

Welcome to RobotEvo

RobotEvo generates Freedom EVOware scripts for the Freedom EVO universal pipetting robot from TECAN.
It provides new layers of abstraction to offer a higher level programing model that allows a more direct
programing of the steps needed in a typical biochemical/biological pipetting protocol like RNA extraction.

Contents:

	Why RobotEvo?

	Users of RobotEvo
	Category A user: the real-robot operator

	Category B user: basic RobotEvo/python operator

	Category C user: protocol adaptor

	Category D user: protocol developer

	Category E user: RobotEvo developer

	How to run an existing protocol?
	How does it works?

	A Hello World! example.

	How to modify an existing protocol?

	How to write a new protocol?

	API

	Principal API: Protocol steps
	High level functions:

	Advanced functions.

	Reagent - a fundamental concept
	Main classes and functions:

	Worktable and labwares

	RobotEvo “modes” for execution of basic instructions

	Robots and arms

	Examples:

Indices and tables

	Index

	Module Index

	Search Page

	protocol_steps

	Principal API: Protocol steps

	evo_mode

	RobotEvo “modes” for execution of basic instructions

	robot

	Robots and arms

	reagent

	Reagent - a fundamental concept

	labware

	Worktable and labwares

	instructions

	

	GUI

	

Why RobotEvo?

(adapted from my PhD Thesis: RNA virus detection and identification using techniques based on DNA hybridization [https://epub.ub.uni-greifswald.de/frontdoor/index/index/docId/2175])

	Programming automation of RNA extraction:

Usually, prior to proceed to the application of the DNA-hybridization-based technique,
like RT-qPCR, the viral RNA need to be extracted. We used well established methods and
commercially available kits based on columns (RNeasy Mini Kit or QIAamp Viral RNA Mini Kit,
QIAGEN, Hilden, Germany) or magnetized particles
(NucleoMag® VET kit [http://www.mn-net.com/tabid/12376/default.aspx]) from MACHEREY-NAGEL,
Durel, Germany) to achieve the separation, either automatically, using pipetting robots,
or manually.

Especially useful was the combination of magnetized particles with a Freedom EVO universal
pipetting robot from TECAN, Mannerdorf, Switzerland.

Using the provided software
(Freedom EVOware [http://lifesciences.tecan.com/products/software/freedom_evoware])
it was comfortable to write simple and specific pipetting protocols in a semi visual way.
Unfortunately, writing more complex or flexible protocols (for example to
accommodate arbitrary number of samples or minor modifications of the protocols)
was very time consuming and error prone. You are compeled to use variables and program-control-flow
structures like IF and LOOP. But you will find that there is a poor or no support of
variables of different types, arrays, structural-programing and objects within
the provided scripting language.

More important, the powerfull validation and visualization tools
provided by the script editor are full sopprted only in relativelly lineal and simple scripts, considering only the “default” values of the variables, and thus, the default flow-path of the program, not detecting problems in the alternative paths, likely to be found in most runs.

To overcome these limitations and afford automation, a new software was written in
Python, “RobotEvo [https://github.com/qPCR4vir/robotevo]”, which generates the
scripts for the robot. This new Python library provide new layers of abstraction
to offer a higher level programing model to allow a more direct programing of the
steps needed in a typical biochemical/biological pipetting protocol like RNA
extraction. The layers of the implementation are: a parser and a generator
(module :file: `instructions.py`_ of the “low-level” instruction set directly usable by the provided
Freedom EVOware software; a set of “modes” to provide the desired kind of output (human readable
comments, separated instructions, EVOware scripts, etc., in module
:file: `evo_mode.py`_; a model of the state of the robot to detect possible errors prior to
the generation of the script by tracking what volume of what mix of
reagents contains at each moment each reservoir or tip (module
[Robot](https://github.com/qPCR4vir/robotevo/blob/master/EvoScriPy/Robot.py) –
this is a _novel_ functionality impossible to achieve with the original
software); low level pipetting instructions (like aspirate a specific liquid
volume from a given vial into a tip); a higher level command set (like distribute
some reagent into each sample, in module
[protocol steps](https://github.com/qPCR4vir/robotevo/blob/master/EvoScriPy/protocol_steps.py))
to directly program high-level, more realistic protocol scripts including a
base template for a full protocol; and, finally, a set of facilities to declare
the reagents (module Reagent) and the labwares (like reaction tubes, racks of
tubes, racks of tips, cuvettes, etc. in module
[Labware](https://github.com/qPCR4vir/robotevo/blob/master/EvoScriPy/Labware.py)).

For the protocol for RNA extraction (module RNAextractionMN_Mag_Vet) the set
of used labwares and reagents are declared first. Immediately an automatically
generated check-list is presented to the human operator (a graphic user interface –
from module GUI). After a possible adjustment of the predefined parameters (without
any programming) the program go through a few high-level-defined protocol steps of
distributeing buffers, mixing, washing, incubating, etc. generating a very detailed set
of low-level instructions for the physical robot in a script to be imported and
visualized in the TECAN Freedom EVOware software. The obtained script is very long
but structurally very simple and well commented, which facilitates the visual
control of each instruction prior to real pipetting.

	modules.jpg

Users of RobotEvo

To help understand what are the expected user cases we will classify potential users in categories. For each we will then try to describe needed skills, adventages of using RobotEvo, basic usage and tips.

Category A user: the real-robot operator

This is the basic user for which RobotEvo was writen and for which all the other Categories-Users work.

Expected skills: no special skills expected, In fact, for basic, standard usage they don’t need to know about RobotEvo existence. Just normal, basic usage of the original Evoware software.

Category B user: basic RobotEvo/python operator

Use RobotEvo to generate evoware scripts and load it into evoware, saving correct scripts where they will be accessed by Category A users.

Expected skills: run python scripts; locate and copy files to the location from were User A can load to the EVOware editor.

Category C user: protocol adaptor

Modify scrips, uses the autogenerated RobotEvo protocol GUI or existing scripts to modify
the imput ranges, variants and some other options in programmed protocols,
or making minor modifications to them;

Expected skills: good understanding of the affected protocol.

Category D user: protocol developer

Developer of protocols.

Expected skills:

	python;

	RobotEvo APIs;

	deep understanding of the implemented (bio)chemical protocols.

Category E user: RobotEvo developer

Core developer of RobotEvo.

Expected skills:

	python;

	deeper understanding of RobotEvo implementation;

	know the original API of the programmed robot;

	understanding of the implemented protocols;

	testing;

	git-GitHub.

	How to run an existing protocol?

	How does it works?

	A Hello World! example.

	How to modify an existing protocol?

	Now to write a new protocol?

How to run an existing protocol?

Make sure you have a working python3 interprete in your device (PC, tablet, smartphone, etc.) and a copy of RobotEvo
(downloaded or cloned from GitHub).

Now, the simplest way is to run the python script containing the protocol, providing it have a “main” function.

For better control, in a your onw python script, import the desired protocol and just create an instance
(python object) of the protocol,
possibly setting some of the constructor parameters, and call the .run() method of that object.
You can see many examples of this usage in the script robotevo/protocols/test.py
This will create a set of files with the generated evoware scripts, a human readable protocol, and comments,
possibly including warnings.
It may abort with more or less detailed messages about the errors.

Alternatively run GUI.py (only in devices with a functioning standard python module “tkinter”) to select the protocol,
the desired protocol “variant” and change some other minor parameters like number of samples or required reagents volume.

To make the actual pippeting in the real robot, open the generated .esc script in the EVOware editor.
It will alert you that the check sum have not been set, which in this case just flags the fact that this is
a newly generated script you have not run yet.
Accept to load it in the EVOware script editor. Here you will have very good assistance to visualize
the details of each step and to do a normal, full TECAN validation of the correctness of the script.

Use the information from the visual worktable map to physically setup the labware. Use the detailed
comments automatically
inserted by RobotEvo in the script or the associated .protocol.txt file to fill the expected initial volume
of each reagent.

Use EVOware to run the script as usually.

How does it works?

Already the creation of the protocol object will run some “boilerplate” code to setup things we need to run the
useful part of our protocol.

For example it will parse the provided worktable template file (a .ewt or just a compatible .esc evoware file)
and will remember (in a sort of map) all the labware present in the worktable, including its unique name, type
and location.

It will also initialize some other characteristics of the used robot (not present in the worktable file)
like number of tips in the LiHa, etc.

Additionally it will set the desired EvoMode: what kind of output we want to produce - normally an evoware script
(his generated script will include again all the information for the worktable),
but also a human readable protocol, etc.

By running .run() we “create” or “get”, from the parsed worktable file, labwares, like multiplates,
tube racks, etc, and “create” the reagents defined there in the script, including location in the worktable,
volume, etc.
This make possible for the “internal iRobot” to model or track the content of each well,
and to detect (and report) potential logical errors in the protocol.

If at this point the protocol include a call to .cehcklist() instructions will be generated to inform to the
human robot-operator at run time, the positions and initial quantity of all reagents he need to
make sure are in place. If a GUI is in use and was previosly created
a new sub-GUI will be automatically generated to show all the details of the defined reagents
making possible to change some properties without modifying programmatically the protocol.

A typical protocol will use the high level instructions inherited from protocol_steps,
like transfer, distribute, with tips, etc., to express the “physical” protocol.
This instructions are in turn internally implemented using lower level instructions like aspirate,
get tips. etc.
Each of this low level intructions will interact with the selected EvoMode to generate the corresponding instructions
in the EVOware script and to check errors and change the state of the internally modeled iRobot,
including the liquid volume in each well and tip and many other details.

A Hello World! example.

Let create the classical, in the the world of programming, Hello World! example.
It will just shows that message in the screen of the PC controlling the robot and will wait for user
confirmation producing a typical sound.

By running the script:

#
"""
Hello World!

The classical, in the the world of programming, Hello World! example.
It will just shows that message in the screen of the PC controlling the robot and will wait
for user confirmation producing a typical sound.

"""

from EvoScriPy.protocol_steps import *

class HelloWorld(Protocol):
 """
 This is a very general protocol.
 Normally you will inherit from a Protocol class adapted to your real robot.
 """
 name = "Hello World"

 def __init__(self, GUI = None,
 output_filename = None,
 worktable_template_filename = None):
 this = Path(__file__).parent
 Protocol.__init__(self,
 GUI = GUI,
 output_filename = output_filename or this / 'scripts' / 'hello_world',
 worktable_template_filename = worktable_template_filename or this / 'hello_world.ewt')

 def run(self):
 self.check_list()
 self.user_prompt("Hello World!")
 self.done()

if __name__ == "__main__":
 HelloWorld().run()

[IMPORTANT: replace the worktable_template_filename argument with any valid -for your very onw robot-
worktable template (.ewt) or script (.esc).]

we will have some files (currently 4) generated with names following the pattern of the output_filename
constructor argument: in particular ‘../current/tests/hello_world.esc’ will contain a new evoware script
you can load into the Freedom evoware editor. After you agree to use the script with an still unvalidated
check-summe you will see it just contain an instruction for a simple user promt. By using evoware to run
this script you will get:

[image: _images/HelloW.png]

How to modify an existing protocol?

How to write a new protocol?

author Ariel Vina-Rodriguez (qPCR4vir)
this example is free to use at your onw risk
2019-2019
"""
Prepare serial dilutions of two mixes.

"""

__author__ = 'Ariel'

Tutorial

from protocols.evo200_f.evo200_f import *

class DemoTwoMixes(Evo200_FLI):
 """
 Prepare two 1:10 serial dilutions of two different mixes each in 'n' 100 uL final volume wells
 (each in a microplate, the second one to be moved to the working position).

 'mix1' and 'mix2' are diluted separately in n wells 1:10 (mix1_10 and mix2_10 respectively) using
 a provided "buffer". From those wells a portion is transferred to the final 1:100 dilutions
 (mix1_100 and mix2_100 respectively) to fv=100 uL final volume

 One way to achieve this:
 - Calculate how much to transfer from each mix1_10 to mix1_100. v_mix1_10_100= fv/10 and from diluent.
 - Calculate how much to distribute from mix1 to each mix1_10 and from diluent.
 - Define a reagent `mix1` and `mix2`in an Eppendorf rack (labware) for the calculated volume per "sample" (mix1_10 or 2).
 - Define a reagent `buffer` in a 100 mL cubette `BufferCub` for the total volume per "sample".
 - Generate check list
 - Transfer plate 2 from the original location `plate2` to the final location `plate2-moved`
 - Define derived reagents for diluted mixes
 - Distribute mix1 and buffer into mix1_10 and similar with mix2
 - Transfer from mix1_10 to mix1_100 and distribute buffer here. The same with mix2_10
 """

 name = "Prefill one plate with Buffer."
 min_s, max_s = 1, 96/2

 # for now just ignore the variants
 def def_versions(self):
 self.versions = {'No version': self.V_def}

 def V_def(self):
 pass

 def __init__(self,
 GUI = None,
 num_of_samples: int = None,
 worktable_template_filename = None,
 output_filename = None,
 first_tip = None,
 run_name: str = ""):

 this = Path(__file__).parent

 Evo200_FLI.__init__(self,
 GUI = GUI,
 num_of_samples = num_of_samples or DemoTwoMixes.max_s,
 worktable_template_filename = worktable_template_filename or
 this / 'demo-two.mixes.Evo200example.ewt',
 output_filename = output_filename or this / 'scripts' / 'two.mixes',
 first_tip = first_tip,
 run_name = run_name)

 def run(self):
 self.initialize() # set_EvoMode and set_defaults() from Evo200

 self.check_initial_liquid_level = True
 self.show_runtime_check_list = True

 num_of_samples = self.num_of_samples
 assert self.min_s <= num_of_samples <= self.max_s, "In this demo we want to set 2x num_of_samples in a 96 well plate."
 wt = self.worktable

 self.comment('Prefill a plate with some dilutions of two master mix and Buffer Reagent for {:d} samples.'
 .format(num_of_samples))

 buf_cuvette = wt.get_labware("BufferCub", labware.Trough_100ml) # Get Labwares from the work table
 master_mixes_ = wt.get_labware("mixes", labware.Eppendorfrack)

 buf_per_sample =0
 fv = 100

 v_mix_10_100 = fv / 10 # to be transferred from mix1_10 to mix1_100
 buf_mix_100 = fv - v_mix_10_100
 buf_per_sample += buf_mix_100

 v_mix_10 = (fv + v_mix_10_100)/10 # to be distribute from original mix1 to mix1_10
 buf_mix_10 = (fv + v_mix_10_100) - v_mix_10
 buf_per_sample += buf_mix_10

 # Define the reagents in each labware (Cuvette, eppys, etc.)

 buffer = Reagent("Buffer ", buf_cuvette, volpersample = buf_per_sample,
 def_liq_class = self.Water_wet,
 num_of_samples = 2 * self.num_of_samples)

 mix1 = Reagent("mix1", master_mixes_, volpersample = v_mix_10,
 def_liq_class = self.Water_wet,
 num_of_samples = self.num_of_samples)

 mix2 = Reagent("mix2", master_mixes_, volpersample = v_mix_10,
 def_liq_class = self.Water_wet,
 num_of_samples = self.num_of_samples)

 # Show the check_list GUI to the user for possible small changes

 self.check_list()

 instructions.wash_tips(wasteVol=5, FastWash=True).exec()

 plate1 = wt.get_labware("plate1", '96 Well Microplate')
 plate2 = wt.get_labware("plate2", '96 Well Microplate')

 new_location = wt.get_labware("plate2-moved").location

 Reagent.use_minimal_number_of_aliquots = False # Define derived reagents ---------------------

 mix1_10 = Reagent(f"mix1, diluted 1:10",
 plate1,
 initial_vol = 0.0,
 num_of_aliquots= num_of_samples,
 def_liq_class = self.Water_free,
 excess = 0)

 mix2_10 = Reagent(f"mix2, diluted 1:10",
 plate2,
 initial_vol = 0.0,
 num_of_aliquots= num_of_samples,
 def_liq_class = self.Water_free,
 excess = 0)

 mix1_100 = Reagent(f"mix1, diluted 1:100",
 plate1,
 wells = 'A07',
 initial_vol = 0.0,
 num_of_aliquots= num_of_samples,
 def_liq_class = self.Water_free,
 excess = 0)

 mix2_100 = Reagent(f"mix2, diluted 1:100",
 plate2,
 wells = 'A07',
 initial_vol = 0.0,
 num_of_aliquots= num_of_samples,
 def_liq_class = self.Water_free,
 excess = 0)

 instructions.transfer_rack(plate2, new_location).exec() # just showing how RoMa works.

 with group("Fill plate with mixes "):

 self.user_prompt("Put the plates for Buffer ")

 with self.tips(reuse=True, drop=False):
 self.distribute(reagent = mix1,
 to_labware_region = mix1_10.select_all())

 with self.tips(reuse=True, drop=False):
 self.distribute(reagent = mix2,
 to_labware_region = mix2_10.select_all())

 with self.tips(reuse=True, drop=False):
 self.distribute(reagent=buffer, to_labware_region=mix1_10.select_all(), volume=buf_mix_10)
 self.distribute(reagent=buffer, to_labware_region=mix2_10.select_all(), volume=buf_mix_10)

 with self.tips(reuse=True, drop=False):
 wells_100 = mix1_100.select_all()
 self.transfer(from_labware_region = mix1_10.select_all(),
 to_labware_region = wells_100,
 volume = v_mix_10_100)

 with self.tips(reuse=True, drop=False):
 wells_100 = mix2_100.select_all()
 self.transfer(from_labware_region = mix2_10.select_all(),
 to_labware_region = wells_100,
 volume = v_mix_10_100)

 with self.tips(reuse=True, drop=False):
 self.distribute(reagent=buffer, to_labware_region=mix1_100.select_all(), volume=buf_mix_100)
 self.distribute(reagent=buffer, to_labware_region=mix2_100.select_all(), volume=buf_mix_100)

 self.drop_tips()

 self.done()

if __name__ == "__main__":
 p = DemoTwoMixes(num_of_samples= 4,
 run_name= "_4s_mix_1_2")

 p.use_version('No version')
 # p.set_first_tip('A01')
 p.run()

we will have something like:

[image: _images/demo2mix-list-1.png]
[image: _images/demo2mix-list-2.png]
[image: _images/demo2mix-list-3.png]
[image: _images/demo2mix-list-4.png]
[image: _images/demo2mix-list-5.png]
[image: _images/demo2mix-list-6.png]

API

The final goal of RobotEvo is to help you to translate your normal laboratory protocol into an script executable
by a robot. Thus, the class Protocol offers the base to all the custom protocol classes you will write.
You will probably derived from Protocol one more intermediary protocol class that will define a few characteristic
specific to the concrete robot you are using, probably setting some “sensible defaults” in the constructor of that
“robot-specific protocol class”.

Now, in a concrete protocol derived from that intermediary class, you will define concrete arguments in the constructor,
and re-implement the run() function. Particularly, you may pass to the constructor the path to the description
of the worktable you want to use (this may be an evoware worktable template file or just a working script file).

Normally, by running run() the worktable file is parsed and numerous Labware objects are created in association
with that ´Worktable´. In this function you will then create the Reagent`s you want to manipulate, and also may
`get_labware(label) - where label is the unique name given to some object (tip rack, microplate, etc.)
in the worktable defined in evoware. Reagent`s and `Labware objects give you access to individual Wells,
which are the basic containers of liquid (or Reagent`s) and which, in some circumstances, can be manipulated too.
(todo: edit laware’s names directly from RobotEvo). After some of those objects are created you can begin
to perform the actions that the API `protocol steps offers.

How exactly the robot arms pipette (speed, liquid level detection, wet-free, etc.) is defined by liquid classes.
The liquid classes are managed internally in an evoware data bank associate with each concrete/physical robot
and exposed to the script only by name. One name in one robot may mean something different in another robot
or may not be defined at all. Consequently, in RobotEvo the Liquid classes are set by name. The name have to be exactly
copied from evoware.
Use or create a named liquid class in evoware with all the characteristic you need. Them transfer the name to RobotEvo.
Create and transfer to RobotEvo as many Liquid classes as you need.

Principal API: Protocol steps

All these functions are member of the base class Protocol, from which all user protocols are derived.

High level functions:

These are the functions you will use in “every day” protocol programming.
They allow you to specify the kind of tips to use and them command the operations you need on your reagents,
samples, reactions, etc., almost directly as it states in the steps of your “hand written” original laboratory protocol.

	tips(): how to use tips during the involved instructions.

	distribute(): some volume of reagent into the wells of the target labware

	transfer(): from some wells into equal number of target wells

	mix(): mix by pipetting the content of wells

	mix_reagent(): mix every aliquot by pipetting

	make_pre_mix(): put together the components of a PreMixReagent by pipetting

	get_tips(): mount new or used tips

	drop_tips(): drop or put back tips

	set_first_tip(): position of the given tip type to be used next

	check_reagents_levels(): generate instruction to check all defined reagents

	check_reagent_level(): generate instruction to check reagent volume

	show_check_list(): to the operator

	comment(): add a comment to the script

	user_prompt(): show a text box to the operator

Advanced functions.

Are you doing some advanced protocol development that cannot be efficiently or clearly expressed
using the previous High level functions? Then, you may use the following functions.

