, bln):
 self.set(True if value else False)

 def startLiveWindowMode(self):
 self.set(False) # Stop for safety
 super().startLiveWindowMode()

 def stopLiveWindowMode(self):
 super().stopLiveWindowMode()
 self.set(False) # Stop for safety

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/analogaccelerometer.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.analogaccelerometer

#--
Copyright (c) FIRST 2008-2012. All Rights Reserved.
Open Source Software - may be modified and shared by FRC teams. The code
must be accompanied by the FIRST BSD license file in the root directory of
the project.
#--

import hal

from .analoginput import AnalogInput
from .livewindow import LiveWindow
from .livewindowsendable import LiveWindowSendable

__all__ = ["AnalogAccelerometer"]

[docs]class AnalogAccelerometer(LiveWindowSendable):
 """Analog Accelerometer

 The accelerometer reads acceleration directly through the sensor. Many
 sensors have multiple axis and can be treated as multiple devices. Each
 is calibrated by finding the center value over a period of time.

 .. not_implemented: initAccelerometer
 """

 def __init__(self, channel):
 """Create a new instance of Accelerometer from either an existing
 AnalogChannel or from an analog channel port index.

 :param channel: port index or an already initialized :class:`.AnalogInput`
 """
 if not hasattr(channel, "getAverageVoltage"):
 channel = AnalogInput(channel)
 self.analogChannel = channel
 self.voltsPerG = 1.0
 self.zeroGVoltage = 2.5
 hal.HALReport(hal.HALUsageReporting.kResourceType_Accelerometer,
 self.analogChannel.getChannel())
 LiveWindow.addSensorChannel("Accelerometer",
 self.analogChannel.getChannel(), self)

[docs] def getAcceleration(self):
 """Return the acceleration in Gs.

 The acceleration is returned units of Gs.

 :returns: The current acceleration of the sensor in Gs.
 :rtype: float
 """
 return (self.analogChannel.getAverageVoltage() - self.zeroGVoltage) / self.voltsPerG

[docs] def setSensitivity(self, sensitivity):
 """Set the accelerometer sensitivity.

 This sets the sensitivity of the accelerometer used for calculating
 the acceleration. The sensitivity varies by accelerometer model.
 There are constants defined for various models.

 :param sensitivity: The sensitivity of accelerometer in Volts per G.
 :type sensitivity: float
 """
 self.voltsPerG = sensitivity

[docs] def setZero(self, zero):
 """Set the voltage that corresponds to 0 G.

 The zero G voltage varies by accelerometer model. There are constants
 defined for various models.

 :param zero: The zero G voltage.
 :type zero: float
 """
 self.zeroGVoltage = zero

[docs] def pidGet(self):
 """Get the Acceleration for the PID Source parent.

 :returns: The current acceleration in Gs.
 :rtype: float
 """
 return self.getAcceleration()

 def getSmartDashboardType(self):
 return "Accelerometer"

 # Live Window code, only does anything if live window is activated.

 def updateTable(self):
 table = self.getTable()
 if table is not None:
 table.putNumber("Value", self.getAcceleration())

 def startLiveWindowMode(self):
 # Don't have to do anything special when entering the LiveWindow.
 pass

 def stopLiveWindowMode(self):
 # Don't have to do anything special when exiting the LiveWindow.
 pass

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_modules/wpilib/compressor.html

 Navigation

 		
 index

 		
 modules |

 		RobotPy WPILib master documentation »

 		Module code »

 Source code for wpilib.compressor

import hal

from .sensorbase import SensorBase

__all__ = ["Compressor"]

[docs]class Compressor(SensorBase):
 """Operates the PCM (Pneumatics compressor module)

 The PCM automatically will run in close-loop mode by default whenever a
 Solenoid object is created. For most cases the Compressor object does not
 need to be instantiated or used in a robot program.

 This class is only required in cases where more detailed status or to
 enable/disable closed loop control. Note: you cannot operate the
 compressor directly from this class as doing so would circumvent the
 safety provided in using the pressure switch and closed loop control.
 You can only turn off closed loop control, thereby stopping the
 compressor from operating.

