

robotframework-jupyterlibrary

A Robot Framework [http://robotframework.org] library for automating (testing of) Jupyter [https://jupyter.org] end-user
applications and extensions

	pip

	conda

	docs

	demo

	actions

	[image: pip-badge] [https://pypi.org/project/robotframework-jupyterlibrary]

	[image: conda-forge-badge] [https://github.com/conda-forge/robotframework-jupyterlibrary-feedstock#installing-robotframework-jupyterlibrary]

	[image: docs-badge] [https://robotframework-jupyterlibrary.readthedocs.io]

	[image: binder-badge] [https://mybinder.org/v2/gh/robots-from-jupyter/robotframework-jupyterlibrary/main?urlpath=lab/tree/docs/MAGIC.ipynb]

	[image: workflow-badge] [https://github.com/robots-from-jupyter/robotframework-jupyterlibrary/actions?query=workflow%3ACI+branch%3Amain]

Using

Write .robot files that use JupyterLibrary keywords [https://robotframework-jupyterlibrary.readthedocs.io/en/stable/KEYWORDS.html]… or use magics [https://robotframework-jupyterlibrary.readthedocs.io/en/stable/MAGIC.html] in
notebooks.

*** Settings ***
Library JupyterLibrary
Suite Setup Wait For New Jupyter Server To Be Ready jupyter-lab
Test Teardown Reset JupyterLab And Close
Suite Teardown Terminate All Jupyter Servers

*** Test Cases ***
A Notebook in JupyterLab
 Open JupyterLab
 Launch A New JupyterLab Document
 Add And Run JupyterLab Code Cell
 Wait Until JupyterLab Kernel Is Idle
 Capture Page Screenshot

See the acceptance tests [https://github.com/robots-from-jupyter/robotframework-jupyterlibrary/tree/main/atest] for examples.

Installation

pip install robotframework-jupyterlibrary

Or

mamba install -c conda-forge robotframework-jupyterlibrary

Or (if you must):

conda install -c conda-forge robotframework-jupyterlibrary

Or see the contributing guide [https://github.com/robots-from-jupyter/robotframework-jupyterlibrary/blob/main/CONTRIBUTING.md] for a development install.

Free Software

JupyterLibrary is Free Software under the BSD-3-Clause License [https://github.com/robots-from-jupyter/robotframework-jupyterlibrary/blob/main/LICENSE]. It contains
code from a number of other projects:

	Jyve [https://github.com/deathbeds/jyve] (BSD-3-Clause [https://github.com/deathbeds/jyve/blob/master/LICENSE])

	Initial implementations of robot keywords

Some of its testing approaches (only distribtued in source form, not e.g. wheels) are
also derived from other tools:

	ipyforcegraph [https://github.com/jupyrdf/ipyforcegraph] (BSD-3-Clause [https://github.com/jupyrdf/ipyforcegraph/blob/main/LICENSE.txt])

	Initial implementation of kernel-under-test coverage [https://github.com/jupyrdf/ipyforcegraph/pull/89] instrumentation

Documentation Contents

	WHY
	…Jupyter?

	…Acceptance Tests?

	…JupyterLibrary?

	INSTALL
	pip

	mamba

	main

	Contributing to JupyterLibrary
	Get CONDA_EXE

	Get the code

	Doit
	Listing all the tasks

	Just run (just about) everything

	Lock Files

	Reproducing CI failures

	Environment Variables

	Releasing
	Appendix: Current doit tasks

	KEYWORDS
	Browser + Server

	Clients
	JupyterLab

	Jupyter Notebook

	Jupyter Notebook Classic

	Common
	CodeMirror

	MAGIC
	Running JupyterLibrary
	With Widgets

	CI
	Providers: Cloud
	Multi-Provider

	Azure Pipelines

	Github Actions

	Providers: On-Premises
	Jenkins

	Approach: Environment management

	Approach: It’s Just Scripts

	Approach: Single Test Script

	Approach: Log Centralization

	Approach: Caching

	Approach: Pay technical debt forward

	Approach: Get More Value

	LIMITS
	NotebookApp vs ServerApp

	Press Keys on MacOS/Chrome

	HISTORY
	0.5.0

	0.5.0a0

	0.4.3

	0.4.2

	0.4.1

	0.4.0

	0.3.1

	0.3.0

	0.2.0

	0.1.0

WHY

…Jupyter?