Atomic functions

These are functions aimed to isolate what a physical robot would make at once: pick some tips,
aspirate some liquid, etc.
They are simple to understand, but are harder to use in “every day” protocol programming.
They may be a great tool to set up your robot and to get an initial familiarization with all the system.
Keep in mind that it is now your responsibility to know what robot/protocol “state” are ignored by these new functions.
For example, before aspirate you will need to mount “by yourself” the tips in the correct position of the used arm,
because aspirate ignores the higher level with tips().
But don’t worry, RobotEvo still keeps track of the “internal” robot state and will throw errors
informing you about most logical mistakes
(like in the previous example forgetting to mount the tips).
In some cases these functions may be used to construct new high lever functions.

	pick_up_tip(): pick tips of the given type

	drop_tip()

	aspirate(): some volumen from given wells

	dispense(): some volumen to given wells

Protocol-structure or state functions

Related to initialization:

	def_versions()

	set_paths()

	init_EvoMode()

	set_defaults()

	liquid_classes()

	carrier_types()

	allow_labware()

	labware_types()

Related to execution order:

	use_version()

	initialize()

	run()

	pre_check()

	check_list()

	post_check()

	done()

Related to state:

	get_liquid_class()

	get_carrier_type()

	get_labware_type()

	set_EvoMode()

	set_drop_tips()

	set_allow_air()

	reuse_tips()

	reuse_tips_and_drop()

	preserve_tips()

	preserveing_tips()

	use_preserved_tips()

Other intermediate level functions:

	aspirate_one()

	dispense_one()

	_dispensemultiwells()

	_aspirate_multi_tips()

	_multidispense_in_replicas()

	comments()

	
class protocol_steps.Executable(GUI=None, run_name=None)

	Bases: object

Each executable will need to implement these methods.

	
__init__(GUI=None, run_name=None)

	Initialize self. See help(type(self)) for accurate signature.

	
def_versions()

	Override this function to define a ‘dictionary’ of the versions for your Executable,
with a name as key and a method as value,
which will initialize the Executable to effectively execute that version.
You don’t need to call this function. It will be used internally during initialization of your
derived class.

	
initialize()

	It is called “just in case” to ensure we don’t go uninitialized in lazy initializing scenarios.

	
run()

	Here we have accesses to the “internal robot” self.iRobot, with in turn have access to the used Work Table,
self.iRobot.worktable from where we can obtain labwares with get_labware().
Overwrite this function and dont call this basic function. This basic function is provided only as an example
of “boiled-plate” code

	
set_defaults()

	Set initial values that will not be rest during secondary initializations.
The “primary initialization” maybe a light one, like defining the list of versions available.
Here, for example, initialize the list of reagents.
todo: make private

	
use_version(version: str)

	Select the version to be execute

	Parameters

	version (str) – the name of the desired version

	
class protocol_steps.Pipeline(GUI=None, protocols=None, run_name=None)

	Bases: protocol_steps.Executable

Each custom Pipeline need to implement these functions.

	
__init__(GUI=None, protocols=None, run_name=None)

	Initialize self. See help(type(self)) for accurate signature.

	
class protocol_steps.Protocol(n_tips=4, num_of_samples=96, GUI=None, worktable_template_filename=None, output_filename=None, first_tip=None, run_name=None, tips_type=None)

	Bases: protocol_steps.Executable

Base class from which each custom protocol need to be derived, directly
or from one of already derived. For example from the already adapted to some
generic type robot like Evo200 or from an even more especially adapted like Evo100_FLI.
Each newly derived protocol have to optionally override some of the following functions,
especially .run().

	High level API:

	App-Structure API:

	Context-options modifiers:

	Lower lever API & “private” functions:

	Atomic API:

	
__init__(n_tips=4, num_of_samples=96, GUI=None, worktable_template_filename=None, output_filename=None, first_tip=None, run_name=None, tips_type=None)

	
	Parameters

	
	n_tips –

	num_of_samples –

	GUI –

	worktable_template_filename –

	output_filename –

	first_tip –

	run_name –

	tips_type –

	
aspirate(arm: EvoScriPy.robot.Arm = None, TIP_MASK: int = None, volume: (<class 'float'>, <class 'list'>) = None, from_wells: [<class 'EvoScriPy.labware.Well'>] = None, liq_class: str = None)

	Atomic operation. Use arm (pipette) with masked (selected) tips to aspirate volume from wells.
:param arm: Uses the default Arm (pipette) if None
:param TIP_MASK: Binary flag bit-coded (tip1=1, tip8=128) selects tips to use in a multichannel pipette arm.

If None all tips are used. (see Robot.mask_tip[index] and Robot.mask_tips[index])

	Parameters

	
	volume – One (the same) for each tip or a list specifying the volume for each tip.

	from_wells – list of wells to aspirate from.

	liq_class – the name of the Liquid class, as it appears in your own EVOware database.
instructions.def_liquidClass if None

	
aspirate_one(tip, reagent, vol=None, offset=None)

	Aspirate vol with ONE tip from reagent

	Parameters

	
	self –

	tip –

	reagent –

	vol –

	offset –

	
check_list()

	Tipically

	
check_reagent_level(reagent, liq_class=None)

	Select all possible replica of the given reagent and detect the liquid level,
contrasting it with the current (expected) volumen in EACH well.
Use the given liquid class or the reagent default.

	Parameters

	
	reagent –

	liq_class –

	
check_reagents_levels()

	Will emit a liquid level detection on every well occupied by all the reagents defined so fort.
Will be executed at the end of self.check_list() but only if self.check_initial_liquid_level is True

	
comment(text: str)

	Add a text comment in the generated script
:param text:

	
consolidate()

	Volumes going to the same destination well are combined within the same tip,
so that multiple aspirates can be combined to a single dispense.
If there are multiple destination wells, the pipette will never combine their volumes into the same tip.
:return:

	
dispense(arm: EvoScriPy.robot.Arm = None, TIP_MASK: int = None, volume: (<class 'float'>, <class 'list'>) = None, to_wells: [<class 'EvoScriPy.labware.Well'>] = None, liq_class: str = None)

	Atomic operation. Use arm (pipette) with masked (selected) tips to dispense volume to wells.

	Parameters

	
	arm – Uses the default Arm (pipette) if None

	TIP_MASK – Binary flag bit-coded (tip1=1, tip8=128) selects tips to use in a multichannel pipette arm.
If None all tips are used. (see Robot.mask_tip[index] and Robot.mask_tips[index])

	volume – One (the same) for each tip or a list specifying the volume for each tip.

	to_wells – list of wells to aspirate from.

	liq_class – the name of the Liquid class, as it appears in your own EVOware database.
instructions.def_liquidClass if None

	
dispense_one(tip, reagent, vol=None)

	Dispense vol with ONE tip to reagent

	Parameters

	
	tip –

	reagent –

	vol –

	
distribute(volume: float = None, reagent: EvoScriPy.reagent.Reagent = None, to_labware_region: EvoScriPy.labware.Labware = None, optimize: bool = True, num_samples: int = None, using_liquid_class: (<class 'str'>, <class 'tuple'>) = None, TIP_MASK: int = None, num_tips: int = None)

	
	Parameters

	
	volume – if not, volume is set from the default of the source reagent

	reagent – Reagent to distribute

	to_labware_region – Labware in which the destine well are selected

	optimize – minimize zigzag of multi pipetting

	num_samples – Priorized !!!! If true reset the selection

	using_liquid_class –

	TIP_MASK –

	num_tips – the number of tips to be used in each cycle of pipetting = all

To distribute a reagent into some wells.
This is a high level function with works with the concept of “reagent”. This a a concept introduced by
RobotEvo that don’t exist in EVOware and other similar software. It encapsulated the name, wells occupied by
each of the aliquots of the reagent, the volume corresponding to one sample (if any) and the current volume
in each aliquot. This function can use multiple of those aliquots to distribute the reagent to the target
wells using multiple tips (the maximum will be used if num_tips is not set).

By default a number of wells equal to the number of samples set in the protocol will be auto selected in the
target labware to_labware_region, but this selection can be set explicitly (setting well.selFlag=True,
for example by calling to_labware_region.selectOnly(self, sel_idx_list)). If num_samples is set
it will rewrite (reset) the selected wells in the target to_labware_region.

Please, carefully indicate whether to use “parallel optimization” in the pipetting order
by setting optimize. (very important unless you are using a full column
pipetting arm). Check that the created script don’t have conflicts in
the order of the samples and the “geometry” of the labware areas (selection of wells)
during each pipetting step. This is ease to “see” in the EVOware visual script editor. The generated
.protocol.txt can also be used to check this. RobotEvo will detect
some errors, but currently not all, assuming the areas are relatively “regular”.

The same volume will be transfer to each well. It will be dispensed in only one pass: muss fit
into the current tips
If the liquid classes (LC) to be used are not explicitly passed the default LC of the reagent
will be used. The generated .esc and .gwl can also be used to check this.

A human readable comment will be automatically added to the script with the details of this operation.

	
drop_tip(TIP_MASK: int = None, DITI_waste: EvoScriPy.labware.Labware = None, arm: EvoScriPy.robot.Arm = None, airgap_volume: float = 0, airgap_speed: int = None)

	
	Parameters

	
	TIP_MASK – Binary flag bit-coded (tip1=1, tip8=128) selects tips to use in a multichannel pipette arm.
If None all tips are used. (see Robot.mask_tip[index] and Robot.mask_tips[index])

	DITI_waste – Specify the worktable position for the DITI waste you want to use.
You must first put a DITI waste in the Worktable at the required position.

	arm – Uses the default Arm (pipette) if None

	airgap_speed – int 1-1000. Speed for the airgap in μl/s

	airgap_volume – 0 - 100. Airgap in μl which is aspirated after dropping the DITIs

	
drop_tips(TIP_MASK=None)

	It will decide to really drop the tips or to put it back in some DiTi rack

	Parameters

	TIP_MASK –

	
get_tips(TIP_MASK=None, tip_type=None, selected_samples=None)

	It will decide to get new tips or to pick back the preserved tips for the selected samples

	Parameters

	
	TIP_MASK –

	tip_type –

	selected_samples –

	Returns

	the TIP_MASK used

	
initialize()

	It is called “just in case” to ensure we don’t go uninitialized in lazy initializing scenarios.

	
make_pre_mix(pre_mix: EvoScriPy.reagent.PreMixReagent, num_samples: int = None, force_replies: bool = False)

	A preMix is just that: a premix of reagents (aka - components)
which have been already defined to add some vol per sample.
Uses one new tip per component.
It calculates and checks self the minimum and maximum number of replica of the resulting preMix

	Parameters

	
	pre_mix (PreMixReagent) – what to make, a predefined preMix

	num_samples (int) –

	force_replies (bool) – use all the preMix predefined replicas

	
mix(in_labware_region: EvoScriPy.labware.Labware, using_liquid_class: str = None, volume: float = None, optimize: bool = True)

	MixReagent the reagents in each of the wells selected in_labware_region, using_liquid_class and volume

	Parameters

	
	in_labware_region –

	using_liquid_class –

	volume –

	optimize –

	
mix_reagent(reagent: EvoScriPy.reagent.Reagent, liq_class: str = None, cycles: int = 3, maxTips: int = 1, v_perc: int = 90)

	Select all possible replica of the given reagent and mix using the given % of the current vol in EACH well
or the max vol for the tip. Use the given “liquid class” or the reagent default.

	Parameters

	
	reagent –

	liq_class –

	cycles –

	maxTips –

	v_perc – % of the current vol in EACH well to mix

	
pick_up_tip(TIP_MASK: int = None, tip_type: (<class 'str'>, <class 'EvoScriPy.labware.DITIrackType'>, <class 'EvoScriPy.labware.DITIrack'>, <class 'EvoScriPy.labware.DITIrackTypeSeries'>) = None, arm: EvoScriPy.robot.Arm = None, airgap_volume: float = 0, airgap_speed: int = None)

	Atomic operation. Get new tips. It take a labware type or name instead of the labware itself (DiTi rack)
because the real robot take track of the next position to pick, including the rack and the site (the labware).
It only need a labware type (tip type) and it know where to pick the next tip. Example:

self.pick_up_tip(‘DiTi 200 ul’) # will pick a 200 ul tip with every tip arm.

	Parameters

	
	TIP_MASK – Binary flag bit-coded (tip1=1, tip8=128) selects tips to use in a multichannel pipette arm.
If None all tips are used. (see Robot.mask_tip[index] and Robot.mask_tips[index])

	tip_type – if None the worktable default DiTi will be used.

	arm – Uses the default Arm (pipette) if None

	airgap_speed – int 1-1000. Speed for the airgap in μl/s

	airgap_volume – 0 - 100. Airgap in μl which is aspirated after dropping the DITIs

	
reuse_tips(reuse=True) → bool

	Reuse the tips or drop it and take new after each action?

	Parameters

	reuse (bool) –

	Returns

	

	
run()

	Here we have accesses to the “internal robot” self.iRobot, with in turn have access to the used Work Table,
self.iRobot.worktable from where we can obtain labwares with get_labware()

	
set_defaults()

	Set initial values that will not be rest during secondary initializations.
The “primary initialization” maybe a light one, like defining the list of versions available.
Here, for example, initialize the list of reagents.
todo: make private

	
set_drop_tips(drop=True) → bool

	Drops the tips at THE END of the whole action? like after distribution of a reagent into various targets
:param drop:
:return:

	
set_first_tip(first_tip: (<class 'int'>, <class 'str'>) = None, tip_type: (<class 'str'>, <class 'EvoScriPy.labware.DITIrackType'>) = None)

	Optionally set the Protocol.first_tip, a position in rack, like 42 or ‘B06’
(optionally including the rack self referenced with a number, like ‘2-B06’, were 2 will be the second
rack in the worktable series of the default tip type). Currently, for a more precise set, use directly:

instructions.set_DITI_Counter2(labware=rack, posInRack=first_tip).exec()

	
show_check_list()

	Will show a user prompt with a check list to set all defined reagents:
Name, position in the worktable, wells and initial volume (on every well occupied by all
the reagents defined so fort.
Will be executed at the end of self.check_list() but only if self.show_runtime_check_list is True

	
tips(tips_mask=None, tip_type=None, reuse=None, drop=None, preserve=None, use_preserved=None, drop_first=False, drop_last=False, allow_air=None, selected_samples: EvoScriPy.labware.Labware = None)

	A contextmanager function which will manage how tips will be used during execution of the dependant instructions

	Parameters

	
	tips_mask –

	tip_type – the type of the tips to be used

	reuse (bool) – Reuse the tips already mounted? or drop and take new BEFORE each individual action

	drop (bool) – Drops the tips AFTER each individual action?
like after one aspiration and distribute of the reagent into various targets

	preserve (bool) – puts the tip back into a free place in some rack of the same type

	use_preserved – pick the tips back from the previously preserved

	selected_samples –

	allow_air –

	drop_first (bool) – Reuse the tips or drop it and take new once BEFORE the whole action

	drop_last (bool) – Drops the tips at THE END of the whole action

	
transfer(from_labware_region: EvoScriPy.labware.Labware, to_labware_region: EvoScriPy.labware.Labware, volume: (<class 'int'>, <class 'float'>), using_liquid_class: (<class 'str'>, <class 'tuple'>) = None, optimize_from: bool = True, optimize_to: bool = True, num_samples: int = None) -> (<class 'EvoScriPy.labware.Labware'>, <class 'EvoScriPy.labware.Labware'>)

	
	Parameters

	
	from_labware_region (Labware) – Labware in which the source wells are located and possibly selected

	to_labware_region (Labware) – Labware in which the target wells are located and possibly selected

	volume (float) – if not, volume is set from the default of the source reagent

	using_liquid_class – LC or tuple (LC to aspirate, LC to dispense)

	optimize_from (bool) – use from_labware_region.parallelOrder() to aspirate?

	optimize_to (bool) – use to_labware_region.parallelOrder() to aspirate?

	num_samples (int) – Prioritized. If used reset the well selection

	Returns

	a tuple of the labwares used as origin and target with the involved wells selected.

To transfer reagents (typically samples or intermediary reactions) from some wells in the source labware to
the same number of wells in the target labware using the current LiHa arm with maximum number of tips
(of type: self.worktable.def_DiTi_type,
which can be set ‘with self. tips() (tip_type = myTipsRackType)’).
todo: count for ‘broken’ tips

The number of “samples” may be explicitly indicated in which case will be assumed to begin from the
first well of the labware. Alternatively the wells in the source or target or in both may be
previously directly “selected” (setting well.selFlag=True, for example by calling
from_labware_region.selectOnly(self, sel_idx_list)), in which case transfer the minimum length selected.
If no source wells are selected this function will auto select the protocol’s self.num_of_samples number
of wells in the source and target labwares.
Please, carefully indicate whether to use “parallel optimization” in the pipetting order for both source and
target by setting optimizeFrom and optimizeTo. (very important unless you are using a full column
pipetting arm). Check that the created script don’t have conflicts in
the order of the samples and the “geometry” of the labware areas (selection of wells)
during each pipetting step. This is ease to “see” in the EVOware visual script editor. The generated
.protocol.txt can also be used to check this. RobotEvo will detect
some errors, but currently not all, assuming the areas are relatively “regular”.

The same volume will be transfer from each well. It will be aspirated/dispensed in only one pass: muss fit
into the current tips
todo ?! If no volume is indicated then the volume expected to be in the first selected well will be used.

If the liquid classes (LC) to be used are not explicitly passed the default LC in the first well of the current
pipetting step will be used. The generated .esc and .gwl can also be used to check this.

A human readable comment will be automatically added to the script with the details of this operation.

Warning: modify the selection of wells in both source and target labware to reflect the wells actually used

	
user_prompt(text: str, sound: bool = True, close_time: int = -1)

	Interrupt pippeting to popup a message box to the operator.

	Parameters

	
	text – the text in the box

	sound – Should add an acustic signal?

	close_time – time to wait for automatic closing the box: the operator can “manually”

	close this box at any time, and this will be the only way to close it if the default -1 is used,

	which cause no automatic closing.

Reagent - a fundamental concept

A Reagent is a fundamental concept in RobotEvo programming. It makes possible to define a protocol in a natural way,
matching what a normal laboratory’s protocol indicates.
Defines a named homogeneous liquid solution, the wells it occupy, the initial amount needed to run the protocol
(auto calculated), and how much is needed per sample, if applicable. It is also used to define samples,
intermediate reactions and products. It makes possible a robust tracking of all actions and a logical error
detection, while significantly simplifying the programming of non trivial protocols.

todo: implement units for volume, concentration, etc.

Main classes and functions:

Abstract information classes:

	MixComponent: like an item in some table summarizing components of some Mix.

	PreMixComponent: like an item in some table summarizing components of some PreMix.

	Primer: like an item in some table summarizing primer sequences, synthesis, etc.

	PrimerMixComponent: like an item in a table describing Primer Mixes for some PCRs.

	PrimerMix: like a table describing Primer Mixes for some PCRs

	PCRMasterMix: like an item in some table summarizing PCR Master Mixes for some PCR experiment

	PCReaction: like an item in some table summarizing reactions in a PCR experiment

	PCRexperiment: like an item in some table summarizing PCR experiments

Robot classes:

	Reagent: homogeneous liquid solution in some wells

	MixReagent: a Reagent composed of other Reagents

	Dilution

	PreMixReagent: A pre-MixReagent of otherwise independent reagents

	PrimerReagent: Manipulate a Primer Reagent on a robot.

	PrimerMixReagent: Manipulate a Primer-Mix Reagent on a robot.

	PCRMasterMixReagent: Manipulate a PCR Master-Mix Reagent on a robot.

	PCReactionReagent

	PCRexperimentRtic: Organize a PCR setup on a robot.

	
class reagent.Dilution(name: str, diluent: reagent.Reagent, labware: (<class 'EvoScriPy.labware.Labware'>, <class 'str'>, []) = None, wells: (<class 'int'>, [<class 'int'>], [<class 'EvoScriPy.labware.Well'>]) = None, components: [<class 'reagent.DilutionComponentReagent'>] = None, num_of_aliquots: int = None, minimize_aliquots: bool = None, def_liq_class: (<class 'str'>, (<class 'str'>, <class 'str'>)) = None, excess: float = None, initial_vol: float = 0.0, min_vol: float = 0.0, fill_limit_aliq: float = 100, concentration: float = None)

	Bases: reagent.MixReagent

A Reagent composed of others, diluted Reagents, that the robot may prepare.

	
__init__(name: str, diluent: reagent.Reagent, labware: (<class 'EvoScriPy.labware.Labware'>, <class 'str'>, []) = None, wells: (<class 'int'>, [<class 'int'>], [<class 'EvoScriPy.labware.Well'>]) = None, components: [<class 'reagent.DilutionComponentReagent'>] = None, num_of_aliquots: int = None, minimize_aliquots: bool = None, def_liq_class: (<class 'str'>, (<class 'str'>, <class 'str'>)) = None, excess: float = None, initial_vol: float = 0.0, min_vol: float = 0.0, fill_limit_aliq: float = 100, concentration: float = None)

	
	Parameters

	
	name –

	labware –

	wells –

	components –

	num_of_aliquots –

	minimize_aliquots –

	def_liq_class –

	excess –

	initial_vol –

	min_vol –

	fill_limit_aliq –

	concentration –

	
components = None

	list of reagent components

	
class reagent.DilutionComponentReagent(reagent: reagent.Reagent, dilution: float = None, final_conc: float = None)

	Bases: reagent.MixComponentReagent

Components of some Dilution.