 .. not_implemented: initCompressor
 """

 def __init__(self, pcmId=None):
 """Create an instance of the Compressor

 :param pcmID: The PCM CAN device ID. Most robots that use PCM will
 have a single module. Use this for supporting a second
 module other than the default.
 """
 if pcmId is None:
 pcmId = SensorBase.getDefaultSolenoidModule()
 self.pcm = hal.initializeCompressor(pcmId)

[docs] def start(self):
 """Start the compressor running in closed loop control mode.
 Use the method in cases where you would like to manually stop and
 start the compressor for applications such as conserving battery
 or making sure that the compressor motor doesn't start during
 critical operations.
 """
 self.setClosedLoopControl(True)

[docs] def stop(self):
 """Stop the compressor from running in closed loop control mode.
 Use the method in cases where you would like to manually stop and
 start the compressor for applications such as conserving battery
 or making sure that the compressor motor doesn't start during
 critical operations.
 """
 self.setClosedLoopControl(False)

[docs] def enabled(self):
 """Get the enabled status of the compressor.

 :returns: True if the compressor is on
 :rtype: bool
 """
 return hal.getCompressor(self.pcm)

[docs] def getPressureSwitchValue(self):
 """Get the current pressure switch value.

 :returns: True if the pressure is low by reading the pressure switch
 that is plugged into the PCM
 :rtype: bool
 """
 return hal.getPressureSwitch(self.pcm)

[docs] def getCompressorCurrent(self):
 """Get the current being used by the compressor.

 :returns: Current consumed in amps for the compressor motor
 :rtype: float
 """
 return hal.getCompressorCurrent(self.pcm)

[docs] def setClosedLoopControl(self, on):
 """Set the PCM in closed loop control mode.

 :param on: If True sets the compressor to be in closed loop control
 mode otherwise normal operation of the compressor is disabled.
 :type on: bool
 """
 hal.setClosedLoopControl(self.pcm, on)

[docs] def getClosedLoopControl(self):
 """Gets the current operating mode of the PCM.

 :returns: True if compressor is operating on closed-loop mode,
 otherwise return False.
 :rtype: bool
 """
 return hal.getClosedLoopControl(self.pcm)

[docs] def getCompressorCurrentTooHighFault(self):
 """
 :returns: True if PCM is in fault state : Compressor Drive is
 disabled due to compressor current being too high
 """
 return hal.getCompressorCurrentTooHighFault(self.pcm)

[docs] def getCompressorCurrentTooHighStickyFault(self):
 """
 :returns: True if PCM sticky fault is set : Compressor Drive is
 disabled due to compressor current being too high
 """
 return hal.getCompressorCurrentTooHighStickyFault(self.pcm)

[docs] def getCompressorShortedFault(self):
 """
 :returns: True if PCM is in fault state : Compressor Output
 appears to be shorted
 """
 return hal.getCompressorShortedFault(self.pcm)

[docs] def getCompressorShortedStickyFault(self):
 """
 :returns: True if PCM sticky fault is set : Compressor Output
 appears to be shorted
 """
 return hal.getCompressorShortedStickyFault(self.pcm)

[docs] def getCompressorNotConnectedFault(self):
 """
 :returns: True if PCM is in fault state : Compressor does not appear
 to be wired, i.e. compressor is not drawing enough current.
 """
 return hal.getCompressorNotConnectedFault(self.pcm)

[docs] def getCompressorNotConnectedStickyFault(self):
 """
 :returns: True if PCM sticky fault is set : Compressor does not appear
 to be wired, i.e. compressor is not drawing enough current.
 """
 return hal.getCompressorNotConnectedStickyFault(self.pcm)

[docs] def clearAllPCMStickyFaults(self):
 hal.clearAllPCMStickyFaults(self.pcm)

 def getSmartDashboardType(self):
 return "Compressor"

 def updateTable(self):
 table = self.getTable()
 if table is not None:
 table.putBoolean("Enabled", self.enabled())
 table.putBoolean("Pressure Switch", self.getPressureSwitchValue())

 © Copyright 2014, RobotPy development team.
 Created using Sphinx 1.2.2.

_static/comment-bright.png

_static/plus.png

_static/up-pressed.png

_static/file.png

_static/down.png

_static/down-pressed.png

_static/ajax-loader.gif