Jupyter clients are some of the most powerful pieces of technology users can run in their web browsers. By developing cross-client capabilities, either as kernel-level extensions, widgets, media types, or other confections, you are helping to advance fields of inquiry you might not even know exist.

…Acceptance Tests?

Unit tests and strongly-typed languages are superb for rapid, confident iteration on even large codebases. But users will be installing Your Code next to an unknown number of Other People’s Code, and then write Their Code. If^H^H When it breaks, they might not be able to tell that it’s the subtle interaction between these things. Testing All the Code together, as your user will use it, gives you greater confidence in your ability to ship.

…JupyterLibrary?

Powered by Robot Framework [https://robotframework.org] and SeleniumLibrary [https://robotframework.org/SeleniumLibrary/SeleniumLibrary.html], JupyterLibrary allows you to:

	write tests in concise, plain language

	and extend this language to meet your needs

	test multiple Jupyter clients

	and multiple versions of them

	run in multiple, real browsers (even at the same time)

	and on multiple operating systems

	view rich reports of your test results

	but also compare your reports over time with machine-readable formats

	generate screenshots to augment your documentation

INSTALL

Installing JupyterLibrary will bring along Robot Framework and SeleniumLibrary. Jupyter components, like notebook, jupyterlab and nteract_on_jupyter, and browser executors (e.g. chromedriver, geckodriver) and various utilities (e.g. nodejs) are up to you, depending on what you want to test. Here are some examples.

pip

pip install robotframework-jupyterlibrary

mamba

mamba install -c conda-forge robotframework-jupyterlibrary

conda also works, usually, but mamba is both faster and provides better error messages when things go wrong.

main

JupyterLibrary is under active development, and is heavily invested in the conda ecosystem, and related tools and mamba and conda-lock, because of the complexity of managing browser execution dependencies. But conda and mamba (rightly) make it hard to install Random Repos from the Internet, so you’ll need a bit of pip, too.

Start with a sensible, activated base like Mambaforge [https://conda-forge.org/miniforge/]. Mixing the miniconda or anaconda distributions’ defaults (e.g. anaconda.com is a recipe for disaster, and may violate the terms of service).

Here’s a complete setup:

mamba create \
 # using `--prefix=.venv` is also useful for having predictable file locations, but can confuse IDEs
 --name testing-jupyter \
 --channel conda-forge \
 # CPython 3.8+ required, not tested with pypy, or (near) end-of-life CPython
 python=3 \
 jupyterlab \
 robotframework-seleniumlibrary \
 geckodriver \
 # using a Long Term Support (LTS) Firefox is useful for avoiding "only works in Chrome"
 firefox

Activate the environment:

source activate testing-jupyter

Install “hot” dependencies:

pip install \
 # don't want any "surprises"
 --no-deps \
 # just to be sure
 --ignore-installed \
 git+http://github.com/robots-from-jupyter/robotframework-jupyterlibrary

Contributing to JupyterLibrary

Get CONDA_EXE

	Get Mambaforge [https://conda-forge.org/miniforge/]

mamba install -c conda-forge doit
optional meta-dependency
mamba install -c conda-forge conda-lock

Get the code

git clone http://github.com/robots-from-jupyter/robotframework-jupyterlibrary
cd robotframework-jupyterlibrary

Doit

Listing all the tasks

doit list

Just run (just about) everything

doit release

Lock Files

After adding/changing any dependencies in .github/env_specs, the lockfiles need to
be refreshed in .github/locks and committed.

doit lock

Bootstrapping from no lockfiles requires an external provider of conda-lock. It
may require running doit lock a few times to get a stable set of environment
solutions.

Reproducing CI failures

By default, the doit scripts use the lockfile most like where you are developing,
hoping for a better cache hit rate. On the same operating system, however, any of the
pre-solved lockfiles can be used, by specifying the RJFL_LOCKFILE environment
variable.