	
__init__(reagent: reagent.Reagent, dilution: float = None, final_conc: float = None)

	
	Parameters

	
	reagent –

	dilution –

	final_conc –

	
class reagent.MixComponent(name: str, id_: str = None, init_conc: float = None, final_conc: float = None, volume: float = None)

	Bases: object

Represent abstract information, like an item in some table summarizing components of some MixReagent.
todo: introduce diluent? - final_conc == None ? final_conc == init_conc ?

	
__init__(name: str, id_: str = None, init_conc: float = None, final_conc: float = None, volume: float = None)

	
	Parameters

	
	id –

	name –

	init_conc – todo Really??

	final_conc –

	
class reagent.MixComponentReagent(reagent: reagent.Reagent, volume: float = None)

	Bases: object

Components of some MixReagent.
This is not just a Reagent, but some “reserved” volume of some Reagent.

	
__init__(reagent: reagent.Reagent, volume: float = None)

	
	Parameters

	
	reagent –

	volume –

	
class reagent.MixReagent(name: str, labware: (<class 'EvoScriPy.labware.Labware'>, <class 'str'>, []) = None, wells: (<class 'int'>, [<class 'int'>], [<class 'EvoScriPy.labware.Well'>]) = None, components: [<class 'reagent.MixComponentReagent'>] = None, num_of_aliquots: int = None, minimize_aliquots: bool = None, def_liq_class: (<class 'str'>, (<class 'str'>, <class 'str'>)) = None, excess: float = 1.0, initial_vol: float = 0.0, min_vol: float = 0.0, fill_limit_aliq: float = 100, concentration: float = None)

	Bases: reagent.Reagent

A Reagent composed of other Reagents, that the robot may prepare.

	
__init__(name: str, labware: (<class 'EvoScriPy.labware.Labware'>, <class 'str'>, []) = None, wells: (<class 'int'>, [<class 'int'>], [<class 'EvoScriPy.labware.Well'>]) = None, components: [<class 'reagent.MixComponentReagent'>] = None, num_of_aliquots: int = None, minimize_aliquots: bool = None, def_liq_class: (<class 'str'>, (<class 'str'>, <class 'str'>)) = None, excess: float = 1.0, initial_vol: float = 0.0, min_vol: float = 0.0, fill_limit_aliq: float = 100, concentration: float = None)

	
	Parameters

	
	name –

	labware –

	wells –

	components –

	num_of_aliquots –

	minimize_aliquots –

	def_liq_class –

	excess –

	initial_vol –

	min_vol –

	fill_limit_aliq –

	concentration –

	
components = None

	list of reagent components

	
exception reagent.NoReagentFound(reagent_name: str, error: str)

	Bases: Exception

	
__init__(reagent_name: str, error: str)

	Initialize self. See help(type(self)) for accurate signature.

	
class reagent.PCRMasterMix(name, id_=None, reaction_vol=25, sample_vol=5, components=None, diluent=None, title=None)

	Bases: object

Represent abstract information, like an item in some table summarizing PCR Master Mixes for some PCR experiment

	
__init__(name, id_=None, reaction_vol=25, sample_vol=5, components=None, diluent=None, title=None)

	
	Parameters

	
	name –

	id –

	reaction_vol –

	sample_vol –

	components –

	title –

	
ids = {}

	connect each existing PCR master mix ID with the corresponding PCRMasterMix

	
names = {}

	connect each existing PCR master mix name with the corresponding PCRMasterMix

	
class reagent.PCRMasterMixReagent(pcr_mix: reagent.PCRMasterMix, mmix_rack: (<class 'EvoScriPy.labware.Labware'>, <class 'list'>), num_of_samples: int, pos=None, num_of_aliquots=None, initial_vol=None, def_liq_class=None, excess=None, fill_limit_aliq=None, kit_rack: (<class 'EvoScriPy.labware.Labware'>, <class 'list'>) = None, primer_mix_rack: (<class 'EvoScriPy.labware.Labware'>, <class 'list'>) = None, primer_rack: (<class 'EvoScriPy.labware.Labware'>, <class 'list'>) = None)

	Bases: reagent.PreMixReagent

Manipulate a PCR Master-Mix Reagent on a robot.

	
__init__(pcr_mix: reagent.PCRMasterMix, mmix_rack: (<class 'EvoScriPy.labware.Labware'>, <class 'list'>), num_of_samples: int, pos=None, num_of_aliquots=None, initial_vol=None, def_liq_class=None, excess=None, fill_limit_aliq=None, kit_rack: (<class 'EvoScriPy.labware.Labware'>, <class 'list'>) = None, primer_mix_rack: (<class 'EvoScriPy.labware.Labware'>, <class 'list'>) = None, primer_rack: (<class 'EvoScriPy.labware.Labware'>, <class 'list'>) = None)

	Construct a robot-usable PCRMasterMixReagent from an abstract PCRMasterMix.
It is always constructed - no reuse of old aliquots: contains instable components.

	Parameters

	
	primer_mix_rack –

	primer_rack –

	pos –

	num_of_aliquots –

	initial_vol –

	def_liq_class –

	fill_limit_aliq –

	pcr_mix –

	mmix_rack –

	kit_rack –

	excess –

	
class reagent.PCReaction(rol, sample=None, targets=None, mix: reagent.PCRMasterMix = None, replica=None, row=None, col=None, vol=None)

	Bases: object

Represent abstract information, like an item in some table summarizing reactions in a PCR experiment

	
__init__(rol, sample=None, targets=None, mix: reagent.PCRMasterMix = None, replica=None, row=None, col=None, vol=None)

	Initialize self. See help(type(self)) for accurate signature.

	
class reagent.PCReactionReagent(pcr_reaction: reagent.PCReaction, plate: EvoScriPy.labware.Labware)

	Bases: reagent.Reaction

	
__init__(pcr_reaction: reagent.PCReaction, plate: EvoScriPy.labware.Labware)

	
	Parameters

	
	pcr_reaction –

	plates –

	
class reagent.PCRexperiment(id_=None, name=None, ncol=0, nrow=0)

	Bases: object

Represent abstract information, like an item in some table summarizing PCR experiments

	
__init__(id_=None, name=None, ncol=0, nrow=0)

	A linear rack have just one roe and many columns

	Parameters

	
	id –

	name –

	ncol –

	nrow –

	
mixes = {}

	connect each PCR master mix with a list of well reactions

	
pcr_reactions = None

	list of PCRReaction to create organized in rows with columns

	
samples = None

	connect each sample with a list of well reactions

	
targets = None

	connect each target with a list of PCR reactions well

	
class reagent.PCRexperimentRtic(pcr_exp: (<class 'reagent.PCRexperiment'>, <class 'list'>), plates: (<class 'EvoScriPy.labware.Labware'>, <class 'list'>), kit_rack: (<class 'EvoScriPy.labware.Labware'>, <class 'list'>), mmix_rack: (<class 'EvoScriPy.labware.Labware'>, <class 'list'>) = None, primer_mix_rack: (<class 'EvoScriPy.labware.Labware'>, <class 'list'>) = None, primer_rack: (<class 'EvoScriPy.labware.Labware'>, <class 'list'>) = None, protocol=None)

	Bases: object

Organize a PCR setup on a robot.
From a list of abstract information about PCR plate/experiments creates sufficient volume of each of the
PCRMasterMixReagent listed in the global PCRexperiment.mixes

	
__init__(pcr_exp: (<class 'reagent.PCRexperiment'>, <class 'list'>), plates: (<class 'EvoScriPy.labware.Labware'>, <class 'list'>), kit_rack: (<class 'EvoScriPy.labware.Labware'>, <class 'list'>), mmix_rack: (<class 'EvoScriPy.labware.Labware'>, <class 'list'>) = None, primer_mix_rack: (<class 'EvoScriPy.labware.Labware'>, <class 'list'>) = None, primer_rack: (<class 'EvoScriPy.labware.Labware'>, <class 'list'>) = None, protocol=None)

	
	Parameters

	
	pcr_exp – [PCRexperiment] abstarct information about the “plate” PCR experiemnts

	plates – [labware.Labware] where to set the PCR reactions.

	kit_rack – [racks] in the prefered order to put the PCR kit reagents (stocks solutions)

	mmix_rack – [racks] in the prefered order to put the PCR mastermix reagents specially created for these experiments

	primer_mix_rack – [racks] in the prefered order to put the primer mix reagents (stocks solutions)s

	primer_rack – [racks] in the prefered order to put the primers reagents (stocks solutions)s

	protocol – who invoke this PCR, provide a worktable and the rest of the “environment”

	
mixes = None

	connect each PCRMasterMix in the experiment with the PCR wells into which will be pippeted

	
pcr_exp = None

	abstract info

	
class reagent.PreMixComponent(name: str, volpersample: float, id_: str = None, init_conc: float = None, final_conc: float = None, volume: float = None)

	Bases: reagent.MixComponent

Represent abstract information, like an item in some table summarizing components of some PreMixReagent.
An special case of MixComponent, for which volume is calculated on the basis of “number of samples”
and volume_per_sample

	
__init__(name: str, volpersample: float, id_: str = None, init_conc: float = None, final_conc: float = None, volume: float = None)

	
	Parameters

	
	id –

	name –

	init_conc – todo Really??

	final_conc –

	
class reagent.PreMixReagent(name, labware: (<class 'EvoScriPy.labware.Labware'>, <class 'list'>), components, pos=None, num_of_aliquots=None, initial_vol=None, def_liq_class=None, excess=None, fill_limit_aliq=None, num_of_samples=None)

	Bases: reagent.Reagent

A pre-MixReagent of otherwise independent reagents to be pippeted together for convenience,
but that could be pippeted separately.
todo: make this a special case of MixReagent, for which everything ? is calculated on the basis of “number of samples”

	
__init__(name, labware: (<class 'EvoScriPy.labware.Labware'>, <class 'list'>), components, pos=None, num_of_aliquots=None, initial_vol=None, def_liq_class=None, excess=None, fill_limit_aliq=None, num_of_samples=None)

	
	Parameters

	
	name –

	labware –

	components – list of reagent components

	pos –

	num_of_aliquots –

	initial_vol –

	def_liq_class –

	excess –

	fill_limit_aliq –

	num_of_samples –

	
components = None

	list of reagent components

	
init_vol(num_samples=None, initial_vol=None)

	update my self.volpersample from the already updated self.components.volpersample,
possibly with updated num_samples and initial_vol
WARNING !! call this only after the update of the components (if need)
:param num_samples:
:param initial_vol:

	
class reagent.Primer(name: str, seq: str, proposed_stock_conc: float = 100, id_: str = None, prepared: float = None, mass: float = None, moles: float = None, molec_w: float = None, mod_5p: str = None, mod_3p: str = None, id_synt: str = None, kws: list = None, diluent: str = 'TE 1x')

	Bases: object

Represent abstract information, like an item in some table summarizing primer sequences, synthesis, etc.

	
__init__(name: str, seq: str, proposed_stock_conc: float = 100, id_: str = None, prepared: float = None, mass: float = None, moles: float = None, molec_w: float = None, mod_5p: str = None, mod_3p: str = None, id_synt: str = None, kws: list = None, diluent: str = 'TE 1x')

	
	Parameters

	
	name –

	seq –

	proposed_stock_conc –

	id –

	prepared –

	mass –

	moles –

	molec_w –

	mod_5p –

	mod_3p –

	id_synt –

	kws –

	diluent –

	
ids = {}

	connect each existing Primer ID with the corresponding Primer

	
ids_synt = {}

	connect each existing Primer synthesis ID with the corresponding Primer

	
key_words = {}

	connect each existing Primer key_word with the corresponding list of Primer

	
names = {}

	connect each existing Primer name with the corresponding list of Primer

	
seqs = {}

	connect each existing Primer sequence with the corresponding list of Primer

	
class reagent.PrimerMix(name, id_=None, conc=10.0, prepared=None, components=None, ref_vol=None, diluent=None, kws=None, super_mix=False)

	Bases: object

Represent abstract information, like a table describing Primer Mixes for some PCRs

	
__init__(name, id_=None, conc=10.0, prepared=None, components=None, ref_vol=None, diluent=None, kws=None, super_mix=False)

	
	Parameters

	
	name –

	id –

	conc –

	prepared –

	components –

	ref_vol –

	diluent –

	kws –

	super_mix –

	
ids = {}

	connect each existing Primer mix ID with the corresponding PrimerMix

	
key_words = {}

	connect each existing Primer mix key_word with the corresponding list of PrimerMix

	
names = {}

	connect each existing Primer mix name with the corresponding list of PrimerMix

	
class reagent.PrimerMixComponent(id_=None, name=None, init_conc=None, final_conc=None, super_mix: bool = False)

	Bases: reagent.MixComponent

Represent abstract information, like an item in a table describing Primer Mixes for some PCRs.
It can be a primer, another primer mix or the diluent

	
__init__(id_=None, name=None, init_conc=None, final_conc=None, super_mix: bool = False)

	
	Parameters

	
	id –

	name –

	init_conc –

	final_conc –

	super_mix –

	
class reagent.PrimerMixReagent(primer_mix: reagent.PrimerMix, primer_mix_rack: (<class 'EvoScriPy.labware.Labware'>, <class 'list'>), pos=None, num_of_aliquots=None, initial_vol=None, def_liq_class=None, excess=None, fill_limit_aliq=None, primer_rack: (<class 'EvoScriPy.labware.Labware'>, <class 'list'>) = None)

	Bases: reagent.PreMixReagent

Manipulate a Primer-MixReagent Reagent on a robot.

	
__init__(primer_mix: reagent.PrimerMix, primer_mix_rack: (<class 'EvoScriPy.labware.Labware'>, <class 'list'>), pos=None, num_of_aliquots=None, initial_vol=None, def_liq_class=None, excess=None, fill_limit_aliq=None, primer_rack: (<class 'EvoScriPy.labware.Labware'>, <class 'list'>) = None)

	Construct a robot-usable PrimerMixReagent from an abstract PrimerMix.
You can reuse “old” aliquots by passing primer_mix.prepared volume > 0.
If no primer_mix.prepared volume is passed, or if it is not sufficient,
a set of primer reagents will be created.

	Parameters

	
	primer_mix –

	primer_mix_rack –

	pos –

	num_of_aliquots –

	initial_vol –

	def_liq_class –

	excess –

	fill_limit_aliq –

	primer_rack –

	
class reagent.PrimerReagent(primer: reagent.Primer, primer_rack: (<class 'EvoScriPy.labware.Labware'>, <class 'list'>), pos=None, initial_vol=None, PCR_conc=0.8, stk_conc=100, def_liq_class=None, fill_limit_aliq=None, excess=None)

	Bases: reagent.MixReagent

Manipulate a Primer Reagent on a robot.

	
__init__(primer: reagent.Primer, primer_rack: (<class 'EvoScriPy.labware.Labware'>, <class 'list'>), pos=None, initial_vol=None, PCR_conc=0.8, stk_conc=100, def_liq_class=None, fill_limit_aliq=None, excess=None)

	Construct a robot-usable PrimerReagent from an abstract Primer.
You can reuse “old” aliquots by passing primer.prepared volume > 0.
If no primer.prepared volume is passed, it will be prepared.

	Parameters

	
	primer –

	primer_rack –

	pos –

	initial_vol –

	PCR_conc –

	stk_conc –

	def_liq_class –

	fill_limit_aliq –

	excess –

	
class reagent.Reaction(name, labware, components: [<class 'reagent.Reagent'>] = None, track_sample=None, pos=None, num_of_aliquots=1, def_liq_class=None, excess=None, initial_vol=0)

	Bases: reagent.Reagent

todo: make this a MixReagent, with diluent too ?

	
__init__(name, labware, components: [<class 'reagent.Reagent'>] = None, track_sample=None, pos=None, num_of_aliquots=1, def_liq_class=None, excess=None, initial_vol=0)

	This is a named set of aliquots of an homogeneous solution.
Put a reagent into labware wells, possible distributed into aliquots and set the amount to be used for each sample,
if applicable.
Each reagent is added to a list of reagents of the worktable were the labware is.
The specified excess in % will be calculated/expected. A default excess of 4% will be assumed
if None is indicated.
A minimal needed volume will be calculated based on either the number of samples
and the volume per sample to use or the volume per single use. This can be forced setting min_vol.
A minimal number of replicas (wells, aliquots) will be calculated based on the minimal volume,
taking into account the maximum allowed volume per well and the excess specified. Aliquots will be filled not more
than the percent of the well volumen indicated by fill_limit_aliq.

	Parameters

	
	name – Reagent name. Ex: “Buffer 1”, “forward primer”, “IC MS2”

	labware – labware.Labware or his label in the worktable; if None will be deduced from wells.

	volpersample – how much is needed per sample, if applicable, in uL

	single_use – Not a “per sample” multiple use? Set then here the volume for one single use

	wells – or offset to begging to put replica. If None will try to assign consecutive wells in labware

	num_of_aliquots – def min_num_of_replica(), number of replicas

	def_liq_class – the name of the Liquid class, as it appears in your own EVOware database.
instructions.def_liquidClass if None

:param excess; in %
:param initial_vol: is set for each replica. If default (=None) is calculated als minimum.
:param min_vol: force a minimum volume to be expected or prepared.
:param fill_limit_aliq: maximo allowed volume in % of the wells capacity
:param num_of_samples: if None, the number of samples of the current protocol will be assumed
:param minimize_aliquots: use minimal number of aliquots? Defaults to Reagent.use_minimal_number_of_aliquots,

This default value can be temporally change by setting that global.

	
class reagent.Reagent(name: str, labware: (<class 'EvoScriPy.labware.Labware'>, <class 'str'>, []) = None, wells: (<class 'int'>, [<class 'int'>], [<class 'EvoScriPy.labware.Well'>]) = None, num_of_aliquots: int = None, minimize_aliquots: bool = None, def_liq_class: (<class 'str'>, (<class 'str'>, <class 'str'>)) = None, volpersample: float = 0.0, num_of_samples: int = None, single_use: float = None, excess: float = None, initial_vol: (<class 'float'>, <class 'list'>) = 0.0, min_vol: float = 0.0, fill_limit_aliq: float = 100, concentration: float = None)

	Bases: object

A Reagent is a fundamental concept in RobotEvo programming.
It makes possible to define a protocol in a natural way, matching what a normal
laboratory’s protocol indicates. Defines a named homogeneous liquid solution,
the wells it occupy, the initial amount needed to run the protocol (auto calculated),
and how much is needed per sample, if applicable. It is also used to define samples,
intermediate reactions and products. It makes possible a robust tracking
of all actions and a logical error detection, while significantly simplifying
the programming of non trivial protocols.

	
__init__(name: str, labware: (<class 'EvoScriPy.labware.Labware'>, <class 'str'>, []) = None, wells: (<class 'int'>, [<class 'int'>], [<class 'EvoScriPy.labware.Well'>]) = None, num_of_aliquots: int = None, minimize_aliquots: bool = None, def_liq_class: (<class 'str'>, (<class 'str'>, <class 'str'>)) = None, volpersample: float = 0.0, num_of_samples: int = None, single_use: float = None, excess: float = None, initial_vol: (<class 'float'>, <class 'list'>) = 0.0, min_vol: float = 0.0, fill_limit_aliq: float = 100, concentration: float = None)

	This is a named set of aliquots of an homogeneous solution.
Put a reagent into labware wells, possible distributed into aliquots and set the amount to be used for each sample,
if applicable.
Each reagent is added to a list of reagents of the worktable were the labware is.
The specified excess in % will be calculated/expected. A default excess of 4% will be assumed
if None is indicated.
A minimal needed volume will be calculated based on either the number of samples
and the volume per sample to use or the volume per single use. This can be forced setting min_vol.
A minimal number of replicas (wells, aliquots) will be calculated based on the minimal volume,
taking into account the maximum allowed volume per well and the excess specified. Aliquots will be filled not more
than the percent of the well volumen indicated by fill_limit_aliq.

