

Welcome to RISCV-BOOM’s documentation!

The Berkeley Out-of-Order Machine (BOOM) is a synthesizable and parameterizable open-source RISC-V out-of-order core written in the Chisel hardware construction language.
The goal of this document is to describe the design and implementation of the core as well as provide other helpful information to use the core.

Useful Links

The BOOM source code can be found here: https://github.com/riscv-boom/riscv-boom.

The main supported mechanism to use the core is to use the Chipyard framework: https://github.com/ucb-bar/chipyard.

The BOOM website can be found here: https://boom-core.org.

The BOOM mailing list can be found here: https://groups.google.com/forum/#!forum/riscv-boom.

Quick-start

The best way to get started with the BOOM core is to use the Chipyard project template [https://github.com/ucb-bar/chipyard].
There you will find the main steps to setup your environment, build, and run the BOOM core on a C++ emulator.
Chipyard also provides supported flows for pushing a BOOM-based SoC through both the FireSim FPGA simulation flow and the HAMMER ASIC flow.
Here is a selected set of steps from Chipyard’s documentation [https://chipyard.readthedocs.io/en/latest/]:

Listing 1 Quick-Start Code

Download the template and setup environment
git clone https://github.com/ucb-bar/chipyard.git
cd chipyard
./scripts/init-submodules-no-riscv-tools.sh

build the toolchain
./scripts/build-toolchains.sh riscv-tools

add RISCV to env, update PATH and LD_LIBRARY_PATH env vars
note: env.sh generated by build-toolchains.sh
source env.sh

cd sims/verilator
make CONFIG=LargeBoomConfig

Note

Listing 1 assumes you don’t have riscv-tools toolchain installed. It will pull and build the toolchain for you.

Table of Contents

Introduction:

	The Berkeley Out-of-Order Machine (BOOM)

	The BOOM Pipeline
	Overview

	Stages

	Branch Support

	Detailed BOOM Pipeline

	The Chisel Hardware Construction Language

	The RISC-V ISA

	Rocket Chip SoC Generator
	The Rocket Core - a Library of Processor Components!

Core Overview:

	Instruction Fetch
	The Rocket Core I-Cache

	Fetching Compressed Instructions

	The Fetch Buffer

	The Fetch Target Queue

	Branch Prediction
	The Next-Line Predictor (NLP)

	The Backing Predictor (BPD)

	The Decode Stage
	RVC Changes

	The Rename Stage
	The Purpose of Renaming

	The Explicit Renaming Design

	The Rename Map Table

	The Busy Table

	The Free List

	Stale Destination Specifiers

	The Reorder Buffer (ROB) and the Dispatch Stage
	The ROB Organization

	ROB State

	The Commit Stage

	Exceptions and Flushes

	Point of No Return (PNR)

	The Issue Unit
	Speculative Issue

	Issue Slot

	Issue Select Logic

	Un-ordered Issue Queue

	Age-ordered Issue Queue

	Wake-up

	The Register Files and Bypass Network
	Register Read

	Bypass Network

	The Execute Pipeline
	Execution Units

	Functional Unit

	Branch Unit & Branch Speculation

	Load/Store Unit

	Floating Point Units

	Floating Point Divide and Square-root Unit

	Parameterization

	Control/Status Register Instructions

	The Rocket Custom Co-Processor Interface (RoCC)

	The Load/Store Unit (LSU)
	Store Instructions

	Load Instructions

	The BOOM Memory Model

	Memory Ordering Failures

	The Memory System

Usage:

	Parameterization
	General Parameters

	Sample Configurations

	Other Parameters

	The BOOM Development Ecosystem
	The BOOM Repository

	Scala, Chisel, Generators, Configs, Oh My!

	More Resources

	Debugging
	FireSim Debugging

	Chicken Bits

	Micro-architectural Event Tracking
	Setup HPM events to track

	Reading HPM counters in software

	Adding your own HPE

	External Resources

	Verification
	RISC-V Tests

	RISC-V Torture Tester

	Continuous Integration (CI)

	Physical Realization
	Register Retiming

	Pipelining Configuration Options

Other:

	Future Work
	The BOOM Custom Co-processor Interface (BOCC)

	The Vector (“V”) ISA Extension

	Frequently Asked Questions
	Help! BOOM isn’t working

	Master branch is broken! How do I get a working BOOM?

	Terminology

Indices and tables

	Index

	Module Index

	Search Page

The Berkeley Out-of-Order Machine (BOOM)

[image: Detailed BOOM Pipeline]

Fig. 1 Detailed BOOM Pipeline. *’s denote where the core can be configured.

The Berkeley Out-of-Order Machine (BOOM) is heavily inspired by the MIPS R10000 1 and the Alpha 21264 2 out–of–order processors.
Like the MIPS R10000 and the Alpha 21264, BOOM is a unified physical register file design (also known as “explicit register renaming”).

BOOM implements the open-source RISC-V ISA and utilizes the Chisel hardware construction language to construct generator for the core.
A generator can be thought of a generialized RTL design.
A standard RTL design can be viewed as a single instance of a generator design.
Thus, BOOM is a family of out-of-order designs rather than a single instance of a core.
Additionally, to build an SoC with a BOOM core, BOOM utilizes the Rocket Chip [https://github.com/chipsalliance/rocket-chip] SoC generator as a library to reuse different micro-architecture structures (TLBs, PTWs, etc).

	1

	Yeager, Kenneth C. “The MIPS R10000 superscalar microprocessor.” IEEE micro 16.2 (1996): 28-41.

	2

	Kessler, Richard E. “The alpha 21264 microprocessor.” IEEE micro 19.2 (1999): 24-36.

The BOOM Pipeline

[image: Simplified BOOM Pipeline with Stages]
Fig. 2 Simplified BOOM Pipeline with Stages

Overview

Conceptually, BOOM is broken up into 10 stages: Fetch, Decode,
Register Rename, Dispatch, Issue, Register Read, Execute, Memory,
Writeback and Commit. However, many of those stages are
combined in the current implementation, yielding seven stages:
Fetch, Decode/Rename, Rename/Dispatch, Issue/RegisterRead, Execute,
Memory and Writeback (Commit occurs asynchronously, so it is not counted as part of the “pipeline”).
Fig. 2 shows a simplified BOOM pipeline that has all of the pipeline stages listed.

Stages

Fetch

Instructions are fetched from instruction memory and
pushed into a FIFO queue, known as the Fetch Buffer . Branch
prediction also occurs in this stage, redirecting the fetched
instructions as necessary. 1

Decode

Decode pulls instructions out of the Fetch Buffer and
generates the appropriate Micro-Op(s) (UOPs) to place into the
pipeline. 2

Rename

The ISA, or “logical”, register specifiers (e.g. x0-x31) are
then renamed into “physical” register specifiers.

Dispatch

The UOP is then dispatched, or written, into
a set of Issue Queue s.

Issue

UOPs sitting in a Issue Queue wait until all of
their operands are ready and are then issued. 3 This is
the beginning of the out–of–order piece of the pipeline.

Register Read

Issued UOPs s first read their register operands from the unified
Physical Register File (or from the Bypass Network)…

Execute

… and then enter the Execute stage where the functional
units reside. Issued memory operations perform their address
calculations in the Execute stage, and then store the
calculated addresses in the Load/Store Unit which resides in the
Memory stage.

Memory

The Load/Store Unit consists of three queues: a Load Address Queue
(LAQ), a Store Address Queue (SAQ), and a Store Data Queue (SDQ).
Loads are fired to memory when their address is present in the
LAQ. Stores are fired to memory at Commit time (and
naturally, stores cannot be committed until both their
address and data have been placed in the SAQ and SDQ).

Writeback

ALU operations and load operations are written back to the
Physical Register File.

Commit

The Reorder Buffer (ROB), tracks the status of each instruction
in the pipeline. When the head of the ROB is not-busy, the ROB
commits the instruction. For stores, the ROB signals to the
store at the head of the Store Queue (SAQ/SDQ) that it can now write its
data to memory.

Branch Support

BOOM supports full branch speculation and branch prediction. Each
instruction, no matter where it is in the pipeline, is accompanied by a
Branch Tag that marks which branches the instruction is “speculated
under”. A mispredicted branch requires killing all instructions that
depended on that branch. When a branch instructions passes through
Rename, copies of the Register Rename Table and the Free
List are made. On a mispredict, the saved processor state is
restored.

Detailed BOOM Pipeline

Although Fig. 2 shows a simplified BOOM pipeline, BOOM supports RV64GC and the privileged ISA
which includes single-precision and double-precision floating point, atomics support, and page-based virtual memory.
A more detailed diagram is shown below in Fig. 3.

[image: Detailed BOOM Pipeline]

Fig. 3 Detailed BOOM Pipeline. *’s denote where the core can be configured.

	1

	While the Fetch Buffer is N-entries deep, it can instantly read
out the first instruction on the front of the FIFO. Put another way,
instructions don’t need to spend N cycles moving their way through
the Fetch Buffer if there are no instructions in front of
them.

	2

	Because RISC-V is a RISC ISA, currently all instructions generate
only a single Micro-Op (UOP) . More details on how store UOPs are
handled can be found in The Memory System and the Data-cache Shim.

	3

	More precisely, Micro-Ops (UOPs) that are ready assert their request, and the
issue scheduler within the Issue Queue chooses which UOPs to issue that cycle.

The Chisel Hardware Construction Language

BOOM is implemented in the Chisel hardware construction language.
Chisel is an embedded DSL within Scala that supports advanced hardware design using highly parameterized generators.
It is used within multiple projects in academia (e.g. Rocket Chip [https://github.com/chipsalliance/rocket-chip], FireSim [https://fires.im/], etc) as well as in industry (Google Edge TPU [https://www.youtube.com/watch?v=x85342Cny8c]).

More information about can be found at http://chisel-lang.org.

The RISC-V ISA

The RISC-V ISA is a widely adopted open-source ISA suited for a variety of applications.
It includes a base ISA as well as multiple optional extensions that implement different features.
BOOM implements the RV64GC variant of the RISC-V ISA (otherwise known as IMAFDC) 1. This includes the
MAFDC extensions and the privileged specification (multiply/divide, AMOs,
load-reserve/store-conditional, single-precision and double-precision IEEE
754-2008 floating point).

RISC-V provides the following features which make it easy to target with
high-performance designs:

	Relaxed memory model

	This greatly simplifies the Load/Store Unit (LSU), which does not need to
have loads snoop other loads nor does coherence traffic need to snoop
the LSU, as required by sequential consistency.

	Accrued Floating Point (FP) exception flags

	The FP status register does not need to be renamed, nor can FP
instructions throw exceptions themselves.

	No integer side-effects

	All integer ALU operations exhibit no side-effects, other than the writing
of the destination register. This prevents the need to rename
additional condition state.

	No cmov or predication

	Although predication can lower the branch predictor complexity of
small designs, it greatly complicates out-of-order pipelines, including the
addition of a third read port for integer operations.

	No implicit register specifiers

	Even JAL requires specifying an explicit register. This simplifies rename
logic, which prevents either the need to know the instruction first
before accessing the rename tables, or it prevents adding more ports
to remove the instruction decode off the critical path.

	Registers rs1, rs2, rs3, rd are always in the same place

	This allows decode and rename to proceed in parallel.

More information about the RISC-V ISA can be found at http://riscv.org.

	1

	Currently, BOOM does not implement the proposed “V” vector extension.

Rocket Chip SoC Generator

[image: BOOM Chip]

Fig. 4 A single-core “BOOM-chip”, with no L2 last-level cache

As BOOM is just a core, an entire SoC infrastructure must be provided.
BOOM was developed to use the open-source Rocket Chip SoC generator [https://github.com/chipsalliance/rocket-chip].
The Rocket Chip generator can instantiate a wide range of SoC designs, including cache-coherent
multi-tile designs, cores with and without accelerators, and chips with or without a last-level shared cache.
It comes bundled with a 5-stage in-order core, called Rocket, by default.
BOOM uses the Rocket Chip infrastructure to instantiate it’s core/tile complex (tile is a core, L1D/I$, and PTW) instead of a
Rocket tile.

To get more information, please visit the Chipyard Rocket Chip documentation [https://chipyard.readthedocs.io/en/dev/Generators/Rocket-Chip.html].

The Rocket Core - a Library of Processor Components!

From BOOM’s point of view, the Rocket core can be thought of as a
“Library of Processor Components.” There are a number of modules created
for Rocket that are also used by BOOM - the functional units, the
caches, the translation look-aside buffers (TLBs), the page table walker (PTW), and
more. Throughout this document you will find references to these
Rocket components and descriptions on how they fit into BOOM.

To get more information about the Rocket core, please visit the Chipyard Rocket Core documentation [https://chipyard.readthedocs.io/en/dev/Generators/Rocket.html].

Note

Both Chipyard links point to the dev documentation of Chipyard to get the most recent documentation changes.

Instruction Fetch

[image: BOOM :term:`Front-end`]
Fig. 5 The BOOM Front-end

BOOM instantiates its own Front-end , similar to how the Rocket core(s)
instantiates its own Front-end . This Front-end fetches instructions and
makes predictions throughout the Fetch stage to redirect the instruction
stream in multiple fetch cycles (F0, F1…). If a misprediction is detected in BOOM’s
Back-end (execution pipeline), or one of BOOM’s own predictors wants to redirect the pipeline in
a different direction, a request is sent to the Front-end and it begins
fetching along a new instruction path. See Branch Prediction for
more information on how branch prediction fits into the Fetch Stage’s pipeline.

Since superscalar fetch is supported, the Front-end retrieves a Fetch Packet
of instructions from instruction memory and puts them into the
Fetch Buffer to give to the rest of the pipeline. The Fetch Packet also
contains other meta-data, such as a valid mask (which instructions in the
packet are valid?) and some branch prediction information that is used
later in the pipeline. Additionally, the PC and branch prediction information
is stored inside of the Fetch Target Queue which holds this information
for the rest of the pipeline.

The Rocket Core I-Cache

BOOM instantiates the i-cache taken from the Rocket processor source code.
The i-cache is a virtually indexed, physically tagged set-associative cache.

To save power, the i-cache reads out a fixed number of bytes (aligned)
and stores the instruction bits into a register. Further instruction
fetches can be managed by this register. The i-cache is only fired up
again once the fetch register has been exhausted (or a branch prediction
directs the PC elsewhere).

The i-cache does not (currently) support fetching across cache-lines,
nor does it support fetching unaligned relative to the superscalar fetch
address. 1

The i-cache does not (currently) support hit-under-miss. If an i-cache
miss occurs, the i-cache will not accept any further requests until the
miss has been handled. This is less than ideal for scenarios in which
the pipeline discovers a branch mispredict and would like to redirect
the i-cache to start fetching along the correct path.