For example, if linux-64 running python3.8 with jupyterlab 3 failed:

!/usr/bin/env bash
set -eux
RFJL_LOCKDIR=test/linux-64/py3.8/lab3 doit release

Or, in a bat script:

@echo on
set RFJL_LOCKDIR=test/win-64/py3.8/lab3
doit release

This will recreate the test environment with the specified lockfile, and repeat all
the steps.

Environment Variables

A number of environment variables control how some of the doit tasks function.

	variable

	default

	note

	ATEST_ARGS

	[]

	a JSON array of tokens to pass to pabot

	ATEST_RETRIES

	0

	number of times to re-run failing tests

	ATEST_ATTEMPT

	0

	where to start in the retry order

	BROWSER

	headlessfirefox

	which browser to use (only tested with FF)

	CONDA_EXE

	mamba

	a custom conda-compatible tool to use

	IN_BINDER

	0

	skips a number of steps

	INSTALL_ARTIFACT

	``

	pip install a built artifact instead of editable

Releasing

	[] merge all outstanding PRs

	[] start a release issue with a checklist (maybe like this one)

	[] ensure pyproject.toml#/project/version has been increased appropriately

	[] ensure the HISTORY.ipynb is up-to-date

	[] validate on binder

	[] validate on ReadTheDocs

	[] wait for a successful build of main

	[] download the dist archive and unpack somewhere (maybe a fresh dist)

	[] create a new release through the GitHub UI

	[] paste in the relevant HISTORY entries

	[] upload the artifacts

	[] actually upload to pypi.org

doit publish

	[] postmortem

	[] handle conda-forge feedstock tasks

	[] validate on binder via simplest-possible gists

	[] activate the version on ReadTheDocs

	[] bump pyproject.toml#/project/version to next development version

	[] update release procedures

Appendix: Current doit tasks

doit is used heavily in development and continuous integration.

binder Get to a basic interactive state.
build Build packages.
build:hash generate a hash file of all distributions
build:pypi build the pypi sdist/wheel
conda_build Build conda package.
conda_build:build use boa to build the conda package
conda_build:recipe update the conda recipe
docs Build HTML docs.
docs:rtd:env generate a readthedocs-compatible env
docs:sphinx build the docs with sphinx
env
env:docs create the local docs environment
env:lint create the local lint environment
env:meta create the local meta environment
env:test create the local test environment
js Javascript cruft.
js:yarn install nodejs dev dependencies
lab Start a jupyter lab server (with all other extensions).
lab:serve runs lab (never stops)
lint Lint code.
lint:black ensure python code is well-formatted
lint:prettier ensure markdown, YAML, JSON, etc. are well-formatted
lint:robocop ensure robot code is well-behaved
lint:robotidy ensure robot code is well-formatted
lint:ruff ensure python code is well-behaved
lint:ssort apply source ordering to python
lock Generate conda lock files for all the excursions.
lock:docs__linux-64 lock the docs environment for linux-64 []
lock:docs__osx-64 lock the docs environment for osx-64 []
lock:docs__win-64 lock the docs environment for win-64 []
lock:lint__linux-64 lock the lint environment for linux-64 []
lock:lint__osx-64 lock the lint environment for osx-64 []
lock:lint__win-64 lock the lint environment for win-64 []
lock:meta__linux-64 lock the meta environment for linux-64 []
lock:meta__osx-64 lock the meta environment for osx-64 []
lock:meta__win-64 lock the meta environment for win-64 []
lock:test__linux-64__py3_11__lab3 lock the test environment for linux-64 (ft. py3.11, lab3)
lock:test__linux-64__py3_11__lab4 lock the test environment for linux-64 (ft. py3.11, lab4)
lock:test__linux-64__py3_8__lab3 lock the test environment for linux-64 (ft. py3.8, lab3)
lock:test__linux-64__py3_8__lab4 lock the test environment for linux-64 (ft. py3.8, lab4)
lock:test__osx-64__py3_11__lab3 lock the test environment for osx-64 (ft. py3.11, lab3)
lock:test__osx-64__py3_11__lab4 lock the test environment for osx-64 (ft. py3.11, lab4)
lock:test__osx-64__py3_8__lab3 lock the test environment for osx-64 (ft. py3.8, lab3)
lock:test__osx-64__py3_8__lab4 lock the test environment for osx-64 (ft. py3.8, lab4)
lock:test__win-64__py3_11__lab3 lock the test environment for win-64 (ft. py3.11, lab3)
lock:test__win-64__py3_11__lab4 lock the test environment for win-64 (ft. py3.11, lab4)
lock:test__win-64__py3_8__lab3 lock the test environment for win-64 (ft. py3.8, lab3)
lock:test__win-64__py3_8__lab4 lock the test environment for win-64 (ft. py3.8, lab4)
publish Publish distributioons.
publish:pypi upload python sdist and wheel to PyPI
release Run the full set of tasks needed for a new release.
report Generate reports of test data.
report:cov:combine gather coverage
report:cov:html:rfjl generate coverage html
report:cov:html:rfsl generate coverage html
report:cov:html:se generate coverage html
report:cov:report emit coverage console report and check
report:robot:combine combine all robot outputs into a single HTML report
setup
setup:docs [docs] python development install
setup:lint [lint] python development install
setup:test [test] python development install
test (dry)run tests.
test:atest run acceptance tests with robot
test:dryrun pass the tests through the robot machinery, but don't actually _run_ anything

