
Test Documentation
Release test

Test

November 28, 2015

Contents

1 FEATURES 3

2 GETTING STARTED 5
2.1 USING THE NATIVE PORT WITH NETWORKING . 5

3 CONTRIBUTE 7

4 MAILING LISTS 9

5 LICENSE 11

6 CONTRIBUTE 13

7 Platform configurations for RIOT-OS 15

8 Mulle OpenOCD configuration files 17

9 Zolertia Re-Mote platform 19

10 Port Features 21

11 Requirements 23
11.1 Install a Toolchain . 23
11.2 Drivers . 23

12 More Reading 25

13 K60 tools 27
13.1 Watchdog disable . 27

14 Valgrind Support 29

15 Network Support 31

16 Setting Up A Tap Network 33

17 Daemonization 35

18 Compile Time Options 37

i

19 RIOT integration into IoT-LAB 39
19.1 Control IoT-LAB via Make . 39

20 About 41

21 Example usage 43

22 Default options 45

23 What to do about the findings 47

24 cmdline2xml.sh 49
24.1 Instrucions . 49

25 About 51

26 Usage 53

27 RIOT Sniffer Application 55
27.1 About . 55
27.2 Dependencies . 55
27.3 Usage . 55

28 Creating a SLIP network interface 59

29 Installation 61

30 Usage 63

31 USB to serial adapter tools 65
31.1 Usage . 65
31.2 Exit codes . 65
31.3 Makefile example usage . 65
31.4 Limitations . 66

32 Getting started {#getting-started} 67

33 Downloading RIOT code {#downloading-riot-code} 69

34 Compiling RIOT {#compiling-riot} 71
34.1 Setting up a toolchain {#setting-up-a-toolchain} . 71
34.2 The build system {#the-build-system} . 71
34.3 Building and executing an examples {#building-and-executing-and-example} 72

35 RIOT Documentation {#mainpage} 73

36 RIOT in a nutshell {#riot-in-a-nutshell} 75

37 Contribute to RIOT {#contribute-to-riot} 77

38 The quickest start {#the-quickest-start} 79

39 Structure {#structure} 81
39.1 core . 81
39.2 boards . 81
39.3 cpu . 82
39.4 drivers . 82

ii

39.5 sys . 82
39.6 sys/net . 82
39.7 pkg . 83
39.8 examples . 83
39.9 tests . 83
39.10 dist & doc . 83

40 examples/arduino_hello-world 85

41 Arduino and RIOT 87

42 Usage 89

43 Example output 91

44 examples/default 93

45 Usage 95

46 Example output 97

47 RIOT specific 99

48 Networking 101

49 gnrc_networking_border_router example 103
49.1 Requirements . 103
49.2 Configuration . 103

50 gnrc_networking example 105
50.1 Connecting RIOT native and the Linux host . 105

51 Hello World! 107

52 IPC Pingpong! 109

53 examples/posix_sockets 111

54 Usage 113

55 Example output 115

56 Using C++ and C in a program with RIOT 117
56.1 Makefile Options . 117

57 Creating a patch with git 119

58 OpenWSN on RIOT 121

59 Usage 123

60 About 125

61 Usage 127

62 About 129

63 Usage 131

iii

64 About 133

65 Usage 135

66 About 137

67 Usage 139

68 About 141

69 Usage 143

70 About 145

71 Usage 147

72 About 149

73 Usage 151

74 About 153

75 Usage 155

76 About 157

77 Usage 159

78 About 161

79 Usage 163

80 About 165

81 Usage 167

82 About 169

83 Usage 171

84 About 173

85 Usage 175

86 About 177

87 Usage 179

88 About 181

89 Usage 183

90 Test for nrf24l01p lowlevel functions 185
90.1 About . 185
90.2 Predefined pin mapping . 185
90.3 Usage . 185
90.4 Expected Results . 186

iv

91 Expected result 189

92 Background 191

93 About 193

94 Usage 195

95 About 197

96 Usage 199

97 About 201

98 Usage 203
98.1 Interrupt driven . 203
98.2 Polling Mode . 203

99 Background 205

100Expected result 207

101About 209

102Usage 211

103About 213

104Usage 215

105About 217

106Usage 219

107About 221

108Usage 223

109About 225

110Usage 227

111Expected result 229

112Background 231

113Expected result 233

114Background 235

115About 237

116Usage 239

117Expected result 241

118Background 243

119Expected result 245

v

120Background 247

121Expected result 249

122Background 251

123Expected result 253

124Background 255

125Expected result 257

126Background 259

127Expected result 261

128Background 263

129Unittests 265
129.1 Building and running tests . 265
129.2 Writing unit tests . 266