Fetching Compressed Instructions

This section describes how the RISC-V Compressed ISA extension [https://riscv.org/specifications/]
was implemented in BOOM. The Compressed ISA Extension, or RVC enables smaller, 16
bit encodings of common instructions to decrease the static and dynamic
code size. “RVC” comes with a number of features that are of particular
interest to micro-architects:

	32b instructions have no alignment requirement, and may start on a
half-word boundary.

	All 16b instructions map directly into a longer 32b instruction.

During the Front-end stages, BOOM retrieves a Fetch Packet from the
i-cache, quickly decodes the instructions for branch
prediction, and pushes the Fetch Packet into the Fetch Buffer. However,
doing this brings up a particular set of issues to manage:

	Increased decoding complexity (e.g., operands can now move around).

	Finding where the instruction begins.

	Removing +4 assumptions throughout the code base,
particularly with branch handling.

	Unaligned instructions, in particular, running off cache lines and
virtual pages.

The last point requires some additional “statefulness” in the Fetch Unit ,
as fetching all of the pieces of an instruction may take multiple cycles.

The following describes the implementation of RVC in BOOM by describing
the lifetime of a instruction.

	The Front-end returns Fetch Packet s of fetchWidth *16 bits wide. This
was supported inherently in the BOOM Front-end .

	Maintain statefulness in F3, in the cycle where Fetch Packet s
are dequeued from the i-cache response queue and enqueued onto the
Fetch Buffer .

	F3 tracks the trailing 16b, PC, and instruction boundaries of the
last Fetch Packet . These bits are combined with the current
Fetch Packet and expanded to fetchWidth *32 bits for enqueuing onto the
Fetch Buffer . Predecode determines the start address of every
instruction in this Fetch Packet and masks the Fetch Packet for the
Fetch Buffer .

	The Fetch Buffer now compacts away invalid, or misaligned instructions
when storing to its memory.

The following section describes miscellaneous implementation details.

	A challenging problem is dealing with instructions that cross a
Fetch Boundary. We track these instructions as belonging to the
Fetch Packet that contains their higher-order 16 bits. We have to
be careful when determining the PC of these instructions, by tracking
all instructions which were initially misaligned across a Fetch Boundary .

	The pipeline must also track whether an instruction was originally
16b or 32b, for calculating PC+4 or PC+2.

The Fetch Buffer

Fetch Packet s coming from the i-cache are placed into a Fetch Buffer . The Fetch Buffer helps to decouple the instruction
fetch Front-end from the execution pipeline in the Back-end .

The Fetch Buffer is parameterizable. The number of entries can be
changed and whether the buffer is implemented as a “flow-through”
queue 2 or not can be toggled.

The Fetch Target Queue

The Fetch Target Queue is a queue that holds the PC
received from the i-cache and the branch prediction info associated
with that address. It holds this information for the pipeline to
reference during the executions of its Micro-Ops (UOPs) . It is dequeued by
the ROB once an instruction is committed and is updated during pipeline
redirection/mispeculation.

	1

	This constraint is due to the fact that a cache-line is not stored
in a single row of the memory bank, but rather is striped across a
single bank to match the refill size coming from the uncore.
Fetching unaligned would require modification of the underlying
implementation, such as banking the i-cache such that consecutive
chunks of a cache-line could be accessed simultaneously.

	2

	A flow-through queue allows entries being enqueued to be
immediately dequeued if the queue is empty and the consumer is
requesting (the packet “flows through” instantly).

Branch Prediction

[image: BOOM Front-end]
Fig. 6 The BOOM Front-end

This chapter discusses how BOOM predicts branches and then resolves
these predictions.

BOOM uses two levels of branch prediction - a fast Next-Line Predictor (NLP)
and a slower but more complex Backing Predictor (BPD) 1. In this case,
the NLP is a Branch Target Buffer and the BPD
is a more complicated structure like a GShare predictor.

Branch Prediction:

	The Next-Line Predictor (NLP)
	NLP Predictions

	NLP Updates

	The Backing Predictor (BPD)
	Making Predictions

	Jump and Jump-Register Instructions

	Updating the Backing Predictor

	Managing the Global History Register (GHR)

	The Fetch Target Queue (FTQ) for Predictions

	Rename Snapshot State

	The Abstract Branch Predictor Class

	The Two-bit Counter Tables

	The GShare Predictor

	The TAGE Predictor

	Other Predictors

	1

	Unfortunately, the terminology in the literature gets a bit
muddled here in what to call different types and levels of branch
predictor. Literature has references to different structures; “micro-BTB” versus “BTB”, “NLP” versus “BHT”,
and “cache-line predictor” versus “overriding predictor”. Although
the Rocket core calls its own predictor the “BTB”, BOOM
refers to it as the Next-Line Predictor (NLP) , to denote
that it is a combinational predictor that provides single-cycle
predictions for fetching “the next line”, and the Rocket BTB
encompasses far more complexity than just a “branch target buffer”
structure. Likewise, the name Backing Predictor (BPD) was chosen to avoid
being overly descriptive of the internal design (is it a simple BHT?
Is it tagged? Does it override the NLP ?) while being accurate. If you have recommendations for
better names, feel free to reach out!

The Next-Line Predictor (NLP)

BOOM core’s Front-end fetches
instructions and predicts every cycle where to fetch the next
instructions. If a misprediction is detected in BOOM’s Back-end, or
BOOM’s own Backing Predictor (BPD) wants to redirect the pipeline in a
different direction, a request is sent to the Front-end and it begins
fetching along a new instruction path.

The Next-Line Predictor (NLP) takes in the current PC being used to
fetch instructions (the Fetch PC) and predicts combinationally
where the next instructions should be fetched for the next cycle. If
predicted correctly, there are no pipeline bubbles.

The NLP is an amalgamation of a fully-associative Branch
Target Buffer (BTB), Bi-Modal Table (BIM) and a Return Address Stack (RAS) which work together
to make a fast, but reasonably accurate prediction.

NLP Predictions

The Fetch PC first performs a tag match to find a uniquely
matching BTB entry. If a hit occurs, the BTB entry will make a
prediction in concert with the RAS as to whether there is a
branch, jump, or return found in the Fetch Packet and which
instruction in the Fetch Packet is to blame. The BIM is used to
determine if that prediction made was a branch taken or not taken.
The BTB entry also contains a predicted PC target, which is used
as the Fetch PC on the next cycle.

[image: The :term:`Next-Line Predictor`]

Fig. 7 The Next-Line Predictor (NLP) Unit. The Fetch PC scans the BTB’s “PC tags” for a match.
If a match is found (and the entry is valid), the Bi-Modal Table (BIM) and RAS are consulted for the final verdict. If the entry
is a “ret” (return instruction), then the target comes from the RAS. If the entry is a unconditional “jmp”
(jump instruction), then the BIM is not consulted. The “bidx”, or branch index, marks which instruction
in a superscalar Fetch Packet is the cause of the control flow prediction. This is necessary to mask off the
other instructions in the Fetch Packet that come over the taken branch

The hysteresis bits in the BIM are only used
on a BTB entry hit and if the predicting instruction is a branch.

If the BTB entry contains a return instruction, the RAS stack is
used to provide the predicted return PC as the next Fetch PC. The
actual RAS management (of when to or the stack) is governed externally.

For area-efficiency, the high-order bits of the PC tags and PC targets
are stored in a compressed file.

NLP Updates

Each branch passed down the pipeline remembers not only its own PC, but
also its Fetch PC (the PC of the head instruction of its Fetch Packet). 2

BTB Updates

The BTB is updated only when the Front-end is redirected to
take a branch or jump by either the Branch Unit (in the
Execute stage) or the BPD (later in the Fetch stages). 3

If there is no BTB entry corresponding to the taken branch or jump, an
new entry is allocated for it.

RAS Updates

The RAS is updated during the Fetch stages once the
instructions in the Fetch Packet have been decoded. If the taken
instruction is a call 4 , the return address is pushed onto the RAS. If
the taken instruction is a return, then the RAS is popped.

Superscalar Predictions

When the NLP makes a prediction, it is actually using the BTB to tag
match against the predicted branch’s Fetch PC, and not the PC of
the branch itself. The NLP must predict across the entire Fetch Packet
which of the many possible branches will be the dominating
branch that redirects the PC. For this reason, we use a given branch’s
Fetch PC rather than its own PC in the BTB tag match. 5

	2

	In reality, only the very lowest bits must be saved, as the
higher-order bits will be the same.

	3

	The BTB relies on a little cleverness - when redirecting the
PC on a misprediction, this new Fetch PC is the same as the
update PC that needs to be written into a new BTB entry’s
target PC field. This “coincidence” allows the PC compression
table to use a single search port - it is simultaneously reading the
table for the next prediction while also seeing if the new Update
PC already has the proper high-order bits allocated for it.

	4

	While RISC-V does not have a dedicated call instruction, it can be
inferred by checking for a JAL or JALR instruction with a writeback
destination to x1 (aka, the return address register).

	5

	Each BTB entry corresponds to a single Fetch PC, but it is
helping to predict across an entire Fetch Packet. However, the
BTB entry can only store meta-data and target-data on a single
control-flow instruction. While there are certainly pathological
cases that can harm performance with this design, the assumption is
that there is a correlation between which branch in a Fetch Packet
is the dominating branch relative to the Fetch PC,
and - at least for narrow fetch designs - evaluations of this design
has shown it is very complexity-friendly with no noticeable loss in
performance. Some other designs instead choose to provide a whole
bank of BTBs for each possible instruction in the Fetch Packet .

The Backing Predictor (BPD)

When the Next-Line Predictor (NLP) is predicting well, the processor’s
Back-end is provided an unbroken stream of instructions to execute. The
NLP is able to provide fast, single-cycle predictions by being expensive
(in terms of both area and power), very small (only a few dozen branches
can be remembered), and very simple (the Bi-Modal Table (BIM) hysteresis bits
are not able to learn very complicated or long history patterns).

To capture more branches and more complicated branching behaviors, BOOM
provides support for a Backing Predictor (BPD).

The BPD ‘s goal is to provide very high accuracy in a (hopefully) dense
area. The BPD only makes taken/not-taken predictions; it therefore relies
on some other agent to provide information on what instructions are
branches and what their targets are. The BPD can either use the BTB
for this information or it can wait and decode the instructions themselves
once they have been fetched from the i-cache. This saves on needing to
store the PC tags and branch targets within the BPD 7.

The BPD is accessed throughout the Fetch stages and in parallel with the instruction cache access and BTB (see
Fig. 8). This allows the BPD to be stored in sequential
memory (i.e., SRAM instead of flip-flops). With some clever
architecting, the BPD can be stored in single-ported SRAM to achieve the
density desired.

[image: BOOM :term:`Front-end`]
Fig. 8 The BOOM Front-end. Here you can see the BTB and Branch Predictor on the lower portion of the diagram.
The instructions returning from the instruction cache are quickly decoded; any branches that are predicted as taken
from the BTB or Backing Predictor (BPD) will redirect the Front-end from the F4 stage. Prediction snapshots and metadata
are stored in the Branch Rename Snapshots (for fixing the predictor after mispredictions) and the Fetch Target Queue (FTQ)
(for updating the predictors in the Commit stage).

Making Predictions

When making a prediction, the BPD must provide the
following:

	is a prediction being made?

	a bit-vector of taken/not-taken predictions

As per the first bullet-point, the BPD may decide to not make a
prediction. This may be because the predictor uses tags to inform
whether its prediction is valid or there may be a structural hazard that
prevented a prediction from being made.

The BPD provides a bit-vector of taken/not-taken predictions, the size
of the bit-vector matching the Fetch Width of the pipeline (one
bit for each instruction in the Fetch Packet). A later Fetch stage will
will decode the instructions in the Fetch Packet , compute the branch targets, and decide in conjunction with
the BPD ‘s prediction bit-vector if a Front-end redirect should be made.

Jump and Jump-Register Instructions

The BPD makes predictions only on the direction (taken versus not-taken)
of conditional branches. Non-conditional “jumps” (JAL) and “jump-register”
(JALR) instructions are handled separately from the BPD . 8

The NLP learns any “taken” instruction’s PC and target PC -
thus, the NLP is able to predict jumps and jump-register instructions.

If the NLP does not make a prediction on a JAL instruction, the pipeline
will redirect the Front-end in F4 (see Fig. 5). 9

Jump-register instructions that were not predicted by the NLP will be
sent down the pipeline with no prediction made. As JALR instructions require
reading the register file to deduce the jump target, there’s nothing
that can be done if the NLP does not make a prediction.

Updating the Backing Predictor

Generally speaking, the BPD is updated during the Commit stage.
This prevents the BPD from being polluted by wrong-path
information. 10 However, as the BPD makes use of global history, this
history must be reset whenever the Front-end is redirected. Thus, the
BPD must also be (partially) updated during Execute when a
misprediction occurs to reset any speculative updates that had occurred
during the Fetch stages.

When making a prediction, the BPD passes to the pipeline a “response
info packet”. This “info packet” is stored in the Fetch Target Queue (FTQ)
until commit time. 11 Once all of the instructions
corresponding to the “info packet” is committed, the “info packet” is
set to the BPD (along with the eventual outcome of the branches) and the
BPD is updated. The Fetch Target Queue (FTQ) for Predictions covers the FTQ , which handles the
snapshot information needed for update the predictor during
Commit. Rename Snapshot State covers the Branch Rename Snapshots ,
which handles the snapshot information needed to update the
predictor during a misspeculation in the Execute stage.

Managing the Global History Register (GHR)

The Global History Register (GHR) is an important piece of a branch
predictor. It contains the outcomes of the previous N branches (where
N is the size of the GHR). 12

When fetching branch i, it is important that the direction of the
previous i-N branches is available so an accurate prediction can be
made. Waiting until the Commit stage to update the GHR
would be too late (dozens of branches would be inflight and not
reflected!). Therefore, the GHR must be updated
speculatively, once the branch is fetched and predicted.

If a misprediction occurs, the GHR must be reset and
updated to reflect the actual history. This means that each branch (more
accurately, each Fetch Packet) must snapshot the GHR in case of a misprediction. 13

There is one final wrinkle - exceptional pipeline behavior. While each
branch contains a snapshot of the GHR , any
instruction can potential throw an exception that will cause a Front-end
redirect. Such an event will cause the GHR to become
corrupted. For exceptions, this may seem acceptable - exceptions should
be rare and the trap handlers will cause a pollution of the GHR
anyways (from the point of view of the user code).
However, some exceptional events include “pipeline replays” - events
where an instruction causes a pipeline flush and the instruction is
refetched and re-executed. 14 For this reason, a commit copy of
the GHR is also maintained by the BPD and reset on
any sort of pipeline flush event.

The Fetch Target Queue (FTQ) for Predictions

The Reorder Buffer (see The Reorder Buffer (ROB) and the Dispatch Stage)
maintains a record of all inflight instructions. Likewise, the FTQ
maintains a record of all inflight branch predictions and PC information. These two
structures are decoupled as FTQ entries are incredibly expensive
and not all ROB entries will contain a branch instruction. As only
roughly one in every six instructions is a branch, the FTQ can be made
to have fewer entries than the ROB to leverage additional savings.