KEYWORDS

Keywords are the the smallest unit of Robot Framework tasks and tests. The built-in Robot Framework documentation is pretty good, but for various reasons, are split out below.

click 🔎 in the bottom right to filter

Browser + Server

JupyterLibrary inherits all of the keywords of SeleniumLibrary [http://robotframework.org/SeleniumLibrary/SeleniumLibrary.html], and then adds a few more, including the two most important ones:

	Wait For New Jupyter Server To Be Ready

	Terminate All Jupyter Servers

All the server keywords include Jupyter in the keyword name, and all of the client keywords are also dynamically loaded. A few screenshot convenience methods are also provided.

 MAGIC

MAGIC

JupyterLibrary provides a few lightweight IPython [https://ipython.readthedocs.io/en/stable/interactive/magics.html] magics [https://jakevdp.github.io/PythonDataScienceHandbook/01.03-magic-commands.html] for its own testing purposes.

If you like writing and executing Robot Framework in a Jupyter kernel, you might like a more full-featured experience:

	robotkernel [https://github.com/robots-from-jupyter/robotkernel]

	xeus-robot [https://github.com/jupyter-xeus/xeus-robot]

%reload_ext JupyterLibrary

The %%robot magic runs a cell of code as you would write in a .robot file. No funny stuff (by default).

%%robot -o _static
*** Tasks ***
Log Something
 Log Something

	🤖 making files in /home/docs/checkouts/readthedocs.org/user_builds/robotframework-jupyterlibrary/checkouts/stable/docs/_static/_robot_magic_/b48ff0e77cff

	🤖 running!

	
 stdout.txt
 ==
Untitled b48ff0e77cff
==
Log Something | PASS |
--
Untitled b48ff0e77cff | PASS |
1 task, 1 passed, 0 failed
==
Output: /home/docs/checkouts/readthedocs.org/user_builds/robotframework-jupyterlibrary/checkouts/stable/docs/_static/_robot_magic_/b48ff0e77cff/output.xml
Log: /home/docs/checkouts/readthedocs.org/user_builds/robotframework-jupyterlibrary/checkouts/stable/docs/_static/_robot_magic_/b48ff0e77cff/log.html
Report: /home/docs/checkouts/readthedocs.org/user_builds/robotframework-jupyterlibrary/checkouts/stable/docs/_static/_robot_magic_/b48ff0e77cff/report.html

	
 stderr.txt
 empty

	
 6 Files

 	

 Untitled_b48ff0e77cff.robot

	

 log.html

	

 output.xml

	

 report.html

	

 stderr.txt

	

 stdout.txt

 CI

CI

At first, you’ll want to write your tests locally, and test them against as many local browsers as possible. However, to really test out your features, you’ll want to:

	run them against as many real browsers on other operating systems as possible

	have easy access to human- and machine-readable test results and build assets

	integration with development tools like GitHub

Enter Continuous Integration (CI).

