

Welcome to rivescript’s documentation!

Contents:

	rivescript package
	Submodules

	rivescript.rivescript module

	rivescript.sessions module

	rivescript.exceptions module

	rivescript.interactive module

	rivescript.parser module

	rivescript.python module

Indices and tables

	Index

	Module Index

	Search Page

rivescript package

Submodules

rivescript.rivescript module

	
class rivescript.rivescript.RiveScript(debug=False, strict=True, depth=50, log=None, utf8=False, session_manager=None)

	Bases: object

A RiveScript interpreter for Python 2 and 3.

	Parameters:	
	debug (bool) – Set to True to enable verbose logging to standard out.

	strict (bool) – Enable strict mode. Strict mode causes RiveScript syntax
errors to raise an exception at parse time. Strict mode is on
(True) by default.

	log (str or fh) – Specify a path to a file or a filehandle opened in
write mode to direct log output to. This can send debug logging to
a file rather than to STDOUT.

	depth (int) – Set the recursion depth limit. This is how many times
RiveScript will recursively follow redirects before giving up with
a DeepRecursionError exception. The default is 50.

	utf8 (bool) – Enable UTF-8 mode. When this mode is enabled, triggers in
RiveScript code are permitted to contain foreign and special
symbols. Additionally, user messages are allowed to contain most
symbols instead of having all symbols stripped away. This is
considered an experimental feature because all of the edge cases of
supporting Unicode haven’t been fully tested. This option
is False by default.

	session_manager (SessionManager) – By default RiveScript uses an
in-memory session manager to keep track of user variables and state
information. If you have your own session manager that you’d like
to use instead, pass its instantiated class instance as this
parameter.

	
classmethod VERSION()

	Return the version number of the RiveScript library.

This may be called as either a class method or a method of a RiveScript
object instance.

	
clear_uservars(user=None)

	Delete all variables about a user (or all users).

	Parameters:	user (str) – The user ID to clear variables for, or else clear all
variables for all users if not provided.

	
current_user()

	Retrieve the user ID of the current user talking to your bot.

This is mostly useful inside of a Python object macro to get the user
ID of the person who caused the object macro to be invoked (i.e. to
set a variable for that user from within the object).

This will return None if used outside of the context of getting a
reply (the value is unset at the end of the reply() method).

	
deparse()

	Dump the in-memory RiveScript brain as a Python data structure.

This would be useful, for example, to develop a user interface for
editing RiveScript replies without having to edit the RiveScript
source code directly.

	Return dict:	JSON-serializable Python data structure containing the
contents of all RiveScript replies currently loaded in memory.

	
freeze_uservars(user)

	Freeze the variable state for a user.

This will clone and preserve a user’s entire variable state, so that it
can be restored later with thaw_uservars().

	Parameters:	user (str) – The user ID to freeze variables for.

	
get_global(name)

	Retrieve the current value of a global variable.

	Parameters:	name (str) – The name of the variable to get.

	Return str:	The value of the variable or "undefined".

	
get_uservar(user, name)

	Get a variable about a user.

	Parameters:	
	user (str) – The user ID to look up a variable for.

	name (str) – The name of the variable to get.

	Returns:	The user variable, or None or "undefined":

	If the user has no data at all, this returns None.

	If the user doesn’t have this variable set, this returns the
string "undefined".

	Otherwise this returns the string value of the variable.

	
get_uservars(user=None)

	Get all variables about a user (or all users).

	Parameters:	str user (optional) – The user ID to retrieve all variables for.
If not passed, this function will return all data for all users.

	Return dict:	All the user variables.

	If a user was passed, this is a dict of key/value pairs
of that user’s variables. If the user doesn’t exist in memory,
this returns None.

	Otherwise, this returns a dict of key/value pairs that map
user IDs to their variables (a dict of dict).

	
get_variable(name)

	Retrieve the current value of a bot variable.

	Parameters:	name (str) – The name of the variable to get.

	Return str:	The value of the variable or "undefined".

	
last_match(user)

	Get the last trigger matched for the user.

	Parameters:	user (str) – The user ID to get the last matched trigger for.