	Parameters

	
	name – Reagent name. Ex: “Buffer 1”, “forward primer”, “IC MS2”

	labware – labware.Labware or his label in the worktable; if None will be deduced from wells.

	volpersample – how much is needed per sample, if applicable, in uL

	single_use – Not a “per sample” multiple use? Set then here the volume for one single use

	wells – or offset to begging to put replica. If None will try to assign consecutive wells in labware

	num_of_aliquots – def min_num_of_replica(), number of replicas

	def_liq_class – the name of the Liquid class, as it appears in your own EVOware database.
instructions.def_liquidClass if None

:param excess; in %
:param initial_vol: is set for each replica. If default (=None) is calculated als minimum.
:param min_vol: force a minimum volume to be expected or prepared.
:param fill_limit_aliq: maximo allowed volume in % of the wells capacity
:param num_of_samples: if None, the number of samples of the current protocol will be assumed
:param minimize_aliquots: use minimal number of aliquots? Defaults to Reagent.use_minimal_number_of_aliquots,

This default value can be temporally change by setting that global.

	
init_vol(num_samples=None, initial_vol=None)

	To initialize the among of reagent in each well. First put what the user inform he had put, then
put additionally the minimum the protocol need.
:param num_samples:
:param initial_vol:
:return:

	
min_num_of_replica(num_of_samples: int = None) → int

	A minimal number of replicas (wells, aliquots) will be calculated based on the minimal volume,
taking into account the maximum allowed volume per well and the excess specified.
:param num_of_samples:
:return:

	
min_vol(num_samples=None, volume: float = None, add_volume: float = None) → float

	A minimal volume will be calculated based on either the number of samples
and the volume per sample to use (todo or the volume per single use.)???
:param num_samples:
:return:

	
need_vol = None

	calculated volume needed during the execution of the protocol

	
put_min_vol(num_samples=None)

	Force you to put an initial volume of reagent that can be used to distribute into samples,
aspiring equal number of complete doses for each sample from each replica,
exept the firsts replicas that can be used to aspirate one more dose for the last/rest of samples.
That is: all replica have equal volumen (number) of doses or the firsts have one more dose
:param num_samples:
:return:

Worktable and labwares

	Worktable

	Worktable.Location

	Labware.Type
+ Specialized types:

	DiTiRackType

	CuvetteType

	Labware.Type.Series

	Labware
+ Specialized labwares:

	DitiRack

	Cuvette

	
class labware.Carrier(carrier_type: labware.Carrier.Type, grid: int, label: str = None, worktable: labware.WorkTable = None)

	Bases: object

Collection of Labwares sites, filled with labwares…

	
class Type(name, idx: int = None, widht_in_grids: int = None, n_sites: int = None)

	Bases: object

	
__init__(name, idx: int = None, widht_in_grids: int = None, n_sites: int = None)

	Initialize self. See help(type(self)) for accurate signature.

	
class Types(carrier_file: pathlib.Path)

	Bases: object

	
__init__(carrier_file: pathlib.Path)

	Initialize self. See help(type(self)) for accurate signature.

	
add_type(carrier_type)

	

	
parse_file(carrier_file=None)

	

	
__init__(carrier_type: labware.Carrier.Type, grid: int, label: str = None, worktable: labware.WorkTable = None)

	Initialize self. See help(type(self)) for accurate signature.

	
add_labware(labware, site)

	

	
class labware.Cuvette(type, location, label=None)

	Bases: labware.Labware

	
__init__(type, location, label=None)

	
	Parameters

	
	type –

	label –

	location –

	
autoselect(offset=0, maxTips=1, replys=1)

	
	Parameters

	
	offset –

	maxTips –

	replys –

	Returns

	

	
init_wells()

	

	
class labware.CuvetteType(name, nRow, max_vol, nCol=1)

	Bases: labware.Type

	
__init__(name, nRow, max_vol, nCol=1)

	Initialize self. See help(type(self)) for accurate signature.

	
create_labware(loc, label)

	

	
class labware.DITIrack(type: labware.DITIrackType, location: labware.WorkTable.Location, label: str)

	Bases: labware.Labware

Objects of this class represent physical objects (with location) of
some type Labware.DITIrackType

	
__init__(type: labware.DITIrackType, location: labware.WorkTable.Location, label: str)

	
	Parameters

	
	type –

	location –

	label –

	worktable –

	
fill(beg=1, end=None)

	

	
find_new_tips(number_tips) -> (<class 'bool'>[, <class 'labware.Tip'>])

	Return existing tips. May be only partially.
Just to know there are tips

	
pick_up(TIP_MASK) → [<class 'labware.usedTip'>]

	Low level. Part of the job have been already done: the rack self hat
already the source tip-wells selected. We need to return these tips.

	Parameters

	TIP_MASK –

	
retire_new_tips(number_tips) → [<class 'labware.Tip'>]

	Return removed tips. May be only partially.
Low Level !!! To be called only by implementations of low level Instruction.actualize_robot_state
as part of series.retire_new_tips as response to getDITI2

	
set_DITI_counter(posInRack, lastPos=False)

	

	
set_back(TIP_MASK, tips)

	Low level. Part of the job have been already done: tips is a list of the tips in
the robot arm, passed here just to prevent a call and a link back to the robot.
And the rack self hat already the target tip-wells selected.

	Parameters

	
	TIP_MASK –

	labware_selection –

	tips –

	
class labware.DITIrackType(name, nRow=8, nCol=12, max_vol=None, portrait=False)

	Bases: labware.Type

	
__init__(name, nRow=8, nCol=12, max_vol=None, portrait=False)

	Initialize self. See help(type(self)) for accurate signature.

	
create_labware(loc, label)

	

	
create_series(labware: labware.Labware)

	

	
class labware.DITIrackTypeSeries(labware: labware.Labware)

	Bases: labware.Series

	
__init__(labware: labware.Labware)

	Initialize self. See help(type(self)) for accurate signature.

	
find_new_tips(TIP_MASK) -> (<class 'bool'>[, <class 'labware.Tip'>])

	
	Parameters

	
	TIP_MASK –

	lastPos –

	Returns

	

	
refill_next_rack(worktable=None)

	

	
retire_new_tips(TIP_MASK)

	A response to a get_tips: the tips have to be removed from the rack
and only after that can appear mounted in the robot arm to pipette.
The tips are removed at the “current” position, the position where
begin the fresh tips, with is maintained internally by the robot and
is unknown to the user

	
class labware.DITIwaste(type, location, label=None)

	Bases: labware.Labware

	
__init__(type, location, label=None)

	
	Parameters

	
	type –

	label –

	location –

	
waste(tips)

	

	
class labware.DITIwasteType(name, capacity=480)

	Bases: labware.Type

	
__init__(name, capacity=480)

	Initialize self. See help(type(self)) for accurate signature.

	
create_labware(loc, label)

	

	
class labware.Frezeer

	Bases: labware.WorkTable

	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

	
class labware.Labware(type: labware.Labware.Type, label: str, location: labware.WorkTable.Location = None)

	Bases: object

	
class Position(row, col=1)

	Bases: object

	
__init__(row, col=1)

	Initialize self. See help(type(self)) for accurate signature.

	
to_name()

	

	
class Type(name, nRow, nCol=1, max_vol=None)

	Bases: object

	
class Series(labware)

	Bases: object

	
__init__(labware)

	Initialize self. See help(type(self)) for accurate signature.

	
add(labware)

	

	
remove(labware)

	

	
static set_current_next_to(labware)

	

	
set_next()

	Set current to the next of self.current
:rtype: (Labware, bool) = (the next labware , serie’s current has rotated to the first
:param labware:

	
show_next(labware=None)

	return next to self.current
:rtype: (Labware, bool) = (the next labware , serie’s current has rotated to the first
:param labware:

	
static show_next_to(labware)

	

	
__init__(name, nRow, nCol=1, max_vol=None)

	Initialize self. See help(type(self)) for accurate signature.

	
create_labware(loc, label)

	

	
create_series(labware)

	

	
size() → int

	

	
__init__(type: labware.Labware.Type, label: str, location: labware.WorkTable.Location = None)

	
	Parameters

	
	type –

	label –

	location –

	
autoselect(offset=0, maxTips=1, replys=1)

	
	Parameters

	
	offset –

	maxTips –

	replys –

	Returns

	

	
clearSelection()

	

	
static create(labw_t_name: str, loc: labware.WorkTable.Location, label: str)

	

	
find_free_wells(n=1, init_pos=0) -> (<class 'bool'>[, <class 'labware.Well'>])

	

	
init_wells()

	

	
moveParallel(pos, offset)

	

	
newOffset(pos, offset)

	

	
newPosition(pos, offset)

	

	
offset(row_pos, col=1)

	

	
offsetAtParallelMove(step, n_tips)

	

	
offsetFromName(wellName)

	

	
parallelOrder(n_tips, original=None)

	

	
posAtParallelMove(step, n_tips)

	

	
position(offset)

	

	
put(reagent, pos=None, num_of_aliquots=None) → list

	Put a reagent with replicas in the given wells positions of this labware,
and return a list of the wells used

	Parameters

	
	reagent –

	pos – [wells]; if int or [int] will be assumed 1-based not 0-based

	num_of_aliquots – number of replicas

	Returns

	

	
select(sel_idx_list)

	

	
selectAll()

	

	
selectOnly(sel_idx_list)

	

	
selected() → list

	
	Returns

	list of the selected well offset

	
selected_wells()

	

	
types = {'24 Pos Eppi Tube Rack': 6, '96 Well 8er Macherey-Nagel flach': 12, '96 Well BioRad': 12, '96 Well DeepWell square': 12, '96 Well Macherey-Nagel Plate': 12, '96 Well Matrix Rack 1ml': 12, '96 Well Microplate': 12, '96 Well PCR Plate': 12, '96 Well Separation Plate': 9, 'AntiCOntamination': 1, 'Box 10x10': 10, 'Box 9x9': 9, 'DiTi 1000ul': 12, 'DiTi 1000ul SBS LiHa': 12, 'DiTi 10ul SBS LiHa': 12, 'DiTi 200 ul': 12, 'DiTi 200ul SBS LiHa': 12, 'DiTi 200ul SBS MCA96': 12, 'DiTi Nested Waste MCA384': 1, 'FilterplateaufElutionplate flach': 12, 'Sampletubes Eppendorfrack': 1, 'Trough 100ml': 1, 'Trough 25ml Max. Recovery': 1, 'Trough 300ml MCA': 12, 'Tube 13*100mm 16 Pos': 1, 'Tube Eppendorf 1 Pos': 1, 'Tube Eppendorf 16 Pos': 1, 'Tube Eppendorf 2m 6x 16 Pos': 6, 'Tube Eppendorf 2mL 1 Pos': 1, 'Tube Eppendorf 2mL 16 Pos': 1, 'Tube Eppendorf 3x 16 Pos': 3, 'Tube Eppendorf 3x 16 PosR': 3, 'Tube Eppendorf 48 Pos': 6, 'Tube Eppendorf 6x 16 Pos': 6, 'Tube Falcon 15ml 12 Pos': 6, 'Tube Greiner conic 2mL 1 Pos': 1, 'Tube Greinerconic 2mL 16 Pos': 1, 'Wash Station Cleaner deep': 1, 'Wash Station Cleaner shallow': 1, 'Wash Station Waste': 1, 'Washstation 2Grid Cleaner long': 1, 'Washstation 2Grid Cleaner short': 1, 'Washstation 2Grid DiTi Waste': 1, 'Washstation 2Grid Waste': 1, 'fixed tips': 1}

	

	
wellSelectionStr(wells: (<class 'int'>, [<class 'int'>], [<class 'labware.Well'>]) = None)

	
	Returns

	See A.15.3, pag. A-122

file:///C:/Prog/RobotEvo/FreedomEVOwareStandardV2.4SP1-2011.ExtendedDeviceSupportManual.pdf
Many of the advanced worklist commands have a parameter called wellSelection.
wellSelection is a string which specifies the wells (tips) which should be used for
the command.
Characters 1 and 2 of the string specify the number of wells in the x-direction in
hexadecimal. Characters 3 and 4 of the the string specify the number of wells in
the y-direction in hexadecimal. For example, 12 x 8 (96 wells) = 0C08.
All following characters are used for the well selection, whereby each character
specifies the well selection for a group of 7 adjacent wells using a specially
adapted bitmap system. Only 7 bits are used per byte [RANGE 0-127 !!!] instead of 8 to avoid screen
and printer font compatibility problems. Using the 7-bit system, 14 characters are
needed to represent the well selection for 96 wells (plus characters 1 to 4, total of
18 characters) and 55 characters are needed to represent the well selection for
384 wells (total of 59 characters).
In addition, since most ANSI characters below ANSI 32 are non-printable (nonhuman-
readable), decimal 48 (ANSI value for “0”) is added to the value
[RANGE 48-175 !!! 144 have undefined Unicode !!!] of the
bitmap to make it easier to read, send by eMail etc. The following shows some
examples for character 5 of the well selection string for a 96-well microplate in
landcape orientation.
Character 5 is responsible for the first group of 7 wells

this function stores 7 bit per character in the selection string
the first 2 characters are the number of wells in x direction (columns) in hexadecimal.
the characters 3 and 4 are the number of wells in y direction (rows) in hexadecimal.
well are computed in the order back to front, left to right;
https://docs.python.org/3.4/library/string.html#formatstrings

	
class labware.LiquidClass(name: str, liquid_name: str = '')

	Bases: object

	
__init__(name: str, liquid_name: str = '')

	
	Parameters

	
	name –

	liquid_name –

	
class labware.LiquidClassDefault(name: str, liquid_name: str = '')

	Bases: labware.LiquidClass

	
__init__(name: str, liquid_name: str = '')

	
	Parameters

	
	name –

	liquid_name –

	
class labware.LiquidClassDerived(raw_name: str, origen: labware.LiquidClassDefault)

	Bases: labware.LiquidClass

	
__init__(raw_name: str, origen: labware.LiquidClassDefault)

	
	Parameters

	
	name –

	liquid_name –

	
class labware.LiquidClasses(database: pathlib.Path)

	Bases: object

	
__init__(database: pathlib.Path)

	Initialize self. See help(type(self)) for accurate signature.

	
exception labware.NoFreeWells(labware: labware.Labware, error: str)

	Bases: Exception

	
__init__(labware: labware.Labware, error: str)

	Initialize self. See help(type(self)) for accurate signature.

	
exception labware.ProtocolLogicPippetingError

	Bases: Exception

	
class labware.Te_Mag(name, nRow, nCol=1, max_vol=None)

	Bases: labware.Type

	
class labware.Tip(rack_type)

	Bases: object

	
__init__(rack_type)

	Initialize self. See help(type(self)) for accurate signature.

	
class labware.Well(labware, Well_Offset)

	Bases: object

	
class Action(volume: float, origin=None)

	Bases: object

	
__init__(volume: float, origin=None)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(labware, Well_Offset)

	Initialize self. See help(type(self)) for accurate signature.

	
actions

	

	
log(vol, origin=None)

	

	
reagent

	

	
select(sel=True)

	

	
vol

	

	
class labware.WorkTable(template_file, robot_protocol=None, grids=67, sites=127)

	Bases: object

Collection of carriers.types and Labware.types and pos of instances

	
class File(input, output, worktable)

	Bases: object

	
__init__(input, output, worktable)

	Initialize self. See help(type(self)) for accurate signature.

	
grid_carrier_line()

	

	
write(worktable)

	

	
class Location(grid=None, site=None, carrier=None, carrier_site=None, worktable=None)

	Bases: object

One location in a WorkTable

	
__init__(grid=None, site=None, carrier=None, carrier_site=None, worktable=None)

	
	Parameters

	
	grid – int, 1-67. worktable grid. Carrier grid position

	site – int, 0 - 127. Site on carrier (on RAck?) = labware location - (site on carrier - 1) !!!!!

	carrier –

	carrier_site –

	
__init__(template_file, robot_protocol=None, grids=67, sites=127)

	Initialize self. See help(type(self)) for accurate signature.

	
add_labware(labware, loc: labware.WorkTable.Location)

	
	Parameters

	
	labware –

	loc –

	Returns

	

	Raises

	"This WT have only " + len(self.grid) + " grid." –

	
add_new_labware(labware, loc: labware.WorkTable.Location = None)

	This will be the first location of this labware. Don’t remove from possible old location.
:param labware:
:param loc:
:return:
:raise “This WT have only ” + len(self.grid) + ” grid.”:

	
cur_worktable = None

	

	
get_DITI_series(rack=None)

	:type rack:(str, DITIrackType, DITIrack, DITIrackTypeSeries)

	
get_current_labware(labware)

	

	
get_labware(label: (<class 'str'>, <class 'int'>) = None, labw_type=None)

	Return a Labware already created manually or after the worktable template was scanned.
The labware type is optional (if you provide a label), but it makes the search more robust.
It is mandatory if you provide no label or an index (no label will return the labware with index 0 in the
series of labware of the desired type). The type may be a label or a predefined Labware.Type
:type labw_type: (str, Labware.Type)
:param label:
:return Labware

	
labware_series = None

	typeName: Series. For each type - a series of labwares (with self have locations)

	
parse_worktable_file(template_file, robot_protocol)

	

	
reagents = None

	connect each reagent name with the reagent self

	
replace_with_new(labw, label)

	

	
retire_labware(labw)

	

	
set_current(labware)

	

	
set_def_DiTi(tips)

	

	
set_first_pos(labw_type_name=None, posstr=None)

	Default to DITI if no labw_type_name is given. chooses a labware by label and set next well or tip to be used.
:param labw_type_name:
:param posstr:
:return:

	
class labware.conectedWell(labware, Well_Offset)

	Bases: labware.Well

	
actions

	

	
reagent

	

	
vol

	

	
labware.count_tips(TIP_MASK: int) → int

	

	
labware.getLabware(labw_type, label, worktable=None)

	

	
class labware.usedTip(tip: labware.Tip, origin=None)

	Bases: labware.Tip

	
__init__(tip: labware.Tip, origin=None)

	Initialize self. See help(type(self)) for accurate signature.

RobotEvo “modes” for execution of basic instructions

	Define how we want to “interact” with the physical robot, or what kind of output we want from

	
this script generator.

	Mode

	ToString: an string representation of the instructions.

	Multiple: A collection (list) of all the “modes” to be generated in a single run

	ToFile:

	Comments:

	AdvancedWorkList:

	ScriptBody:

	Script:

	iRobot: update the state of the “internal” robot to track changes produced by the execution of the instructions.

after each instruction.
- AdvancedWorkList:

	
class evo_mode.AdvancedWorkList(filename=None, immediate=None)

	Bases: evo_mode.ToFile

	
exec(instr)

	

	
class evo_mode.COM_automation

	Bases: evo_mode.Mode

	
class evo_mode.Comments(identation_char=None, identattion_length=None, current_identation=None, filename=None)

	Bases: evo_mode.ToFile

Create a list with all (and only with) the comments and the Groups.
Useful to be shown immediately after generation,
but also to the final user just before the actual physical run.

	
__init__(identation_char=None, identattion_length=None, current_identation=None, filename=None)

	Initialize self. See help(type(self)) for accurate signature.

	
exec(instr)

	

	
class evo_mode.Mode

	Bases: object

(Base class) Define how we want to “interact” with the physical robot, or what kind of output we want from
this script generator. Some options are: A worklist; a full Evoware script; only comments, etc.
One important option is to create many of this outputs from a single run.

	
done()

	

	
encoding = 'Latin-1'

	

	
exec(instr)

	

	
newline = '\r\n'

	

	
class evo_mode.Multiple(modes=None)

	Bases: evo_mode.Mode

A collection (list) of all the “modes” to be generated in a single run

	
__init__(modes=None)

	Initialize self. See help(type(self)) for accurate signature.

	
add_mode(mode)

	

	
done()

	

	
exec(instr)

	

	
class evo_mode.Script(filename=None, template=None, robot_protocol=None, robot=None)

	Bases: evo_mode.ScriptBody

Create a full and executable script for the evoware soft. Take an existing script or script-template as a base.

	
__init__(filename=None, template=None, robot_protocol=None, robot=None)

	Initialize self. See help(type(self)) for accurate signature.

	
add_template()

	

	
exec(instr)

	

	
set_template(template, robot_protocol)

	

	
class evo_mode.ScriptBody(filename=None, immediate=None)

	Bases: evo_mode.ToFile

	
class evo_mode.StdOut

	Bases: evo_mode.ToString

Specially useful during debugging.

	
exec(instr)

	

	
class evo_mode.ToFile(filename=None, immediate=None)

	Bases: evo_mode.ToString

(Base class) For modes with uses a file for output

	
__init__(filename=None, immediate=None)

	Initialize self. See help(type(self)) for accurate signature.

	
done()

	

	
exec(instr)

	

	
open()

	

	
set_file(filename=None)

	

	
class evo_mode.ToString

	Bases: evo_mode.Mode

(Base class) Create an string representation of the instructions.

	
exec(instr)

	

	
class evo_mode.iRobot(index, n_tips, arms=None, tips_type=None)

	Bases: evo_mode.Mode

Used to validate instructions based on an the state of an internal model af the physical robot.
It will check the kind and number of tips, and the volume already aspired in each tips, and the existence
and current volume in wells in labware, etc.
One basic use of this, is to guarantee that the robot will be actualized
once and only once even when multiple modes are used.

	
__init__(index, n_tips, arms=None, tips_type=None)

	Initialize self. See help(type(self)) for accurate signature.

	
exec(instr)

	

	
set_as_current()

	

Robots and arms

	Arm

	Robot: track state to make organizations previous to the actual instruction call, and change that state

after each instruction.

	
class robot.Arm(n_tips, index, workingTips=None, tips_type=None)

	Bases: object

	
Aspirate = 1

	

	
Detect = 0

	

	
DiTi = 0

	

	
Dispense = -1

	

	
Fixed = 1

	

	
__init__(n_tips, index, workingTips=None, tips_type=None)

	
	Parameters

	
	n_tips – the number of possible tips

	index – int. for example: index=Pipette.LiHa1

	workingTips – some tips maybe broken or permanently unused.

	tips_type – DITI or fixed (not implemented)

	
eject_tips_executed(tip_mask=None) -> (<class 'int'>, <class 'list'>)

	Drop tips only if needed. Return the mask and the tips really used.
:param tip_mask: int
:return: the mask that can be used with, is “True” if tips actually ned to be drooped
:rtype : int

	
eject_tips_test(tip_mask=None) -> (<class 'int'>[, <class 'int'>])

	Return the mask and the tips index to be really used.
:param tip_mask: int
:return: the mask that can be used with, is “True” if tips actually ned to be drooped
:rtype : int

	
getMoreTips_test(rack_type, tip_mask=None) → int

	Mount only the tips with are not already mounted.
Mount only one kind of tip at a time, but not necessary the same of the already mounted.