130Test warning on conflicting features 271

vi

Test Documentation, Release test

Markdown files:

ZZZZZZ
ZZZZZZZZZZZZ

ZZZZZZZZZZZZZZZZ
ZZZZZZZ ZZZZZZ

ZZZZZZ ZZZZZ
ZZZZZ ZZZZ
ZZZZ ZZZZZ
ZZZZ ZZZZ
ZZZZ ZZZZZ
ZZZZ ZZZZZZ
ZZZZ ZZZZZZZZ 777 7777 7777777777

ZZ ZZZZ ZZZZZZZZ 777 77777777 77777777777
ZZZZZZZ ZZZZ ZZZZZZZ 777 7777 7777 777

ZZZZZZZZZ ZZZZ Z 777 777 777 777
ZZZZZZ ZZZZ 777 777 777 777

ZZZZZ ZZZZ 777 777 777 777
ZZZZZ ZZZZZ ZZZZ 777 777 777 777
ZZZZ ZZZZZ ZZZZZ 777 777 777 777
ZZZZ ZZZZZ ZZZZZ 777 777 777 777
ZZZZ ZZZZ ZZZZZ 777 777 777 777
ZZZZZ ZZZZZ ZZZZZ 777 777 777 777
ZZZZZZ ZZZZZZ ZZZZZ 777 7777777777 777
ZZZZZZZZZZZZZZZ ZZZZ 777 77777777 777

ZZZZZZZZZZZ Z
ZZZZZ

The friendly Operating System for IoT!

Contents 1

Test Documentation, Release test

2 Contents

CHAPTER 1

FEATURES

RIOT OS is an operating system for Internet of Things (IoT) devices. It is based on a microkernel and designed for

• energy efficiency

• hardware independent development

• a high degree of modularity

Its features comprise

• a preemptive, tickless scheduler with priorities

• flexible memory management

• high resolution timers

• virtual, long-term timers

• the native port allows to run RIOT as-is on Linux, BSD, and MacOS. Multiple instances of RIOT running on a
single machine can also be interconnected via a simple virtual Ethernet bridge

• Wiselib support (C++ algorithm library, including routing, clustering, timesync, localization, security and more
algorithms)

• IPv6

• UDP

• 6LoWPAN

• NHDP

3

Test Documentation, Release test

4 Chapter 1. FEATURES

CHAPTER 2

GETTING STARTED

• You want to start the RIOT? Just follow our Getting started documentation

• The RIOT API itself can be built from the code using doxygen. The latest version is uploaded daily to http://riot-
os.org/api.

2.1 USING THE NATIVE PORT WITH NETWORKING

If you compile RIOT for the native cpu and include the nativenet module, you can specify a network interface like
this: PORT=tap0 make term

2.1.1 SETTING UP A TAP NETWORK

There is a shellscript in RIOT/dist/tools/tapsetup called tapsetup which you can use to create a network
of tap interfaces.

USAGE To create a bridge and two (or count at your option) tap interfaces:

./dist/tools/tapsetup/tapsetup [-c [<count>]]

5

https://github.com/RIOT-OS/RIOT/wiki/Introduction

Test Documentation, Release test

6 Chapter 2. GETTING STARTED

CHAPTER 3

CONTRIBUTE

To contribute something to RIOT, please refer to the development procedures and read all notes for best practice.

7

https://github.com/RIOT-OS/RIOT/wiki/Development-procedures

Test Documentation, Release test

8 Chapter 3. CONTRIBUTE

CHAPTER 4

MAILING LISTS

• RIOT OS kernel developers list

• devel@riot-os.org (http://lists.riot-os.org/mailman/listinfo/devel)

• RIOT OS users list

• users@riot-os.org (http://lists.riot-os.org/mailman/listinfo/users)

• RIOT commits

• commits@riot-os.org (http://lists.riot-os.org/mailman/listinfo/commits)

• Github notifications

• notifications@riot-os.org (http://lists.riot-os.org/mailman/listinfo/notifications)

9

Test Documentation, Release test

10 Chapter 4. MAILING LISTS

CHAPTER 5

LICENSE

• All sources and binaries that have been developed at Freie Universität Berlin are licensed under the GNU Lesser
General Public License version 2.1 as published by the Free Software Foundation.