Each FTQ entry corresponds to one Fetch cycle. For each prediction made, the
branch predictor packs up data that it will need later to perform an
update. For example, a branch predictor will want to remember what
index a prediction came from so it can update the counters at that
index later. This data is stored in the FTQ .

When the last instruction in a Fetch Packet is committed, the FTQ entry
is deallocated and returned to the branch predictor. Using the data
stored in the FTQ entry, the branch predictor can perform any desired
updates to its prediction state.

There are a number of reasons to update the branch predictor after
Commit. It is crucial that the predictor only learns correct
information. In a data cache, memory fetched from a wrong path execution
may eventually become useful when later executions go to a different
path. But for a branch predictor, wrong path updates encode information
that is pure pollution – it takes up useful entries by storing
information that is not useful and will never be useful. Even if later
iterations do take a different path, the history that got it there will
be different. And finally, while caches are fully tagged, branch
predictors use partial tags (if any) and thus suffer from deconstructive
aliasing.

Of course, the latency between Fetch and Commit is
inconvenient and can cause extra branch mispredictions to occur if
multiple loop iterations are inflight. However, the FTQ could be used
to bypass branch predictions to mitigate this issue. Currently, this
bypass behavior is not supported in BOOM.

Rename Snapshot State

The FTQ holds branch predictor data that will be needed to update the
branch predictor during Commit (for both correct and incorrect
predictions). However, there is additional state needed for when the
branch predictor makes an incorrect prediction and must be updated
immediately. For example, if a misprediction occurs, the
speculatively-updated GHR must be reset to the correct value
before the processor can begin fetching (and predicting) again.

This state can be very expensive but it can be deallocated once the
branch is resolved in the Execute stage. Therefore, the state is
stored in parallel with the Branch Rename Snapshot s. During Decode
and Rename, a Branch Tag is allocated to each branch and a
snapshot of the rename tables are made to facilitate single-cycle
rollback if a misprediction occurs. Like the branch tag and Rename
Map Table snapshots, the corresponding Branch Rename Snapshot
can be deallocated once the branch is resolved by the Branch Unit in
Execute.

[image: The Branch Predictor Pipeline]
Fig. 9 The Branch Predictor Pipeline. Although a simple diagram, this helps show the I/O within the Branch Prediction
Pipeline. The Front-end sends the “next PC” (shown as req) to the pipeline in the F0 stage. Within the “Abstract Predictor”,
hashing is managed by the “Abstract Predictor” wrapper. The “Abstract Predictor” then returns a Backing Predictor (BPD) response
or in other words a prediction for each instruction in the Fetch Packet .

The Abstract Branch Predictor Class

To facilitate exploring different global history-based BPD designs, an
abstract “BrPredictor” class is provided. It provides a standard
interface into the BPD and the control logic for managing the global
history register. This abstract class can be found in
Fig. 9 labeled “Abstract Predictor”. For a more detailed view of the predictor
with an example look at Fig. 12.

Global History

As discussed in Managing the Global History Register, global history is a vital
piece of any branch predictor. As such, it is handled by the abstract
BranchPredictor class. Any branch predictor extending the abstract
BranchPredictor class gets access to global history without having to
handle snapshotting, updating, and bypassing.

Operating System-aware Global Histories

Although the data on its benefits are preliminary, BOOM does support
OS-aware global histories. The normal global history tracks all
instructions from all privilege levels. A second user-only global
history tracks only user-level instructions.

The Two-bit Counter Tables

The basic building block of most branch predictors is the “Two-bit
Counter Table” (2BC). As a particular branch is repeatedly taken, the
counter saturates upwards to the max value 3 (0b11) or strongly
taken. Likewise, repeatedly not-taken branches saturate towards zero
(0b00). The high-order bit specifies the prediction and the
low-order bit specifies the hysteresis (how “strong” the
prediction is).

[image: The GShare Predictor]

Fig. 10 A GShare Predictor uses the global history hashed with the PC to index into a table of 2-bit
counters (2BCs). The high-order bit makes the prediction.

These two-bit counters are aggregated into a table. Ideally, a good
branch predictor knows which counter to index to make the best
prediction. However, to fit these two-bit counters into dense SRAM, a
change is made to the 2BC finite state machine – mispredictions made in
the weakly not-taken state move the 2BC into the strongly
taken state (and vice versa for weakly taken being
mispredicted). The FSM behavior is shown in Fig. 11.

Although it’s no longer strictly a “counter”, this change allows us to
separate out the read and write requirements on the prediction and
hystersis bits and place them in separate sequential memory
tables. In hardware, the 2BC table can be implemented as follows:

The P-bit:

	Read - every cycle to make a prediction

	Write - only when a misprediction occurred (the value of
the h-bit).

The H-bit:

	Read - only when a misprediction occurred.

	Write - when a branch is resolved (write the direction the
branch took).

[image: The Two-bit Counter State Machine]
Fig. 11 The Two-bit Counter (2BC) State Machine

By breaking the high-order p-bit and the low-order h-bit apart, we can
place each in 1 read/1 write SRAM. A few more assumptions can help us do
even better. Mispredictions are rare and branch resolutions are not
necessarily occurring on every cycle. Also, writes can be delayed or
even dropped altogether. Therefore, the h-table can be implemented
using a single 1rw-ported SRAM by queueing writes up and draining them
when a read is not being performed. Likewise, the p-table can be
implemented in 1rw-ported SRAM by banking it – buffer writes and drain
when there is not a read conflict.

A final note: SRAMs are not happy with a “tall and skinny” aspect ratio
that the 2BC tables require. However, the solution is simple – tall and
skinny can be trivially transformed into a rectangular memory structure.
The high-order bits of the index can correspond to the SRAM row and the
low-order bits can be used to mux out the specific bits from within the
row.

The GShare Predictor

GShare is a simple but very effective branch predictor.
Predictions are made by hashing the instruction address and the GHR
(typically a simple XOR) and then indexing into a table of
two-bit counters. Fig. 10 shows the logical
architecture and Fig. 12 shows the physical implementation
and structure of the GShare predictor. Note that the prediction
begins in the F0 stage when the requesting address is sent to the
predictor but that the prediction is made later in the F3 stage once
the instructions have returned from the instruction cache and the
prediction state has been read out of the GShare’s p-table.

[image: The GShare Predictor Pipeline]
Fig. 12 The GShare Predictor Pipeline

The TAGE Predictor

[image: The TAGE Predictor]

Fig. 13 The TAGE predictor. The requesting address (PC) and the global history are fed into each
table’s index hash and tag hash. Each table provides its own prediction (or no prediction) and the table
with the longest history wins.

BOOM also implements the TAGE conditional branch predictor. TAGE is a
highly-parameterizable, state-of-the-art global history
predictor. The design is able to
maintain a high degree of accuracy while scaling from very small
predictor sizes to very large predictor sizes. It is fast to learn short
histories while also able to learn very, very long histories (over a
thousand branches of history).

TAGE (TAgged GEometric) is implemented as a collection of predictor
tables. Each table entry contains a prediction counter, a
usefulness counter, and a tag. The prediction counter
provides the prediction (and maintains some hysteresis as to how
strongly biased the prediction is towards taken or not-taken). The
usefulness counter tracks how useful the particular entry has been
in the past for providing correct predictions. The tag allows the
table to only make a prediction if there is a tag match for the
particular requesting instruction address and global history.

Each table has a different (and geometrically increasing) amount of
history associated with it. Each table’s history is used to hash with
the requesting instruction address to produce an index hash and a tag
hash. Each table will make its own prediction (or no prediction, if
there is no tag match). The table with the longest history making a
prediction wins.

On a misprediction, TAGE attempts to allocate a new entry. It will only
overwrite an entry that is “not useful” (ubits == 0).

TAGE Global History and the Circular Shift Registers (CSRs) 15

Each TAGE table has associated with it its own global history (and each
table has geometrically more history than the last table). The histories
contain many more bits of history that can be used to index a TAGE table; therefore, the
history must be “folded” to fit. A table with 1024 entries uses 10 bits
to index the table. Therefore, if the table uses 20 bits of global
history, the top 10 bits of history are XOR’ed against the bottom 10
bits of history.

Instead of attempting to dynamically fold a very long history register
every cycle, the history can be stored in a circular shift register (CSR).
The history is stored already folded and only the new history bit and
the oldest history bit need to be provided to perform an update.
Listing 2 shows an example of how a CSR works.

Listing 2 The circular shift register. When a new branch outcome is added, the register is shifted (and wrapped around). The new outcome is added and the oldest bit in the history is “evicted”.

Example:
 A 12 bit value (0b_0111_1001_1111) folded onto a 5 bit CSR becomes
 (0b_0_0010), which can be found by:

 /-- history[12] (evict bit)
 |
 c[4], c[3], c[2], c[1], c[0]
 | ^
 | |
 _______________________/ \---history[0] (newly taken bit)

(c[4] ^ h[0] generates the new c[0]).
(c[1] ^ h[12] generates the new c[2]).

Each table must maintain three CSRs. The first CSR is used for
computing the index hash and has a size n=log(num_table_entries). As
a CSR contains the folded history, any periodic history pattern matching
the length of the CSR will XOR to all zeroes (potentially quite common).
For this reason, there are two CSRs for computing the tag hash, one of
width n and the other of width n-1.

For every prediction, all three CSRs (for every table) must be
snapshotted and reset if a branch misprediction occurs. Another three
commit copies of these CSRs must be maintained to handle pipeline
flushes.

Usefulness counters (u-bits)

The “usefulness” of an entry is stored in the u-bit counters.
Roughly speaking, if an entry provides a correct prediction, the u-bit
counter is incremented. If an entry provides an incorrect prediction,
the u-bit counter is decremented. When a misprediction occurs, TAGE
attempts to allocate a new entry. To prevent overwriting a useful entry,
it will only allocate an entry if the existing entry has a usefulness of
zero. However, if an entry allocation fails because all of the potential
entries are useful, then all of the potential entries are decremented to
potentially make room for an allocation in the future.

To prevent TAGE from filling up with only useful but rarely-used
entries, TAGE must provide a scheme for “degrading” the u-bits over
time. A number of schemes are available. One option is a timer that
periodically degrades the u-bit counters. Another option is to track the
number of failed allocations (incrementing on a failed allocation and
decremented on a successful allocation). Once the counter has saturated,
all u-bits are degraded.

TAGE Snapshot State

For every prediction, all three CSRs (for every table) must be
snapshotted and reset if a branch misprediction occurs. TAGE must also
remember the index of each table that was checked for a prediction (so
the correct entry for each table can be updated later). Finally, TAGE
must remember the tag computed for each table – the tags will be needed
later if a new entry is to be allocated. 16

Other Predictors

BOOM provides a number of other predictors that may provide useful.

The Base Only Predictor

The Base Only Predictor uses the BTBs BIM to make a prediction on
whether the branch was taken or not.

The Null Predictor

The Null Predictor is used when no BPD predictor is desired. It will
always predict “not taken”.

The Random Predictor

The Random Predictor uses an LFSR to randomize both “was a prediction
made?” and “which direction each branch in the Fetch Packet should
take?”. This is very useful for both torturing-testing BOOM and for
providing a worse-case performance baseline for comparing branch
predictors.

	7

	It’s the PC Tag storage and Branch Target storage that
makes the BTB within the Next-Line Predictor (NLP) so expensive.

	8

	JAL instructions jump to a PC+Immediate location, whereas
JALR instructions jump to a PC+Register[rs1]+Immediate location.

	9

	Redirecting the Front-end in the F4 Stage for
 instructions is trivial, as the instruction can be decoded and its
target can be known.

	10

	In the data-cache, it can be useful to fetch data from the wrong
path - it is possible that future code executions may want to access
the data. Worst case, the cache’s effective capacity is reduced. But
it can be quite dangerous to add wrong-path information to the Backing Predictor (BPD) -
it truly represents a code-path that is never exercised, so the
information will never be useful in later code executions.
Worst, aliasing is a problem in branch predictors (at most partial
tag checks are used) and wrong-path information can create
deconstructive aliasing problems that worsens prediction accuracy.
Finally, bypassing of the inflight prediction information can occur,
eliminating any penalty of not updating the predictor until the
Commit stage.

	11

	These info packets are not stored in the ROB for two
reasons - first, they correspond to Fetch Packet`s, not
instructions. Second, they are very expensive and so it is
reasonable to size the :term:`Fetch Target Queue (FTQ) to be smaller than the ROB.

	12

	Actually, the direction of all conditional branches within a
Fetch Packet are compressed (via an OR-reduction) into a
single bit, but for this section, it is easier to describe the
history register in slightly inaccurate terms.

	13

	Notice that there is a delay between beginning to make a
prediction in the F0 stage (when the global history is read)
and redirecting the Front-end in the F4 stage (when the
global history is updated). This results in a “shadow” in which a
branch beginning to make a prediction in F0 will not see the
branches (or their outcomes) that came a cycle (or two) earlier in
the program (that are currently in F1/2/3 stages).
It is vitally important though that these “shadow branches” be
reflected in the global history snapshot.

	14

	An example of a pipeline replay is a memory ordering
failure in which a load executed before an older store it
depends on and got the wrong data. The only recovery requires
flushing the entire pipeline and re-executing the load.

	15

	No relation to the Control/Status Registers (CSRs) in RISC-V.

	16

	There are ways to mitigate some of these costs, but this margin
is too narrow to contain them.

The Decode Stage

The Decode stage takes instructions from the Fetch Buffer, decodes them,
and allocates the necessary resources as required by each instruction.
The Decode stage will stall as needed if not all resources are available.

RVC Changes

RVC decode is performed by expanding RVC instructions using Rocket’s
RVCExpander. This does not change normal functionality of the Decode stage.

The Rename Stage

The Rename stage maps the ISA (or logical) register specifiers of
each instruction to physical register specifiers.

The Purpose of Renaming

Renaming is a technique to rename the ISA (or logical) register
specifiers in an instruction by mapping them to a new space of
physical registers. The goal to register renaming is to break the
output-dependencies (WAW) and anti-dependences (WAR) between instructions, leaving
only the true dependences (RAW). Said again, but in architectural
terminology, register renaming eliminates write-after-write (WAW) and
write-after-read (WAR) hazards, which are artifacts introduced by a)
only having a limited number of ISA registers to use as specifiers and
b) loops, which by their very nature will use the same register
specifiers on every loop iteration.