:rtype : int
:param tip_mask: int
:return: the mask that can be used

	
getTips_test(tip_mask=None) → int

	Simple test that the asked positions are free for mounting new tips.
:rtype : int
:param tip_mask:
:return: the mask that can be used
:raise “Tip already in position ” + str(i):

	
mount_more_tips_executed(rack_type, tip_mask=None, tips=None) -> (<class 'int'>, <class 'list'>)

	Mount only the tips with are not already mounted.
Mount only one kind of tip at a time, but not necessary the same of the already mounted.

:rtype : int
:param tip_mask: int
:return: the mask that can be used

	
mount_tips_executed(rack_type=None, tip_mask=None, tips=None) -> (<class 'int'>, <class 'list'>)

	Mount only one kind of new tip at a time or just the tips given in the list
:param rack_type:
:param tips:
:rtype : int
:param tip_mask:
:return: the mask that can be used
:raise “Tip already in position ” + str(i):

	
pipette_executed(action, volume, tip_mask=None) -> (<class 'list'>, <class 'int'>)

	Check and actualize the robot Arm state to aspirate [vol]s with a tip mask.
Using the tip mask will check that you are not trying to use an unmounted tip.
volume values for unsettled tip mask are ignored.

:rtype : (list, int)
:param action: +1:aspirate, -1:dispense
:param volume: one vol for all tips, or a list of vol
:param tip_mask: -1:all tips
:return: a lis of vol to pipette, and the mask

	
class robot.Robot(index=None, arms=None, n_tips=None, workingTips=None, tips_type=0, templateFile=None)

	Bases: object

Maintain an intern state.
Can have more than one arm in a dictionary that map an index with the actual arm.
One of the arms can be set as “current” and is returned by cur_arm()
Most of the changes in state are made by the implementation of the low level instructions, while the protocols can
“observe” the state to make all kind of optimizations and organizations previous to the actual instruction call

	
__init__(index=None, arms=None, n_tips=None, workingTips=None, tips_type=0, templateFile=None)

	A Robot may have 1 or more Arms, indexes by key index in a dictionary of Arms.
:param arms:
:param n_tips:
:param workingTips:
:param tips_type:

	
cur_arm(arm=None)

	

	
current = None

	

	
drop_tips_executed(TIP_MASK=None, waste=None)

	

	
drop_tips_test(TIP_MASK=None)

	

	
getTips_test(rack_type, tip_mask=None) → int

	

	
get_tips_executed(rack_series, tip_mask=None) -> (<class 'int'>, <class 'list'>)

	To be call from instructions.actualize_robot_state(self): actualize iRobot state (tip mounted and DiTi racks)
Return the mask with will be really used taking into account the iRobot state, specially, the “reusetips”
status and the number of tips already mounted.
If it return mask = 0 no evo-instruction for the real robot will be generated in some cases.

	Parameters

	
	tip_mask –

	rack_series – the series of this king of tips.

	Returns

	(int, [labware.Tip])

	
move_labware_executed(labware, destination)

	

	
pick_up_tips_executed(TIP_MASK, labware_selection: EvoScriPy.labware.DITIrack) → int

	The low level instruction have to be generated already with almost all the information needed.
Here we don’t check any more from where we really need to pick the tips
and assume they are all in the same rack.
Be careful by manual creation of low level instructions: they are safe if they are generated
by protocol instructions (drop_tips(), and preserve and usePreserved were previously set).
:param labware_selection:
:param TIP_MASK:

	
pipette_executed(action, volume, labware_selection, tip_mask=None) -> (<class 'list'>, <class 'int'>)

	

	
preserve_tips(preserve=True) → bool

	

	
reuse_tips(reuse=True) → bool

	

	
set_allow_air(allow_air=0.0) → float

	

	
set_as_current()

	

	
set_drop_tips(drop=True) → bool

	Drops the tips at THE END of the whole action? like after distribute of the reagent into various target?
:param drop:
:return: the previous value

	
set_tips_back_executed(TIP_MASK, labware_selection)

	The low level instruction have to be generated already with almost all the information needed.
Here we don’t check any more where we really need to put the tips.
Be careful by manual creation of low level instructions: they are safe if they are generated
by protocol instructions (drop_tips(), and preserve and usePreserved were previously set).
:param TIP_MASK:
:param labware:

	
set_worktable(templateFile, robot_protocol)

	

	
use_preserved_tips(usePreserved=True) → bool

	

	
use_tips_executed(tipMask, labware_selection)

	

	
where_are_preserved_tips(selected_reagents: EvoScriPy.labware.Labware, TIP_MASK, type) → list

	
	Parameters

	
	selected_reagents –

	TIP_MASK –

	Returns

	Return a list of racks with the tips-wells already selected.

	
where_preserve_tips(TIP_MASK) → list

	There are used tips in the arm, and we want to know were to put it back.
Return a list of racks with the tips-wells already selected.
(to set back the tips currently in the arm)

	Parameters

	TIP_MASK –

	Returns

	list of racks with the tips-wells already selected.

	
class instructions_Te_MagS.Te_MagS_ActivateHeater(temperature, needs_allwd_lw=0, allowed_labware='')

	Bases: EvoScriPy.Instruction_Base.TMagInstr

A.15.10.2 ActivateHeater (Worklist: Te-MagS_ActivateHeater)

	
__init__(temperature, needs_allwd_lw=0, allowed_labware='')

	Initialize self. See help(type(self)) for accurate signature.

	
validate_arg()

	

	
class instructions_Te_MagS.Te_MagS_DeactivateHeater(exec_parameters='', needs_allwd_lw=0, allowed_labware='')

	Bases: EvoScriPy.Instruction_Base.TMagInstr

A.15.10.3 DeactivateHeater (Worklist: Te-MagS_DeactivateHeater)

	
__init__(exec_parameters='', needs_allwd_lw=0, allowed_labware='')

	Initialize self. See help(type(self)) for accurate signature.

	
validate_arg()

	

	
class instructions_Te_MagS.Te_MagS_Execution(exec_parameters=[], needs_allwd_lw=0, allowed_labware='')

	Bases: EvoScriPy.Instruction_Base.TMagInstr

A.15.10.4 Execution (Worklist: Te-MagS_Execution)

	
class Parametr(num)

	Bases: object

	
__init__(num)

	Initialize self. See help(type(self)) for accurate signature.

	
__init__(exec_parameters=[], needs_allwd_lw=0, allowed_labware='')

	Initialize self. See help(type(self)) for accurate signature.

	
class command(firmware_command)

	Bases: object

	
__init__(firmware_command)

	Initialize self. See help(type(self)) for accurate signature.

	
class incub(hh, mm, ss)

	Bases: object

	
__init__(hh, mm, ss)

	Initialize self. See help(type(self)) for accurate signature.

	
class mix(cycles, hh, mm, ss, z_pos=31)

	Bases: object

	
__init__(cycles, hh, mm, ss, z_pos=31)

	Initialize self. See help(type(self)) for accurate signature.

	
class move(position, z_pos)

	Bases: object

	
__init__(position, z_pos)

	Initialize self. See help(type(self)) for accurate signature.

	
validate_arg()

	

	
class wait(hh, mm, ss)

	Bases: object

	
__init__(hh, mm, ss)

	Initialize self. See help(type(self)) for accurate signature.

	
class instructions_Te_MagS.Te_MagS_MoveToPosition(position, z_pos=31, needs_allwd_lw=0, allowed_labware='')

	Bases: EvoScriPy.Instruction_Base.TMagInstr

A.15.10.1 MoveToPosition (Worklist: Te-MagS_MoveToPosition)

	
Aspirate = 1

	

	
Dispense = 0

	

	
Incubation = 3

	

	
Re_suspension = 2

	

	
__init__(position, z_pos=31, needs_allwd_lw=0, allowed_labware='')

	
	Parameters

	
	position – Aspirate Position - Carrier above the magnet block, magnet block raised.
Dispense Position - Carrier above the magnet block, magnet block lowered.
Incubation Position - Carrier above the heating block, heating block raised.
Re-suspension Position - Carrier above the heating block, heating block lowered.

Use this position to carry out re-suspension by mixing the liquid with
the pipetting tips (e.g. with the LiHa - Mix script command).

	z_pos –

	needs_allwd_lw –

	allowed_labware –

	
validate_arg()

	

Examples:

 Python Module Index

 e |
 i |
 l |
 p |
 r

 		 	

 		
 e	

 	
 	
 evo_mode	

 		 	

 		
 i	

 	
 	
 instructions	

 	
 	
 instructions_Te_MagS	

 		 	

 		
 l	

 	
 	
 labware	

 		 	

 		
 p	

 	
 	
 protocol_steps	

 		 	

 		
 r	

 	
 	
 reagent	

 	
 	
 robot	

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

_

 	
 	__init__() (evo_mode.Comments method)

 	(evo_mode.Multiple method)

 	(evo_mode.Script method)

 	(evo_mode.ToFile method)

 	(evo_mode.iRobot method)

 	(instructions.RoMa method)

 	(instructions.activate_PMP method)

 	(instructions.active_Wash method)

 	(instructions.aspirate method)

 	(instructions.comment method)

 	(instructions.deactivate_PMP method)

 	(instructions.detect_Liquid method)

 	(instructions.dispense method)

 	(instructions.dropDITI method)

 	(instructions.execute method)

 	(instructions.execute_VBscript method)

 	(instructions.export method)

 	(instructions.getDITI method)

 	(instructions.getDITI2 method)

 	(instructions.group method)

 	(instructions.group_end method)

 	(instructions.mix method)

 	(instructions.moveLiha method)

 	(instructions.notification method)

 	(instructions.pickUp_DITIs method)

 	(instructions.pickUp_DITIs2 method)

 	(instructions.pickUp_ZipTip method)

 	(instructions.set_DITI_Counter method)

 	(instructions.set_DITI_Counter2 method)

 	(instructions.set_DITIs_Back method)

 	(instructions.startTimer method)

 	(instructions.subroutine method)

 	(instructions.transfer_rack method)

 	(instructions.userPrompt method)

 	(instructions.variable method)

 	(instructions.waitTimer method)

 	(instructions.wash_tips method)

 	(instructions.waste method)

 	(instructions_Te_MagS.Te_MagS_ActivateHeater method)

 	(instructions_Te_MagS.Te_MagS_DeactivateHeater method)

 	(instructions_Te_MagS.Te_MagS_Execution method)

 	(instructions_Te_MagS.Te_MagS_Execution.Parametr method)

 	(instructions_Te_MagS.Te_MagS_Execution.command method)

 	(instructions_Te_MagS.Te_MagS_Execution.incub method)

 	(instructions_Te_MagS.Te_MagS_Execution.mix method)

 	(instructions_Te_MagS.Te_MagS_Execution.move method)

 	(instructions_Te_MagS.Te_MagS_Execution.wait method)

 	(instructions_Te_MagS.Te_MagS_MoveToPosition method)

 	(labware.Carrier method)

 	(labware.Carrier.Type method)

 	(labware.Carrier.Types method)

 	(labware.Cuvette method)

 	(labware.CuvetteType method)

 	(labware.DITIrack method)

 	(labware.DITIrackType method)

 	(labware.DITIrackTypeSeries method)

 	(labware.DITIwaste method)

 	(labware.DITIwasteType method)

 	(labware.Frezeer method)

 	(labware.Labware method)

 	(labware.Labware.Position method)

 	(labware.Labware.Type method)

 	(labware.Labware.Type.Series method)

 	(labware.LiquidClass method)

 	(labware.LiquidClassDefault method)

 	(labware.LiquidClassDerived method)

 	(labware.LiquidClasses method)

 	(labware.NoFreeWells method)

 	(labware.Tip method)

 	(labware.Well method)

 	(labware.Well.Action method)

 	(labware.WorkTable method)

 	(labware.WorkTable.File method)

 	(labware.WorkTable.Location method)

 	(labware.usedTip method)

 	(protocol_steps.Executable method)

 	(protocol_steps.Pipeline method)

 	(protocol_steps.Protocol method)

 	(reagent.Dilution method)

 	(reagent.DilutionComponentReagent method)

 	(reagent.MixComponent method)

 	(reagent.MixComponentReagent method)

 	(reagent.MixReagent method)

 	(reagent.NoReagentFound method)

 	(reagent.PCRMasterMix method)

 	(reagent.PCRMasterMixReagent method)

 	(reagent.PCReaction method)

 	(reagent.PCReactionReagent method)

 	(reagent.PCRexperiment method)

 	(reagent.PCRexperimentRtic method)

 	(reagent.PreMixComponent method)

 	(reagent.PreMixReagent method)

 	(reagent.Primer method)

 	(reagent.PrimerMix method)

 	(reagent.PrimerMixComponent method)

 	(reagent.PrimerMixReagent method)

 	(reagent.PrimerReagent method)

 	(reagent.Reaction method)

 	(reagent.Reagent method)

 	(robot.Arm method)

 	(robot.Robot method)

A

 	
 	action() (instructions.aspirate static method)

 	(instructions.detect_Liquid static method)

 	(instructions.dispense static method)

 	(instructions.mix static method)

 	actions (instructions.waste attribute)

 	(labware.Well attribute)

 	(labware.conectedWell attribute)

 	activate_PMP (class in instructions)

 	activate_waste_1 (instructions.waste attribute)

 	activate_waste_2 (instructions.waste attribute)

 	activate_waste_3 (instructions.waste attribute)

 	active_Wash (class in instructions)

 	actualize_robot_state() (instructions.dropDITI method)

 	(instructions.RoMa method)

 	(instructions.getDITI2 method)

 	(instructions.mix method)

 	(instructions.pickUp_DITIs method)

 	(instructions.pickUp_DITIs2 method)

 	(instructions.set_DITI_Counter method)

 	(instructions.set_DITI_Counter2 method)

 	(instructions.set_DITIs_Back method)

 	(instructions.transfer_rack method)

 	
 	add() (labware.Labware.Type.Series method)

 	add_labware() (labware.Carrier method)

 	(labware.WorkTable method)

 	add_mode() (evo_mode.Multiple method)

 	add_new_labware() (labware.WorkTable method)

 	add_template() (evo_mode.Script method)

 	add_type() (labware.Carrier.Types method)

 	AdvancedWorkList (class in evo_mode)

 	Arm (class in robot)

 	aspirate (class in instructions)

 	Aspirate (instructions_Te_MagS.Te_MagS_MoveToPosition attribute)

 	(robot.Arm attribute)

 	aspirate() (protocol_steps.Protocol method)

 	aspirate_one() (protocol_steps.Protocol method)

 	autoselect() (labware.Cuvette method)

 	(labware.Labware method)

C

 	
 	Carrier (class in labware)

 	Carrier.Type (class in labware)

 	Carrier.Types (class in labware)

 	check_list() (protocol_steps.Protocol method)

 	check_reagent_level() (protocol_steps.Protocol method)

 	check_reagents_levels() (protocol_steps.Protocol method)

 	clearSelection() (labware.Labware method)

 	close_gripper (instructions.RoMa attribute)

 	COM_automation (class in evo_mode)

 	comment (class in instructions)

 	comment() (protocol_steps.Protocol method)

 	Comments (class in evo_mode)

 	components (reagent.Dilution attribute)

 	(reagent.MixReagent attribute)

 	(reagent.PreMixReagent attribute)

 	
 	conectedWell (class in labware)

 	consolidate() (protocol_steps.Protocol method)

 	Continues (instructions.subroutine attribute)

 	count_tips() (in module labware)

 	create() (labware.Labware static method)

 	create_labware() (labware.CuvetteType method)

 	(labware.DITIrackType method)

 	(labware.DITIwasteType method)

 	(labware.Labware.Type method)

 	create_series() (labware.DITIrackType method)

 	(labware.Labware.Type method)

 	cur_arm() (robot.Robot method)

 	cur_worktable (labware.WorkTable attribute)

 	current (robot.Robot attribute)

 	Cuvette (class in labware)

 	CuvetteType (class in labware)

D

 	
 	dbase (instructions.export attribute)

 	deactivate_all_wastes (instructions.waste attribute)

 	deactivate_PMP (class in instructions)

 	deactivate_system (instructions.waste attribute)

 	def_versions() (protocol_steps.Executable method)

 	Detect (robot.Arm attribute)

 	detect_Liquid (class in instructions)

 	Dilution (class in reagent)

 	DilutionComponentReagent (class in reagent)

 	dispense (class in instructions)

 	Dispense (instructions_Te_MagS.Te_MagS_MoveToPosition attribute)

 	(robot.Arm attribute)

 	dispense() (protocol_steps.Protocol method)

 	dispense_one() (protocol_steps.Protocol method)

 	
 	distribute() (protocol_steps.Protocol method)

 	DiTi (robot.Arm attribute)

 	DITIrack (class in labware)

 	DITIrackType (class in labware)

 	DITIrackTypeSeries (class in labware)

 	DITIwaste (class in labware)

 	DITIwasteType (class in labware)

 	done() (evo_mode.Mode method)

 	(evo_mode.Multiple method)

 	(evo_mode.ToFile method)

 	drop_tip() (protocol_steps.Protocol method)

 	drop_tips() (protocol_steps.Protocol method)

 	drop_tips_executed() (robot.Robot method)

 	drop_tips_test() (robot.Robot method)

 	dropDITI (class in instructions)

E

 	
 	eject_tips_executed() (robot.Arm method)

 	eject_tips_test() (robot.Arm method)

 	encoding (evo_mode.Mode attribute)

 	evo_mode (module)

 	excel (instructions.export attribute)

 	exec() (evo_mode.AdvancedWorkList method)

 	(evo_mode.Comments method)

 	(evo_mode.Mode method)

 	(evo_mode.Multiple method)

 	(evo_mode.Script method)

 	(evo_mode.StdOut method)

 	(evo_mode.ToFile method)

 	(evo_mode.ToString method)

 	(evo_mode.iRobot method)

 	(instructions.activate_PMP method)

 	(instructions.deactivate_PMP method)

 	(instructions.dropDITI method)

 	(instructions.getDITI2 method)

 	
 	Executable (class in protocol_steps)

 	execute (class in instructions)

 	execute_VBscript (class in instructions)

 	export (class in instructions)

F

 	
 	File_import (instructions.variable attribute)

 	fill() (labware.DITIrack method)

 	find_free_wells() (labware.Labware method)

 	find_new_tips() (labware.DITIrack method)

 	(labware.DITIrackTypeSeries method)

 	
 	Fixed (robot.Arm attribute)

 	Fixed_value (instructions.variable attribute)

 	Frezeer (class in labware)

G

 	
 	get_current_labware() (labware.WorkTable method)

 	get_DITI_series() (labware.WorkTable method)

 	get_labware() (labware.WorkTable method)

 	get_tips() (protocol_steps.Protocol method)

 	get_tips_executed() (robot.Robot method)

 	getDITI (class in instructions)

 	getDITI2 (class in instructions)

 	
 	getLabware() (in module labware)

 	getMoreTips_test() (robot.Arm method)

 	getTips_test() (robot.Arm method)

 	(robot.Robot method)

 	global_z_travel (instructions.moveLiha attribute)

 	grid_carrier_line() (labware.WorkTable.File method)

 	group (class in instructions)

 	group_end (class in instructions)

H

 	
 	home_position (instructions.RoMa attribute)

I

 	
 	ids (reagent.PCRMasterMix attribute)

 	(reagent.Primer attribute)

 	(reagent.PrimerMix attribute)

 	ids_synt (reagent.Primer attribute)

 	Incubation (instructions_Te_MagS.Te_MagS_MoveToPosition attribute)

 	init_system (instructions.waste attribute)

 	init_vol() (reagent.PreMixReagent method)

 	(reagent.Reagent method)

 	
 	init_wells() (labware.Cuvette method)

 	(labware.Labware method)

 	initialize() (protocol_steps.Executable method)

 	(protocol_steps.Protocol method)

 	Instance (instructions.variable attribute)

 	instructions (module)

 	instructions_Te_MagS (module)

 	iRobot (class in evo_mode)

K

 	
 	key_words (reagent.Primer attribute)

 	(reagent.PrimerMix attribute)

L

 	
 	Labware (class in labware)

 	labware (module)

 	Labware.Position (class in labware)

 	Labware.Type (class in labware)

 	Labware.Type.Series (class in labware)

 	labware_series (labware.WorkTable attribute)

 	
 	LiquidClass (class in labware)

 	LiquidClassDefault (class in labware)

 	LiquidClassDerived (class in labware)

 	LiquidClasses (class in labware)

 	log() (labware.Well method)

 	lotus (instructions.export attribute)

M

 	
 	make_pre_mix() (protocol_steps.Protocol method)

 	min_num_of_replica() (reagent.Reagent method)

 	min_vol() (reagent.Reagent method)

 	mix (class in instructions)

 	mix() (protocol_steps.Protocol method)

 	mix_reagent() (protocol_steps.Protocol method)

 	MixComponent (class in reagent)

 	MixComponentReagent (class in reagent)

 	mixes (reagent.PCRexperiment attribute)

 	(reagent.PCRexperimentRtic attribute)

 	
 	MixReagent (class in reagent)

 	Mode (class in evo_mode)

 	mount_more_tips_executed() (robot.Arm method)

 	mount_tips_executed() (robot.Arm method)

 	move_labware_executed() (robot.Robot method)

 	move_relative (instructions.RoMa attribute)

 	move_to (instructions.RoMa attribute)

 	moveLiha (class in instructions)

 	moveParallel() (labware.Labware method)

 	Multiple (class in evo_mode)

N

 	
 	names (reagent.PCRMasterMix attribute)

 	(reagent.Primer attribute)