Providers: Cloud

Multi-Provider

Historically, Jupyter projects have used a mix of free-as-in-beer-for-open source hosted services:

	Appveyor [https://www.appveyor.com] for Windows

	Circle-CI [https://circleci.com] for Linux

	TravisCI [https://travis-ci.org] for Linux and MacOS

Each brings their own syntax, features, and constraints to building and maintaining robust CI workflows.

JupyterLibrary started on Travis-CI, but as soon as we wanted to support more platforms and browsers…

Azure Pipelines

At the risk of putting all your eggs in one (proprietary) basket, Azure Pipelines [https://azure.microsoft.com/en-us/services/devops/pipelines/] provides a single-file approach to automating all of your tests against reasonably modern versions of browsers.

JupyterLibrary was formerly built on Azure, and looking through pipeline [https://github.com/robots-from-jupyter/robotframework-jupyterlibrary/blob/v0.2.0/azure-pipelines.yml] and various jobs and steps [https://github.com/robots-from-jupyter/robotframework-jupyterlibrary/tree/v0.2.0/ci] shows some evolving approaches…

Github Actions

At the risk of putting all your eggs in one (proprietary) basket, if your code is on Github, Github Actions [https://github.com/features/actions] offers the tightest integration, requiring no aditional accounts.

JupyterLibrary is itself built on Github Actions, and looking at the workflows [https://github.com/robots-from-jupyter/robotframework-jupyterlibrary/blob/main/.github/workflows/ci.yml] offers some of the best patterns we have found.

Providers: On-Premises

Jenkins

If you are working on in-house projects, and/or have the ability to support it, Jenkins [https://jenkins.io] is the gold standard for self-hosted continuous integration. It has almost limitless configurability, and commercial support is available.

	warnings-ng [https://plugins.jenkins.io/warnings-ng/] can consume many outputs of robotframework

Approach: Environment management

Acceptance tests need benefit from tightly-controlled, but flexibly-defined environments.

	this repo uses (and recommends) conda-lock and mamba to manage multiple environments

	simpler cases, such as pure-python projects, can use tox [https://github.com/tox-dev/tox]

Approach: It’s Just Scripts

No matter how shiny or magical your continuous integration tools appear, the long-term well-being of your repo depends on techniques that are:

	simple

	cross-platform

	as close to real browsers as possible

	easily reproducible outside of CI

Practically, since this is Jupyter, this boils down to putting as much as possible into platform-independent python (and, when neccessary, nodejs) code.

JupyterLibrary uses doit [https://github.com/robots-from-jupyter/robotframework-jupyterlibrary/blob/main/dodo.py] to manage a relatively complex lifecycle across multiple environments with minimal CLI churn.

	doit has very few runtime dependencies, and works well with caching, etc.

Environment variables are used for feature flags

	aside from some inevitable path issues, environment variables are easy to migrate onto another CI provider

A small collection of development scripts [https://github.com/robots-from-jupyter/robotframework-jupyterlibrary/tree/main/scripts], not shipped as part of the distribution, provide some custom behaviors around particularly complex tasks.

	sometimes doit is too heavy of a hammer for delicate work

Approach: Single Test Script

Having a single command that runs all unit, integration, and acceptance tests is a useful property of a project.

	make (or the more pythonic doit [https://github.com/pydoit/doit], used in this repo) make this most robust

	usually, all unit tests need to be re-run when any functional source, e.g. *.ts and *.py

	acceptance tests often need to be run when almost anything changes, including .css, build configuration files, etc.

	wrap robot execution in another tool

	for example, jupyter-server-proxy [https://github.com/jupyterhub/jupyter-server-proxy/blob/v3.2.2/tests/acceptance/test_acceptance.py] launches robot from within pytest

	use tox [https://github.com/tox-dev/tox] for pure-python test management

Approach: Log Centralization

After a full test run, it can be useful to combine many test results into a single, navigable page

	in CI, download all the test result archives and put them together

	rebot [https://robotframework.org/robotframework/latest/RobotFrameworkUserGuide.html#using-rebot] can combine multiple runs, including retries, into a single HTML report

	embed different kinds of results

	pytest-html [https://github.com/pytest-dev/pytest-html] can embed generated reports

	when embedding robot reports with screenshots, use Set Screenshot Directory EMBED [https://robotframework.org/SeleniumLibrary/SeleniumLibrary.html#Set%20Screenshot%20Directory] to make this easier

	other files like logs can also be embedded

	create a single log aggregation HTML page

	jupyterlab-deck [https://deathbeds.github.io/jupyterlab-deck] generates and publishes a notebook/slideshow containing all of its logs

	this is served as a JupyterLite [https://github.com/jupyterlite/jupyterlite] site, so the underlying (semi-)machine-readable is also available to