The Explicit Renaming Design

[image: PRF vs Data-in-ROB design]

Fig. 14 A PRF design (left) and a data-in-ROB design (right)

BOOM is an “explicit renaming” or “physical register file” out-of-order
core design. A Physical Register File, containing many more registers
than the ISA dictates, holds both the committed architectural register
state and speculative register state. The Rename Map Table s contain the
information needed to recover the committed state. As instructions are
renamed, their register specifiers are explicitly updated to point to
physical registers located in the Physical Register File. 1

This is in contrast to an “implicit renaming” or “data-in-ROB”
out-of-order core design. The Architectural Register File (ARF) only
holds the committed register state, while the ROB holds the speculative
write-back data. On commit, the ROB transfers the speculative data to
the ARF[2]_

The Rename Map Table

[image: The Rename Stage]

Fig. 15 The Rename Stage. Logical register specifiers read the Rename Map Table to get their physical specifier.
For superscalar rename, any changes to the Map Tables must be bypassed to dependent instructions. The
physical source specifiers can then read the Busy Table. The Stale specifier is used to track which physical
register will be freed when the instruction later commits. P0 in the Physical Register File is always 0.

The Rename Map Table (abbreviated as Map Table) holds the speculative mappings from ISA registers
to physical registers.

Each branch gets its own copy of the Rename Map Table[3]_ On a branch
mispredict, the Rename Map Table can be reset instantly from the mispredicting
branch’s copy of the Rename Map Table

As the RV64G ISA uses fixed locations of the register specifiers (and no
implicit register specifiers), the Map Table can be read before the
instruction is decoded! And hence the Decode and Rename stages can be combined.

Resets on Exceptions and Flushes

An additional, optional “Committed Map Table” holds the rename map for
the committed architectural state. If enabled, this allows single-cycle
reset of the pipeline during flushes and exceptions (the current map
table is reset to the Committed Map Table). Otherwise, pipeline flushes
require multiple cycles to “unwind” the ROB to write back in the rename
state at the commit point, one ROB row per cycle.

The Busy Table

The Busy Table tracks the readiness status of each physical register. If
all physical operands are ready, the instruction will be ready to be
issued.

The Free List

The Free List tracks the physical registers that are currently un-used
and is used to allocate new physical registers to instructions passing
through the Rename stage.

The Free List is implemented as a bit-vector. A priority decoder can
then be used to find the first free register. BOOM uses a cascading
priority decoder to allocate multiple registers per cycle. 4

On every branch (or JALR), the Rename Map Tables are snapshotted to
allow single-cycle recovery on a branch misprediction. Likewise, the
Free List also sets aside a new “Allocation List”, initialized to zero.
As new physical registers are allocated, the Allocation List for each
branch is updated to track all of the physical registers that have been
allocated after the branch. If a misspeculation occurs, its Allocation
List is added back to the Free List by OR’ing the branch’s Allocation
List with the Free List. 5

Stale Destination Specifiers

For instructions that will write a register, the Map Table is read to
get the stale physical destination specifier (“stale pdst”). Once the
instruction commits, the stale pdst is returned to the Free List, as
no future instructions will read it.

	1

	The MIPS R10k, Alpha 21264, Intel Sandy Bridge, and ARM
Cortex A15 cores are all example of explicit renaming out-of-order
cores.

	2

	The Pentium 4 and the ARM Cortex A57 are examples of implicit
renaming designs.

	3

	An alternate design for wider pipelines may prefer to only make up to
one snapshot per cycle, but this comes with additional complexity to
deduce the precise mappings for any given instruction within the
Fetch Packet.

	4

	A two-wide Rename stage could use two priority decoders starting from
opposite ends.

	5

	Conceptually, branches are often described as “snapshotting” the Free
List (along with an OR’ing with the current Free List at the time
of the misprediction). However, snapshotting fails to account for
physical registers that were allocated when the snapshot occurs, then
become freed, then becomes re-allocated before the branch mispredict
is detected. In this scenario, the physical register gets leaked, as
neither the snapshot nor the current Free List know that it had been
freed. Eventually, the processor slows as it struggles to maintain
enough inflight physical registers, until finally the machine comes
to a halt. If this sounds autobiographical because the original author
(Chris) may have trusted computer architecture lectures, well…

The Reorder Buffer (ROB) and the Dispatch Stage

The Reorder Buffer (ROB) tracks the state of all inflight instructions in the pipeline.
The role of the ROB is to provide the illusion to the programmer that
his program executes in-order. After instructions are decoded and
renamed, they are then dispatched to the ROB and the Issue Queue and
marked as busy. As instructions finish execution, they inform the ROB
and are marked not busy. Once the “head” of the ROB is no longer busy,
the instruction is committed, and it’s architectural state now
visible. If an exception occurs and the excepting instruction is at the
head of the ROB, the pipeline is flushed and no architectural changes
that occurred after the excepting instruction are made visible. The ROB
then redirects the PC to the appropriate exception handler.

The ROB Organization

[image: The Reorder Buffer]

Fig. 16 The Reorder Buffer for a two-wide BOOM with three-issue. Dispatched uops (dis uops) are
written at the bottom of the ROB (rob tail), while committed uops (com uops) are committed from the top,
at rob head, and update the rename state. Uops that finish executing (wb uops) clear their busy bit. Note:
the dispatched uops are written into the same ROB row together, and are located consecutively in memory
allowing a single PC to represent the entire row.

The ROB is, conceptually, a circular buffer that tracks all inflight
instructions in-order. The oldest instruction is pointed to by the
commit head, and the newest instruction will be added at the rob
tail.

To facilitate superscalar dispatch and commit, the ROB is
implemented as a circular buffer with W banks (where W
is the dispatch and commit width of the machine 1). This
organization is shown in Fig. 16.

At dispatch, up to W instructions are written from the Fetch Packet
into an ROB row, where each instruction is written to a
different bank across the row. As the instructions within a Fetch Packet
are all consecutive (and aligned) in memory, this allows a
single PC to be associated with the entire Fetch Packet (and the
instruction’s position within the Fetch Packet provides the low-order
bits to its own PC). While this means that branching code will leave
bubbles in the ROB, it makes adding more instructions to the ROB very
cheap as the expensive costs are amortized across each ROB row.

ROB State

Each ROB entry contains relatively little state:

	is entry valid?

	is entry busy?

	is entry an exception?

	branch mask (which branches is this entry still speculated under?

	rename state (what is the logical destination and the stale physical
destination?)

	floating-point status updates

	other miscellaneous data (e.g., helpful for statistic tracking)

The PC and the branch prediction information is stored on a per-row
basis (see PC Storage). The Exception State only tracks the
oldest known excepting instruction (see Exception State).

Exception State

The ROB tracks the oldest excepting instruction. If this instruction
reaches the head of the ROB, then an exception is thrown.

Each ROB entry is marked with a single-bit to signify whether or not the
instruction has encountered exceptional behavior, but the additional
exception state (e.g., the bad virtual address and the exception cause)
is only tracked for the oldest known excepting instruction. This saves
considerable state by not storing this on a per entry basis.

PC Storage

The ROB must know the PC of every inflight instruction. This information
is used in the following situations:

	Any instruction could cause an exception, in which the “exception pc”
(epc) must be known.

	Branch and jump instructions need to know their own PC for for target
calculation.

	Jump-register instructions must know both their own PC and the PC
of the following instruction in the program to verify if the
Front-end predicted the correct JR target.

This information is incredibly expensive to store. Instead of passing
PCs down the pipeline, branch and jump instructions access the ROB’s “PC
File” during the Register-read stage for use in the Branch Unit. Two
optimizations are used:

	only a single PC is stored per ROB row.

	the PC File is stored in two banks, allowing a single read-port to
read two consecutive entries simultaneously (for use with JR
instructions).

The Commit Stage

When the instruction at the commit head is no longer busy (and it is
not excepting), it may be committed, i.e., its changes to the
architectural state of the machine are made visible. For superscalar
commit, the entire ROB row is analyzed for not busy instructions (and
thus, up to the entire ROB row may be committed in a single cycle). The
ROB will greedily commit as many instructions as it can per row to
release resource as soon as possible. However, the ROB does not
(currently) look across multiple rows to find commit-able instructions.

Only once a store has been committed may it be sent to memory. For
superscalar committing of stores, the Load/Store Unit (LSU) is told “how many stores” may
be marked as committed. The LSU will then drain the committed stores to
memory as it sees fit.

When an instruction (that writes to a register) commits, it then frees
the stale physical destination register. The stale pdst is then free
to be re-allocated to a new instruction.

Exceptions and Flushes

Exceptions are handled when the instruction at the commit head is
excepting. The pipeline is then flushed and the ROB emptied. The Rename
Map Tables must be reset to represent the true, non-speculative
committed state. The Front-end is then directed to the appropriate PC.
If it is an architectural exception, the excepting instruction’s PC
(referred to as the exception vector) is sent to the Control/Status
Register (CSR) file. If it is a micro-architectural exception (e.g., a
load/store ordering misspeculation) the failing instruction is refetched
and execution can begin anew.

Parameterization - Rollback versus Single-cycle Reset

The behavior of resetting the Rename Map Tables is parameterizable. The first
option is to rollback the ROB one row per cycle to unwind the rename
state (this is the behavior of the MIPS
R10k). For each instruction, the stale
physical destination register is written back into the Map Table for
its logical destination specifier.

A faster single-cycle reset is available. This is accomplished by using
another rename snapshot that tracks the committed state of the rename
tables. This Committed Map Table is updated as instructions
commit. 2

Causes

The RV64G ISA provides relatively few exception sources:

	Load/Store Unit

	
	page faults

	Branch Unit

	
	misaligned fetches

	Decode Stage

	
	all other exceptions and interrupts can be handled before the
instruction is dispatched to the ROB

Note that memory ordering speculation errors also originate from the
Load/Store Unit, and are treated as exceptions in the BOOM pipeline
(actually they only cause a pipeline “retry”).

Point of No Return (PNR)

The point-of-no-return head runs ahead of the ROB commit head, marking the
next instruction which might be misspeculated or generate an exception.
These include unresolved branches and untranslated memory operations.
Thus, the instructions ahead of the commit head and behind the PNR
head are guaranteed to be non-speculative, even if they have not yet
written back.

Currently the PNR is only used for RoCC instructions. RoCC co-processors
typically expect their instructions in-order, and do not tolerate misspeculation.
Thus we can only issue a instruction to our co-processor when it has past the
PNR head, and thus is no longer speculative.

	1

	This design sets up the dispatch and commit widths of BOOM to be
the same. However, that is not necessarily a fundamental constraint,
and it would be possible to orthogonalize the dispatch and commit
widths, just with more added control complexity.

	2

	The tradeoff here is between longer latencies on exceptions versus an
increase in area and wiring.

The Issue Unit

The Issue Queue s hold dispatched Micro-Ops (UOPs) that have not yet executed.
When all of the operands for the UOP<Micro-Op (UOP) are ready, the issue slot sets
its “request” bit high. The issue select logic then chooses to issue a
slot which is asserting its “request” signal. Once a UOP<Micro-Op (UOP) is issued,
it is removed from the Issue Queue to make room for more dispatched
instructions.

BOOM uses a split Issue Queues - instructions of specific types are placed
into a unique Issue Queue (integer, floating point, memory).

Speculative Issue

Although not yet supported, future designs may choose to speculatively
issue UOPs<Micro-Op (UOP) for improved performance (e.g., speculating that a load
instruction will hit in the cache and thus issuing dependent UOPs<Micro-Op (UOP)
assuming the load data will be available in the bypass network). In such
a scenario, the Issue Queue cannot remove speculatively issued
UOPs<Micro-Op (UOP) until the speculation has been resolved. If a
speculatively-issued UOP<Micro-Op (UOP) failure occurs, then all issued UOPs<Micro-Op (UOP)
that fall within the speculated window must be killed and retried from
the Issue Queue. More advanced techniques are also available.

Issue Slot

Fig. 17 shows a single issue slot from the
Issue Queue. 1

Instructions are dispatched into the Issue Queue. From here, they
wait for all of their operands to be ready (“p” stands for presence
bit, which marks when an operand is present in the register file).

Once ready, the issue slot will assert its “request” signal, and wait
to be issued.

Issue Select Logic

[image: Single Issue Slot]

Fig. 17 A single issue slot from the Issue Queue.

Each issue select logic port is a static-priority encoder that picks
that first available UOP<Micro-Op (UOP) in the Issue Queue. Each port will only
schedule a UOP<Micro-Op (UOP) that its port can handle (e.g., floating point
UOPs<Micro-Op (UOP) will only be scheduled onto the port governing the Floating
Point Unit). This creates a cascading priority encoder for ports that
can schedule the same UOPs<Micro-Op (UOP) as each other.

If a Functional Unit is unavailable, it de-asserts its available signal
and instructions will not be issued to it (e.g., an un-pipelined
divider).

Un-ordered Issue Queue

There are two scheduling policies available in BOOM.

The first is a MIPS R10K-style Un-ordered Issue
Queue. Dispatching instructions are placed
into the first available Issue Queue slot and remain there until they
are issued. This can lead to pathologically poor performance,
particularly in scenarios where unpredictable branches are placed into
the lower priority slots and are unable to be issued until the ROB fills
up and the Issue Window starts to drain. Because instructions following
branches are only implicitly dependent on the branch, there is no
other forcing function that enables the branches to issue earlier,
except the filling of the ROB.

Age-ordered Issue Queue

The second available policy is an Age-ordered Issue Queue. Dispatched
instructions are placed into the bottom of the Issue Queue (at lowest
priority). Every cycle, every instruction is shifted upwards (the Issue
queue is a “collapsing queue”). Thus, the oldest instructions will have
the highest issue priority. While this increases performance by
scheduling older branches and older loads as soon as possible, it comes
with a potential energy penalty as potentially every Issue Queue slot
is being read and written to on every cycle.

Wake-up

There are two types of wake-up in BOOM - fast wakeup and slow
wakeup (also called a long latency wakeup). Because ALU UOPs<Micro-Op (UOP) can send their write-back data through the
bypass network, issued ALU UOPs<Micro-Op (UOP) will broadcast their wakeup to the
Issue Queue as they are issued.

However, floating-point operations, loads, and variable latency
operations are not sent through the bypass network, and instead the
wakeup signal comes from the register file ports during the write-back
stage.

	1

	Conceptually, a bus is shown for implementing the driving of the
signals sent to the Register Read Stage. In reality BOOM actually
uses muxes.

The Register Files and Bypass Network

[image: Multi-Issue Pipeline]
Fig. 18 An example multi-issue pipeline. The integer register file needs 6 read ports and 3 write ports for the
execution units present. The FP register file needs 3 read ports and 2 write ports. FP and memory
operations share a long latency write port to both the integer and FP
register file. To make scheduling of the write port trivial, the ALU’s pipeline is lengthened to match
the FPU latency. The ALU is able to bypass from any of these stages to dependent instructions in the
Register Read stage.

BOOM is a unified, Physical Register File (PRF) design. The register
files hold both the committed and speculative state. Additionally,
there are two register files: one for integer and one for floating point
register values. The Rename Map Tables track which physical register corresponds
to which ISA register.

BOOM uses the Berkeley hardfloat floating point units which use an
internal 65-bit operand format
(https://github.com/ucb-bar/berkeley-hardfloat). Therefore, all physical
floating point registers are 65-bits.