 	(reagent.PrimerMix attribute)

 	need_vol (reagent.Reagent attribute)

 	newline (evo_mode.Mode attribute)

 	
 	newOffset() (labware.Labware method)

 	newPosition() (labware.Labware method)

 	NoFreeWells

 	NoReagentFound

 	notification (class in instructions)

 	Numeric (instructions.variable attribute)

O

 	
 	offset() (labware.Labware method)

 	offsetAtParallelMove() (labware.Labware method)

 	
 	offsetFromName() (labware.Labware method)

 	open() (evo_mode.ToFile method)

 	open_gripper (instructions.RoMa attribute)

P

 	
 	paradox (instructions.export attribute)

 	parallelOrder() (labware.Labware method)

 	parse_file() (labware.Carrier.Types method)

 	parse_worktable_file() (labware.WorkTable method)

 	pcr_exp (reagent.PCRexperimentRtic attribute)

 	pcr_reactions (reagent.PCRexperiment attribute)

 	PCReaction (class in reagent)

 	PCReactionReagent (class in reagent)

 	PCRexperiment (class in reagent)

 	PCRexperimentRtic (class in reagent)

 	PCRMasterMix (class in reagent)

 	PCRMasterMixReagent (class in reagent)

 	pick_up() (labware.DITIrack method)

 	pick_up_tip() (protocol_steps.Protocol method)

 	pick_up_tips_executed() (robot.Robot method)

 	pickUp_DITIs (class in instructions)

 	pickUp_DITIs2 (class in instructions)

 	pickUp_ZipTip (class in instructions)

 	Pipeline (class in protocol_steps)

 	
 	pipette_executed() (robot.Arm method)

 	(robot.Robot method)

 	pos_global_z_travel (instructions.moveLiha attribute)

 	pos_local_z_travel (instructions.moveLiha attribute)

 	posAtParallelMove() (labware.Labware method)

 	position() (labware.Labware method)

 	PreMixComponent (class in reagent)

 	PreMixReagent (class in reagent)

 	preserve_tips() (robot.Robot method)

 	Primer (class in reagent)

 	PrimerMix (class in reagent)

 	PrimerMixComponent (class in reagent)

 	PrimerMixReagent (class in reagent)

 	PrimerReagent (class in reagent)

 	Protocol (class in protocol_steps)

 	protocol_steps (module)

 	ProtocolLogicPippetingError

 	put() (labware.Labware method)

 	put_min_vol() (reagent.Reagent method)

Q

 	
 	quattro (instructions.export attribute)

R

 	
 	Re_suspension (instructions_Te_MagS.Te_MagS_MoveToPosition attribute)

 	Reaction (class in reagent)

 	Reagent (class in reagent)

 	reagent (labware.conectedWell attribute)

 	(labware.Well attribute)

 	(module)

 	reagents (labware.WorkTable attribute)

 	refill_next_rack() (labware.DITIrackTypeSeries method)

 	remove() (labware.Labware.Type.Series method)

 	replace_with_new() (labware.WorkTable method)

 	retire_labware() (labware.WorkTable method)

 	
 	retire_new_tips() (labware.DITIrack method)

 	(labware.DITIrackTypeSeries method)

 	reuse_tips() (protocol_steps.Protocol method)

 	(robot.Robot method)

 	Robot (class in robot)

 	robot (module)

 	RoMa (class in instructions)

 	RoMa_1 (instructions.RoMa attribute)

 	RoMa_2 (instructions.RoMa attribute)

 	Run (instructions.variable attribute)

 	run() (protocol_steps.Executable method)

 	(protocol_steps.Protocol method)

S

 	
 	samples (reagent.PCRexperiment attribute)

 	Script (class in evo_mode)

 	(instructions.variable attribute)

 	ScriptBody (class in evo_mode)

 	select() (labware.Labware method)

 	(labware.Well method)

 	selectAll() (labware.Labware method)

 	selected() (labware.Labware method)

 	selected_wells() (labware.Labware method)

 	selectOnly() (labware.Labware method)

 	seqs (reagent.Primer attribute)

 	set_allow_air() (robot.Robot method)

 	set_as_current() (evo_mode.iRobot method)

 	(robot.Robot method)

 	set_back() (labware.DITIrack method)

 	set_current() (labware.WorkTable method)

 	set_current_next_to() (labware.Labware.Type.Series static method)

 	set_def_DiTi() (labware.WorkTable method)

 	set_defaults() (protocol_steps.Executable method)

 	(protocol_steps.Protocol method)

 	
 	set_DITI_Counter (class in instructions)

 	set_DITI_counter() (labware.DITIrack method)

 	set_DITI_Counter2 (class in instructions)

 	set_DITIs_Back (class in instructions)

 	set_drop_tips() (protocol_steps.Protocol method)

 	(robot.Robot method)

 	set_file() (evo_mode.ToFile method)

 	set_first_pos() (labware.WorkTable method)

 	set_first_tip() (protocol_steps.Protocol method)

 	set_next() (labware.Labware.Type.Series method)

 	set_template() (evo_mode.Script method)

 	set_tips_back_executed() (robot.Robot method)

 	set_worktable() (robot.Robot method)

 	show_check_list() (protocol_steps.Protocol method)

 	show_next() (labware.Labware.Type.Series method)

 	show_next_to() (labware.Labware.Type.Series static method)

 	size() (labware.Labware.Type method)

 	startTimer (class in instructions)

 	StdOut (class in evo_mode)

 	String (instructions.variable attribute)

 	subroutine (class in instructions)

T

 	
 	targets (reagent.PCRexperiment attribute)

 	Te_Mag (class in labware)

 	Te_MagS_ActivateHeater (class in instructions_Te_MagS)

 	Te_MagS_DeactivateHeater (class in instructions_Te_MagS)

 	Te_MagS_Execution (class in instructions_Te_MagS)

 	Te_MagS_Execution.command (class in instructions_Te_MagS)

 	Te_MagS_Execution.incub (class in instructions_Te_MagS)

 	Te_MagS_Execution.mix (class in instructions_Te_MagS)

 	Te_MagS_Execution.move (class in instructions_Te_MagS)

 	Te_MagS_Execution.Parametr (class in instructions_Te_MagS)

 	
 	Te_MagS_Execution.wait (class in instructions_Te_MagS)

 	Te_MagS_MoveToPosition (class in instructions_Te_MagS)

 	text_with_delimiters (instructions.export attribute)

 	Tip (class in labware)

 	tips() (protocol_steps.Protocol method)

 	to_name() (labware.Labware.Position method)

 	ToFile (class in evo_mode)

 	ToString (class in evo_mode)

 	transfer() (protocol_steps.Protocol method)

 	transfer_rack (class in instructions)

 	types (labware.Labware attribute)

U

 	
 	use_max_speed (instructions.RoMa attribute)

 	use_preserved_tips() (robot.Robot method)

 	use_tips_executed() (robot.Robot method)

 	use_version() (protocol_steps.Executable method)

 	
 	use_xyzSpeed (instructions.RoMa attribute)

 	usedTip (class in labware)

 	user_prompt() (protocol_steps.Protocol method)

 	User_query (instructions.variable attribute)

 	userPrompt (class in instructions)

V

 	
 	validate_arg() (instructions.activate_PMP method)

 	(instructions.RoMa method)

 	(instructions.active_Wash method)

 	(instructions.aspirate method)

 	(instructions.comment method)

 	(instructions.deactivate_PMP method)

 	(instructions.dispense method)

 	(instructions.dropDITI method)

 	(instructions.execute method)

 	(instructions.execute_VBscript method)

 	(instructions.export method)

 	(instructions.getDITI method)

 	(instructions.getDITI2 method)

 	(instructions.group method)

 	(instructions.group_end method)

 	(instructions.mix method)

 	(instructions.moveLiha method)

 	(instructions.notification method)

 	(instructions.pickUp_DITIs method)

 	(instructions.pickUp_DITIs2 method)

 	(instructions.set_DITI_Counter method)

 	(instructions.set_DITI_Counter2 method)

 	(instructions.set_DITIs_Back method)

 	(instructions.startTimer method)

 	(instructions.subroutine method)

 	(instructions.transfer_rack method)

 	(instructions.userPrompt method)

 	(instructions.variable method)

 	(instructions.waitTimer method)

 	(instructions.wash_tips method)

 	(instructions.waste method)

 	(instructions_Te_MagS.Te_MagS_ActivateHeater method)

 	(instructions_Te_MagS.Te_MagS_DeactivateHeater method)

 	(instructions_Te_MagS.Te_MagS_Execution method)

 	(instructions_Te_MagS.Te_MagS_MoveToPosition method)

 	
 	variable (class in instructions)

 	vector (class in instructions)

 	vol (labware.conectedWell attribute)

 	(labware.Well attribute)

W

 	
 	Waits (instructions.subroutine attribute)

 	Waits_previous (instructions.subroutine attribute)

 	waitTimer (class in instructions)

 	wash_tips (class in instructions)

 	waste (class in instructions)

 	waste() (labware.DITIwaste method)

 	Well (class in labware)

 	
 	Well.Action (class in labware)

 	wellSelectionStr() (labware.Labware method)

 	where_are_preserved_tips() (robot.Robot method)

 	where_preserve_tips() (robot.Robot method)

 	WorkTable (class in labware)

 	WorkTable.File (class in labware)

 	WorkTable.Location (class in labware)

 	write() (labware.WorkTable.File method)

X

 	
 	x_move (instructions.moveLiha attribute)

Y

 	
 	y_move (instructions.moveLiha attribute)

Z

 	
 	z_dispense (instructions.moveLiha attribute)

 	z_max (instructions.moveLiha attribute)

 	
 	z_move (instructions.moveLiha attribute)

 	z_start (instructions.moveLiha attribute)

 	z_travel (instructions.moveLiha attribute)

	
class instructions.RoMa(action: int, distance: float, force: int, xOffset: float, yOffset: float, zOffset: float, xyzSpeed: float, xyzMax: int, romaNo: int)

	Bases: EvoScriPy.Instruction_Base.Instruction

15.60 Move RoMa Command
This command is used to carry out simple RoMa movements without using a
RoMa vector:
The parameters of the Move RoMa command are as follows:

	ROMA-No.

Choose the RoMa you want to use (1 or 2) if your instrument is fitted with
more than one.

	Open Gripper

	This opens the gripper to the specified width (range: 55 to 140 mm).

	Close Gripper

This closes the gripper to the specified width (range: 55 to 140 mm) using the
specified force (range: 0 to 249). A Grip Error message will be output if no
resistance is detected when gripping.

	Move to home position

This moves the RoMa to the specified home position.
After completing a sequence of movements with the RoMa, you should move
it back to its home (parking) position, out of the way of other objects on the
worktable (see 9.6.4 “Defining the Home Position for a RoMa”,  9-63).

	Move relative to current position

This moves the RoMa relative to its current position. You must then specify
the relative distances (range: -400 to 400 mm) and whether the RoMa should
move at a particular speed (range: 0.1 to 400 mm/s) or at maximum speed.
The movements in A and B are not aligned with the instrument axes, but with
the current rotator position (angle).
The movement in A is perpendicular to the gripper. Example #1: If the gripper
points to the front (angle = 0°) and the A value is positive, then the RoMA will
move to the left. Example #2: If the gripper points to the left (angle = 90°) and
the A value is positive, then the RoMA will move to the back.
The movement in B is in line with the gripper. Example #1: If the gripper points
to the front (angle = 0°) and the B value is positive, then the RoMA will move
to the front. Example #2: If the gripper points to the left (angle = 90°) and the B
value is positive, then the RoMA will move to the left.
See also 9.4.8.2 “RoMa Coordinate System”,  9-39.

	
RoMa_1 = 0

	

	
RoMa_2 = 1

	

	
__init__(action: int, distance: float, force: int, xOffset: float, yOffset: float, zOffset: float, xyzSpeed: float, xyzMax: int, romaNo: int)

	
	Parameters

	
	action – 0 = open gripper, 1 = close, 2 = move to home position, 3 = move relative to current position

	distance – 55 - 140, gripper distance in mm for opening or closing

	force – 0 - 249, force when closing gripper

	xOffset – -400 - 400, x-distance for relative move in mm

	yOffset (object) – -400 - 400, y-distance for relative move in mm

	zOffset – -400 - 400, z-distance for relative move in mm

	xyzSpeed – 0.1 - 400, speed in mm/s

	xyzMax – 0 = use xyzSpeed, 1 = use maximum speed

	romaNo – number of the RoMa performing the action: 0 = RoMa 1, 1 = RoMa 2

	
actualize_robot_state()

	

	
close_gripper = 1

	

	
home_position = 3

	

	
move_relative = 4

	

	
move_to = 2

	

	
open_gripper = 0

	

	
use_max_speed = 1

	

	
use_xyzSpeed = 0

	

	
validate_arg()

	

	
class instructions.activate_PMP(tipMask=None)

	Bases: EvoScriPy.Instruction_Base.Instruction

A.15.4.12 Activate PMP (Worklist: Activate_PMP)

	
__init__(tipMask=None)

	Initialize self. See help(type(self)) for accurate signature.

	
exec(mode=None)

	

	
validate_arg()

	

	
class instructions.active_Wash(wait=True, time=None, arm=None)

	Bases: EvoScriPy.Instruction_Base.Instruction

A.15.4.16 Active WashStation (Worklist: Active_Wash)

	
__init__(wait=True, time=None, arm=None)

	Initialize self. See help(type(self)) for accurate signature.

	
validate_arg()

	

	
class instructions.aspirate(tipMask=None, liquidClass=None, volume=None, labware=None, spacing=1, wellSelection=None, LoopOptions=[], RackName=None, Well=None, arm=None)

	Bases: EvoScriPy.Instruction_Base.Pipetting

A.15.4.1 Aspirate command (Worklist: Aspirate) A - 125

	
__init__(tipMask=None, liquidClass=None, volume=None, labware=None, spacing=1, wellSelection=None, LoopOptions=[], RackName=None, Well=None, arm=None)

	
	Parameters

	
	liquidClass –

	volume –

	tipMask – int; selected tips, bit-coded (tip1 = 1, tip8 = 128)

	labware – Labware;

	spacing – int; tip spacing

	wellSelection – str;

	LoopOptions – list; of objects of class LoopOption.

	RackName –

	Well –

	arm –

	
static action()

	

	
validate_arg()

	Evoware visual script generator enforce a compatibility between the arguments mask_tip and well selection.
If they are not compatible the robot crash.
:return:

	
class instructions.comment(text)

	Bases: EvoScriPy.Instruction_Base.Instruction

A.15.4.21 Comment (Worklist: Comment)

	
__init__(text)

	

	
validate_arg()

	

	
class instructions.deactivate_PMP(tipMask=None)

	Bases: EvoScriPy.Instruction_Base.Instruction

A.15.4.13 Deactivate PMP (Worklist: Deactivate_PMP)

	
__init__(tipMask=None)

	Initialize self. See help(type(self)) for accurate signature.

	
exec(mode=None)

	

	
validate_arg()

	

	
class instructions.detect_Liquid(tipMask=None, liquidClass=None, labware=None, spacing=1, wellSelection=None, LoopOptions=None, arm=None, RackName=None, Well=None)

	Bases: EvoScriPy.Instruction_Base.Pipetting

A.15.4.11 Detect Liquid (Worklist: Detect_Liquid)
Liquid level detection is one of the options available for aspirating and dispensing
and can be individually defined for each liquid class. The Detect Liquid command is
used to carry out liquid level detection without pipetting and reports the liquid volume
for each of the chosen wells in the labware. The volumes are returned in a set of variables
DETECTED_VOLUME_x, where x is the tip number.

	
__init__(tipMask=None, liquidClass=None, labware=None, spacing=1, wellSelection=None, LoopOptions=None, arm=None, RackName=None, Well=None)

	Set labware to match wells.

	Parameters

	
	name – str; Instruction name

	tipMask – int; selected tips, bit-coded (tip1 = 1, tip8 = 128)

	labware – Labware; grid 1-67, site 0-127, the labware with the selected wells

	spacing – int; Tip Spacing
The Tip Spacing parameter controls the distance between adjacent pipetting
tips for this command. You can choose a different tip spacing for the source
labware and the destination labware. Tip spacing is only relevant if you want
to use more than one tip. A tip spacing of 1 means that the tips will be spread
to match the distance between adjacent wells in the labware. A tip spacing of
2 will select every other well in the labware. You can only choose values for tip
spacing which are meaningful for the labware geometry.
The liquid handling arm achieves the highest mechanical accuracy when the
tips are not spread. For high-density labware such as 1536-well microplates,
you should choose tip spacing such that the tips are adjacent to one another
(physical tip spacing 9 mm). Accordingly, for 1536-well microplates you should
set tip spacing to 4 (every fourth well).

	wellSelection – str; list of wells. Converted to bit-coded well selection to be used.

	LoopOptions – list; of objects of class LoopOption.

	RackName –

	Well –

	arm –

	
static action()

	

	
class instructions.dispense(tipMask=None, liquidClass=None, volume=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], labware=None, spacing=1, wellSelection=None, LoopOptions=[], RackName=None, Well=None, arm=None)

	Bases: EvoScriPy.Instruction_Base.Pipetting

A.15.4.2 Dispense (Worklist: Dispense)

	
__init__(tipMask=None, liquidClass=None, volume=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], labware=None, spacing=1, wellSelection=None, LoopOptions=[], RackName=None, Well=None, arm=None)

	Set labware to match wells.

	Parameters

	
	name – str; Instruction name

	tipMask – int; selected tips, bit-coded (tip1 = 1, tip8 = 128)

	labware – Labware; grid 1-67, site 0-127, the labware with the selected wells

	spacing – int; Tip Spacing
The Tip Spacing parameter controls the distance between adjacent pipetting
tips for this command. You can choose a different tip spacing for the source
labware and the destination labware. Tip spacing is only relevant if you want
to use more than one tip. A tip spacing of 1 means that the tips will be spread
to match the distance between adjacent wells in the labware. A tip spacing of
2 will select every other well in the labware. You can only choose values for tip
spacing which are meaningful for the labware geometry.
The liquid handling arm achieves the highest mechanical accuracy when the
tips are not spread. For high-density labware such as 1536-well microplates,
you should choose tip spacing such that the tips are adjacent to one another
(physical tip spacing 9 mm). Accordingly, for 1536-well microplates you should
set tip spacing to 4 (every fourth well).

	wellSelection – str; list of wells. Converted to bit-coded well selection to be used.

	LoopOptions – list; of objects of class LoopOption.

	RackName –

	Well –

	arm –

	
static action()

	

	
validate_arg()

	Evoware visual script generator enforce a compatibility between the arguments mask_tip and well selection.
If they are not compatible the robot crash.
:return:

	
class instructions.dropDITI(tipMask=None, labware=None, AirgapVolume=0, AirgapSpeed=300, arm=None)

	Bases: EvoScriPy.Instruction_Base.Pipette

A.15.4.6 Drop DITIs command (Worklist: DropDITI). pag A - 130 and 15 - 14

	
__init__(tipMask=None, labware=None, AirgapVolume=0, AirgapSpeed=300, arm=None)

	
	Parameters

	
	conditional – exec only if there are some tip to droop.

	tipMask –

	labware – Specify the worktable position for the DITI waste you want to use.
You must first put a DITI waste in the Worktable at the required position.

	AirgapVolume – floating point, 0 - 100. airgap in μl which is aspirated after dropping the DITIs

	AirgapSpeed – int 1-1000. Speed for the airgap in μl/s

	arm –

	
actualize_robot_state()

	

	
exec(mode=None)

	

	
validate_arg()

	Evoware visual script generator enforce a compatibility between the arguments mask_tip and well selection.
If they are not compatible the robot crash.
:return:

	
class instructions.execute(application, options, responseVariable, scope=0)

	Bases: EvoScriPy.Instruction_Base.Instruction

A.15.4.20 Execute Application (Worklist: Execute)

	
__init__(application, options, responseVariable, scope=0)

	

	
validate_arg()

	

	
class instructions.execute_VBscript(filename, action=0)

	Bases: EvoScriPy.Instruction_Base.Instruction

A.15.4.24 Execute VB Script (Worklist: Execute_VBscript)

	
__init__(filename, action=0)

	
	Parameters

	
	filename – Path and filename of the defined VB script.

	action – Use Waits, Continues and Waits_previous defined in subroutine

	
validate_arg()

	

	
class instructions.export(exportAll=True, formats=32, delete=False, compress=False, Raks=None, significantStep=1)

	Bases: EvoScriPy.Instruction_Base.Instruction

A.15.4.17 Export Data (Worklist: Export)

	
__init__(exportAll=True, formats=32, delete=False, compress=False, Raks=None, significantStep=1)

	Initialize self. See help(type(self)) for accurate signature.

	
dbase = 2

	

	
excel = 4

	

	
lotus = 1

	

	
paradox = 8

	

	
quattro = 16

	

	
text_with_delimiters = 32

	

	
validate_arg()

	

	
class instructions.getDITI(tipMask, type, options=0, arm=None)

	Bases: EvoScriPy.Instruction_Base.DITIs

	
__init__(tipMask, type, options=0, arm=None)

	
	A.15.4.5 Get DITIs (Worklist: GetDITI) …

	The Get DITIs command is used to pick up DITIs (disposable tips) of the specified
type from a DITI rack. Freedom EVOware keeps track of their position on the
worktable and automatically picks up the next available unused DITIs of the
chosen type.
When you choose a DITI type in a script command, the pull-down list all of the
LiHa DITI types which are currently configured in the labware database. When
you want to pick up a DiTi, Freedom EVOware searches the worktable for a DITI
rack which contains the DITI type you have specified in the script command.
To configure Freedom EVOware for a new DITI type, create a new DITI rack or
duplicate an existing DITI rack and give the new labware a suitable name (e.g.
“ZipTip”).
DiTi Index:
Freedom EVOware automatically assigns a unique numeric index to each
DITI type. You cannot edit the index manually. The DITI index is used e.g. by
the Set DITI Type command in worklists and in advanced worklists. The DITI
index is shown in the Edit Labware dialog box for the DITI labware (Well
Dimensions tab).
This function is deprecated in favor of getDITI2 which do not use index
Currently only use … ?

