

robotpy-pathfinder

[image: Documentation Status]
 [http://robotpy-pathfinder.readthedocs.io/en/stable/?badge=stable]These are python bindings around Jaci R’s PathFinder library. From the original
documentation:

Cross-Platform, Multi-Use Motion Profiling and Trajectory Generation.

Pathfinder is a library for generating Motion Profiles, a way to smoothly fit
and follow a trajectory based upon given waypoints.

Note: This requires C++ 11 and Python 3.5+

Usage

Installation and usage documentation can be found at http://robotpy-pathfinder.readthedocs.io

Contents:

	Using Pathfinder
	Installation (RobotPy on a RoboRIO)

	Installation (other)

	Generating a Trajectory

	Following a Trajectory

	Example code

	Pathfinder API
	Followers

	Modifiers

	Serialization

Using Pathfinder

Note

This documentation is a Python translation of Jaci’s Java notes that
can be found at https://github.com/JacisNonsense/Pathfinder/wiki/Pathfinder-for-FRC—Java [https://github.com/JacisNonsense/Pathfinder/wiki/Pathfinder-for-FRC---Java]

Installation (RobotPy on a RoboRIO)

Use robotpy-installer to install the precompiled package.

robotpy-installer download-opkg python36-robotpy-pathfinder
robotpy-installer install-opkg python36-robotpy-pathfinder

Installation (other)

Note that this requires a C++11 compiler to be present on your system, as I’m
not currently publishing wheels of this library.

pip3 install 'pybind11>=2.2'
pip3 install robotpy-pathfinder

Generating a Trajectory

Whenever you want to generate a trajectory, you can do so by defining a set of
waypoints and calling pathfinder.generate():

import pathfinder as pf

points = [
 pf.Waypoint(-4, -1, math.radians(-45.0)), # Waypoint @ x=-4, y=-1, exit angle=-45 degrees
 pf.Waypoint(-2, -2, 0), # Waypoint @ x=-2, y=-2, exit angle=0 radians
 pf.Waypoint(0, 0, 0), # Waypoint @ x=0, y=0, exit angle=0 radians
]

info, trajectory = pf.generate(points, pf.FIT_HERMITE_CUBIC, pf.SAMPLES_HIGH,
 dt=0.05, # 50ms
 max_velocity=1.7,
 max_acceleration=2.0,
 max_jerk=60.0)

You can also modify the trajectory for either Swerve or Tank drive:

modifier = pf.modifiers.TankModifier(trajectory).modify(0.5)
OR
modifier = pf.modifiers.SwerveModifier(trajectory).modify(0.5, 0.6)

Note

It can take a really long time to generate a trajectory on a RoboRIO,
but very little time on a modern computer. You can take advantage of
this by pre-generating the trajectory before deployment. When using
with RobotPy, you can use the following pattern to pregenerate them
automatically before you deploy code to the robot:

import os.path
import pickle

because of a quirk in pyfrc, this must be in a subdirectory
or the file won't get copied over to the robot
pickle_file = os.path.join(os.path.dirname(__file__), 'trajectory.pickle')

if wpilib.RobotBase.isSimulation():
 # generate the trajectory here

 # and then write it out
 with open(pickle_file, 'wb') as fp:
 pickle.dump(trajectory, fp)
else:
 with open('fname', 'rb') as fp:
 trajectory = pickle.load(fp)

This works because whenever you run robot.py deploy, your robot
code modules are imported and executed.

Following a Trajectory

To get your robot to follow a trajectory, you can use the EncoderFollower
object. As the name suggests, this will use encoders as feedback to guide your
robot along the trajectory. It is important that your time step passed into your
generate call is the same as the time difference between control loop iterations,
otherwise you may find your path tracking inaccurately.