• Some external sources, especially files developed by SICS are published under a separate license.

All code files contain licensing information.

For more information, see the RIOT website:

http://www.riot-os.org

11

Test Documentation, Release test

12 Chapter 5. LICENSE

CHAPTER 6

CONTRIBUTE

This is a short version of the Development Procedures.

1. Check if your code follows the coding conventions. If the code does not comply these style rules, your code will
not be merged.

2. The master branch should always be in a working state. The RIOT maintainers will create release tags based on
this branch, whenever a milestone is completed.

3. Comments on a pull request should be added to the request itself, and not to the commit.

4. Keep commits to the point, e.g., don’t add whitespace/typo fixes to other code changes. If changes are layered,
layer the patches.

5. Describe the technical detail of the change(s) as specific as possible.

6. Use Labels to help classify pull requests and issues.

13

https://github.com/RIOT-OS/RIOT/wiki/Development-procedures
https://github.com/RIOT-OS/RIOT/wiki/Coding-conventions
https://github.com/RIOT-OS/RIOT/wiki/Labels

Test Documentation, Release test

14 Chapter 6. CONTRIBUTE

CHAPTER 7

Platform configurations for RIOT-OS

This directory contains existing configuration and initialization files for platforms supported by RIOT-OS.

15

Test Documentation, Release test

16 Chapter 7. Platform configurations for RIOT-OS

CHAPTER 8

Mulle OpenOCD configuration files

The configuration file in this directory has been tested with OpenOCD v0.7.0. The interface used is ftdi, OpenOCD
must be built with –enable-ftdi

To start the OpenOCD GDB server:

openocd -f mulle.cfg

17

Test Documentation, Release test

18 Chapter 8. Mulle OpenOCD configuration files

CHAPTER 9

Zolertia Re-Mote platform

The Re-Mote platform is a IoT Hardware development platform based on TI’s CC2538 system on chip (SoC), featuring
an ARM Cortex-M3 with 512KB flash, 32Kb RAM, double RF interface, and the following goodies:

• ISM 2.4-GHz IEEE 802.15.4 & Zigbee compliant.

• ISM 868-, 915-, 920-, 950-MHz ISM/SRD Band.

• AES-128/256, SHA2 Hardware Encryption Engine.

• ECC-128/256, RSA Hardware Acceleration Engine for Secure Key Exchange.

• Power consumption down to 3uA using our shutdown mode.

• Co-Processor to allow peripheral management, programming over BSL without requiring to press any button to
enter bootloader mode.

• Built-in battery charger (500mA), Energy Harvesting and Solar Panels to be connected to standards LiPo bat-
teries.

• Power input with wide range 2-26VDC.

• Built-in TMP102 temperature sensor

• Small form-factor (as the Z1 mote, half the size of an Arduino) 57x35 mm.

19

Test Documentation, Release test

20 Chapter 9. Zolertia Re-Mote platform

CHAPTER 10

Port Features

In terms of hardware support, the following drivers have been implemented:

• CC2538 System-on-Chip:

– UART

– Random number generator

– Low Power Modes

– General-Purpose Timers.

– ADC

– LEDs

– Buttons

– Internal/external 2.4GHz antenna switch controllable by SW.

And under work or pending at cc2538 base cpu:

* RF 2.4GHz built-in in CC2538 (PR #2198)

* SPI/I2C library

* Built-in core temperature and battery sensor.

* TMP102 temperature sensor driver.

* CC1120 sub-1GHz radio interface.

* Micro-SD external storage.

* USB (in CDC-ACM).

* uDMA Controller.

21

Test Documentation, Release test

22 Chapter 10. Port Features

CHAPTER 11

Requirements

• Toolchain to compile RIOT for the CC2538

• Drivers to enable your host to communicate with the platform

• Built-in BSL programming over USB using cc2538-bsl (included)

11.1 Install a Toolchain

The toolchain used to build is arm-gcc, to check if it is currently installed run:

$ arm-none-eabi-gcc -v
Using built-in specs.
Target: arm-none-eabi
Configured with: /scratch/julian/lite-respin/eabi/src/gcc-4.3/configure
...
(skip)
...
Thread model: single
gcc version 4.3.2 (Sourcery G++ Lite 2008q3-66)