Register Read

The register file statically provisions all of the register read ports
required to satisfy all issued instructions. For example, if issue port
#0 corresponds to an integer ALU and issue port #1 corresponds to memory
unit, then the first two register read ports will statically serve the
ALU and the next two register read ports will service the memory unit for four
total read ports.

Dynamic Read Port Scheduling

Future designs can improve area-efficiency by provisioning fewer
register read ports and using dynamically scheduling to arbitrate for
them. This is particularly helpful as most instructions need only one
operand. However, it does add extra complexity to the design, which is
often manifested as extra pipeline stages to arbitrate and detect
structural hazards. It also requires the ability to kill issued
Micro-Ops (UOPs)<Micro-Op (UOP) and re-issue them from the Issue Queue on a later cycle.

Bypass Network

ALU operations can be issued back-to-back by having the write-back
values forwarded through the Bypass Network. Bypassing occurs at the end
of the Register Read stage.

The Execute Pipeline

[image: Dual Issue Pipeline]

Fig. 19 An example pipeline for a dual-issue BOOM. The first issue port schedules UOP<Micro-Op (UOP)`s onto
Execute Unit #0, which can accept ALU operations, FPU operations, and integer multiply instructions.
The second issue port schedules ALU operations, integer divide instructions (unpipelined), and load/store
operations. The ALU operations can bypass to dependent instructions. Note that the ALU in Execution Unit #0 is
padded with pipeline registers to match latencies with the FPU and iMul units to make scheduling for the
write-port trivial. Each :term:`Execution Unit has a single issue-port dedicated to it but contains within it a number
of lower-level :term:`Functional Unit`s.

The Execution Pipeline covers the execution and write-back of Micro-Ops (UOPs).
Although the UOPs<Micro-Op (UOP) will travel down the pipeline one after the other
(in the order they have been issued), the UOPs<Micro-Op (UOP) themselves are
likely to have been issued to the Execution Pipeline out-of-order.
Fig. 19 shows an example Execution Pipeline for a
dual-issue BOOM.

Execution Units

[image: Example :term:`Execution Unit`]

Fig. 20 An example Execution Unit. This particular example shows an integer ALU (that can bypass
results to dependent instructions) and an unpipelined divider that becomes busy during operation. Both
Functional Unit`s share a single write-port. The :term:`Execution Unit accepts both kill signals and branch resolution
signals and passes them to the internal Functional Unit s as required.

An Execution Unit is a module that a single issue port will schedule
UOPs<Micro-Op (UOP) onto and contains some mix of Functional Unit s. Phrased in
another way, each issue port from the Issue Queue talks to one and only
one Execution Unit. An Execution Unit may contain just a single simple
integer ALU, or it could contain a full complement of floating point
units, a integer ALU, and an integer multiply unit.

The purpose of the Execution Unit is to provide a flexible abstraction
which gives a lot of control over what kind of Execution Unit s the
architect can add to their pipeline

Scheduling Readiness

An Execution Unit provides a bit-vector of the Functional Unit s it has
available to the issue scheduler. The issue scheduler will only schedule
UOPs<Micro-Op (UOP) that the Execution Unit supports. For Functional Unit s that
may not always be ready (e.g., an un-pipelined divider), the appropriate
bit in the bit-vector will be disabled (See Fig. 19).

Functional Unit

[image: Abstract :term:`Functional Unit`]

Fig. 21 The abstract Pipelined Functional Unit class. An expert-written, low-level Functional Unit
is instantiated within the Functional Unit. The request and response ports are abstracted and bypass and
branch speculation support is provided. UOPs<Micro-Op (UOP) are individually killed by gating off their response as they
exit the low-level Functional Unit .

Functional Unit s are the muscle of the CPU, computing the necessary
operations as required by the instructions. Functional Unit s typically
require a knowledgable domain expert to implement them correctly and
efficiently.

For this reason, BOOM uses an abstract Functional Unit class to “wrap”
expert-written, low-level Functional Unit s from the Rocket repository
(see Rocket Chip SoC Generator). However, the expert-written Functional Unit s
created for the Rocket in-order processor make assumptions about
in-order issue and commit points (namely, that once an instruction has
been dispatched to them it will never need to be killed). These
assumptions break down for BOOM.

However, instead of re-writing or forking the Functional Unit s, BOOM
provides an abstract Functional Unit class (see Fig. 21)
that “wraps” the lower-level functional
units with the parameterized auto-generated support code needed to make
them work within BOOM. The request and response ports are abstracted,
allowing Functional Unit s to provide a unified, interchangeable
interface.

Pipelined Functional Units

A pipelined Functional Unit can accept a new UOP<Micro-Op (UOP) every cycle. Each
UOP<Micro-Op (UOP) will take a known, fixed latency.

Speculation support is provided by auto-generating a pipeline that
passes down the UOP<Micro-Op (UOP) meta-data and branch mask in parallel with
the UOP<Micro-Op (UOP) within the expert-written Functional Unit . If a UOP<Micro-Op (UOP) is
misspeculated, it’s response is de-asserted as it exits the functional
unit.

An example pipelined Functional Unit is shown in Fig. 21.

Un-pipelined Functional Units

Un-pipelined Functional Unit s (e.g., a divider) take an variable (and
unknown) number of cycles to complete a single operation. Once occupied,
they de-assert their ready signal and no additional UOPs<Micro-Op (UOP) may be
scheduled to them.

Speculation support is provided by tracking the branch mask of the
UOP<Micro-Op (UOP) in the Functional Unit.

The only requirement of the expert-written un-pipelined Functional Unit
is to provide a kill signal to quickly remove misspeculated
UOPs<Micro-Op (UOP). 1

[image: Functional Unit Hierarchy]

Fig. 22 The dashed ovals are the low-level Functional Unit s written by experts, the squares are
concrete classes that instantiate the low-level Functional Unit s, and the octagons are abstract classes that
provide generic speculation support and interfacing with the BOOM pipeline. The floating point divide
and squart-root unit doesn’t cleanly fit either the Pipelined nor Unpipelined abstract class, and so directly
inherits from the FunctionalUnit super class.

Branch Unit & Branch Speculation

The Branch Unit handles the resolution of all branch and jump
instructions.

All UOPs<Micro-Op (UOP) that are “inflight” in the pipeline (have an allocated ROB
entry) are given a branch mask, where each bit in the branch mask
corresponds to an un-executed, inflight branch that the UOP<Micro-Op (UOP) is
speculated under. Each branch in Decode is allocated a branch tag,
and all following UOPs<Micro-Op (UOP) will have the corresponding bit in the
branch mask set (until the branch is resolved by the Branch Unit).

If the branches (or jumps) have been correctly speculated by the
Front-end, then the Branch Unit s only action is to broadcast the
corresponding branch tag to all inflight UOPs<Micro-Op (UOP) that the branch has
been resolved correctly. Each UOP<Micro-Op (UOP) can then clear the corresponding
bit in its branch mask, and that branch tag can then be allocated to a
new branch in the Decode stage.

If a branch (or jump) is misspeculated, the Branch Unit must redirect
the PC to the correct target, kill the Front-end and Fetch Buffer, and
broadcast the misspeculated branch tag so that all dependent, inflight
UOPs<Micro-Op (UOP) may be killed. The PC redirect signal goes out immediately, to
decrease the misprediction penalty. However, the kill signal is
delayed a cycle for critical path reasons.

The Front-end must pass down the pipeline the appropriate branch
speculation meta-data, so that the correct direction can be reconciled
with the prediction. Jump Register instructions are evaluated by
comparing the correct target with the PC of the next instruction in the
ROB (if not available, then a misprediction is assumed). Jumps are
evaluated and handled in the Front-end (as their direction and target
are both known once the instruction can be decoded).

BOOM (currently) only supports having one Branch Unit .

Load/Store Unit

The Load/Store Unit (LSU) handles the execution of load, store, atomic,
and fence operations.

BOOM (currently) only supports having one LSU (and thus can only send
one load or store per cycle to memory). 2

See The Load/Store Unit (LSU) for more details on the LSU.

Floating Point Units

[image: Functional Unit for FPU]

Fig. 23 The class hierarchy of the FPU is shown. The expert-written code is contained within
the hardfloat and rocket repositories. The “FPU” class instantiates the Rocket components, which itself
is further wrapped by the abstract Functional Unit classes (which provides the out-of-order speculation
support).

The low-level floating point units used by BOOM come from the Rocket
processor (https://github.com/chipsalliance/rocket-chip) and hardfloat
(https://github.com/ucb-bar/berkeley-hardfloat) repositories. Figure
Fig. 23 shows the class hierarchy of the FPU.

To make the scheduling of the write-port trivial, all of the pipelined
FP units are padded to have the same latency. 3

Floating Point Divide and Square-root Unit

BOOM fully supports floating point divide and square-root operations
using a single FDiv/Sqrt (or fdiv for short). BOOM accomplishes this by
instantiating a double-precision unit from the hardfloat repository. The
unit comes with the following features/constraints:

	expects 65-bit recoded double-precision inputs

	provides a 65-bit recoded double-precision output

	can execute a divide operation and a square-root operation
simultaneously

	operations are unpipelined and take an unknown, variable latency

	provides an unstable FIFO interface

Single-precision operations have their operands upscaled to
double-precision (and then the output downscaled). 4

Although the unit is unpipelined, it does not fit cleanly into the
Pipelined/Unpipelined abstraction used by the other Functional Unit s
(see Fig. 22). This is because the unit provides
an unstable FIFO interface: although the unit may provide a ready
signal on Cycle i, there is no guarantee that it will continue
to be ready on Cycle i+1, even if no operations are enqueued.
This proves to be a challenge, as the Issue Queue may attempt to issue
an instruction but cannot be certain the unit will accept it once it
reaches the unit on a later cycle.

The solution is to add extra buffering within the unit to hold
instructions until they can be released directly into the unit. If the
buffering of the unit fills up, back pressure can be safely applied to
the Issue Queue. 5

Parameterization

BOOM provides flexibility in specifying the issue width and the mix of
Functional Unit s in the execution pipeline. See src/main/scala/exu/execution-units.scala
for a detailed view on how to instantiate the execution pipeline in BOOM.

Additional parameterization, regarding things like the latency of the FP
units can be found within the configuration settings (src/main/common/config-mixins.scala).

Control/Status Register Instructions

A set of Control/Status Register (CSR) instructions allow the atomic
read and write of the Control/Status Registers. These architectural
registers are separate from the integer and floating registers, and
include the cycle count, retired instruction count, status, exception
PC, and exception vector registers (and many more!). Each CSR has its
own required privilege levels to read and write to it and some have
their own side-effects upon reading (or writing).

BOOM (currently) does not rename any of the CSRs, and in addition to
the potential side-effects caused by reading or writing a CSR, BOOM
will only execute a CSR instruction non-speculatively. 6 This is
accomplished by marking the CSR instruction as a “unique” (or
“serializing”) instruction - the ROB must be empty before it may proceed
to the Issue Queue (and no instruction may follow it until it has
finished execution and been committed by the ROB). It is then issued by
the Issue Queue, reads the appropriate operands from the Physical
Register File, and is then sent to the CSRFile. 7 The CSR instruction
executes in the CSRFile and then writes back data as required to the
Physical Register File. The CSRFile may also emit a PC redirect and/or
an exception as part of executing a CSR instruction (e.g., a syscall).

The Rocket Custom Co-Processor Interface (RoCC)

The RoCC interface accepts a RoCC command and up to two register inputs
from the Control Processor’s scalar register file. The RoCC command is
actually the entire RISC-V instruction fetched by the Control Processor
(a “RoCC instruction”). Thus, each RoCC queue entry is at least
2*XPRLEN + 32 bits in size (additional RoCC instructions may use the
longer instruction formats to encode additional behaviors).

As BOOM does not store the instruction bits in the ROB, a separate data
structure (A “RoCC Shim”) holds the
instructions until the RoCC instruction can be committed and the RoCC
command sent to the co-processor.

The source operands will also require access to BOOM’s register file.
RoCC instructions are dispatched to the Issue Window, and scheduled
so that they may access the read ports of the register file once the
operands are available. The operands are then written into the RoCC
Shim, which stores the operands and the instruction
bits until they can be sent to the co-processor. This requires
significant state.

After issue to RoCC, we track a queue of in-flight RoCC instructions,
since we need to translate the logical destination register identifier
from the RoCC response into the previously renamed physical destination
register identifier.

Currently the RoCC interface does not support interrupts, exceptions,
reusing the BOOM FPU, or direct access to the L1 data cache. This should
all be straightforward to add, and will be completed as demand arises.

	1

	This constraint could be relaxed by waiting for the un-pipelined unit
to finish before de-asserting its busy signal and suppressing the
valid output signal.

	2

	Relaxing this constraint could be achieved by allowing multiple LSUs
to talk to their own bank(s) of the data-cache, but the added
complexity comes in allocating entries in the LSU before knowing the
address, and thus which bank, a particular memory operation pertains
to.

	3

	Rocket instead handles write-port scheduling by killing and
refetching the offending instruction (and all instructions behind it)
if there is a write-port hazard detected. This would be far more
heavy-handed to do in BOOM.

	4

	It is cheaper to perform the SP-DP conversions than it is to
instantiate a single-precision fdivSqrt unit.

	5

	It is this ability to hold multiple inflight instructions within the
unit simultaneously that breaks the “only one instruction at a time”
assumption required by the UnpipelinedFunctionalUnit abstract class.

	6

	There is a lot of room to play with regarding the CSRs. For example,
it is probably a good idea to rename the register (dedicated for use
by the supervisor) as it may see a lot of use in some kernel code and
it causes no side-effects.

	7

	The CSRFile is a Rocket component.

The Load/Store Unit (LSU)

[image: Load Store Unit]

Fig. 24 The Load/Store Unit

The Load/Store Unit (LSU) is responsible for deciding when to fire memory
operations to the memory system. There are two queues: the Load
Queue (LDQ), and the Store Queue (STQ). Load instructions generate a
“uopLD” Micro-Op (UOP). When issued, “uopLD” calculates the load address and
places its result in the LDQ. Store instructions (may) generate two
UOP s, “uopSTA” (Store Address Generation) and “uopSTD” (Store Data
Generation). The STA UOP calculates the store address and updates the
address in the STQ entry. The STD UOP moves the store data into the
STQ entry. Each of these UOP s will issue out of the
Issue Window as soon their operands are ready. See Store Micro-Ops
for more details on the store UOP specifics.

Store Instructions

Entries in the Store Queue are allocated in the Decode stage (
stq(i).valid is set). A “valid” bit denotes when an entry in the STQ holds
a valid address and valid data (stq(i).bits.addr.valid and stq(i).bits.data.valid).
Once a store instruction is committed, the corresponding entry in the Store
Queue is marked as committed. The store is then free to be fired to the
memory system at its convenience. Stores are fired to the memory in program
order.