Tank Drive

Create two EncoderFollower objects, one for the left and one for the
right:

from pathfinder.followers import EncoderFollower

left = EncoderFollower(modifier.getLeftTrajectory())
right = EncoderFollower(modifier.getRightTrajectory())

When you’re ready to start following:

Setup your encoder details:

Encoder Position is the current, cumulative position of your encoder. If
you're using an SRX, this will be the 'getEncPosition' function.
1000 is the amount of encoder ticks per full revolution
Wheel Diameter is the diameter of your wheels (or pulley for a track system) in meters
left.configureEncoder(encoder_position, 1000, wheel_diameter)

Set your PID/VA variables:

The first argument is the proportional gain. Usually this will be quite high
The second argument is the integral gain. This is unused for motion profiling
The third argument is the derivative gain. Tweak this if you are unhappy with the tracking of the trajectory
The fourth argument is the velocity ratio. This is 1 over the maximum velocity you provided in the
trajectory configuration (it translates m/s to a -1 to 1 scale that your motors can read)
The fifth argument is your acceleration gain. Tweak this if you want to get to a higher or lower speed quicker
left.configurePIDVA(1.0, 0.0, 0.0, 1 / max_velocity, 0)

Inside your control loop, you can add the following code to calculate the
desired output of your motors:

output = left.calculate(encoder_position);

Now, keep in mind this doesn’t account for heading of your robot, meaning it
won’t track a curved path. To adjust for this, you can use your Gyroscope and
the desired heading of the robot to create a simple, proportional gain that will
turn your tracks. A full example, including the calculations for each side of
the drive train is given below.

l = left.calculate(encoder_position_left)
r = right.calculate(encoder_position_right)

gyro_heading = ... your gyro code here ... # Assuming the gyro is giving a value in degrees
desired_heading = pf.r2d(left.getHeading()) # Should also be in degrees

angleDifference = pf.boundHalfDegrees(desired_heading - gyro_heading)
turn = 0.8 * (-1.0/80.0) * angleDifference

setLeftMotors(l + turn)
setRightMotors(r - turn)

The boundHalfDegrees() function simply binds a degrees angle to
-180..180, making sure we don’t end up with an absurdly large turn value.

Note that for the desired heading of the robot, we’re only using the left
follower as a comparison. This is because both the left and right sides of a
tank drive are parallel, and therefore always face in the same direction.

Swerve Drive

Swerve Drive following is very similar to Tank Drive, except each wheel can have
a different trajectory and heading. To make things simple, I will be showing how
to do it for a single wheel. For all 4 wheels, just do the exact same thing 4
times.

Create an EncoderFollower object for your wheel:

from pathfinder.followers import EncoderFollower

flFollower = EncoderFollower(modifier.getFrontLeftTrajectory()) # Front Left wheel

When you’re ready to start following:

Setup your encoder details:

Encoder Position is the current, cumulative position of your encoder. If
you're using an SRX, this will be the 'getEncPosition' function.
1000 is the amount of encoder ticks per full revolution
Wheel Diameter is the diameter of your wheel in meters
flFollower.configureEncoder(fl_encoder_position, 1000, wheel_diameter)

Set your PID/VA variables:

The first argument is the proportional gain. Usually this will be quite high
The second argument is the integral gain. This is unused for motion profiling
The third argument is the derivative gain. Tweak this if you are unhappy with the tracking of the trajectory
The fourth argument is the velocity ratio. This is 1 over the maximum velocity you provided in the
trajectory configuration (it translates m/s to a -1 to 1 scale that your motors can read)
The fifth argument is your acceleration gain. Tweak this if you want to get to a higher or lower speed quicker
flFollower.configurePIDVA(1.0, 0.0, 0.0, 1 / max_velocity, 0)

Inside your control loop, you can add the following code to calculate the
desired output of your motor:

output = flFollower.calculate(fl_encoder_position)

The above EncoderFollower.calculate
call won’t account for the heading of your wheel. If you run this as is, you
will be permanently going in a straight line. To fix this, we need to know the
heading of your swerve wheel. For most teams, this will be done with an encoder.
Some example code for dealing with heading is given below:

output = flFollower.calculate(fl_encoder_position)
desiredHeading = pf.boundHalfDegrees(pf.r2d(flFollower.getHeading())) # Bound to -180..180 degrees

frontLeftWheel.setDirection(desiredHeading)
frontLeftWheel.setSpeed(output)

The setDirection implementation is up to you. Usually, for a swerve drive,
this will be some kind of PID control loop.

Example code

The RobotPy examples repository has a pathfinder example program [https://github.com/robotpy/examples/tree/master/physics-pathfinder]
in it, which also contains a working physics module so you can experiment with
pathfinder using the pyfrc simulator.