Else install from https://launchpad.net/gcc-arm-embedded

11.2 Drivers

The Re-Mote features a FTDI serial-to-USB module, the driver is commonly found in most OS, but if required it can
be downloaded from http://www.ftdichip.com/Drivers/VCP.htm

11.2.1 For the CC2538EM (USB CDC-ACM)

The Re-Mote has built-in support for USB 2.0 USB, Vendor and Product IDs are the following:

• VID 0x0451

• PID 0x16C8

On Linux and OS X this is straightforward, on windows you need to install the following driver:

https://github.com/alignan/lufa/blob/remote-zongle/LUFA/CodeTemplates/WindowsINF/LUFA%20CDC-ACM.inf

And replace the IDs accordingly.

23

https://launchpad.net/gcc-arm-embedded
http://www.ftdichip.com/Drivers/VCP.htm
https://github.com/alignan/lufa/blob/remote-zongle/LUFA/CodeTemplates/WindowsINF/LUFA%20CDC-ACM.inf

Test Documentation, Release test

11.2.2 Device Enumerations

For the UART, serial line settings are 115200 8N1, no flow control.

Once all drivers have been installed correctly:

On windows, devices will appear as a virtual COM port.

On Linux and OS X, devices will appear under /dev/.

On OS X:

• XDS backchannel: tty.usbserial-<serial number>

• EM in CDC-ACM: tty.usbmodemf<X><ABC> (X a letter, ABC a number e.g. tty.usbmodemfd121)

On Linux:

• Re-Mote over FTDI: ttyUSB1

• Re-Mote over USB driver (in CDC-ACM): ttyACMn (n=0, 1,)

24 Chapter 11. Requirements

CHAPTER 12

More Reading

1. Zolertia Re-Mote website

2. CC2538 System-on-Chip Solution for 2.4-GHz IEEE 802.15.4 and ZigBee applications (SWRU319B)

3. CC1120 sub-1GHz RF transceiver

25

http://www.zolertia.io/products
http://www.ti.com/product/cc2538
http://www.ti.com/cc1120

Test Documentation, Release test

26 Chapter 12. More Reading

CHAPTER 13

K60 tools

This directory contains tools for working with K60 CPUs.

13.1 Watchdog disable

wdog-disable.bin is a location-independent watchdog disable function with a breakpoint instruction at the end. Useful
for disabling the watchdog directly from OpenOCD.

Usage:

openocd -c `reset halt' \
-c `load_image wdog-disable.bin 0x20000000 bin' \
-c `resume 0x20000000' # watchdog is disabled and core halted

27

Test Documentation, Release test

28 Chapter 13. K60 tools

CHAPTER 14

Valgrind Support

Rebuild your application using the all-valgrind target like this:

make -B clean all-valgrind

That way native will tell Valgrind about RIOT’s stacks and prevent Valgrind from reporting lots of false positives. The
debug information flag -g is not strictly necessary, but passing it allows Valgrind to tell you precisely which code
triggered the error.

To run your application run:

make term-valgrind

All this does is run your application under Valgrind. Now Valgrind will print some information whenever it detects an
invalid memory access.

In order to debug the program when this occurs you can pass the –db-attach parameter to Valgrind. E.g:

valgrind --db-attach=yes ./bin/native/default.elf tap0

Now, you will be asked whether you would like to attach the running process to gdb whenever a problem occurs.

In order for this to work under Linux 3.4 or newer, you might need to disable the ptrace access restrictions: As root
call:

echo 0 > /proc/sys/kernel/yama/ptrace_scope

29

Test Documentation, Release test

30 Chapter 14. Valgrind Support

CHAPTER 15

Network Support

If you compile RIOT for the native cpu and include the native_netmodule, you need to specify a network interface
like this:

make term PORT=tap0

31

Test Documentation, Release test

32 Chapter 15. Network Support

CHAPTER 16

Setting Up A Tap Network

There is a shellscript in RIOT/dist/tools/tapsetup called tapsetup which you can use to create a network of tap
interfaces.

Usage: To create a bridge and two (or count at your option) tap interfaces:

../../dist/tools/tapsetup/tapsetup [-c [<count>]]

On OSX you need to start the RIOT instance at some point during the script’s execution. The script will instruct you
when to do that.

To delete the bridge and all tap interfaces:

../../dist/tools/tapsetup/tapsetup -d

For OSX you have to run this after killing your RIOT instance and rerun ../../dist/tools/tapsetup [-c
[<count>]] before restarting.