Store Micro-Ops

Stores are inserted into the issue window as a single instruction (as
opposed to being broken up into separate addr-gen and data-gen
UOP s). This prevents wasteful usage of the expensive issue window
entries and extra contention on the issue ports to the LSU. A store in
which both operands are ready can be issued to the LSU as a single
UOP which provides both the address and the data to the LSU. While
this requires store instructions to have access to two register file
read ports, this is motivated by a desire to not cut performance in half
on store-heavy code. Sequences involving stores to the stack should
operate at IPC=1!

However, it is common for store addresses to be known well in advance of
the store data. Store addresses should be moved to the STQ as soon as
possible to allow later loads to avoid any memory ordering failures.
Thus, the issue window will emit uopSTA or uopSTD UOP s as required,
but retain the remaining half of the store until the second operand is
ready.

Load Instructions

Entries in the Load Queue (LDQ) are allocated in the Decode stage
(ldq(i).valid). In Decode, each load entry is also given a store
mask (ldq(i).bits.st_dep_mask), which marks which stores in the Store
Queue the given load depends on. When a store is fired to memory and
leaves the Store Queue, the appropriate bit in the store mask is cleared.

Once a load address has been computed and placed in the LDQ, the
corresponding valid bit is set (ldq(i).addr.valid).

Loads are optimistically fired to memory on arrival to the LSU (getting
loads fired early is a huge benefit of out–of–order pipelines).
Simultaneously, the load instruction compares its address with all of
the store addresses that it depends on. If there is a match, the memory
request is killed. If the corresponding store data is present, then the
store data is forwarded to the load and the load marks itself as
having succeeded. If the store data is not present, then the load goes
to sleep. Loads that have been put to sleep are retried at a later
time. 1

The BOOM Memory Model

BOOM follows the RVWMO memory consistency model.

BOOM currently exhibits the following behavior:

	Write -> Read constraint is relaxed (newer loads may execute before
older stores).

	Read -> Read constraint is maintained (loads to the same address
appear in order).

	A thread can read its own writes early.

Ordering Loads to the Same Address

The RISC-V WMO memory model requires that loads to the same address be ordered.
2 This requires loads to search against other loads for potential address conflicts.
If a younger load executes before an older load with a matching address, the
younger load must be replayed and the instructions after it in the pipeline flushed.
However, this scenario is only required if a cache coherence probe event
snooped the core’s memory, exposing the reordering to the other threads.
If no probe events occurred, the load re-ordering may safely occur.

Memory Ordering Failures

The Load/Store Unit has to be careful regarding
store -> load dependences. For the best performance,
loads need to be fired to memory as soon as possible.

sw x1 -> 0(x2)
ld x3 <- 0(x4)

However, if x2 and x4 reference the same memory address, then the load
in our example depends on the earlier store. If the load issues to
memory before the store has been issued, the load will read the wrong
value from memory, and a memory ordering failure has occurred. On an
ordering failure, the pipeline must be flushed and the Rename Map Tables
reset. This is an incredibly expensive operation.

To discover ordering failures, when a store commits, it checks the
entire LDQ for any address matches. If there is a match, the store
checks to see if the load has executed, and if it got its data from
memory or if the data was forwarded from an older store. In either case,
a memory ordering failure has occurred.

See Fig. 24 for more information about the Load/Store Unit.

	1

	Higher-performance processors will track why a load was put to
sleep and wake it up once the blocking cause has been alleviated.

	2

	Technically, a fence.r.r could be used to provide the correct
execution of software on machines that reorder dependent loads.
However, there are two reasons for an ISA to disallow re-ordering of
dependent loads: 1) no other popular ISA allows this relaxation, and
thus porting software to RISC-V could face extra challenges, and 2)
cautious software may be too liberal with the appropriate fence
instructions causing a slow-down in software. Thankfully, enforcing
ordered dependent loads may not actually be very expensive. For one,
load addresses are likely to be known early - and are probably likely
to execute in-order anyways. Second, misordered loads are only a
problem in the cache of a cache coherence probe, so performance
penalty is likely to be negligible. The hardware cost is also
negligible - loads can use the same CAM search port on the LAQ that
stores must already use. While this may become an issue when
supporting one load and one store address calculation per cycle, the
extra CAM search port can either be mitigated via banking or will be
small compared to the other hardware costs required to support more
cache bandwidth.

The Memory System

Note

This section is out-of-date as of 8/26/19 due to a new DCache implementation.

BOOM uses the Rocket Chip non-blocking cache (“Hellacache”). Designed for use
in in-order processors, a “shim” is used to connect BOOM to the
data cache. The source code for the cache can be found in
nbdcache.scala in the Rocket Chip repository <https://github.com/chipsalliance/rocket-chip>.

The contract with the cache is that it may execute all memory operations
sent to it (barring structural hazards). As BOOM will send speculative
load instructions to the cache, the shim (dcacheshim.scala) must
track all “inflight load requests” and their status. If an inflight load
is discovered to be misspeculated, it is marked as such in the shim.
Upon return from the data cache, the load’s response to the pipeline is
suppressed and it is removed from the inflight load queue.

The Hellacache does not ack store requests; the absence of a nack is
used to signal a success.

All memory requests to the Hellacache may be killed the cycle after
issuing the request (while the request is accessing the data arrays).

The current data cache design accesses the SRAMs in a single-cycle.

The cache has a three-stage pipeline and can accept a new request every cycle.
The stages do the following:

	S0: Send request address

	S1: Access SRAM

	S2: Perform way-select and format response data

The data cache is also cache coherent which is helpful even in uniprocessor configurations
for allowing a host machine or debugger to read BOOM’s memory.

Parameterization

General Parameters

Listing general-boom-params lists the top-level parameters that you can manipulate for a BOOM core.
This is taken from src/main/scala/common/parameters.scala.

 fetchWidth: Int = 1,
 decodeWidth: Int = 1,
 numRobEntries: Int = 64,
 issueParams: Seq[IssueParams] = Seq(
 IssueParams(issueWidth=1, numEntries=16, iqType=IQT_MEM.litValue, dispatchWidth=1),
 IssueParams(issueWidth=2, numEntries=16, iqType=IQT_INT.litValue, dispatchWidth=1),
 IssueParams(issueWidth=1, numEntries=16, iqType=IQT_FP.litValue , dispatchWidth=1)),
 numLdqEntries: Int = 16,
 numStqEntries: Int = 16,
 numIntPhysRegisters: Int = 96,
 numFpPhysRegisters: Int = 64,
 maxBrCount: Int = 4,
 numFetchBufferEntries: Int = 16,
 enableAgePriorityIssue: Boolean = true,
 enablePrefetching: Boolean = false,
 enableFastLoadUse: Boolean = true,
 enableCommitMapTable: Boolean = false,
 enableFastPNR: Boolean = false,
 enableSFBOpt: Boolean = false,
 enableGHistStallRepair: Boolean = true,
 enableBTBFastRepair: Boolean = true,
 useAtomicsOnlyForIO: Boolean = false,
 ftq: FtqParameters = FtqParameters(),
 intToFpLatency: Int = 2,
 imulLatency: Int = 3,
 nPerfCounters: Int = 0,
 numRXQEntries: Int = 4,
 numRCQEntries: Int = 8,
 numDCacheBanks: Int = 1,
 nPMPs: Int = 8,
 enableICacheDelay: Boolean = false,

 /* branch prediction */
 enableBranchPrediction: Boolean = true,
 branchPredictor: Function2[BranchPredictionBankResponse, Parameters, Tuple2[Seq[BranchPredictorBank], BranchPredictionBankResponse]] = ((resp_in: BranchPredictionBankResponse, p: Parameters) => (Nil, resp_in)),
 globalHistoryLength: Int = 64,
 localHistoryLength: Int = 32,
 localHistoryNSets: Int = 128,
 bpdMaxMetaLength: Int = 120,
 numRasEntries: Int = 32,
 enableRasTopRepair: Boolean = true,

 /* more stuff */
 useCompressed: Boolean = true,
 useFetchMonitor: Boolean = true,
 bootFreqHz: BigInt = 0,
 fpu: Option[FPUParams] = Some(FPUParams(sfmaLatency=4, dfmaLatency=4)),
 usingFPU: Boolean = true,
 haveBasicCounters: Boolean = true,
 misaWritable: Boolean = false,
 mtvecInit: Option[BigInt] = Some(BigInt(0)),
 mtvecWritable: Boolean = true,
 haveCFlush: Boolean = false,
 mulDiv: Option[freechips.rocketchip.rocket.MulDivParams] = Some(MulDivParams(divEarlyOut=true)),
 nBreakpoints: Int = 0, // TODO Fix with better frontend breakpoint unit
 nL2TLBEntries: Int = 512,
 nL2TLBWays: Int = 1,
 nLocalInterrupts: Int = 0,
 useNMI: Boolean = false,
 useAtomics: Boolean = true,
 useDebug: Boolean = true,
 useUser: Boolean = true,
 useSupervisor: Boolean = false,
 useVM: Boolean = true,
 useSCIE: Boolean = false,
 useRVE: Boolean = false,
 useBPWatch: Boolean = false,
 clockGate: Boolean = false,
 mcontextWidth: Int = 0,
 scontextWidth: Int = 0,

 /* debug stuff */
 enableCommitLogPrintf: Boolean = false,
 enableBranchPrintf: Boolean = false,
 enableMemtracePrintf: Boolean = false

Sample Configurations

Sample configurations of the core and the parameters used can be seen in src/main/scala/common/config-mixins.scala.
The following code shows an example of the “Large BOOM Configuration”.

/**
 * 3-wide BOOM. Try to match the Cortex-A15.
 */
class WithNLargeBooms(n: Int = 1, overrideIdOffset: Option[Int] = None) extends Config(
 new WithTAGELBPD ++ // Default to TAGE-L BPD
 new Config((site, here, up) => {
 case TilesLocated(InSubsystem) => {
 val prev = up(TilesLocated(InSubsystem), site)
 val idOffset = overrideIdOffset.getOrElse(prev.size)
 (0 until n).map { i =>
 BoomTileAttachParams(
 tileParams = BoomTileParams(
 core = BoomCoreParams(
 fetchWidth = 8,
 decodeWidth = 3,
 numRobEntries = 96,
 issueParams = Seq(
 IssueParams(issueWidth=1, numEntries=16, iqType=IQT_MEM.litValue, dispatchWidth=3),
 IssueParams(issueWidth=3, numEntries=32, iqType=IQT_INT.litValue, dispatchWidth=3),
 IssueParams(issueWidth=1, numEntries=24, iqType=IQT_FP.litValue , dispatchWidth=3)),
 numIntPhysRegisters = 100,
 numFpPhysRegisters = 96,
 numLdqEntries = 24,
 numStqEntries = 24,
 maxBrCount = 16,
 numFetchBufferEntries = 24,
 ftq = FtqParameters(nEntries=32),
 fpu = Some(freechips.rocketchip.tile.FPUParams(sfmaLatency=4, dfmaLatency=4, divSqrt=true))
),
 dcache = Some(
 DCacheParams(rowBits = site(SystemBusKey).beatBits, nSets=64, nWays=8, nMSHRs=4, nTLBWays=16)
),
 icache = Some(
 ICacheParams(rowBits = site(SystemBusKey).beatBits, nSets=64, nWays=8, fetchBytes=4*4)
),
 hartId = i + idOffset
),
 crossingParams = RocketCrossingParams()
)
 } ++ prev
 }
 case SystemBusKey => up(SystemBusKey, site).copy(beatBytes = 16)
 case XLen => 64
 })
)

Other Parameters

You can also manipulate other parameters such as Rocket Chip SoC parameters, Uncore, BTB, BIM, BPU, and more when configuring the SoC!
However, this is done in the top-level project that adds BOOM so this will not be discussed here.

The BOOM Development Ecosystem

The BOOM Repository

The BOOM repository holds the source code to the BOOM core; it is not a full processor and thus is NOT A SELF-RUNNING repository.
To instantiate a BOOM core, you must use a top-level project to integrate the core into an SoC. For this purpose you can use
the Chipyard Template [https://github.com/ucb-bar/chipyard].

The BOOM core source code can be found in src/main/scala.

The core code structure is shown below:

	src/main/scala/

	bpu/ - branch predictor unit

	common/ - configs fragments, constants, bundles, tile definitions

	exu/ - execute/core unit

	ifu/ - instruction fetch unit

	lsu/ - load/store/memory unit

	util/ - utilities

Scala, Chisel, Generators, Configs, Oh My!

Working with BOOM has a large learning curve for those people new to Chisel and the BOOM ecosystem.
To be productive, it takes time to learn about the micro-architecture, Rocket chip components, Chisel (maybe Firrtl), Scala, and the build system.
Luckily, the micro-architecture is detailed in this documentation and some of the other topics (Chisel, Firrtl, Scala) are discussed in their respective websites.
Instead of focusing solely on those topics, this section hopes to show how they all fit together by giving a high level of the entire build process.
Put in more specific terms: How do you get from Scala/Chisel to Verilog? 1

Recap on Coding in Scala/Chisel

When making changes to BOOM, you are working in Scala/Chisel code.
Chisel is the language embedded inside of Scala to create RTL.
One way to view Scala/Chisel is that Chisel is a set of libraries that are used in Scala that help hardware designers create highly parameterizable RTL.
For example, if you want to make a hardware queue, you would use something like Chisel’s chisel3.util.Queue to make a queue.
However, if you want to change the amount of entries of the queue based on some variable, that would be Scala code.
Another way to think of the distinction between the two languages is that Chisel code will make a circuit in hardware while Scala code will change the parameters of the circuit that Chisel will create.
A simple example is shown below in Listing 3.

Listing 3 Scala and Chisel Code

var Q_DEPTH = 1 // Scala variable
if (WANT_HUGE_QUEUE == true) {
 Q_DEPTH = 123456789 // Big number!
}
else {
 Q_DEPTH = 1 // Small number.
}

// Create a queue through Chisel with the parameter specified by a Scala variable
val queue = Module(new chisel3.util.Queue(HardwareDataType, Q_DEPTH))

Generating a BOOM System

The word “generator” used in many Chisel projects refers to a program that takes in a Chisel Module and a Configuration and returns a circuit based on those parameters.
The generator for BOOM and Rocket SoC’s can be found in Chipyard under the Generator.scala file.
The Chisel Module used in the generator is normally the top-level Chisel Module class that you (the developer) want to make a circuit of.
The Configuration is just a set of Scala variables used to configure the parameters of the passed in Chisel Module.
In BOOM’s case, the top-level Module would be something like the BoomRocketSystem found in src/main/scala/system/BoomRocketSystem.scala and a Configuration like MediumBoomConfig found in src/main/scala/common/configs.scala. 2
In this case, the parameters specified in MediumBoomConfig would set the necessary Scala variables needed throughout the ExampleBoomSystem Module.
Once the Module and Configuration is passed into the generator, they will be combined to form a piece of RTL representing the circuit given by the Module parameterized by the Configuration.