Pathfinder API

	
class pathfinder.Segment

	
	
acceleration

	

	
dt

	

	
heading

	

	
jerk

	

	
position

	

	
velocity

	

	
x

	

	
y

	

	
class pathfinder.Waypoint

	
	
angle

	

	
x

	

	
y

	

	
class pathfinder.TrajectoryInfo

	
	
dt

	

	
filter1

	

	
filter2

	

	
impulse

	

	
length

	

	
u

	

	
v

	

	
pathfinder.generate()

	pathfinder_generate(path: List[pathfinder._pathfinder.Waypoint], fit: capsule, sample_count: int, dt: float, max_velocity: float, max_acceleration: float, max_jerk: float) -> Tuple[pathfinder._pathfinder.TrajectoryInfo, List[pathfinder._pathfinder.Segment]]

Generate a motion profile trajectory using the given waypoints and configuration.

	Parameters

	
	path – A list of waypoints (setpoints) for the trajectory path to intersect

	fit – A fit function; use FIT_HERMITE_CUBIC or FIT_HERMITE_QUINTIC

	sample_count –

	dt –

	max_velocity –

	max_acceleration –

	max_jerk –

	Returns

	A tuple of TrajectoryInfo, and a generated trajectory (a list of segments)

	
pathfinder.d2r()

	radians(x)

Convert angle x from degrees to radians.

	
pathfinder.r2d()

	degrees(x)

Convert angle x from radians to degrees.

	
pathfinder.boundHalfDegrees(degrees)

	Bound an angle (in degrees) to -180 to 180 degrees.

Followers

	
class pathfinder.followers.DistanceFollower(trajectory)

	The DistanceFollower is an object designed to follow a trajectory based on distance covered input. This class can be used
for Tank or Swerve drive implementations.

	
calculate(distance_covered)

	Calculate the desired output for the motors, based on the distance the robot has covered.
This does not account for heading of the robot. To account for heading, add some extra terms in your control
loop for realignment based on gyroscope input and the desired heading given by this object.

	Parameters

	distance_covered (float) – The distance covered in meters

	Return type

	float

	Returns

	The desired output for your motor controller

	
configurePIDVA(kp, ki, kd, kv, ka)

	Configure the PID/VA Variables for the Follower

	Parameters

	
	kp (float) – The proportional term. This is usually quite high (0.8 - 1.0 are common values)

	ki (float) – The integral term. Currently unused.

	kd (float) – The derivative term. Adjust this if you are unhappy with the tracking of the follower. 0.0 is the default

	kv (float) – The velocity ratio. This should be 1 over your maximum velocity @ 100% throttle.
This converts m/s given by the algorithm to a scale of -1..1 to be used by your
motor controllers

	ka (float) – The acceleration term. Adjust this if you want to reach higher or lower speeds faster. 0.0 is the default

	Return type

	None

	
getHeading()

	
	Return type

	float

	Returns

	the desired heading of the current point in the trajectory

	
getSegment()

	
	Return type

	Segment

	Returns

	the current segment being operated on

	
isFinished()

	
	Return type

	bool

	Returns

	whether we have finished tracking this trajectory or not.

	
reset()

	Reset the follower to start again. Encoders must be reconfigured.

	Return type

	None

	
setTrajectory(trajectory)

	Set a new trajectory to follow, and reset the cumulative errors and segment counts

	Return type

	None

	
class pathfinder.followers.EncoderFollower(trajectory)

	The EncoderFollower is an object designed to follow a trajectory based on encoder input. This class can be used
for Tank or Swerve drive implementations.

	
calculate(encoder_tick)

	Calculate the desired output for the motors, based on the amount of ticks the encoder has gone through.
This does not account for heading of the robot. To account for heading, add some extra terms in your control
loop for realignment based on gyroscope input and the desired heading given by this object.

	Parameters

	encoder_tick (int) – The amount of ticks the encoder has currently measured.

	Return type

	float

	Returns

	The desired output for your motor controller

	
configureEncoder(initial_position, ticks_per_revolution, wheel_diameter)

	Configure the Encoders being used in the follower.