33

Test Documentation, Release test

34 Chapter 16. Setting Up A Tap Network

CHAPTER 17

Daemonization

You can daemonize a riot process. This is useful for larger networks. Valgrind will fork along with the riot process
and dump its output in the terminal.

Usage:

./bin/native/default.elf -d

35

Test Documentation, Release test

36 Chapter 17. Daemonization

CHAPTER 18

Compile Time Options

Compile with

CFLAGS=-DNATIVE_AUTO_EXIT make

to exit the riot core after the last thread has exited.

37

Test Documentation, Release test

38 Chapter 18. Compile Time Options

CHAPTER 19

RIOT integration into IoT-LAB

Check the Wiki to see how to build and run RIOT on FIT IoT-LAB: https://github.com/iot-lab/iot-lab/wiki/Riot-support

19.1 Control IoT-LAB via Make

19.1.1 Requirements

This feature requires to have a valid account for the FIT IoT-LAB (registration there is open for everyone) and the
iot-lab/cli-tools to be installed.

19.1.2 Description

The folder dist/testbed-support/ contains a Makefile.iotlab that defines some targets to control RIOT
experiments on IoT-LAB using the GNU Make build system. In order to use this, one has to include this Makefile at
the end of the application’s Makefile, like this:

include $(RIOTBASE)/dist/testbed-support/Makefile.iotlab

19.1.3 Variables

This Makefile introduces some additional variables (default values in brackets):

• IOTLAB_NODES (5)

• IOTLAB_DURATION (30 minutes)

• IOTLAB_SITE (grenoble.iot-lab.info)

• IOTLAB_TYPE (m3:at86rf231)

• IOTLAB_AUTH ($HOME/.iotlabrc)

• IOTLAB_USER (taken from $IOTLAB_AUTH)

• IOTLAB_EXP_ID (taken from first experiment in running state)

• IOTLAB_EXP_NAME (RIOT_EXP)

• IOTLAB_PHY_NODES

• IOTLAB_EXCLUDE_NODES

39

https://github.com/iot-lab/cli-tools

Test Documentation, Release test

19.1.4 Format of a Resource ID

Both variables IOTLAB_PHY_NODES and IOTLAB_EXCLUDE_NODES use the resource id string format as specified
in the output of experiment-cli submit --help. An example would be: 1-3+7+10-13

19.1.5 Targets

It defines the following targets:

• iotlab-exp

• iotlab-flash

• iotlab-reset

• iotlab-term

Please note: All targets that require an already running experiment will use the first experiment of the user that has
already entered state “Running” if IOTLAB_EXP_ID is not set.

iotlab-exp

This schedules a new experiment on the FIT IoT-LAB and waits until it enters “Running” state. It will request
IOTLAB_NODES nodes of type IOTLAB_TYPE for IOTLAB_DURATION minutes at site IOTLAB_SITE. With
IOTLAB_PHY_NODES it is possible to choose specific nodes for this experiment by using the resource id string
format as described above. Note that the usage of IOTLAB_PHY_NODES ignores IOTLAB_NODES. It will also flash
the binary of the current application to all registered nodes. The name of the experiment is set to “RIOT_EXP” or
“RIOT_EXP_$(IOTLAB_EXP_NAME)” if IOTLAB_EXP_NAME is defined.

iotlab-flash

This target updates the application on all registered nodes of the given experiment to the current version of the applica-
tion. Certain nodes can be excluded by listing them in the IOTLAB_EXCLUDE_NODES variable using the resource id
string format as described above. If you do not use the default site, then you must specify the site with IOTLAB_SITE.

iotlab-reset

This target resets all registered nodes of the given experiment. Certain nodes can be excluded by listing them in the
IOTLAB_EXCLUDE_NODES variable using the resource id string format as described above. If you do not use the
default site, then you must specify the site with IOTLAB_SITE.

iotlab-term

Uses ssh to login the user on the IoT-LAB server of the specified site and start the serial_aggregator to com-
munication with all registered nodes.

40 Chapter 19. RIOT integration into IoT-LAB

CHAPTER 20

About

This is a cppcheck wrapper script with appropriate parameters for checking RIOT. It accepts a branch name as an
argument which is used to limit the scope of the check. Other parameters will be passed to cppcheck, so you can
further modify its behavior.