Approach: Caching

Most of the CI providers offer nuanced approaches to caching files. Things to try caching (it doesn’t always help):

	packages/metadata for your package manager, e.g. conda, pip, yarn

	built web assets

Approach: Pay technical debt forward

A heavy CI pipeline can become necessary to manage many competing concerns. Each non-trivial, browser-based robot test can easily cost tens of seconds. Some approaches:

	use an up-front dry-run robot test

	this can help catch whitespace errors in robot syntax

	this usually costs $\frac{\sim1}{100}$ the time of running the full test

	run tests in subsets, in parallel, and in random order with pabot [https://github.com/mkorpela/pabot]

	requires avoiding shared resources, e.g. network ports, databases, logfiles

	if neccessary, declare explicit dependencies with e.g. DependencyLibrary [https://pypi.org/project/robotframework-dependencylibrary] or pabot’s #DEPENDS [https://github.com/mkorpela/pabot#controlling-execution-order-and-level-of-parallelism]

Approach: Get More Value

While the pass/fail results of a test are useful in their own right, acceptance tests can provide useful artifacts for other project goals.

	gather additional coverage insrumentation

	[x] client:

	[x] jupyterlab-deck [https://deathbeds.github.io/jupyterlab-deck/files/nyc/index.html] uses istanbul and nyc to collect browser code coverage

	[x] kernel and widgets:

	[x] this repo gathers kernel coverage from JupyterLab-based tests iof its custom %%robot IPython magic [https://ipython.readthedocs.io/en/stable/interactive/magics.html]

	[x] ipyforcegraph [https://github.com/jupyrdf/ipyforcegraph/pull/89] tests custom Jupyter widgets [https://github.com/jupyter-widgets/ipywidgets]

	[] serverextension: TODO

	[] .robot suites: TODO

	use generated screenshots

	[] reporting: TODO

	[] accessibility: TODO

	[] documentation: TODO

	[] PDF generation: TODO

	[] revisit when supported by geckodriver [https://github.com/mozilla/geckodriver/issues/2001]

 LIMITS

LIMITS

NotebookApp vs ServerApp

Prior to JupyterLibrary 0.4.2, Start New Jupyter Server relied on backwards compatibility of jupyter_server with notebook, using e.g. --NotebookApp.token to configure temporary credentials.

With jupyter_server>=2, nbclassic and various other newer packages vying for the CLI, this doesn’t always pick the correct tool, so several options are available:

	explicitly setting the named app_name parameter when launching a server

	explicitly setting the command parameter will usually pick the correct server

	e.g. jupyter-lab should usually be ServerApp

	using the new keyword Set Default Jupyter App Name

	setting the JUPYTER_LIBRARY_APP environment variable, either from the CLI, or in CI environment, will influence the default behavior

Press Keys on MacOS/Chrome

While SeleniumLibrary 3.3.0 added Press Keys which can target non-inputs, as of chromedriver version 2.45 the ⌘ key cannot be used. As this is the favored key for shortcuts, this means almost all of the client keyboard shortcuts just won’t work if you are trying to test on MacOS.

Workaround

If you are trying to Press Keys where the ⌘ key would be used, try to find a combination of simpler key combinations and mouse clicks.