	Parameters

	
	label –

	tipMask –

	type – int, 0-3. DITI index (see 9.4.5 “Labware Types and DITI Types”,  9-32, DITI Index).

	
validate_arg()

	

	
class instructions.getDITI2(tipMask=None, DITI_series: (<class 'str'>, <class 'EvoScriPy.labware.DITIrackType'>, <class 'EvoScriPy.labware.DITIrack'>, <class 'EvoScriPy.labware.DITIrackTypeSeries'>) = None, options=0, arm=None, AirgapVolume=0, AirgapSpeed=300)

	Bases: EvoScriPy.Instruction_Base.DITIs

A.15.4.5 Get DITIs (Worklist: GetDITI) pag. A - 129
It take a labware type or name instead of the labware itself because the real robot take track of the
next position to pick including the rack and the site (that is - the labware).
It need a labware type and it know where to pick the next tip.

	
__init__(tipMask=None, DITI_series: (<class 'str'>, <class 'EvoScriPy.labware.DITIrackType'>, <class 'EvoScriPy.labware.DITIrack'>, <class 'EvoScriPy.labware.DITIrackTypeSeries'>) = None, options=0, arm=None, AirgapVolume=0, AirgapSpeed=300)

	
	Parameters

	
	tipMask –

	DITI_series – string or labware or labware_.Type? DiTi labware name

	options –

	arm –

	AirgapVolume – int. used to specify a system trailing airgap (STAG) which will be aspirated after
mounting the DITIs. Volume in μl

	AirgapSpeed – int. Speed for the airgap in μl/s

	
actualize_robot_state()

	

	
exec(mode=None)

	

	
validate_arg()

	

	
class instructions.group(titel)

	Bases: EvoScriPy.Instruction_Base.ScriptONLY

UNDOCUMENTED. Begging a group. MANUALLY set the group_end() !!!!

	
__init__(titel)

	

	
validate_arg()

	

	
class instructions.group_end

	Bases: EvoScriPy.Instruction_Base.ScriptONLY

UNDOCUMENTED. Begging a group. MANUALLY set the group_end() !!!!

	
__init__()

	

	
validate_arg()

	

	
class instructions.mix(tipMask=None, liquidClass=None, volume=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], labware=None, spacing=1, wellSelection=None, cycles=3, LoopOptions=[], RackName=None, Well=None, arm=None)

	Bases: EvoScriPy.Instruction_Base.Pipetting

A.15.4.3 Mix (Worklist: Mix)

	
__init__(tipMask=None, liquidClass=None, volume=[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], labware=None, spacing=1, wellSelection=None, cycles=3, LoopOptions=[], RackName=None, Well=None, arm=None)

	Set labware to match wells.

	Parameters

	
	name – str; Instruction name

	tipMask – int; selected tips, bit-coded (tip1 = 1, tip8 = 128)

	labware – Labware; grid 1-67, site 0-127, the labware with the selected wells

	spacing – int; Tip Spacing
The Tip Spacing parameter controls the distance between adjacent pipetting
tips for this command. You can choose a different tip spacing for the source
labware and the destination labware. Tip spacing is only relevant if you want
to use more than one tip. A tip spacing of 1 means that the tips will be spread
to match the distance between adjacent wells in the labware. A tip spacing of
2 will select every other well in the labware. You can only choose values for tip
spacing which are meaningful for the labware geometry.
The liquid handling arm achieves the highest mechanical accuracy when the
tips are not spread. For high-density labware such as 1536-well microplates,
you should choose tip spacing such that the tips are adjacent to one another
(physical tip spacing 9 mm). Accordingly, for 1536-well microplates you should
set tip spacing to 4 (every fourth well).

	wellSelection – str; list of wells. Converted to bit-coded well selection to be used.

	LoopOptions – list; of objects of class LoopOption.

	RackName –

	Well –

	arm –

	
static action()

	

	
actualize_robot_state()

	

	
validate_arg()

	Evoware visual script generator enforce a compatibility between the arguments mask_tip and well selection.
If they are not compatible the robot crash.
:return:

	
class instructions.moveLiha(zMove, zTarget, offset, speed, tipMask=None, labware=None, spacing=1, wellSelection=None, LoopOptions=[], RackName=None, Well=None, arm=None)

	Bases: EvoScriPy.Instruction_Base.Pipette

A.15.4.14 Move LiHa (Worklist: MoveLiha - A - 135)see 15.21 “Move LiHa Command”, 15-33.
The Move LiHa command is used to move the liquid handling arm (LiHa) from one
position to another without performing an Aspirate or Dispense operation.
Type of movement
Choose X-Move, Y-Move or Z-Move to move only one axis of the LiHa. You
can then specify the speed of the movement. Z-Move only moves the selected
tips.
The options Positioning with global Z-travel, Positioning with local Z-travel and
Positioning with variable Z-travel move the LiHa to the labware at maximum
speed. The chosen height for Z-Travel (the tip height which is used during the
arm movement) only applies to the selected tips. The Z position of the
unselected tips remains unchanged.
If you choose Positioning with variable Z-travel, the required Z-Travel height is
specified using the pre-defined variable LIHA_MOVE_HEIGHT (see
14.1.4.7 “LIHA_MOVE_HEIGHT”,  14-5).
Z-Position
Unless you have chosen X-Move or Y-Move in the Type of Movement field,
you can specify the Z-Position to which the selected tips should be lowered at
the end of the LiHa movement. The Z position of the unselected tips remains
unchanged. Choose the required Z-position and then specify a Z offset in mm
if required. A positive value for the offset lowers the tips.

	
__init__(zMove, zTarget, offset, speed, tipMask=None, labware=None, spacing=1, wellSelection=None, LoopOptions=[], RackName=None, Well=None, arm=None)

	
	Parameters

	
	zMove – int; type of movement:
0 = positioning with global z-travel
1 = positioning with local z-travel
2 = x-move
3 = y-move
4 = z-move

	zTarget – int; z-position after move:
0 = z-travel
1 = z-dispense
2 = z-start
3 = z-max
4 = global z-travel

	offset – float; in range (-1000, 1000) offset in mm added to z-position (parameter z_target)

	speed – float; in range (0.1, 400) move speed in mm/s if z_move is x-move, y-move or z-move

	tipMask – int; selected tips, bit-coded (tip1 = 1, tip8 = 128)

	labware – Labware;

	spacing – int; tip spacing

	wellSelection – str; bit-coded well selection

	LoopOptions – list; of objects of class LoopOption.

	RackName –

	Well –

	arm –

	
global_z_travel = 4

	

	
pos_global_z_travel = 0

	

	
pos_local_z_travel = 1

	

	
validate_arg()

	Evoware visual script generator enforce a compatibility between the arguments mask_tip and well selection.
If they are not compatible the robot crash.
:return:

	
x_move = 2

	

	
y_move = 3

	

	
z_dispense = 1

	

	
z_max = 3

	

	
z_move = 4

	

	
z_start = 2

	

	
z_travel = 0

	

	
class instructions.notification(receiverGroup, AttachScreen_ShotFlag=False, emailSubject='', emailMessage='', action=0)

	Bases: EvoScriPy.Instruction_Base.Instruction

A.15.4.25 Notification (Worklist: Notification)

	
__init__(receiverGroup, AttachScreen_ShotFlag=False, emailSubject='', emailMessage='', action=0)

	
	Parameters

	
	receiverGroup –

	AttachScreen_ShotFlag –

	emailSubject –

	action – 0 = send email now, 1 = send email on error, 2 = stop sending email on error

	
validate_arg()

	

	
class instructions.pickUp_DITIs(tipMask=None, labware=None, wellSelection=None, LoopOptions=[], type=None, arm=None, RackName=None, Well=None)

	Bases: EvoScriPy.Instruction_Base.Pipette

A.15.4.8 Pick Up DITIs (Worklist: Pick Up_DITI) pag. A-131 and 15-16
The Pick Up DITIs command is used to pick up DITIs which have already been
used and put back into a DITI rack with the Set DITIs Back command. You must
specify the DITIs you want to pick up.

	
__init__(tipMask=None, labware=None, wellSelection=None, LoopOptions=[], type=None, arm=None, RackName=None, Well=None)

	Set labware to match wells.

	Parameters

	
	name – str; Instruction name

	tipMask – int; selected tips, bit-coded (tip1 = 1, tip8 = 128)

	labware – Labware; grid 1-67, site 0-127, the labware with the selected wells

	spacing – int; Tip Spacing
The Tip Spacing parameter controls the distance between adjacent pipetting
tips for this command. You can choose a different tip spacing for the source
labware and the destination labware. Tip spacing is only relevant if you want
to use more than one tip. A tip spacing of 1 means that the tips will be spread
to match the distance between adjacent wells in the labware. A tip spacing of
2 will select every other well in the labware. You can only choose values for tip
spacing which are meaningful for the labware geometry.
The liquid handling arm achieves the highest mechanical accuracy when the
tips are not spread. For high-density labware such as 1536-well microplates,
you should choose tip spacing such that the tips are adjacent to one another
(physical tip spacing 9 mm). Accordingly, for 1536-well microplates you should
set tip spacing to 4 (every fourth well).

	wellSelection – str; list of wells. Converted to bit-coded well selection to be used.

	LoopOptions – list; of objects of class LoopOption.

	RackName –

	Well –

	arm –

	
actualize_robot_state()

	

	
validate_arg()

	Evoware visual script generator enforce a compatibility between the arguments mask_tip and well selection.
If they are not compatible the robot crash.
:return:

	
class instructions.pickUp_DITIs2(tipMask=None, labware=None, wellSelection=None, LoopOptions=[], arm=None, RackName=None, Well=None)

	Bases: EvoScriPy.Instruction_Base.Pipette

	A.15.4.8 Pick Up DITIs (Worklist: Pick Up_DITI) pag. A-131 and 15-16

	NOT DOCUMENTED

The Pick Up DITIs command is used to pick up DITIs which have already been
used and put back into a DITI rack with the Set DITIs Back command. You must
specify the DITIs you want to pick up.

	
__init__(tipMask=None, labware=None, wellSelection=None, LoopOptions=[], arm=None, RackName=None, Well=None)

	Set labware to match wells.

	Parameters

	
	name – str; Instruction name

	tipMask – int; selected tips, bit-coded (tip1 = 1, tip8 = 128)

	labware – Labware; grid 1-67, site 0-127, the labware with the selected wells

	spacing – int; Tip Spacing
The Tip Spacing parameter controls the distance between adjacent pipetting
tips for this command. You can choose a different tip spacing for the source
labware and the destination labware. Tip spacing is only relevant if you want
to use more than one tip. A tip spacing of 1 means that the tips will be spread
to match the distance between adjacent wells in the labware. A tip spacing of
2 will select every other well in the labware. You can only choose values for tip
spacing which are meaningful for the labware geometry.
The liquid handling arm achieves the highest mechanical accuracy when the
tips are not spread. For high-density labware such as 1536-well microplates,
you should choose tip spacing such that the tips are adjacent to one another
(physical tip spacing 9 mm). Accordingly, for 1536-well microplates you should
set tip spacing to 4 (every fourth well).

	wellSelection – str; list of wells. Converted to bit-coded well selection to be used.

	LoopOptions – list; of objects of class LoopOption.

	RackName –

	Well –

	arm –

	
actualize_robot_state()

	

	
validate_arg()

	Evoware visual script generator enforce a compatibility between the arguments mask_tip and well selection.
If they are not compatible the robot crash.
:return:

	
class instructions.pickUp_ZipTip(tipMask=None)

	Bases: EvoScriPy.Instruction_Base.Pipette

A.15.4.10 Pickup ZipTip (Worklist: PickUp_ZipTip)

	
__init__(tipMask=None)

	Set labware to match wells.

	Parameters

	
	name – str; Instruction name

	tipMask – int; selected tips, bit-coded (tip1 = 1, tip8 = 128)

	labware – Labware; grid 1-67, site 0-127, the labware with the selected wells

	spacing – int; Tip Spacing
The Tip Spacing parameter controls the distance between adjacent pipetting
tips for this command. You can choose a different tip spacing for the source
labware and the destination labware. Tip spacing is only relevant if you want
to use more than one tip. A tip spacing of 1 means that the tips will be spread
to match the distance between adjacent wells in the labware. A tip spacing of
2 will select every other well in the labware. You can only choose values for tip
spacing which are meaningful for the labware geometry.
The liquid handling arm achieves the highest mechanical accuracy when the
tips are not spread. For high-density labware such as 1536-well microplates,
you should choose tip spacing such that the tips are adjacent to one another
(physical tip spacing 9 mm). Accordingly, for 1536-well microplates you should
set tip spacing to 4 (every fourth well).

	wellSelection – str; list of wells. Converted to bit-coded well selection to be used.

	LoopOptions – list; of objects of class LoopOption.

	RackName –

	Well –

	arm –

	
class instructions.set_DITI_Counter(type=None, posInRack=0, labware=None)

	Bases: EvoScriPy.Instruction_Base.Pipette

	A.15.4.7 Set Diti Position (Worklist: Set_DITI_Counter) pag. 15 - 15

	If you are using DITIs, Freedom EVOware remembers the position in the DITI

rack of the last DITI which was fetched. When starting a new run, the Get DITIs
command starts picking up DITIs at the next available position. After loading a
new DITI rack onto the worktable during script runtime (e.g. using the RoMa), you
should use the Set DITI Position command in your script to set the DITI Position
counter to 1. This ensures that the next DITI is fetched from position 1 rather than
from the middle of the new rack.
You can specify the next position separately for each of the available DITI types
(i.e. DITI racks on the worktable).
Note: If you want to specify the next DITI position manually before the script or
process is started, use the direct command Set DITI Position (see 5.4.1.3 “Direct
commands”,  5-10) or create a maintenance script which contains the Set DITI
Position command (see 6.4.2 “Run Maintenance”,  6-10).
Note: DiTi handling is automatic in Freedom EVOware Plus.
This command is only shown in the Control Bar if you are using DiTis on the LiHa.
Freedom EVOware does not detect the LiHa tip type automatically. If you are
using DITIs you must configure them manually (see 8.4.2.1 “LiHa (Liquid Handling
Arm)”,  8-22).
If your pipetting instrument is fitted with two liquid handling arms, the Set DITI
Position command will be provided in the Control Bar for both arms. However,
please note that the same DITI position counter (and the same pool of unused
DITIs) is used by both arms.

	
__init__(type=None, posInRack=0, labware=None)

	Set labware to match wells.

	Parameters

	
	name – str; Instruction name

	tipMask – int; selected tips, bit-coded (tip1 = 1, tip8 = 128)

	labware – Labware; grid 1-67, site 0-127, the labware with the selected wells

	spacing – int; Tip Spacing
The Tip Spacing parameter controls the distance between adjacent pipetting
tips for this command. You can choose a different tip spacing for the source
labware and the destination labware. Tip spacing is only relevant if you want
to use more than one tip. A tip spacing of 1 means that the tips will be spread
to match the distance between adjacent wells in the labware. A tip spacing of
2 will select every other well in the labware. You can only choose values for tip
spacing which are meaningful for the labware geometry.
The liquid handling arm achieves the highest mechanical accuracy when the
tips are not spread. For high-density labware such as 1536-well microplates,
you should choose tip spacing such that the tips are adjacent to one another
(physical tip spacing 9 mm). Accordingly, for 1536-well microplates you should
set tip spacing to 4 (every fourth well).

	wellSelection – str; list of wells. Converted to bit-coded well selection to be used.

	LoopOptions – list; of objects of class LoopOption.

	RackName –

	Well –

	arm –

	
actualize_robot_state()

	

	
validate_arg()

	Evoware visual script generator enforce a compatibility between the arguments mask_tip and well selection.
If they are not compatible the robot crash.
:return:

	
class instructions.set_DITI_Counter2(labware=None, posInRack=0, lastPos=False)

	Bases: EvoScriPy.Instruction_Base.Pipette

	A.15.4.7 Set Diti Position (Worklist: Set_DITI_Counter) NOT DOCUMENTED

	example: Set_DITI_Counter2(“DiTi 1000ul”,”25”,”2”,”5”,0);
last position

If you have activated the feature Optimize positions when fetching DITIs,
Freedom EVOware fetches new DITIs either starting from the beginning of the
DITI rack or starting from the end of the DITI rack, depending on the situation
(see 8.4.2.1 “LiHa (Liquid Handling Arm)”,  8-22, Optimize positions when
fetching DITIs). In this case, Freedom EVOware maintains two counters for
the last used DITI position (for DITIs which are taken from the beginning of the
rack and for DITIs which are taken from the end of the rack). Check this
checkbox if you want to set the last used DITI position for the end counter
instead of for the beginning counter.
If you have activated the feature Optimize positions when fetching DITIs, after
loading a new DITI rack onto the worktable during script runtime you should
use the Set DITI Position command twice in your script, to set the beginning
counter to 1 and the end counter to 96.
The Set last position checkbox is inactive (grey) if you have not activated
Optimize positions when fetching DITIs. If you have previously specified the
last used DITI position, it will be ignored during script execution

	
__init__(labware=None, posInRack=0, lastPos=False)

	Set labware to match wells.

	Parameters

	
	name – str; Instruction name

	tipMask – int; selected tips, bit-coded (tip1 = 1, tip8 = 128)

	labware – Labware; grid 1-67, site 0-127, the labware with the selected wells

	spacing – int; Tip Spacing
The Tip Spacing parameter controls the distance between adjacent pipetting
tips for this command. You can choose a different tip spacing for the source
labware and the destination labware. Tip spacing is only relevant if you want
to use more than one tip. A tip spacing of 1 means that the tips will be spread
to match the distance between adjacent wells in the labware. A tip spacing of
2 will select every other well in the labware. You can only choose values for tip
spacing which are meaningful for the labware geometry.
The liquid handling arm achieves the highest mechanical accuracy when the
tips are not spread. For high-density labware such as 1536-well microplates,
you should choose tip spacing such that the tips are adjacent to one another
(physical tip spacing 9 mm). Accordingly, for 1536-well microplates you should
set tip spacing to 4 (every fourth well).

	wellSelection – str; list of wells. Converted to bit-coded well selection to be used.

	LoopOptions – list; of objects of class LoopOption.

	RackName –

	Well –

	arm –

	
actualize_robot_state()

	

	
validate_arg()

	Evoware visual script generator enforce a compatibility between the arguments mask_tip and well selection.
If they are not compatible the robot crash.
:return:

	
class instructions.set_DITIs_Back(tipMask, labware: EvoScriPy.labware.DITIrack, wellSelection=None, LoopOptions=[], arm=None, RackName=None, Well=None)

	Bases: EvoScriPy.Instruction_Base.Pipette

A.15.4.9 Set DITIs Back (Worklist: Set_DITIs_Back)
return used DITIs to specified positions on a DITI rack for later use.
This command requires the Lower DITI Eject option.

	
__init__(tipMask, labware: EvoScriPy.labware.DITIrack, wellSelection=None, LoopOptions=[], arm=None, RackName=None, Well=None)

	Set labware to match wells.

	Parameters

	
	name – str; Instruction name

	tipMask – int; selected tips, bit-coded (tip1 = 1, tip8 = 128)

	labware – Labware; grid 1-67, site 0-127, the labware with the selected wells

	spacing – int; Tip Spacing
The Tip Spacing parameter controls the distance between adjacent pipetting
tips for this command. You can choose a different tip spacing for the source
labware and the destination labware. Tip spacing is only relevant if you want
to use more than one tip. A tip spacing of 1 means that the tips will be spread
to match the distance between adjacent wells in the labware. A tip spacing of
2 will select every other well in the labware. You can only choose values for tip
spacing which are meaningful for the labware geometry.
The liquid handling arm achieves the highest mechanical accuracy when the
tips are not spread. For high-density labware such as 1536-well microplates,
you should choose tip spacing such that the tips are adjacent to one another
(physical tip spacing 9 mm). Accordingly, for 1536-well microplates you should
set tip spacing to 4 (every fourth well).

	wellSelection – str; list of wells. Converted to bit-coded well selection to be used.

	LoopOptions – list; of objects of class LoopOption.

