

 Navigation

 	
 index

 	
 next |

 	River Language 0.1.0 documentation

Welcome to River Language’s documentation!

Contents:

	Introduction
	Philosophy

	Snapshot or Overview

	Goals

	Basic Concepts
	Streaming

	Language Reference
	Syntax
	Keywords

	Data Model and Types
	Graphs

	Streams

	Notes

	Data Types

	Streams

	River Framework
	Applications

	Tasks

	Entry Points

	General Notes and Todos

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Michael Wilson.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	River Language 0.1.0 documentation

Introduction

This is an introduction

	Philosophy

	Snapshot or Overview

Goals

	Excels at data manipulation and mining

	Self Extensable

	Data Aware

	Graph Aware

	Streaming

	Multiple entry points (async)

	Object oriented

	Non-linear. Starts at an entry point, then follows to other tasks or entries

	Include a powerful standard library
* Event loop and hook system

	Extension of python, so can use native python libraries

	Both a language and a framework

 Copyright 2015, Michael Wilson.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	River Language 0.1.0 documentation

 	Introduction

Philosophy

This document discusses the philosophy of River.

	Favor readable over short

	Use keywords in sentence-like syntax

	use visual clues and symbols to describe actions and objects

	Everything is an object

	Everything is reflectable and extensable

	Self-extendable language

	Everything is streamable

	Use decorators and meta to describe and direct data, not modify

	Should be one obvious, best way to do something

	Simple is better than complex

	Complex is better than complicated

	Visual wherever possible

	“Walk” data and streams

 Copyright 2015, Michael Wilson.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	River Language 0.1.0 documentation

 	Introduction

Snapshot or Overview

A basic overview in 5 minutes

 Copyright 2015, Michael Wilson.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	River Language 0.1.0 documentation

Basic Concepts

These are basic concepts like streaming, graphs, etc

Streaming

Pipes and such

 Copyright 2015, Michael Wilson.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	River Language 0.1.0 documentation

Language Reference

A basic handbook of all the awesome

	Syntax
	Keywords

	Data Model and Types
	Graphs

	Streams

	Notes

	Data Types

	Streams

 Copyright 2015, Michael Wilson.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	River Language 0.1.0 documentation

 	Language Reference

Syntax

This document discusses the syntax of River.

Keywords

This is a list of keywords

-> Pipe a stream through a task
is Checks the state, type, and visibility of a stream
grab pulls the variable from a stream
clone clones a stream variable to local scope
entry defines an entry point
task defines a task
fork split a stream
start | spring start a new stream
merge merge two streams
destroy destroys a stream

 Copyright 2015, Michael Wilson.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	River Language 0.1.0 documentation

 	Language Reference

Data Model and Types

This is for data model and data types and such

	Graphs
	A Sub H

	Streams

Notes

	Assign a variable with the = operator.

	Assign a mutable variable without a type first name = "michael"

	Assign a type cast variable with a type first Type name = "Michael"

	Use a variable Type’s creation method to create Type name:creation_method

	Cast a variable from one type to another. (NewType) name = "Michael"

	Object creation Type name:new or name = new Type

Data Types

These are the different data types

Primative (simple)

	Boolean

	String

	Integer

	Float

Collections

	Lists

	Tuples

	Dictionaries

Complex Data

	Graphs (working upon an adapter to connect to data persistance)

	Matrix or grid

	Document (Mongo-like)

	Tree (hierarchy)

	3D matrix in 3D space

	Hash for security

	Times and dates

 Copyright 2015, Michael Wilson.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	River Language 0.1.0 documentation

 	Language Reference

 	Data Model and Types

Graphs

A new Graph object ca connect to a graph datastore via an adapter and load as an OGM

	Graph friends:connect

	
	OrientDb::graph_name

	options = credentials

Or map an existing object or set of tupples

	Graph friends:map

	“Michael” “friends_with” “Nicole”
“Nicole” “friends_with” “Sam”

Adapters work through a blueprint interface to query or execute gremlin, but you can also invoke blueprints directly

	Graph friends:bluebrings {

	# Code

}

ALL adapters implement DataAccess and GraphDbAdapter

Altogether now:

	Graph friends:connect

	OriendDb::users

bestFriends = friends.out(“best”).levels(3).walk()

A Sub H

Hello, yo!

 Copyright 2015, Michael Wilson.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	River Language 0.1.0 documentation

 	Language Reference

 	Data Model and Types

Streams

This is for streams

 Copyright 2015, Michael Wilson.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	River Language 0.1.0 documentation

 	Language Reference

Streams

This describes streams, streaming and pipes

	Streams can be open or closed

	Streams can expire after a time

	Streams can be local (this session only) or global for the lifetime of the applications

	Streams can be public or private to this process

The idea is that you grab a variable from a stream (like a fish), modify it, and then send it along to the next task. You can also modify the entire stream.

	You can:

	
	open / close streams and variables

	clone, lock, unlock, alias variables or streams

	
	can check the:

	*state (open, closed, public private, etc),
*type (class),
scope,
contents (list of variables or streams),
and value of streams

 Copyright 2015, Michael Wilson.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	River Language 0.1.0 documentation

River Framework

The framework and standard library for applications

	Applications

	Tasks

	Entry Points

 Copyright 2015, Michael Wilson.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	River Language 0.1.0 documentation

 	River Framework

Applications

Applications use wrappers of the core. For instance, http is one wrapper and the entry points would be url routes.

 Copyright 2015, Michael Wilson.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	River Language 0.1.0 documentation

 	River Framework

Tasks

Tasks modify streams and then pass them along

 Copyright 2015, Michael Wilson.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	River Language 0.1.0 documentation

 	River Framework

Entry Points

Entry points are regular tasks that are bound to the wrapper (http, cli, etc)

 Copyright 2015, Michael Wilson.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	River Language 0.1.0 documentation

General Notes and Todos

These are scratch notes. Where do they fit?

	Utility map to visually display application flow

	PSR-4 style autoloading

	use pip for package management?

 Copyright 2015, Michael Wilson.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	River Language 0.1.0 documentation

Index

 Copyright 2015, Michael Wilson.
 Created using Sphinx 1.2.2.

 _static/comment-close.png

_static/minus.png

_static/comment.png

_static/up.png

_static/plus.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