Compilation and Elaboration

Since the generator is just a Scala program, all Scala/Chisel sources must be built.
This is the compilation step.
If Chisel is thought as a library within Scala, then these classes being built are just Scala classes which call Chisel functions.
Thus, any errors that you get in compiling the Scala/Chisel files are errors that you have violated the typing system, messed up syntax, or more.
After the compilation is complete, elaboration begins.
The generator starts elaboration using the Module and Configuration passed to it.
This is where the Chisel “library functions” are called with the parameters given and Chisel tries to construct a circuit based on the Chisel code.
If a runtime error happens here, Chisel is stating that it cannot “build” your circuit due to “violations” between your code and the Chisel “library”.
However, if that passes, the output of the generator gives you an RTL file!

Quickly on Firrtl

Up until this point, I have been saying that your generator gives you a RTL file.
However… this is not true.
Instead the generator emits Firrtl [https://github.com/freechipsproject/firrtl], an intermediate representation of your circuit.
Without going into too much detail, this Firrtl is consumed by a Firrtl compiler (another Scala program) which passes the circuit through a series of circuit-level transformations.
An example of a Firrtl pass (transformation) is one that optimizes out unused signals.
Once the transformations are done, a Verilog file is emitted and the build process is done!

Big Picture

Now that the flow of ecosystem has been briefly explained here is a quick recap.

	You write code in Scala + Chisel (where Chisel can be seen as a library that Scala uses)

	You compile the Scala + Chisel into classes to be used by the generator

	Deal with compile errors (related to syntax, type system violations, or more)

	You run the generator with the Module and Configuration for your circuit to get the Firrtl output file

	Deal with runtime errors (Chisel elaboration errors, which may occur from violating Chisel’s expectations)

	You run the Firrtl compiler on the output Firrtl file to get a Verilog output file

	Deal with runtime errors (Firrtl compile errors, which occur from compiler passes that perform checks e.g. for uninitialized wires)

	Done. A Verilog file was created!!!

More Resources

If you would like more detail on top-level integration, how accelerators work in the Rocket Chip system, and much more please visit the
Chipyard Documentation [https://chipyard.readthedocs.io/en/latest/].

	1

	This section describes the current build process that is used in Chipyard [https://github.com/ucb-bar/chipyard].

	2

	This is not exactly true since to be able to run BOOM in simulations we wrap the BoomRocketSystem in a TestHarness found in Chipyard.

Debugging

FireSim Debugging

In addition to Verilator and VCS software simulation testing, one can use
the FireSim tool to debug faster using an FPGA. This tools comes out of the
UC Berkeley Architecture Research group and is still a work in progress. You
can find the documentation and website at https://fires.im/.

Chicken Bits

BOOM supports a chicken-bit to delay all instructions from issue until the
pipeline clears. This effectively turns BOOM into a unpipelined in-order
core. The chicken bit is controlled by the third bit of the CSR at 0x7c1.
Writing this CSR with csrwi 0x7c1, 0x8 will turn off all out-of-orderiness
in the core. High-performance can be re-enabled with csrwi 0x7c1, 0x0.

Micro-architectural Event Tracking

Version 1.9.1 of the RISC-V Privileged Architecture adds support for
Hardware Performance Monitor (HPM) counters. 1 The HPM support allows
a nearly infinite number of micro-architectural events (called Hardware
Performance Events (HPEs)) to be multiplexed onto up to multiple physical counters
(called Hardware Performance Counters (HPCs)).

Setup HPM events to track

The available HPE’s are split into event sets and events.
Event sets are groupings of similar microarchitectural events (branch prediction events,
memory events, etc). To access an HPE you must choose the correct event set and
event bit and write to the proper HPC register for that event. An example of event set
numbers and the event bit for a particular event is given below.

	Event Set #

	Event Bit

	Description

	1

	1

	I$ Blocked

	1

	2

	NOP

	1

	4

	Control Flow Target Mispredict

To access an HPC, you must first set up the privilege access level
of the particular HPC using mcounteren and scounteren. Afterwards,
you write to the particular HPC register to setup which event(s) you want to
track. Bits [7:0] of the HPC register correspond to the event set while bits [?:8]
correspond to the event bitmask. Note that the bitmask can be a
singular event or multiple events.

Listing 4 Enable Hardware Performance Monitor Counters

write_csr(mcounteren, -1); // Enable supervisor use of all perf counters
write_csr(scounteren, -1); // Enable user use of all perf counters

write_csr(mhpmevent3, 0x101); // read I$ Blocked event
write_csr(mhpmevent4, 0x801); // read Ctrl Flow Target Mispred. event
...

Reading HPM counters in software

The Code Example Listing 5 demonstrates how to read the value of
any HPC from software. Note that HPCs need to be “zero’d” out
by first reading the value at the beginning of the program, then reading the
counter again the end, and then subtracting the initial value from the second
read. However, this only applies to the HPC’s not cycle, instret, and
time.

Listing 5 Read CSR Register

#define read_csr_safe(reg) ({ register long __tmp asm("a0"); \
 asm volatile ("csrr %0, " #reg : "=r"(__tmp)); \
 __tmp; })

// read cycle and instruction counts in user mode
uint64_t csr_cycle = read_csr_safe(cycle);
uint64_t csr_instr = read_csr_safe(instret);

// read initial value of HPMC's in user mode
uint64_t start_hpmc3 = read_csr_safe(hpmcounter3);
...
uint64_t start_hpmc31 = read_csr_safe(hpmcounter31);

// program to monitor

// read final value of HPMC's and substract initial in user mode
printf("Value of Event (zero'd): %d\n", read_csr_safe(hpmcounter3) - start_hpmc3);

Adding your own HPE

To add your own HPE, you modify the event set and particular event in
src/main/scala/exu/core.scala. Note that the 1st item in the Seq corresponds
to the first bit in the event set.

External Resources

Information in this section was adapted from https://static.dev.sifive.com/U54-MC-RVCoreIP.pdf
which details more about HPE/C’s from RocketChip’s perspective. Note: The HPE’s supported by
Rocket and BOOM differ, but the mechanism to access them is the same!

	1

	Future efforts may add some counters into a memory-mapped access
region. This will open up the ability to track events that, for
example, may not be tied to any particular core (like last-level
cache misses).

Verification

This chapter covers the current recommended techniques for verifying
BOOM. Although not provided as part of the BOOM or Rocket Chip
repositories, it is also recommended that BOOM be tested on “hello-world
+ riscv-pk” and the RISC-V port of Linux to properly stress the
processor.

RISC-V Tests

A basic set of functional tests and micro-benchmarks can be found at
(https://github.com/riscv/riscv-tests). These are invoked by the make
run targets in the verilator and vcs directories located in the
Chipyard template repository.

RISC-V Torture Tester

Berkeley’s riscv-torture tool is used to stress the BOOM pipeline, find
bugs, and provide small code snippets that can be used to debug the
processor. Torture can be found at (https://github.com/ucb-bar/riscv-torture).

Continuous Integration (CI)

The CircleCI Continuous Integration (CI) tool is used to check pull requests and
the master branch of BOOM. All files associated with it can be found in
two directories. Firstly, the configuration file used to run CI is located at
.circleci/config.yml. This specifies the current tests and builds that
are run using which BOOM configurations. Additionally, the DockerFile used to
build the CI docker images resides in .circleci/images. Finally, all
scripts that are used during the CI run are located at .circleci/. Note that even
though BOOM template is cloned during the CI process, the BOOM repository specifies
which version of Rocket Chip to use (which in turn determines the proper version of
riscv-tools).

Physical Realization

This chapter provides information useful for physically realizing the
BOOM processor. Although BOOM VLSI work is very preliminary, it has been
synthesized at 1 GHz on a high-end mobile 28 nm process. Unfortunately,
while VLSI flows are difficult to share or make portable (and encumbered
with proprietary libraries and tools), an enterprising individual may
want to visit the https://github.com/ucb-bar/plsi portable “Palmer’s
VLSI Scripts” repository which describes one way to push BOOM through a
VLSI flow.

Register Retiming

Many VLSI tools require the designer to manually specify which modules
need to be analyzed for retiming.

In BOOM, the floating point units and the pipelined integer multiply
unit are described combinationally and then padded to the requested
latency with registers. In order to meet the desired clock frequency,
the floating point units and the pipelined integer multiply unit must
be register-retimed.

val mul_result = lhs.toSInt * rhs.toSInt

val mul_output_mux = MuxCase(
 UInt(0, 64), Array(
 FN(DW_64, FN_MUL) -> mul_result(63,0),
 FN(DW_64, FN_MULH) -> mul_result(127,64),
 FN(DW_64, FN_MULHU) -> mul_result(127,64),
 FN(DW_64, FN_MULHSU) -> mul_result(127,64),
 FN(DW_32, FN_MUL) -> Cat(Fill(32, mul_result(31)), mul_result(31,0)),
 FN(DW_32, FN_MULH) -> Cat(Fill(32, mul_result(63)), mul_result(63,32)),
 FN(DW_32, FN_MULHU) -> Cat(Fill(32, mul_result(63)), mul_result(63,32)),
 FN(DW_32, FN_MULHSU) -> Cat(Fill(32, mul_result(63)), mul_result(63,32))
))

io.out := ShiftRegister(mul_output_mux, imul_stages, io.valid)

Pipelining Configuration Options

Although BOOM does not provide high-level configurable-latency pipeline
stages, BOOM does provide a few configuration options to help the
implementor trade off CPI performance for cycle-time.

EnableFetchBufferFlowThrough

The Front-end fetches instructions and places them into a Fetch Buffer.
The Back-end pulls instructions out of the Fetch Buffer and
then decodes, renames, and dispatches the instructions into the Issue
Queue. This Fetch Buffer can be optionally set to be a flow-through
queue – instructions enqueued into the buffer can be immediately
dequeued on the other side on the same clock cycle. Turning this option
off forces all instructions to spend at least one cycle in the queue
but decreases the critical path between instruction fetch and dispatch.

EnableBrResolutionRegister

The branch unit resolves branches, detects mispredictions, fans out the
branch kill signal to all inflight Micro-Ops (UOPs), redirects the PC select
stage to begin fetching down the correct path, and sends snapshot
information to the branch predictor to reset its state properly so it
can begin predicting down the correct path. Turning this option on
delays the branch resolution by a cycle. In particular, this adds a
cycle to the branch misprediction penalty (which is hopefully a rare
event).

Functional Unit Latencies

The latencies of the pipelined floating point units and the pipelined
integer multiplier unit can be modified. Currently, all floating point
unit latencies are set to the latency of the longest floating point unit
(i.e., the DFMA unit). This can be changed by setting the dfmaLatency
in the FPUConfig class. Likewise, the integer multiplier is also set
to the dfmaLatency. 1

	1

	The reason for this is that the imul unit is most likely sharing a
write port with the DFMA unit and so must be padded out to the same
length. However, this isn’t fundamental and there’s no reason an imul
unit not sharing a write port with the FPUs should be constrained to
their latencies.

Future Work

This chapter lays out some of the potential future directions that BOOM
can be taken. To help facilitate such work, the preliminary design
sketches are described below.

The BOOM Custom Co-processor Interface (BOCC)

Some accelerators may wish to take advantage of speculative instructions
(or even out-of-order issue) to begin executing instructions earlier to
maximize de-coupling. Speculation can be handled by either by epoch tags
(if in-order issue is maintained to the co-processor) or by allocating
mask bits (to allow for fine-grain killing of instructions).

The Vector (“V”) ISA Extension

Implementing the Vector Extension in BOOM would open up the ability to
leverage performance (or energy-efficiency) improvements in running
data-level parallel codes (DLP). While it would be relatively easy to
add vector arithmetic operations to BOOM, the significant challenges lie
in the vector load/store unit.

Perhaps unexpectedly, a simple but very efficient implementation could
be very small. The smallest possible vector register file (four 64-bit
elements per vector) weighs in at 1024 bytes. A reasonable out-of-order
implementation could support 8 elements per vector and 16 inflight
vector registers (for a total of 48 physical vector registers) which
would only be 3 kilobytes. Following the temporal vector design of the
Cray I, the vector unit can re-use the expensive scalar functional units
by trading off space for time. This also opens up the vector register
file to being implemented using 1 read/1 write ports, fitting it in very
area-efficient SRAMs. As a point of comparison, one of the most
expensive parts of a synthesizable BOOM is its flip-flop based scalar
register file. While a 128-register scalar register file comes in at
1024 bytes, it must be highly ported to fully exploit scalar
instruction-level parallelism (a three-issue BOOM with one FMA unit is 7
read ports and 3 write ports).

Frequently Asked Questions

For questions regarding the BOOM core, please refer to our GitHub page issues section
located at https://github.com/riscv-boom/riscv-boom/issues.

Help! BOOM isn’t working

First verify the software is not an issue. Run spike first:

Also verify the riscv-tools you built is the one pointed to by Chipyard.
Otherwise a version mismatch can easily occur!

Master branch is broken! How do I get a working BOOM?

The Chipyard [https://github.com/ucb-bar/chipyard] SoC super-repo should
always be pointing to a working BOOM/rocket-chip/riscv-tools combination. The
master branch of riscv-boom may run ahead though. Ideally, master should never be
broken, but it may be somewhat unstable as development continues. For more
stability, please use one of the tagged releases [https://github.com/riscv-boom/riscv-boom/releases].

Terminology

This terminology page contains terms/concepts that are unique to the BOOM core that may/may not match with other
out-of-order terminology.

	Fetch Packet

	A bundle returned by the Front-end which contains
some set of consecutive instructions with a mask
denoting which instructions are valid, amongst
other meta-data related to instruction fetch and
branch prediction. The Fetch PC will point
to the first valid instruction in the
Fetch Packet, as it is the PC used by the
Front End to fetch the Fetch Packet.

	Fetch PC

	The PC corresponding to the head of a
Fetch Packet instruction group.

	Fetch Buffer

	Buffer that holds Fetch Packets that are sent to the
Back-end.

	TAGE Predictor

	A high performance branch predictor. For more information
read the paper “A case for (partially) tagged geometric history length predictors”.

	GShare Predictor

	A simpler branch predictor that uses a global history to index into a set of
counters.

	Bi-Modal Table (BIM)

	A counter table.

	Micro-Op (UOP)

	Element sent throughout the pipeline holding information about the type of
Micro-Op, its PC, pointers to the FTQ, ROB, LDQ, STQs, and more.

	Front-end

	The Fetch and Branch Prediction portions of the pipeline that fetch instructions
from the i-cache.

	Back-end

	The stages starting from Dispatch to Writeback. Here instructions
are executed, dependencies resolved, branches resolved, etc.

	Fetch Boundary

	The bytes at the end of a i-cache response that might be half of an instruction
used in RVC.

	Fetch Target Queue (FTQ)

	Queue used to track the branch prediction information for inflight Micro-Ops.
This is dequeued once all instructions in its Fetch Packet entry are
committed.