	Return str:	The raw trigger text (tags and all) of the trigger that
the user most recently matched. If there was no match to their
last message, this returns None instead.

	
load_directory(directory, ext=None)

	Load RiveScript documents from a directory.

	Parameters:	
	directory (str) – The directory of RiveScript documents to load
replies from.

	ext ([]str) – List of file extensions to consider as RiveScript
documents. The default is [".rive", ".rs"].

	
load_file(filename)

	Load and parse a RiveScript document.

	Parameters:	filename (str) – The path to a RiveScript file.

	
reply(user, msg, errors_as_replies=True)

	Fetch a reply from the RiveScript brain.

	Parameters:	
	user (str) – A unique user ID for the person requesting a reply.
This could be e.g. a screen name or nickname. It’s used internally
to store user variables (including topic and history), so if your
bot has multiple users each one should have a unique ID.

	msg (str) – The user’s message. This is allowed to contain
punctuation and such, but any extraneous data such as HTML tags
should be removed in advance.

	errors_as_replies (bool) – When errors are encountered (such as a
deep recursion error, no reply matched, etc.) this will make the
reply be a text representation of the error message. If you set
this to False, errors will instead raise an exception, such as
a DeepRecursionError or NoReplyError. By default, no
exceptions are raised and errors are set in the reply instead.

	Returns:	The reply output.

	Return type:	str

	
set_global(name, value)

	Set a global variable.

Equivalent to ! global in RiveScript code.

	Parameters:	
	name (str) – The name of the variable to set.

	value (str) – The value of the variable.
Set this to None to delete the variable.

	
set_handler(language, obj)

	Define a custom language handler for RiveScript objects.

Pass in a None value for the object to delete an existing handler (for
example, to prevent Python code from being able to be run by default).

Look in the eg folder of the rivescript-python distribution for
an example script that sets up a JavaScript language handler.

	Parameters:	
	language (str) – The lowercased name of the programming language.
Examples: python, javascript, perl

	obj (class) – An instance of an implementation class object.
It should provide the following interface:

class MyObjectHandler:
 def __init__(self):
 pass
 def load(self, name, code):
 # name = the name of the object from the RiveScript code
 # code = the source code of the object
 def call(self, rs, name, fields):
 # rs = the current RiveScript interpreter object
 # name = the name of the object being called
 # fields = array of arguments passed to the object
 return reply

	
set_person(what, rep)

	Set a person substitution.

Equivalent to ! person in RiveScript code.

	Parameters:	
	what (str) – The original text to replace.

	rep (str) – The text to replace it with.
Set this to None to delete the substitution.

	
set_subroutine(name, code)

	Define a Python object from your program.

This is equivalent to having an object defined in the RiveScript code,
except your Python code is defining it instead.

	Parameters:	
	name (str) – The name of the object macro.

	code (def) – A Python function with a method signature of
(rs, args)

This method is only available if there is a Python handler set up
(which there is by default, unless you’ve called
set_handler("python", None)).

	
set_substitution(what, rep)

	Set a substitution.

Equivalent to ! sub in RiveScript code.

	Parameters:	
	what (str) – The original text to replace.

	rep (str) – The text to replace it with.
Set this to None to delete the substitution.

	
set_uservar(user, name, value)

	Set a variable for a user.

This is like the <set> tag in RiveScript code.

	Parameters:	
	user (str) – The user ID to set a variable for.

	name (str) – The name of the variable to set.

	value (str) – The value to set there.

	
set_uservars(user, data=None)

	Set many variables for a user, or set many variables for many users.

This function can be called in two ways:

Set a dict of variables for a single user.
rs.set_uservars(username, vars)

Set a nested dict of variables for many users.
rs.set_uservars(many_vars)

In the first syntax, vars is a simple dict of key/value string
pairs. In the second syntax, many_vars is a structure like this:

{
 "username1": {
 "key": "value",
 },
 "username2": {
 "key": "value",
 },
}

This way you can export all user variables via get_uservars()
and then re-import them all at once, instead of setting them once per
user.