	Parameters

	
	initial_position (int) – The initial ‘offset’ of your encoder. This should be set to the encoder value just
before you start to track

	ticks_per_revolution (int) – How many ticks per revolution the encoder has

	wheel_diameter (float) – The diameter of your wheels (or pulleys for track systems) in meters

	Return type

	None

	
configurePIDVA(kp, ki, kd, kv, ka)

	Configure the PID/VA Variables for the Follower

	Parameters

	
	kp (float) – The proportional term. This is usually quite high (0.8 - 1.0 are common values)

	ki (float) – The integral term. Currently unused.

	kd (float) – The derivative term. Adjust this if you are unhappy with the tracking of the follower. 0.0 is the default

	kv (float) – The velocity ratio. This should be 1 over your maximum velocity @ 100% throttle.
This converts m/s given by the algorithm to a scale of -1..1 to be used by your
motor controllers

	ka (float) – The acceleration term. Adjust this if you want to reach higher or lower speeds faster. 0.0 is the default

	Return type

	None

	
getHeading()

	
	Return type

	float

	Returns

	the desired heading of the current point in the trajectory

	
getSegment()

	
	Return type

	Segment

	Returns

	the current segment being operated on

	
isFinished()

	
	Return type

	bool

	Returns

	whether we have finished tracking this trajectory or not.

	
reset()

	Reset the follower to start again. Encoders must be reconfigured.

	Return type

	None

	
setTrajectory(trajectory)

	Set a new trajectory to follow, and reset the cumulative errors and segment counts

	Return type

	None

Modifiers

	
class pathfinder.modifiers.SwerveModifier(source)

	The Swerve Modifier will take in a Source Trajectory and spit out 4 trajectories, 1 for each wheel on the drive.
This is commonly used in robotics for robots with 4 individual wheels in a ‘swerve’ configuration, where each wheel
can rotate to a specified heading while still being powered.

The Source Trajectory is measured from the centre of the drive base. The modification will not modify the central
trajectory

	
getBackLeftTrajectory()

	Get the trajectory for the back-left wheel of the drive base

	Return type

	List[Segment]

	
getBackRightTrajectory()

	Get the trajectory for the back-right wheel of the drive base

	Return type

	List[Segment]

	
getFrontLeftTrajectory()

	Get the trajectory for the front-left wheel of the drive base

	Return type

	List[Segment]

	
getFrontRightTrajectory()

	Get the trajectory for the front-right wheel of the drive base

	Return type

	List[Segment]

	
getSourceTrajectory()

	Get the initial source trajectory

	Return type

	List[Segment]

	
modify(wheelbase_width, wheelbase_depth)

	Generate the Trajectory Modification

	Parameters

	
	wheelbase_width (float) – The width (in meters) between the individual left-right sides of the drivebase

	wheelbase_depth (float) – The width (in meters) between the individual front-back sides of the drivebase

	Return type

	SwerveModifier

	Returns

	self

	
class pathfinder.modifiers.TankModifier(source)

	The Tank Modifier will take in a Source Trajectory and a Wheelbase Width and spit out a Trajectory for each
side of the wheelbase. This is commonly used in robotics for robots which have a drive system similar
to a ‘tank’, where individual parallel sides are driven independently

The Source Trajectory is measured from the centre of the drive base. The modification will not modify the central
trajectory

	
getLeftTrajectory()

	Get the trajectory for the left side of the drive base

	Return type

	List[Segment]

	
getRightTrajectory()

	Get the trajectory for the right side of the drive base

	Return type

	List[Segment]

	
getSourceTrajectory()

	Get the initial source trajectory

	Return type

	List[Segment]

	
modify(wheelbase_width)

	Generate the Trajectory Modification

	Parameters

	wheelbase_width (float) – The width (in meters) between the individual sides of the drivebase

	Return type

	TankModifier

	Returns

	self

Serialization

For serializing/deserializing in python programs, it’s probably easiest to use
Python’s pickle module to directly serialize a trajectory:

import pickle

with open('fname', 'wb') as fp:
 pickle.dump(trajectory, fp)

with open('fname', 'rb') as fp:
 trajectory = pickle.load(fp)

One advantage to this approach is that you could put multiple trajectories in a
data structure such as a dictionary, and serialize them all in a single file.
The pathfinder compatibility serialization routines only support a single
trajectory per file.