41

Test Documentation, Release test

42 Chapter 20. About

CHAPTER 21

Example usage

Check all files changed in the current branch against the branch named ‘master’:

./dist/tools/cppcheck/check.sh master

Check all files but ignore warnings about unused struct members:

./dist/tools/cppcheck/check.sh --suppress=unassignedVariable

Check all files changed in the current branch against the branch named ‘master’, ignoring warnings about unassigned
variables:

./dist/tools/cppcheck/check.sh master --suppress=unassignedVariable

43

Test Documentation, Release test

44 Chapter 21. Example usage

CHAPTER 22

Default options

This script suppresses warnings of the type “unusedStructMember” by default. If you want to get warnings about
“unusedStructMembers” run the script with the –show-unused-struct option: ./dist/tools/cppcheck/check.sh –show-
unused-struct [BRANCH] [options to be passed]

45

Test Documentation, Release test

46 Chapter 22. Default options

CHAPTER 23

What to do about the findings

You should read the code carefully. While cppcheck certainly produces valuable information, it can also warn about
code that is actually OK. If this happens, you can add an “inline suppression” like this:

/* cppcheck-suppress passedByValue */
timex_t timex_add(const timex_t a, const timex_t b);

47

Test Documentation, Release test

48 Chapter 23. What to do about the findings

CHAPTER 24

cmdline2xml.sh

Export all command line include paths and macro definitions to an XML file suitable for import in Eclipse CDT.

24.1 Instrucions

The Eclipse project must be located at “/RIOT” inside your Eclipse workspace, otherwise change cmdline2xml.sh
accordingly (ECLIPSE_PROJECT_NAME=RIOT).

In the shell:

cd to application directory (e.g. examples/hello-world)
make eclipsesym

In Eclipse:

1. Open the project properties, menu Project->Properties

2. Select C/C++ General->Paths and Symbols

3. (optional) Click Restore Defaults to delete any existing macros and include paths

4. Click Import Settings...

5. Select eclipsesym.xml in your application directory and press Finish

6. Rebuild C/C++ index, menu Project->C/C++ Index->Rebuild

All conditional compilation and all include paths should now resolve properly for your application.

The file eclipsesym.xml is specific to the application being built and may differ depending on what modules are
enabled and which platform is being built. Make sure that everything is set up properly in your shell and that regular
make all works before running make eclipsesym

49

Test Documentation, Release test

50 Chapter 24. cmdline2xml.sh

CHAPTER 25

About

This script checks if a Pull Request needs squashing or if it is waiting for another Pull Request.

51

Test Documentation, Release test

52 Chapter 25. About

CHAPTER 26

Usage

./pr_check.sh [<master branch>]

The optional <master branch> parameter refers to the branch the pull request’s branch branched from. The script
will output all commits marked as squashable from HEAD to the merge-base with <master branch>. The default
for <master branch> is master.

A commit is marked as squashable if it contains the keywords SQUASH or FIX (case insensitive) within the first five
characters of it’s subject title.

53

Test Documentation, Release test

54 Chapter 26. Usage

CHAPTER 27

RIOT Sniffer Application

27.1 About

This sniffer script can be used to sniff network traffic using RIOT based nodes. It is primarily designed for sniffing
wireless data traffic, but can also well be used for wired network traffic, as long as the used network devices support
promiscuous mode and output of raw data.

The sniffer is based on a RIOT node running the sniffer application application located in RIOTs application repository.
This node outputs received network traffic via a serial port or a network socket in the Wireshark pcap format. This
output is then parsed by the sniffer.py script included in this folder run on a host computer.

The sniffer.py script is a modified version of malvira’s script for the Redbee Ecotag
(https://github.com/malvira/libmc1322x/wiki/wireshark).

27.2 Dependencies

The sniffer.py script needs pyserial.

Installing the dependencies:

27.2.1 Debuntu

apt-get install python-serial

27.2.2 PIP

pip install pyserial

27.3 Usage

General usage:

1. Flash an applicable RIOT node with the sniffer application from (https://github.com/RIOT-
OS/applications/tree/master/sniffer)

2. Run the sniffer.py script For serial port:

55

https://github.com/RIOT-OS/applications/tree/master/sniffer
https://github.com/RIOT-OS/applications
https://github.com/malvira/libmc1322x/blob/master/tools/rftestrx2pcap.py
https://pypi.python.org/pypi/pyserial

Test Documentation, Release test

$./sniffer.py serial <tty> <baudrate> <channel> [outfile]

For network socket:

$./sniffer.py socket <host> <port> <channel> [outfile]

The script has the following parameters:

• connType: The type of connection to use. Either serial for serial ports or socket for network sockets.