	Parameters:	
	str user (optional) – The user ID to set many variables for.
Skip this parameter to set many variables for many users instead.

	data (dict) – The dictionary of key/value pairs for user variables,
or else a dict of dicts mapping usernames to key/value pairs.

This may raise a TypeError exception if you pass it invalid data
types. Note that only the standard dict type is accepted, but not
variants like OrderedDict, so if you have a dict-like type you
should cast it to dict first.

	
set_variable(name, value)

	Set a bot variable.

Equivalent to ! var in RiveScript code.

	Parameters:	
	name (str) – The name of the variable to set.

	value (str) – The value of the variable.
Set this to None to delete the variable.

	
sort_replies(thats=False)

	Sort the loaded triggers in memory.

After you have finished loading your RiveScript code, call this method
to populate the various internal sort buffers. This is absolutely
necessary for reply matching to work efficiently!

	
stream(code)

	Stream in RiveScript source code dynamically.

	Parameters:	code – Either a string containing RiveScript code or an array of
lines of RiveScript code.

	
thaw_uservars(user, action=u'thaw')

	Thaw a user’s frozen variables.

	Parameters:	action (str) – The action to perform when thawing the variables:

	discard: Don’t restore the user’s variables, just delete the
frozen copy.

	keep: Keep the frozen copy after restoring the variables.

	thaw: Restore the variables, then delete the frozen copy
(this is the default).

	
trigger_info(trigger=None, dump=False)

	Get information about a trigger.

Pass in a raw trigger to find out what file name and line number it
appeared at. This is useful for e.g. tracking down the location of the
trigger last matched by the user via last_match(). Returns a list
of matching triggers, containing their topics, filenames and line
numbers. Returns None if there weren’t any matches found.

The keys in the trigger info is as follows:

	category: Either ‘topic’ (for normal) or ‘thats’
(for %Previous triggers)

	topic: The topic name

	trigger: The raw trigger text

	filename: The filename the trigger was found in.

	lineno: The line number the trigger was found on.

Pass in a true value for dump, and the entire syntax tracking
tree is returned.

	Parameters:	
	trigger (str) – The raw trigger text to look up.

	dump (bool) – Whether to dump the entire syntax tracking tree.

	Returns:	A list of matching triggers or None if no matches.

	
write(fh, deparsed=None)

	Write the currently parsed RiveScript data into a file.

Pass either a file name (string) or a file handle object.

This uses deparse() to dump a representation of the loaded data and
writes it to the destination file. If you provide your own data as the
deparsed argument, it will use that data instead of calling
deparse() itself. This way you can use deparse(), edit the data,
and use that to write the RiveScript document (for example, to be used
by a user interface for editing RiveScript without writing the code
directly).

	Parameters:	
	fh (str or file) – a string or a file-like object.

	deparsed (dict) – a data structure in the same format as what
deparse() returns. If not passed, this value will come from
the current in-memory data from deparse().

rivescript.sessions module

	
class rivescript.sessions.MemorySessionStorage(warn=None, *args, **kwargs)

	Bases: rivescript.sessions.SessionManager

The default in-memory session store for RiveScript.

This session manager keeps all user and state information in system
memory and doesn’t persist anything to disk by default. This is suitable
for many simple use cases. User variables can be persisted and reloaded
from disk by using the RiveScript API functions get_uservars() and
set_uservars() – for example, you can get export all user variables
and save them to disk as a JSON file when your program shuts down, and on
its next startup, read the JSON file from disk and use set_uservars()
to put them back into the in-memory session manager.

If you’d like to implement your own session manager, for example to use
a database to store/retrieve user variables, you should extend the base
SessionManager class and implement all of its functions.

	Parameters:	warn (function) – A function to be called with an error message to
notify when one of the functions fails due to a user not existing.
If not provided, then no warnings will be emitted from this module.

	
class rivescript.sessions.NullSessionStorage

	Bases: rivescript.sessions.SessionManager

The null session manager doesn’t store any user variables.

This is used by the unit tests and isn’t practical for real world usage,
as the bot would be completely unable to remember any user variables or
history.

	
class rivescript.sessions.SessionManager

	Bases: object

Base class for session management for RiveScript.