However, for compatibility with other pathfinder implementations, the following
functions are made available.

	
pathfinder.deserialize()

	pathfinder_deserialize(fname: str) -> List[pathfinder._pathfinder.Segment]

Read a Trajectory from a Binary (non human readable) file

	
pathfinder.deserialize_csv(fname)

	Read a Trajectory from a CSV File

	
pathfinder.serialize()

	pathfinder_serialize(fname: str, trajectory: List[pathfinder._pathfinder.Segment]) -> bool

Write the Trajectory to a Binary (non human readable) file

	
pathfinder.serialize_csv()

	pathfinder_serialize_csv(fname: str, trajectory: List[pathfinder._pathfinder.Segment]) -> bool

Write the Trajectory to a CSV File

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y

A

 	
 	acceleration (pathfinder.Segment attribute)

 	
 	angle (pathfinder.Waypoint attribute)

B

 	
 	boundHalfDegrees() (in module pathfinder)

C

 	
 	calculate() (pathfinder.followers.DistanceFollower method)

 	(pathfinder.followers.EncoderFollower method)

 	
 	configureEncoder() (pathfinder.followers.EncoderFollower method)

 	configurePIDVA() (pathfinder.followers.DistanceFollower method)

 	(pathfinder.followers.EncoderFollower method)

D

 	
 	d2r() (in module pathfinder)

 	deserialize() (in module pathfinder)

 	deserialize_csv() (in module pathfinder)

 	
 	DistanceFollower (class in pathfinder.followers)

 	dt (pathfinder.Segment attribute)

 	(pathfinder.TrajectoryInfo attribute)

E

 	
 	EncoderFollower (class in pathfinder.followers)

F

 	
 	filter1 (pathfinder.TrajectoryInfo attribute)

 	
 	filter2 (pathfinder.TrajectoryInfo attribute)

G

 	
 	generate() (in module pathfinder)

 	getBackLeftTrajectory() (pathfinder.modifiers.SwerveModifier method)

 	getBackRightTrajectory() (pathfinder.modifiers.SwerveModifier method)

 	getFrontLeftTrajectory() (pathfinder.modifiers.SwerveModifier method)

 	getFrontRightTrajectory() (pathfinder.modifiers.SwerveModifier method)

 	getHeading() (pathfinder.followers.DistanceFollower method)

 	(pathfinder.followers.EncoderFollower method)

 	
 	getLeftTrajectory() (pathfinder.modifiers.TankModifier method)

 	getRightTrajectory() (pathfinder.modifiers.TankModifier method)

 	getSegment() (pathfinder.followers.DistanceFollower method)

 	(pathfinder.followers.EncoderFollower method)

 	getSourceTrajectory() (pathfinder.modifiers.SwerveModifier method)

 	(pathfinder.modifiers.TankModifier method)

H

 	
 	heading (pathfinder.Segment attribute)

I

 	
 	impulse (pathfinder.TrajectoryInfo attribute)

 	
 	isFinished() (pathfinder.followers.DistanceFollower method)

 	(pathfinder.followers.EncoderFollower method)

J

 	
 	jerk (pathfinder.Segment attribute)

L

 	
 	length (pathfinder.TrajectoryInfo attribute)

M

 	
 	modify() (pathfinder.modifiers.SwerveModifier method)

 	(pathfinder.modifiers.TankModifier method)

P

 	
 	position (pathfinder.Segment attribute)

R

 	
 	r2d() (in module pathfinder)

 	
 	reset() (pathfinder.followers.DistanceFollower method)

 	(pathfinder.followers.EncoderFollower method)

S

 	
 	Segment (class in pathfinder)

 	serialize() (in module pathfinder)

 	serialize_csv() (in module pathfinder)

 	
 	setTrajectory() (pathfinder.followers.DistanceFollower method)

 	(pathfinder.followers.EncoderFollower method)

 	SwerveModifier (class in pathfinder.modifiers)

T

 	
 	TankModifier (class in pathfinder.modifiers)

 	
 	TrajectoryInfo (class in pathfinder)

U

 	
 	u (pathfinder.TrajectoryInfo attribute)

V

 	
 	v (pathfinder.TrajectoryInfo attribute)

 	
 	velocity (pathfinder.Segment attribute)

W

 	
 	Waypoint (class in pathfinder)

X

 	
 	x (pathfinder.Segment attribute)

 	(pathfinder.Waypoint attribute)

Y

 	
 	y (pathfinder.Segment attribute)

 	(pathfinder.Waypoint attribute)

 nav.xhtml

 Table of Contents

 		
 robotpy-pathfinder

 		
 Using Pathfinder

 		
 Installation (RobotPy on a RoboRIO)

 		
 Installation (other)

 		
 Generating a Trajectory

 		
 Following a Trajectory

 		
 Tank Drive

 		
 Swerve Drive

 		
 Example code

 		
 Pathfinder API

 		
 Followers

 		
 Modifiers

 		
 Serialization

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