• host: The host if the socket connection type is in use.

• port: The port of the host if the socket connection type is in use.

• tty: The serial port the RIOT board is connected to. Under Linux, this is typically something like /dev/ttyUSB0
or /dev/ttyACM0. Under Windows, this is typically something like COM0 or COM1. This option is used for
the serial connection type.

• baudrate: The baudrate the serial port is configured to. The default in RIOT is 115200, though this is defined
per board and some boards have some other value defined per default. NOTE: when sniffing networks where
the on-air bitrate is > baudrate, it makes sense to increase the baudrate so no data is skipped when sniffing. This
option is used for the serial connection type.

• channel: The radio channel to use when sniffing. Possible values vary and depend on the link-layer that is
sniffed. This parameter is ignored when sniffing wired networks.

• [outfile]: When this parameter is specified, the sniffer output is saved into this file. See the examples below for
alternatives to specifying this parameter. (optional)

27.3.1 Examples

The following examples are made when using the sniffer application together with an iotlab-m3 node that is
connected to /dev/ttyUSB1 (or COM1) (serial connection type) and runs per default with a baudrate of 500000.
For the socket connection type port 20000 is used.

Linux (serial)

Dump packets to a file:

$./sniffer.py serial /dev/ttyUSB1 500000 17 > foo.pcap

This .pcap can then be opened in wireshark.

Alternatively for live captures, you can pipe directly into wireshark with:

$./sniffer.py serial /dev/ttyUSB1 500000 17 | wireshark -k -i -

Windows (serial)

For windows you can use the optional third argument to output to a .pcap:

$./sniffer.py serial COM1 500000 17 foo.pcap

IoT-Lab Testbed (socket)

Start an experiment either via the website provided by the IoT-Lab testbed or by using the RIOT specific iotlab
Makefile with 3 neighboring iotlab-m3 nodes, where one of them runs the sniffer application and the others run
the gnrc_networking application.

56 Chapter 27. RIOT Sniffer Application

Test Documentation, Release test

Now you can bind the sniffer node to localhost: ssh -L 20000:node-id:20000 user@site.iot-lab.info

Then you can dump or observe the traffic generated by the other nodes running the gnrc_networking application
via one of the following commands:

$./sniffer.py socket localhost 20000 26 > foo.pcap
$./sniffer.py socket localhost 20000 26 | wireshark -k -i -

27.3. Usage 57

Test Documentation, Release test

58 Chapter 27. RIOT Sniffer Application

CHAPTER 28

Creating a SLIP network interface

The module gnrc_slip (Serial line IP) enables the RIOT network stack to communicate IP packets over the serial
interface. This collection of tools originally from Contiki [1] enables Linux to interpret this data. Though there is a
tool for such operations on Linux (slattach) it is only able to handle IPv4 packages and is unnessarily complicated.

59

Test Documentation, Release test

60 Chapter 28. Creating a SLIP network interface

CHAPTER 29

Installation

Just install them using

make
sudo make install

By default they are installed to the /usr/local/bin directory, you can however change that by setting the PREFIX
environment variable

export PREFIX=${HOME}/.local
make
sudo make install

61

Test Documentation, Release test

62 Chapter 29. Installation

CHAPTER 30

Usage

tapslip6 allows you to open a TAP interface (includes link-layer data) for a serial interace handling IPv6 data,
tunslip allows you to open a TUN interface (includes only network-layer data) for a serial interace handling IPv4
data, and tunslip6 allows you to open a TUN interface (includes only network-layer data) for a serial interace
handling IPv6 data.

For more information use the help feature of the tools

tapslip -h
tunslip -h
tunslip6 -h

[1] https://github.com/contiki-os/contiki/tree/a4206273a5a491949f9e565e343f31908173c998/tools

63

Test Documentation, Release test

64 Chapter 30. Usage

CHAPTER 31

USB to serial adapter tools

Tools for finding connected USB to serial adapter devices.

31.1 Usage

./list-ttys.sh

List all currently connected USB to serial adapters by searching through /sys/bus/usb/devices/.