The session manager keeps track of getting and setting user variables,
for example when the <set> or <get> tags are used in RiveScript
or when the API functions like set_uservar() are called.

By default RiveScript stores user sessions in memory and provides methods
to export and import them (e.g. to persist them when the bot shuts down
so they can be reloaded). If you’d prefer a more ‘active’ session storage,
for example one that puts user variables into a database or cache, you can
create your own session manager that extends this class and implements its
functions.

See the eg/sessions example from the source of rivescript-python at
https://github.com/aichaos/rivescript-python for an example.

The constructor takes no required parameters. You can feel free to define
__init__() however you need to.

	
default_session()

	The default session data for a new user.

You do not need to override this function. This returns a dict with
the default key/value pairs for new sessions. By default, the
session variables are as follows:

{
 "topic": "random"
}

	Returns:	A dict of default key/value pairs for new user sessions.

	Return type:	dict

	
freeze(username)

	Make a snapshot of the user’s variables.

This should clone and store a snapshot of all stored variables for the
user, so that they can later be restored with thaw(). This
implements the RiveScript freeze_uservars() method.

	Parameters:	username (str) – The username to freeze variables for.

	
get(username, key)

	Retrieve a stored variable for a user.

If the user doesn’t exist, this should return None. If the user
does exist, but the key does not, this should return the
string value "undefined".

	Parameters:	
	username (str) – The username to retrieve variables for.

	key (str) – The specific variable name to retrieve.

	Returns:	The value of the requested key, “undefined”, or NoneType.

	Return type:	str

	
get_all()

	Retrieve all variables about all users.

This should return a dict of dicts, where the top level keys are the
usernames of every user your bot has data for, and the values are dicts
of key/value pairs of those users. For example:

{ "user1": {
 "topic": "random",
 "name": "Alice",
 },
 "user2": {
 "topic": "random",
 "name": "Bob",
 },
}

	Returns:	dict

	
get_any(username)

	Retrieve all stored variables for a user.

If the user doesn’t exist, this should return None.

	Parameters:	username (str) – The username to retrieve variables for.

	Returns:	Key/value pairs of all stored data for the user, or NoneType.

	Return type:	dict

	
reset(username)

	Reset all variables stored about a particular user.

	Parameters:	username (str) – The username to flush all data for.

	
reset_all()

	Reset all variables for all users.

	
set(username, args)

	Set variables for a user.

	Parameters:	
	username (str) – The username to set variables for.

	args (dict) – Key/value pairs of variables to set for the user.
The values are usually strings, but they can be other types
as well (e.g. arrays or other dicts) for some internal data
structures such as input/reply history. A value of NoneType
should indicate that the key should be deleted from the session
store.

	
thaw(username, action=u'thaw')

	Restore the frozen snapshot of variables for a user.

This should replace all of a user’s variables with the frozen copy
that was snapshotted with freeze(). If there are no frozen
variables, this function should be a no-op (maybe issue a warning?)

	Parameters:	
	username (str) – The username to restore variables for.

	action (str) – An action to perform on the variables. Valid options are:

	thaw: Restore the variables and delete the frozen copy (default).

	discard: Don’t restore the variables, just delete the frozen copy.

	keep: Restore the variables and keep the copy still.

rivescript.exceptions module

	
exception rivescript.exceptions.DeepRecursionError

	Bases: rivescript.exceptions.RiveScriptError

A deep recursion condition was detected and a reply can’t be given.

This error can occur when you have triggers that redirect to each other
in a circle, for example:

+ one
@ two

+ two
@ one

By default, RiveScript will only recursively look for a trigger up to
50 levels deep before giving up. This should be a large enough window for
most use cases, but if you need to increase this limit you can do so by
setting a higher value for the depth parameter to the constructor or
changing it in your RiveScript source code, for example:

! global depth = 75

The text version is [ERR: Deep recursion detected]

	
exception rivescript.exceptions.NoDefaultRandomTopicError

	Bases: exceptions.Exception

No default topic could be found.

This is a critical error and usually means no replies were loaded into the
bot. Very unlikely is it the case that all replies belong to other topics
than the default (random).

	
exception rivescript.exceptions.NoMatchError

	Bases: rivescript.exceptions.RiveScriptError

No reply could be matched.