	RackName –

	Well –

	arm –

	
actualize_robot_state()

	

	
validate_arg()

	Evoware visual script generator enforce a compatibility between the arguments mask_tip and well selection.
If they are not compatible the robot crash.
:return:

	
class instructions.startTimer(timer=1)

	Bases: EvoScriPy.Instruction_Base.Instruction

A.15.4.18 Start Timer (Worklist: StartTimer)

	
__init__(timer=1)

	
	Parameters

	timer (Expression) – expression, 1 - 100. number of timer to re-start. 1-1000?

	
validate_arg()

	

	
class instructions.subroutine(filename, action=0)

	Bases: EvoScriPy.Instruction_Base.ScriptONLY

UNDOCUMENTED

	
Continues = 1

	

	
Waits = 0

	

	
Waits_previous = 2

	

	
__init__(filename, action=0)

	

	
validate_arg()

	

	
class instructions.transfer_rack(labware: EvoScriPy.labware.Labware, destination: EvoScriPy.labware.WorkTable.Location, vectorName: str = None, backHome: bool = True, slow: bool = True, lid: EvoScriPy.labware.Labware = None, cover: int = 0, romaNo: int = None)

	Bases: EvoScriPy.Instruction_Base.Instruction

This command is used to transfer labware (e.g. a microplate) from one position to
another with the plate robot (RoMa).
If you have scanned the labware barcode and you move the labware with the
Transfer Labware command, the barcode remains assigned to the labware (i.e.
the labware data record) at the new location. In addition, pipetting information, if
any, remains assigned to the labware (see 15.29 “Export Data Command”,  15-
50).
Grip and release commands for the RoMa (used to pick up and put down the
labware) are handled automatically. The required gripper spacing is taken from
the advanced properties for the respective labware type (see 9.4.2 “Editing
Labware, Advanced Tab”,  9-22):
The parameters of the Transfer Labware command are as follows:

Move with

Choose the RoMa you want to use (1 or 2) if your instrument is fitted with
more than one.

Vector

Choose the RoMa vector that you want to use to pick up the labware.
Choose Narrow to pick up the labware on the narrow side; choose Wide to
pick up the labware on the wide side.
Choose User defined (Narrow) or (Wide) to pick up the labware on the narrow
or wide side with a user-defined vector. In this case, you must choose the
user-defined vector to use for picking up the labware at the source position
and putting down it at the destination position in the two User Vector pull-down
lists. User-defined vectors are created in the Control Bar (Robot Vectors
section). See 5.4.1.4 “Robot Vectors”,  5-11.
Above all if you did not create the user-defined vector yourself, we
recommend you to check carefully that the vector moves the RoMa to the
correct (i.e. intended) source and destination carrier positions before using it
for pipetting. Tip: Test the RoMa vector in a script using the 3D simulation
program EVOSim.
Freedom EVOware will report an error when you complete the Transfer
Labware command if the narrow or wide RoMa vector has not yet been
created for the chosen labware type. It is best to create the required RoMa
vectors in advance (see 9.6.2 “Teach Plate Robot Vector Dialog Box”,  9-60).

Transfer Labware command, Step 1

	Specify the parameters for the source position:

	
	Source position

Select the current position of the labware by clicking on it in the Worktable
Editor.
Grid and Site then show the position you have chosen. The gray (protected)
field Defined Carrier then shows the type of carrier at the chosen site and the
gray (protected) field Defined Labware shows the type of labware at the
chosen site.
If you want to fetch the labware from a device such as a hotel or barcode
scanner, click on the device icon. You then need to choose the site and the
labware type. The list shows labware types which are allowed for the device
(see 9.5 “Configuring Carriers”,  9-39, “Allowed Labware on this carrier”).

Transfer Labware command, Step 2

Specify the parameters for the labware lid. These parameters are only available
for labware types which can be fitted with a lid:

	Lid handling

Check this checkbox if the labware has a lid. Choose Cover at source if you
want to put on the lid before moving the labware. Choose Uncover at
destination if you want to remove the lid after moving the labware to the
destination position (i.e. the lid was already present). In either case, select the
position for fetching or putting aside the lid by clicking on the site in the
Worktable Editor. Grid and Site then show the position you have chosen. The
gray (protected) field Defined Carrier shows the type of carrier on which the lid
is placed/will be placed. You can only put aside lids on unused carrier sites.

Transfer Labware command, Step 3

	Specify the parameters for the destination position:

	
	Destination Position

Select the required destination position of the labware by clicking on the site in
the Worktable Editor.
The destination site must be suitable for the labware type you are moving (see
9.5 “Configuring Carriers”,  9-39, “Allowed labware on this carrier”).
Grid and Site then show the position you have chosen. The gray (protected)
field Defined Carrier then shows the type of carrier at the chosen site.
If you want to move the labware to a device such as a hotel or barcode
scanner, click on the device icon. You then need to choose the site and the
labware type. The list shows labware types which are allowed for the device
(see 9.5 “Configuring Carriers”,  9-39, “Allowed Labware on this carrier”).

	Speed

Choose Maximum if you want the RoMa to move at maximum speed. Choose
Taught in vector dialog if you want the RoMa to move at the speed specified in
the RoMa vector.

	Move back to Home Position

Check this checkbox if you want the RoMa to move back to its home (parking)
position after transferring the labware. See 9.6.4 “Defining the Home Position
for a RoMa”,  9-63.

	
__init__(labware: EvoScriPy.labware.Labware, destination: EvoScriPy.labware.WorkTable.Location, vectorName: str = None, backHome: bool = True, slow: bool = True, lid: EvoScriPy.labware.Labware = None, cover: int = 0, romaNo: int = None)

	
	Parameters

	
	labware –

	destination –

	backHome – move back to home when finished ?

	lid –

	slow – use slow speed (as defined in RoMa vector)? (else use maximum speed)

	cover – 0 = cover at source , 1 = uncover at destination

	vectorName – name of RoMa vector to use (as in the Freedom EVOware configuration),
choose from one of the following:

Narrow
DriveIN_Narrow
DriveIN_Narrow
DriveIN_Wide

	romaNo – number of the RoMa performing the action: 0 = RoMa 1, 1 = RoMa 2

	
actualize_robot_state()

	

	
validate_arg()

	

	
class instructions.userPrompt(text: str, sound: int = 1, closeTime: int = -1)

	Bases: EvoScriPy.Instruction_Base.Instruction

A.15.4.22 User Prompt (Worklist: UserPrompt)

	
__init__(text: str, sound: int = 1, closeTime: int = -1)

	

	
validate_arg()

	

	
class instructions.variable(var_name, default, queryFlag=False, queryString='', checkLimits=False, lowerLimit=0.0, upperLimit=0.0, type=0, scope=0, InitMode=0, QueryAtStart=False)

	Bases: EvoScriPy.Instruction_Base.Instruction

A.15.4.23 Set Variable (Worklist: Variable)

	
File_import = 2

	

	
Fixed_value = 0

	

	
Instance = 1

	

	
Numeric = 0

	

	
Run = 0

	

	
Script = 2

	

	
String = 1

	

	
User_query = 1

	

	
__init__(var_name, default, queryFlag=False, queryString='', checkLimits=False, lowerLimit=0.0, upperLimit=0.0, type=0, scope=0, InitMode=0, QueryAtStart=False)

	
	Parameters

	
	var_name – string2 ; name of variable

	default – Expression ; value assigned to variable or default value if user query

	queryFlag – bool

	queryString – String1 ; text shown in user query

	checkLimits – bool

	lowerLimit –

	upperLimit –

	type – type of variable; 0 = Numeric; 1 = String

	scope – scope of variable (see 6.4.6,  6-12):0 = Run; 1 = Instance; 2 = Script

	InitMode – 0 = Fixed value; 1 = User query; 2 = File import;

	QueryAtStart – bool ; 1 = Prompt for value at start of script

	
validate_arg()

	

	
class instructions.vector(name)

	Bases: EvoScriPy.Instruction_Base.Instruction

15.61 RoMa Vector Command
This command executes a RoMa vector, which is a predefined sequence of RoMa
movements. You can also specify gripper actions at the Safe and End positions.
See 9.6.1 “Using RoMa Vectors”,  9-59 for more information.
The RoMa Vector command is intended for special RoMa movements and not for
moving labware from one position to another - you should use the Transfer
Labware command instead for this purpose. See also 15.61.1 “Moving labware
with the RoMa Vector command”,  15-145.
The parameters of the RoMa Vector command are as follows:

	RoMa-No.

Choose the RoMa you want to use (1 or 2) if your instrument is fitted with
more than one.

	Use RoMa Vector

Choose the RoMa vector you want to use for the RoMa movement. The
popup list shows the RoMa vectors which are currently defined in the
Freedom EVOware database.
The digit at the end of the vector name (e.g. Carousel_Narrow_1) indicates
the RoMa for which the vector was defined (1 or 2). See also 9.6.1 “Using
RoMa Vectors”,  9-59.
You can also choose a user-defined vector. User-defined vectors are created
in the Control Bar (Robot Vectors section).
Then specify the grid position and carrier site for which the vector is intended.
The Grid field is protected (gray) if you have chosen a vector for a device
which is not positioned on the worktable (see Carrier is Device checkbox in
the carrier definition).
Tip: If you click on a carrier, the current grid position is shown in the small
yellow tab at the bottom left.

	Move along RoMa Vector

Choose the required direction of the RoMa movement. Click And back if you
want the RoMa to return to the Safe position after reaching the End position.

	Gripper action

Choose the gripper action which should be executed at the Safe position and
at the End position. The required gripper spacing to pick up and release the
labware is taken from the Grip Width and Release Width parameters in the
chosen RoMa vector.

	Speed

Choose Maximum if you want the RoMa to move at maximum speed. Choose
Slow if you want the RoMa to move at the speed specified in the RoMa vector.

15.61.1 Moving labware with the RoMa Vector command
If you have scanned the labware barcode and you move the labware with the
Transfer Labware command, the barcode remains assigned to the labware (i.e.
the labware data record) at the new location. In addition, pipetting information, if
any, remains assigned to the labware (see 15.29 “Export Data Command”,  15-
50).
This is not the case with the RoMa Vector command. The barcode and the
pipetting information are no longer available at the new location.
This also applies analogously to the MCA96 Vector command and the MCA384
Vector command.
Proceed as follows if you want to use a Vector command to move barcoded
labware in special situations:
 After scanning the barcode, assign it to a temporary variable (see

14.1.11 “Labware Attributes and String Variables”,  14-16).

 Move the labware.
 Re-assign the barcode from the temporary variable to the labware.
This workaround transfers the barcode but not the pipetting information.

	
class instructions.waitTimer(timer=1, timeSpan=None)

	Bases: EvoScriPy.Instruction_Base.Instruction

A.15.4.19 Wait for Timer (Worklist: WaitTimer)

	
__init__(timer=1, timeSpan=None)

	
	Parameters

	
	timeSpan – expression, 0.02 - 86400. duration

	timer – expression, 1 - 100. number of timer to re-start. 1-1000?

	
validate_arg()

	

	
class instructions.wash_tips(tipMask=None, WashWaste=None, WashCleaner=None, wasteVol=100, wasteDelay=50, cleanerVol=10, cleanerDelay=50, Airgap=0.0, airgapSpeed=50, retractSpeed=100, FastWash=False, lowVolume=False, atFrequency=0, RackName=None, Well=None, arm=None)

	Bases: EvoScriPy.Instruction_Base.Pipette

	A.15.4.4 Wash Tips (Worklist: Wash) pag. A - 128; pag. 15 - 8.

	to flush and wash fixed tips or to flush DITI

adapters using a wash station. It is not intended for flushing DITI tips (DITI tips
should not normally be flushed). Tips should be washed as often as necessary, e.g. after a pipetting sequence and
before taking a new sample. DITI adapters should be flushed after replacing the
DITIs several times to renew the system liquid column in the DITI adapters. This
ensures maximum pipetting accuracy.

	
__init__(tipMask=None, WashWaste=None, WashCleaner=None, wasteVol=100, wasteDelay=50, cleanerVol=10, cleanerDelay=50, Airgap=0.0, airgapSpeed=50, retractSpeed=100, FastWash=False, lowVolume=False, atFrequency=0, RackName=None, Well=None, arm=None)

	
	Parameters

	
	tipMask –

	WashWaste – labware ; the waste you want to use. You must first put a wash station
with waste unit in the Worktable Editor at the required position.

	WashCleaner – labware ; the cleaner you want to use. You must first put a wash
station with cleaner unit in the Worktable Editor at the required position.
Choose a shallow cleaner if you only need to clean the ends of the tips.
Choose a deep cleaner if there is a possibility of contamination along the shaft
of the tip. The deep cleaner requires a larger volume of system liquid and
cleaning takes somewhat longer.
The wash cycle is skipped if you are flushing DITI adapters and Use Cleaner
is ignored in this case.

	wasteVol – int ; volume [in mL !!] of system liquid which should be used to flush the inside of
the tips. Flushing takes place with the tips positioned above the waste of the
specified wash station (tip height for fixed tips = Z-dispense; tip height for DITI
adapters = Z-travel).

	wasteDelay –

	cleanerVol – int ; Specify the volume of system liquid which should be used to wash the outside
of the tips. Washing takes place with the tips lowered into the cleaner of the
specified wash station (tip height = Z-max). The wash cycle is skipped if you
are flushing DITI adapters and Volume in Cleaner is ignored in this case.

	cleanerDelay –

	Airgap –

	airgapSpeed –

	retractSpeed –

	FastWash –

	lowVolume –

	atFrequency –

	RackName –

	Well –

	arm –

	
validate_arg()

	Evoware visual script generator enforce a compatibility between the arguments mask_tip and well selection.
If they are not compatible the robot crash.
:return:

	
class instructions.waste(action=0)

	Bases: EvoScriPy.Instruction_Base.Instruction

A.15.4.15 Waste (Worklist: Waste)

	
__init__(action=0)

	Initialize self. See help(type(self)) for accurate signature.

	
actions = range(0, 6)

	

	
activate_waste_1 = 1

	

	
activate_waste_2 = 2

	

	
activate_waste_3 = 3

	

	
deactivate_all_wastes = 4

	

	
deactivate_system = 5

	

	
init_system = 0

	

	
validate_arg()

	

 _static/plus.png

_images/HelloW.png
 Extended View [el@] = |
Comments sapt
“elo Word:™
| < vserpromot e
Helo World!
Variables
CURRENT USER adnin
LAST BARCODE =

LAST_ERROR_LINE

REPLACE_DITI GRID
REPLACE DITL_SITE

o

LASTERROR MESSAGE _ NONE.
LAST_ERROR MESSAGEID 0

0

Cancel

For Help, press FL

NUM

_static/up-pressed.png

_static/up.png

_images/demo2mix-list-3.png
. ﬂl\sp\rat&

10,001 water fres.
“mixes* (Col. 1, Row 1)

. @Asp\rat&

10,001 water fres.
“mixes* (Col. 1, Row 1)

. @Asp\rat&

10,001 water fres.
“mixes* (Col. 1, Row 1)

. @Asp\rat&

10,001 water fres.
“mixes* (Col. 1, Row 1)

o

[iooou watrfree
“pltet” (Col. 1, Rows 1-4)

N e

Group End

Spread: 10.0 . of mixt

F@a

)

Spread: 10.0 L of mix2

Spread: 10.0 L of mix? (41.6 L. total from [qrid: 12 site:1 ['well 2n mixes

with 41.0 uL of mix2’] into late1{grid:33 ste:1] in order

10,001 water fre
“mixes* (Col. 1, Row 2)

10,001 water fre
“mixes* (Col. 1, Row 2)

10,001 water fre
“mixes* (Col. 1, Row 2)

10,001 water fre
“mixes* (Col. 1, Row 2)

|-t Aol 1)1

_images/demo2mix-list-4.png
|, Poseerse

% [oo water free
“plate1” (Col. 1, Rows 5-6)

ofGroup End

Spread: 10.0 L of mix2

Spread: 90.0 L of Buffer

Spread: 90.0 L of Buffer (1497.6 L toka) from [g1ic53 se:1 [well 1 n Buffercub ; with 1497.0 ul of Buffer '] into plate1[grid:33 i

% 00w et free
T U seutfercut o 1, Rows 3:9)

% [oo water free
“platel” (Col. 1, Rows 1-4)

Spread: 90.0 L of Buffer

Spread: 90.0 L of Buffer

Spread: 90.0 L of Buffer (1497.6 L toka) from [g1ic53 ste:1 [well 1 n Buffercub ; with 1137.0 ul of Buffer '] into plate1[grid:3 i

% 00w et free
T U seutfercut o 1, Rows 3:9)

% [oo water free
“plate1” (Col. 1, Rows 5-6)

3

ofGroup End

Spread: 90.0 L of Buffer

F@a

o

Transfer: 10.0 L from plate1

_images/demo2mix-list-1.png
Prefil a plate with some diLtians of two master mix and Buffer Reagent For 4 samples.

Set DITi position

oimi 000Ul
Grid: 55, Ste: 1, Poston i labware : 1

"Check Buffer in [well 1in BufferCub : with 1457.0 uL of Buffer TODICheck mixd in [wel 1 in mixes

with 41.0 uL of mixt' T Ocheck i<z in [wel 2 n |

(@ User Prompt sound ; once.
% Comment Check: Cwell 4 in BufferCub : with 1497.0 uL of Buffer ']
, |3 [eetoms [LI—_—

7.: Detect Liquid

Fl’ g erfree
7 W eutfercut (col. 1, Row)

| 8 Drop DiTis "DITi Waste"
, Q@ User Prompt s once

% Comment Check: ['wel 1 in mixes : with 41.0 uL of mix1]
, |3 [oetoms ylv DiTi 1000ul

7.: Detect Liquid

rl' H Weter free
s’ (Col. 1, Row 1)

3 [propDims

DT Waste"

QY User Prormpt

_images/demo2mix-list-2.png
(@ User Prompt sound ; once.

% Comment Check: (well2inmises : with 41.0uL of mb2]
, 4 [ceroms yl' o 10004
aterfree
A Y jperectuqud Pl’ H “mixes” (Col. 1, Row 2)
, % [propoms yl' Dl Waste”

QY User Prormpt once

|, Y wasn s y%m S+ tom

Source: Grid 'S5, Site '3 Destination: Grid 55, Ste 2; Narrow
G [ramirnae G

g
Q5Group Filllate with s
User Prompt Pk the e o Bufr
F@a
Grouy Spread: 10.0 4L of mixt
[mgsop o u
% Comment Spread: 10.0 L of mixt (41,6 L total) rom [qrid:12 ster1 [well 1 inmives : with 41.0 L of mixt"]into plte{gric:33 site:] inorder

Y |setoms [IA—_—

_images/demo2mix-list-5.png
% Comment

Transfer: 10.0 . from platet [qrid:33 site:1] i order [1, 2, 3, 4] into late2lgrid:33 ste:3] in order [1,2, 3, 4];

. @Asp\rat&

% [000 water free
“platel” (Col. 1, Rows 1-4)

Do

% [000 watar free
m “plate-2moved" (Co. 1, Rows 1-4)

® oferoup Ena Transfer: 10,0, from plte1
R
GroLy Transfer: 10.0 L from platet
L Proroe wiren
% Comment Transfer: 10.0 L from plate1 [qrid:33 site:1] in order [S, 6, 7, 8] into plate2{grid:33 site:3] in order [S, 6, 7, 8]:
(=7 oo W e
|, L/ Asprate % “plate!” (Col. 1, Rows 5:2)
) 10004l Water free.
L ppese I
3
| ol Group End Transfer: 10.0 L from platel
R
GroLy ‘Spread: 90.0 L of Buffer
B . u

Spread: 90.0 L of Buffer (1497.6 L tota) from [grcS3 st [well in BufferCub : with 777.0 L of Buffer Jinto plate2[arid:33 s

% 00w et free
T U seutfercut o 1, Rows 3:9)

% [0 water free
Ty “plate-2moved" (Col. 1, Rows 1-4)

_images/demo2mix-list-6.png
| a[SropEnd

Transferi 10.0 . from plate1

Spread: 90.0 L of Buffer

Spread: 90.0 L of Buffer (1497.6 L tota) from [grcS3 st [well in BufferCub : with 777.0 L of Buffer Jinto plate2[arid:33 s

% 00w et free
T U seutfercut o 1, Rows 3:9)

% [0 water free
m “plate-2moved" (Col. 1, Rows 1-4)

Spread: 90.0 L of Buffer

F@a

Spread: 90.0 L of Buffer

Spread: 90.0 L of Buffer (1497.6 L toka) from [qrcS3 st [well in BufferCub : with 417.0 u of Buffer into plate2[ard:33 s

% 00w et free
T U eutfercu o 1, Rows 3:6)

E,]’ Dispense

% [oo v
m “plate-2moved" (Co. 1, Rows 5:6)

3
| aeopEnd

Spread: 90.0 L of Buffer

3 [propDims

[[I—

3
ofGroup End

Filllate with mixes

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to RobotEvo

 		
 Why RobotEvo?

 		
 Users of RobotEvo

 		
 Category A user: the real-robot operator

 		
 Category B user: basic RobotEvo/python operator

 		
 Category C user: protocol adaptor

 		
 Category D user: protocol developer

 		
 Category E user: RobotEvo developer

 		
 How to run an existing protocol?

 		
 How does it works?

 		
 A Hello World! example.

 		
 How to modify an existing protocol?

 		
 How to write a new protocol?

 		
 API

 		
 Principal API: Protocol steps

 		
 High level functions:

 		
 Advanced functions.

 		
 Atomic functions

 		
 Protocol-structure or state functions

 		
 Other intermediate level functions:

 		
 Reagent - a fundamental concept

 		
 Main classes and functions:

 		
 Abstract information classes:

 		
 Robot classes:

 		
 Worktable and labwares

 		
 RobotEvo “modes” for execution of basic instructions

 		
 Robots and arms

 		
 Examples:

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