 HISTORY

HISTORY

0.5.0

	Products under test

	Versions

	Python

	3.8.17
3.11.4

	CodeMirror

	5
6

	Robot Framework

	5.0.1
6.1.0

	Jupyter Notebook

	6.5.4
7.0.0

	JupyterLab

	3.6.5
4.0.3

	Jupyter Server

	2.7.0

0.5.0a0

	Products under test

	Versions

	Python

	3.8.16
3.11.3

	CodeMirror

	5
6

	Robot Framework

	5.0.1
6.0.2

	Jupyter Notebook

	6.5.4
7.0.0b3

	JupyterLab

	3.6.4
4.0.1

	Jupyter Server

	2.6.0

0.4.3

	Products under test

	Versions

	Python

	3.7.12
3.10.6
3.11.0

	Robot Framework

	4.1.3
6.0.1

	Jupyter Notebook Classic

	6.5.2

	JupyterLab

	1.2.21
2.3.2
3.5.2

	Jupyter Server

	1.21.0
1.23.4
2.0.6

0.4.2

	Products under test

	Versions

	Python

	3.7.12
3.10.6
3.11.0

	Robot Framework

	4.1.3
6.0.1

	Jupyter Notebook Classic

	6.5.2

	JupyterLab

	1.2.21
2.3.2
3.5.2

	Jupyter Server

	1.21.0
1.23.4
2.0.6

	supports robotframework 6

	drops support for robotframework 3

	tests jupyter_server 2

	to account for some deprecations, the app name may need to be set
when starting a managed Jupyter/notebook server

	the new keywords Set Default Jupyter App and Get Jupyter App Name
allow for changing auto-detection based on CLI command

	an environment variable %{JUPYTER_LIBRARY_APP} (default: NotebookApp)
can be set to ServerApp for when combinations of notebook,
nbclassic, jupyter_server and jupyterlab break autodetection.

0.4.1

	Products under test

	Versions

	Jupyter Notebook Classic

	6.5.1

	JupyterLab

	1.2.21
2.3.2
3.4.8

	selenium 4.5 is now supported

	Get WebElements Relative To (and the singular) are now available as keywords

	%%robot magic ignores --pretty if robot.tidy is unavailable

	Some keywords now have type hints.

0.4.0

	Products under test

	Versions

	Jupyter Notebook Classic

	6.4.6

	JupyterLab

	1.2.21
2.3.2
3.2.5

	Products under review

	Versions

	Retrolab

	0.3.13

	Voila

	0.3.0

	Kernel launcher keywords are more lax to account for more-spefic names, e.g. Python 3 (ipykernel)

	Put all robot source code under formatting/linting by robotidy [https://github.com/MarketSquare/robotframework-tidy] and robocop [https://github.com/MarketSquare/robotframework-robocop]

	The minimum Python has been raised to 3.7, replacing the now-EOL Python 3.6 in the test matrix

	Python 3.10 replaces Python 3.8 in the CI test matrix

0.3.1

	Products under test

	Versions

	Jupyter Notebook Classic

	6.3.0

	JupyterLab

	1.2.16
2.3.1
3.0.14

	Products under review

	Versions

	JupyterLab Classic

	0.1.10

	Voila

	0.2.9

	Several JupyterLab keywords now accept an ${n} argument to handle multiple documents on the page.

	Many JupyterLab keywords that wait for certain events can be configured with ${timeout} and ${sleep} to suit.

	Properly pass library initialization options to SeleniumLibrary

0.3.0

	Products under test

	Versions

	Jupyter Notebook Classic

	6.1.5

	JupyterLab

	1.2.16
2.2.9
3.0.0rc10

	Require SeleniumLibrary 4.5 and RobotFramework 3.2

	Expanded support for newer Notebook Classic and JupyterLab versions in keywords

	Dropped support for nteract_on_jupyter

0.2.0

	Require SeleniumLibrary 3.3.0 and remove backport of Press Keys

	Start New Jupyter Server now has a default command of jupyter-notebook (instead of jupyter)

	Build Jupyter Server Arguments no longer returns notebook as the first argument

	Fix homepage URL for PyPI

	Test on Chrome/Windows

0.1.0

	Initial Release

 Index

Index

nav.xhtml

 Table of Contents

 		
 robotframework-jupyterlibrary

 		
 WHY

 		
 …Jupyter?

 		
 …Acceptance Tests?

 		
 …JupyterLibrary?

 		
 INSTALL

 		
 pip

 		
 mamba

 		
 main