This means that no trigger was a match for the user’s message. To avoid
this error, add a trigger that only consists of a wildcard:

+ *
- I do not know how to reply to that.

The lone-wildcard trigger acts as a catch-all fallback trigger and will
ensure that every message the user could send will match at least one
trigger.

The text version is [ERR: No reply matched]

	
exception rivescript.exceptions.NoReplyError

	Bases: rivescript.exceptions.RiveScriptError

No reply could be found.

This means that the user’s message matched a trigger, but the trigger
didn’t yield any response for the user. For example, if a trigger was
followed only by *Conditions and none of them were true and there were
no normal replies to fall back on, this error can come up.

To avoid this error, always make sure you have at least one -Reply
for every trigger.

The text version is [ERR: No reply found].

	
exception rivescript.exceptions.ObjectError(error_message=u'[ERR: Error when executing Python object]')

	Bases: rivescript.exceptions.RiveScriptError

An error occurred when executing a Python object macro.

This will usually be some kind of run-time error, like a
ZeroDivisionError or IndexError for example.

The text version is [ERR: Error when executing Python object]

	
exception rivescript.exceptions.RepliesNotSortedError

	Bases: exceptions.Exception

You attempted to get a reply before sorting the triggers.

You should call sort_replies() after loading your RiveScript code and
before calling reply() to look up a reply.

	
exception rivescript.exceptions.RiveScriptError(error_message=None)

	Bases: exceptions.Exception

RiveScript base exception class.

rivescript.interactive module

	
rivescript.interactive.interactive_mode()

	The built-in RiveScript Interactive Mode.

This feature of RiveScript allows you to test and debug a chatbot in your
terminal window. There are two ways to invoke this mode:

By running the Python RiveScript module directly:
python rivescript eg/brain

By running the shell.py in the source distribution:
python shell.py eg/brain

The only required command line parameter is a filesystem path to a directory
containing RiveScript source files (with the *.rive file extension).

Additionally, it accepts command line flags.

	Parameters:	
	--utf8 – Enable UTF-8 mode.

	--json – Use JSON to communicate with the bot instead of plain text.
See the JSON Mode documentation below for advanced details.

	--debug – Enable verbose debug logging.

	--log (str) – The path to a text file you want the debug logging to
be written to. This is to be used in conjunction with --debug,
for the case where you don’t want your terminal window to be flooded
with debug messages.

	--depth (int) – Override the recursion depth limit (default 50).

	--nostrict – Disable strict syntax checking when parsing the RiveScript
files. By default a syntax error raises an exception and will
terminate the interactive mode.

	--help – Show the documentation of command line flags.

	path (str) – The path to a directory containing .rive files.

JSON Mode

By invoking the interactive mode with the --json (or -j) flag,
the interactive mode will communicate with you via JSON messages. This
can be used as a “bridge” to enable the use of RiveScript from another
programming language that doesn’t have its own native RiveScript
implementation.

For example, a program could open a shell pipe to the RiveScript interactive
mode and send/receive JSON payloads to communicate with the bot.

In JSON mode, you send a message to the bot in the following format:

{
 "username": "str username",
 "message": "str message",
 "vars": {
 "topic": "random",
 "name": "Alice"
 }
}

The username and message keys are required, and vars is a
key/value object of all the variables about the user.

After sending the JSON payload over standard input, you can either close the
input file handle (send the EOF signal; or Ctrl-D in a terminal), or send
the string __END__ on a line of text by itself. This will cause the bot
to parse your payload, get a reply for the message, and respond with a
similar JSON payload:

{
 "status": "ok",
 "reply": "str response",
 "vars": {
 "topic": "random",
 "name": "Alice"
 }
}

The vars structure in the response contains all of the key/value pairs
the bot knows about the username you passed in. This will also contain a
lot of internal data, such as the user’s history and last matched trigger.

To keep a stateful session, you should parse the vars returned by
RiveScript and pass them in with your next request so that the bot can
remember them for the next reply.