	Next-Line Predictor (NLP)

	Consists of a Branch Target Buffer (BTB),
Return Address Stack (RAS) and Bi-Modal Table (BIM).
This is used to make quick predictions to redirect the Front-end

	Backing predictor (BPD)

	Slower but more complicated predictor used to track longer
histories. In BOOM you can have multiple different types of
a Backing predictor (TAGE, GShare…).

	Branch Target Buffer (BTB)

	Tagged entry table in which a PC is used to find a matching
target. Thus, if there is a hit, the specified target is used
to redirect the pipeline.

	Return Address Stack (RAS)

	Stack used to track function calls. It is pushed with a PC
on a JAL or JALR and popped during a RET.

	Fetch Width

	The amount of instructions retrieved from the i-cache from the
Front-end of the processor.

	Global History Register (GHR)

	A register holding the last N taken/not taken results of branches
in the processor. However, in BOOM, each bit does not correspond to a
bit of history. Instead this is a hashed history.

	Rename Snapshots

	Saved state used to reset the pipeline to a correct state after a
misspeculation or other redirecting event.

	Branch Unit

	The functional unit that resolves a branch in the Execute Pipeline.

	Branch Rename Snapshot

	Metadata and prediction snapshots that are used to fix the branch predictor after
mispredictions.

	Execution Unit

	A module that wraps multiple Functional Units within it.
It is attached to one issue port only.

	Functional Unit

	A specific hardware module to compute some function (i.e. ALU, FPU, etc).

Index

 B
 | E
 | F
 | G
 | M
 | N
 | R
 | T

B

 	
 	Back-end

 	Backing predictor (BPD)

 	Bi-Modal Table (BIM)

 	
 	Branch Rename Snapshot

 	Branch Target Buffer (BTB)

 	Branch Unit

E

 	
 	Execution Unit

F

 	
 	Fetch Boundary

 	Fetch Buffer

 	Fetch Packet

 	Fetch PC

 	
 	Fetch Target Queue (FTQ)

 	Fetch Width

 	Front-end

 	Functional Unit

G

 	
 	Global History Register (GHR)

 	
 	GShare Predictor

M

 	
 	Micro-Op (UOP)

N

 	
 	Next-Line Predictor (NLP)

R

 	
 	Rename Snapshots

 	
 	Return Address Stack (RAS)

T

 	
 	TAGE Predictor

 _images/functional-unit-fpu.png
Pipelined
Functional Unit

BOOM

FPU Unit

_images/execution-pipeline-2w.png
bypassing
AT A

dual-issue
(5r,3w Redgfile) % I

il T
'!m-l _ Regfile

Execute Unit #0

riteback

A bypassing (3 write)

&
=]
Fsu][os

Issue
Select II

Regfile -
networ.

Execute Unit #1

_images/execution-unit.png
req.valid

req.uo
9 DI

Op1 Data

Op2 Data

fu_types

PipelO

BYPASSES
(val, pdst, data)

Kill
(flush_pipeline)

PipelO

resp.valid

WB Data

Parameters
num_read_ports = 2
num_write_ports =1
num_bypass_ports = 1

IS_branch_unit = false
IS_mem_unit = false
IS_bypassable = true

_images/issue_slot.png
Control Signals

(From the regqister file's two write ports)

request
issue slot i valid

——
S, L e

Physical _
Destination Physical Source
Regi Registers
eqgister

Issued to the Register Read stage

Issue

Select
Logic

_images/lsu.png
Core

(Mem Unit)

Core

Core
(BRKil)

(Exception)

Core

Core
(Mem Unit)

(Decoding)
Decode Stage
Reserve Reserve | LOADISTORE
STQ Entry LDQEnty | UNIT (LSU)
51a 10
e ada vitual[oata o see vaia[aad|virtual[oves]suse] ora] s [sLmask L SLide
Vitual Vil
Enes Enlios
£
Store p
Dot ress
|(Physical/Virtual) Address
|Physical Virua) Executon
Stage
v v
Virtual Address o
New Load'Store
S| contoler
L Hit
v v
T iemory
AISTQ AILDQ Stage
Enries Enries =
v ' [oaa cacne
Kil Data Y yon
Searcher Access Data |Miss
S Fe MSHR
order_fal v
L2
@ Tile Link
i) v) ¥
[0 } - {dsiovai} . - . . [_sid_oaim R A N
— 7 ‘ T
v v v
seecton Loge [\
T
Wirieback
Toad Daa fieba

Load Store Unit Behaviour

LD Enty Explanalion

‘Contraller arbiration 10gic.

Decode:
Decoded memory instructions reserve room in
the STQ/LDO.

Address not yet known

Execute:
Virtual Address is calculated and sent into LSU.
1 TLB miss or not given priorty, virtual address
Is written info LDQ/STQ Entry.
Otherwise, physical address is witten into
LDQISTQ eniry and request s sent to DCache

Memory:
‘Searcher searches for forwarding (ST->LD)
options and ordering failures.

On possible forwarding, kils mem request and
ries to forward Instead.

On ordering failure, send excepion to core.
DCache uses 3 cycles to retrieve memory,
[putting misses into MSHR that retrieve data from|
L2 cache using Tile Link.

Writeback:
Data coming back is sent to memory unit.
Selection logic arbilrates which data feed paths
are valid and which get priorty.

oniry valid?
address
address Is virtual?
load executed?
load succeeded?
load order failure?
load observed?
store depdence mask
store forwarding data?
forwarded store idx

1. Incoming Load
2. Incoming Ready Store
3. Incoming Store Address
4.Incoming Store Data
5. Store Fence
6. Load Retry
7. Store Retry
8. Load Wakeup
9. store Committ

STQ Entry Explanation

entry valid?
address
address Is virtual?
store data
store committed?
store succeeded?

c

(Core Unit)

Relevant LDQ Entry
is updated with the
inputinformation

Connection to Core
‘and which unit tIs
connecting to.

ore

_images/functional-unit-hierarchy.png
Pipelined UnPlpeImed

req. ready==true)

w/ 0 tlonal MemAddrCalc IMul IMUI/IDIV/ fD|v/qurt
Br Bnlt IRem

,———\

. R A SRR S O
' DFMA ' { SFMA | F:?IO Vo FI':FT,O VY 'rl‘__t;" |

| | |

| | |

_!’~ o !,§ _,—!,\ -~ T -
¢~ MulAdd > r"MulAdd ¢t~ RecFN : " divSqrt

>) > “ > > -
(RecFN RecFN ToRecF RecF64

_images/prf-and-arf.png
data

uop ! tags !

Physical

Register
File
(PRF)
2 N\

i+1

data bus

_images/rename-pipeline.png
Inst(1) reg src

stale bvba
== —————- pypass ypasses prs1 | prs?

Map table

' map table
= [S2 ' . |
= rsi] ' ' bUS_y table
l '
; rd — stale pdst(1) A o)
_ | uop(0).ldst
| | ?=uop(1).Irs2
| uop(0).ldst
2=
Inst(0) | | uop(0).Idst ?=uop(1).lrs1
Ird | Irs1 | Irs2 ' - l ?=uop(1).Idst
map table |
| I pdst | prs1 | prs2 | stale
— l
i — !
i rd — f | | |
|] 'stale pdst(0)
[]
' |
' |
| e e e e e e - J
| Freelist
[|
Vec(requests) = pdst(0) .
.
Vec(ready) | = '
| — |
freelist empty | '
<«
: |
| l
l

_images/btb.png
PC tags

_images/boom-pipeline-detailed.png
FrontEnd

ICache

TLB* L1 Instruction Cache

ICache 32*-KiB 8*-way

Tags*
16 Bytes/cycle

Fetch-Target- g
(3352:5_}1) Instruction Fetch & PreDecode (4 cycles)
(16* Byte window)
BTB* Inst Inst Inst Inst Inst Inst Inst Inst

(1-cycle redirect)

Gshare* BPU
(3-cycle redirect)

Fetch Buffer

(32" entries)

Inst Inst Inst Inst

4*-Wide Decode
Return Address
Stack (RAS) Decoder || Decoder || Decoder || Decoder
uorP uorP uorP uorP
Execute

Rename / Allocate / Retirement
ReOrder Buffer (128* entries)

HOP

Floating-point
Physical Register
File
(128* Registers)

FP Issue
Queue

Integer Physical
Register File
(128* Registers)

32* entries

uoP HOP uoP

uoP

uoP uoP

MEM Issue
Queue
32* entries

INT Issue Queue
32* entries

HOP uoP uoP uoP

L2

128bit/cycle

8711 271

Rem-.8 g1\ ,Z1S

ayoeD g1

Load Queue 8B/cycle Store Buffer & Forwarding
(32* entries) (32* entries)
8B/cycle 8B/cycle 8B/cycle
8* MSHRs
L1 Data Cache
32* KiB 8*-Way Line Fill Buff
DCache Ine Fi urrers
Load/Store TLB* (10* entries)

Unit

128bit/cycle

_images/chip.png
Core (BOOM)

dp/status

requestor/ptw o
D$ (HC)

BOOMTile

Chisel Coherence Hub

C++ Test Harness
(emulator.cpp) Emulated DRAM

_images/rob.png
rob_head

dis_mask dis_uops

Instruction Bank(0) Instruction Bank(1)

val bsy exc uopc val bsy exc uopc

wb_valids

wb_uops
(clears busy bit)

com_mask com_uops (updates rename state)

nav.xhtml

 Table of Contents

 		
 Welcome to RISCV-BOOM’s documentation!

 		
 The Berkeley Out-of-Order Machine (BOOM)

 		
 The BOOM Pipeline

 		
 Overview

 		
 Stages

 		
 Fetch

 		
 Decode

 		
 Rename

 		
 Dispatch

 		
 Issue

 		
 Register Read

 		
 Execute

 		
 Memory

 		
 Writeback

 		
 Commit

 		
 Branch Support

 		
 Detailed BOOM Pipeline

 		
 The Chisel Hardware Construction Language

 		
 The RISC-V ISA

 		
 Rocket Chip SoC Generator

 		
 The Rocket Core - a Library of Processor Components!

 		
 Instruction Fetch

 		
 The Rocket Core I-Cache

 		
 Fetching Compressed Instructions

 		
 The Fetch Buffer

 		
 The Fetch Target Queue

 		
 Branch Prediction

 		
 The Next-Line Predictor (NLP)

 		
 NLP Predictions

 		
 NLP Updates

 		
 The Backing Predictor (BPD)

 		
 Making Predictions

 		
 Jump and Jump-Register Instructions

 		
 Updating the Backing Predictor

 		
 Managing the Global History Register (GHR)

 		
 The Fetch Target Queue (FTQ) for Predictions

 		
 Rename Snapshot State

 		
 The Abstract Branch Predictor Class

 		
 The Two-bit Counter Tables

 		
 The GShare Predictor

 		
 The TAGE Predictor

 		
 Other Predictors

 		
 The Decode Stage

 		
 RVC Changes

 		
 The Rename Stage

 		
 The Purpose of Renaming

 		
 The Explicit Renaming Design

 		
 The Rename Map Table

 		
 Resets on Exceptions and Flushes

 		
 The Busy Table

 		
 The Free List

 		
 Stale Destination Specifiers

 		
 The Reorder Buffer (ROB) and the Dispatch Stage

 		
 The ROB Organization

 		
 ROB State

 		
 Exception State

 		
 PC Storage

 		
 The Commit Stage

 		
 Exceptions and Flushes

 		
 Parameterization - Rollback versus Single-cycle Reset

 		
 Causes

 		
 Point of No Return (PNR)

 		
 The Issue Unit

 		
 Speculative Issue

 		
 Issue Slot

 		
 Issue Select Logic

 		
 Un-ordered Issue Queue

 		
 Age-ordered Issue Queue

 		
 Wake-up

 		
 The Register Files and Bypass Network

 		
 Register Read

 		
 Dynamic Read Port Scheduling

 		
 Bypass Network

 		
 The Execute Pipeline

 		
 Execution Units

 		
 Scheduling Readiness

 		
 Functional Unit

 		
 Pipelined Functional Units

 		
 Un-pipelined Functional Units

 		
 Branch Unit & Branch Speculation

 		
 Load/Store Unit

 		
 Floating Point Units

 		
 Floating Point Divide and Square-root Unit

 		
 Parameterization

 		
 Control/Status Register Instructions

 		
 The Rocket Custom Co-Processor Interface (RoCC)

 		
 The Load/Store Unit (LSU)

 		
 Store Instructions

 		
 Store Micro-Ops

 		
 Load Instructions

 		
 The BOOM Memory Model

 		
 Ordering Loads to the Same Address

 		
 Memory Ordering Failures

 		
 The Memory System

 		
 Parameterization

 		
 General Parameters

 		
 Sample Configurations

 		
 Other Parameters

 		
 The BOOM Development Ecosystem

 		
 The BOOM Repository

 		
 Scala, Chisel, Generators, Configs, Oh My!

 		
 Recap on Coding in Scala/Chisel

 		
 Generating a BOOM System

 		
 Compilation and Elaboration

 		
 Quickly on Firrtl

 		
 Big Picture

 		
 More Resources

 		
 Debugging

 		
 FireSim Debugging

 		
 Chicken Bits

 		
 Micro-architectural Event Tracking

 		
 Setup HPM events to track

 		
 Reading HPM counters in software

 		
 Adding your own HPE

 		
 External Resources

 		
 Verification

 		
 RISC-V Tests

 		
 RISC-V Torture Tester

 		
 Continuous Integration (CI)

 		
 Physical Realization

 		
 Register Retiming

 		
 Pipelining Configuration Options

 		
 EnableFetchBufferFlowThrough

 		
 EnableBrResolutionRegister

 		
 Functional Unit Latencies

 		
 Future Work

 		
 The BOOM Custom Co-processor Interface (BOCC)

 		
 The Vector (“V”) ISA Extension

 		
 Frequently Asked Questions

 		
 Help! BOOM isn’t working

 		
 Master branch is broken! How do I get a working BOOM?

 		
 Terminology

_images/2bc-prediction.png
2b counter table

global history

[TITh
PC
I:I:I:D/ ‘\hysteresis

prediction

_images/abstract-functional-unit.png
req.valid

reg.uop.brmask

Op1 Data

Op2 Data
function code

req.ready

kill branch
(flush_pipeline) w resi(z]l;Jo’uon

4__

(val, pdst, data)

(val, pdst, data) v

[
[
[
|
[
[
|
(val, pdst, data) *
(val, pdst, data)

BYPASSES

FIFOIO

resp.valid

WB Data
resp.ready

Parameters
num_stages =4
is_var_latency = false
is_pipelined = true

shares_writeport= false

earliest_bypass_stage=1

is_branch_unit = true

_static/comment-bright.png

_images/tage.png
Table 1 ghist[L(1):0] Table 2 ghist[L(2):0] Table 3 ghist[L(3):0]

prediction!

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/plus.png