If you closed the filehandle (Ctrl-D, EOF) after your input payload, the
interactive mode will exit after giving the response. If, on the other
hand, you sent the string __END__ on a line by itself after your
payload, the RiveScript interactive mode will do the same after its response
is returned. This way, you can re-use the shell pipe to send and receive
many messages over a single session.

rivescript.parser module

	
class rivescript.parser.Parser(strict=True, utf8=False, on_debug=None, on_warn=None)

	Bases: object

The RiveScript language parser.

This module can be used as a stand-alone parser for third party developers
to use, if you want to be able to simply parse (and syntax check!)
RiveScript source code and get an “abstract syntax tree” back from it.

To that end, this module removed all dependencies on the parent RiveScript
class. When the RiveScript module uses this module, it passes its own debug
and warning functions as the on_debug and on_warn parameters, but
these parameters are completely optional.

	Parameters:	
	strict (bool) – Strict syntax checking (true by default).

	utf8 (bool) – Enable UTF-8 mode (false by default).

	on_debug (func) – An optional function to send debug messages to. If not
provided, you won’t be able to get debug output from this module.
The debug function’s prototype is: def f(message)

	on_warn (func) – An optional function to send warning/error messages to.
If not provided, you won’t be able to get any warnings from
this module. The warn function’s prototype
is def f(message, filename='', lineno='')

	
check_syntax(cmd, line)

	Syntax check a line of RiveScript code.

	Parameters:	
	cmd (str) – The command symbol for the line of code, such as one
of +, -, *, >, etc.

	line (str) – The remainder of the line of code, such as the text of
a trigger or reply.

	Returns:	A string syntax error message or None if no errors.

	Return type:	str

	
parse(filename, code)

	Read and parse a RiveScript document.

Returns a data structure that represents all of the useful contents of
the document, in this format:

{
 "begin": { # "begin" data
 "global": {}, # map of !global vars
 "var": {}, # bot !var's
 "sub": {}, # !sub substitutions
 "person": {}, # !person substitutions
 "array": {}, # !array lists
 },
 "topics": { # main reply data
 "random": { # (topic name)
 "includes": {}, # map of included topics (values=1)
 "inherits": {}, # map of inherited topics
 "triggers": [# array of triggers
 {
 "trigger": "hello bot",
 "reply": [], # array of replies
 "condition": [], # array of conditions
 "redirect": None, # redirect command
 "previous": None, # 'previous' reply
 },
 # ...
]
 }
 }
 "objects": [# parsed object macros
 {
 "name": "", # object name
 "language": "", # programming language
 "code": [], # array of lines of code
 }
]
}

	Parameters:	
	filename (str) – The name of the file that the code came from, for
syntax error reporting purposes.

	code (str[]) – The source code to parse.

	Returns:	The aforementioned data structure.

	Return type:	dict

rivescript.python module

	
class rivescript.python.PyRiveObjects

	Bases: object

A RiveScript object handler for Python code.

This class provides built-in support for your RiveScript documents to
include and execute object macros written in Python. For example:

> object base64 python
 import base64 as b64
 return b64.b64encode(" ".join(args))
< object

+ encode * in base64
- OK: <call>base64 <star></call>

Python object macros receive these two parameters:

	rs (RiveScript): The reference to the parent RiveScript instance.

	args ([]str): A list of argument words passed to your object.

Python support is on by default. To turn it off, just unset the Python
language handler on your RiveScript object:

rs.set_handler("python", None)

	
call(rs, name, user, fields)

	Invoke a previously loaded object.

	Parameters:	
	rs (RiveScript) – the parent RiveScript instance.

	name (str) – The name of the object macro to be called.

	user (str) – The user ID invoking the object macro.

	fields ([]str) – Array of words sent as the object’s arguments.

	Return str:	The output of the object macro.

	
load(name, code)

	Prepare a Python code object given by the RiveScript interpreter.

	Parameters:	
	name (str) – The name of the Python object macro.

	code ([]str) – The Python source code for the object macro.

	
exception rivescript.python.PythonObjectError

	Bases: exceptions.Exception

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 rivescript	

 	
 	
 rivescript.exceptions	

 	
 	
 rivescript.interactive	

 	
 	
 rivescript.parser	

 	
 	
 rivescript.python	

 	
 	
 rivescript.rivescript	

 	
 	
 rivescript.sessions	

Index

 C
 | D
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W

C

 	
 	call() (rivescript.python.PyRiveObjects method)

 	check_syntax() (rivescript.parser.Parser method)

 	
 	clear_uservars() (rivescript.rivescript.RiveScript method)

 	current_user() (rivescript.rivescript.RiveScript method)

D

 	
 	DeepRecursionError

 	
 	default_session() (rivescript.sessions.SessionManager method)

 	deparse() (rivescript.rivescript.RiveScript method)

F

 	
 	freeze() (rivescript.sessions.SessionManager method)

 	
 	freeze_uservars() (rivescript.rivescript.RiveScript method)

G

 	
 	get() (rivescript.sessions.SessionManager method)

 	get_all() (rivescript.sessions.SessionManager method)

 	get_any() (rivescript.sessions.SessionManager method)

 	
 	get_global() (rivescript.rivescript.RiveScript method)

 	get_uservar() (rivescript.rivescript.RiveScript method)

 	get_uservars() (rivescript.rivescript.RiveScript method)

 	get_variable() (rivescript.rivescript.RiveScript method)

I

 	
 	interactive_mode() (in module rivescript.interactive)

L

 	
 	last_match() (rivescript.rivescript.RiveScript method)

 	load() (rivescript.python.PyRiveObjects method)

 	
 	load_directory() (rivescript.rivescript.RiveScript method)

 	load_file() (rivescript.rivescript.RiveScript method)

M

 	
 	MemorySessionStorage (class in rivescript.sessions)

N

 	
 	NoDefaultRandomTopicError

 	NoMatchError

 	
 	NoReplyError

 	NullSessionStorage (class in rivescript.sessions)

O

 	
 	ObjectError

P

 	
 	parse() (rivescript.parser.Parser method)

 	Parser (class in rivescript.parser)

 	
 	PyRiveObjects (class in rivescript.python)

 	PythonObjectError

R

 	
 	RepliesNotSortedError

 	reply() (rivescript.rivescript.RiveScript method)

 	reset() (rivescript.sessions.SessionManager method)

 	reset_all() (rivescript.sessions.SessionManager method)

 	RiveScript (class in rivescript.rivescript)

 	rivescript.exceptions (module)

 	
 	rivescript.interactive (module)

 	rivescript.parser (module)

 	rivescript.python (module)

 	rivescript.rivescript (module)

 	rivescript.sessions (module)

 	RiveScriptError

S

 	
 	SessionManager (class in rivescript.sessions)

 	set() (rivescript.sessions.SessionManager method)

 	set_global() (rivescript.rivescript.RiveScript method)

 	set_handler() (rivescript.rivescript.RiveScript method)

 	set_person() (rivescript.rivescript.RiveScript method)

 	set_subroutine() (rivescript.rivescript.RiveScript method)

 	
 	set_substitution() (rivescript.rivescript.RiveScript method)

 	set_uservar() (rivescript.rivescript.RiveScript method)

 	set_uservars() (rivescript.rivescript.RiveScript method)

 	set_variable() (rivescript.rivescript.RiveScript method)

 	sort_replies() (rivescript.rivescript.RiveScript method)

 	stream() (rivescript.rivescript.RiveScript method)

T

 	
 	thaw() (rivescript.sessions.SessionManager method)

 	
 	thaw_uservars() (rivescript.rivescript.RiveScript method)

 	trigger_info() (rivescript.rivescript.RiveScript method)

V

 	
 	VERSION() (rivescript.rivescript.RiveScript class method)

W

 	
 	write() (rivescript.rivescript.RiveScript method)

 nav.xhtml

 Table of Contents

 		Welcome to rivescript's documentation!

 		rivescript package

 		Submodules

 		rivescript.rivescript module

 		rivescript.sessions module

 		rivescript.exceptions module

 		rivescript.interactive module

 		rivescript.parser module

 		rivescript.python module

_static/up.png

_static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