./find-tty.sh [serial_regex1] [serial_regex2] ... [serial_regexZ]

Write to stdout the first tty connected to the chosen programmer. serial_regexN are extended regular expres-
sions (as understood by egrep) containing a pattern matched against the USB device serial number. Each of the given
expressions are tested, against each serial number until a match has been found.

In order to search for an exact match against the device serial, use ‘^serialnumber$’ as the pattern. If no pattern is given,
find-tty.sh returns the first found USB tty (in an arbitrary order, this is not guaranteed to be the /dev/ttyUSBX
with the lowest number).

Serial strings from all connected USB ttys can be found from the list generated by list-ttys.sh.

31.2 Exit codes

find-tty.sh returns 0 if a match is found, 1 otherwise.

31.3 Makefile example usage

The script find-tty.sh is designed for use from within a board Makefile.include. An example section is
shown below (for an OpenOCD based solution):

Add serial matching command
ifneq ($(PROGRAMMER_SERIAL),)

OOCD_BOARD_FLAGS += -c `ftdi_serial $(PROGRAMMER_SERIAL)'

ifeq ($(PORT),)
try to find tty name by serial number, only works on Linux currently.
ifeq ($(OS),Linux)

PORT := $(shell $(RIOTBASE)/dist/tools/usb-serial/find-tty.sh ``^$(PROGRAMMER_SERIAL)$$'')

65

Test Documentation, Release test

endif
endif

endif

Fallback PORT if no serial was specified or if the specified serial was not found
ifeq ($(PORT),)

ifeq ($(OS),Linux)
PORT := $(shell $(RIOTBASE)/dist/tools/usb-serial/find-tty.sh)

else ifeq ($(OS),Darwin)
PORT := $(shell ls -1 /dev/tty.SLAB_USBtoUART* | head -n 1)

endif
endif

TODO: add support for windows as host platform
ifeq ($(PORT),)

$(info CAUTION: No terminal port for your host system found!)
endif
export PORT

31.4 Limitations

Only tested on Linux, and probably only works on Linux.

66 Chapter 31. USB to serial adapter tools

CHAPTER 32

Getting started {#getting-started}

[TOC]

67

Test Documentation, Release test

68 Chapter 32. Getting started {#getting-started}

CHAPTER 33

Downloading RIOT code {#downloading-riot-code}

You can obtain the latest RIOT code from our Github repository either by downloading the latest tarball or by cloning
the git repository.

In order to clone the RIOT repository, you need the Git revision control system and run the following command:

git clone git://github.com/RIOT-OS/RIOT.git

69

https://github.com/RIOT-OS/
https://github.com/RIOT-OS/RIOT/releases
https://github.com/RIOT-OS/RIOT
http://git-scm.com/

Test Documentation, Release test

70 Chapter 33. Downloading RIOT code {#downloading-riot-code}

CHAPTER 34

Compiling RIOT {#compiling-riot}

34.1 Setting up a toolchain {#setting-up-a-toolchain}

Depending on the hardware you want to use, you need to first install a corresponding toolchain. The Wiki on RIOT’s
Github page contains a lot of information that can help you with your platform:

• ARM-based platforms

• TI MSP430

• Atmel ATmega

• native

34.2 The build system {#the-build-system}

RIOT uses GNU make as build system. The simplest way to compile and link an application with RIOT, is to set up a
Makefile providing at least the following variables:

• APPLICATION: should contain the (unique) name of your application

• BOARD: specifies the platform the application should be build for by default

• RIOTBASE: specifies the path to your copy of the RIOT repository (note, that you may want to use $(CURDIR)
here, to give a relative path)

Additionally it has to include the Makefile.include, located in RIOT’s root directory:

a minimal application Makefile
APPLICATION = mini-makefile
BOARD ?= native
RIOTBASE ?= $(CURDIR)/../RIOT

include $(RIOTBASE)/Makefile.include

You can use Make’s ?= operator in order to allow overwriting variables from the command line. For example, you
can easily specify the target platform, using the sample Makefile, by invoking make like this:

make BOARD=iotlab-m3

Besides typical targets like clean, all, or doc, RIOT provides the special targets flash and term to invoke the
configured flashing and terminal tools for the specified platform. These targets use the variable PORT for the serial
communication to the device. Neither this variable nor the targets flash and term are mandatory for the native port.

71

https://github.com/RIOT-OS/RIOT/wiki/Family:-ARM
https://github.com/RIOT-OS/RIOT/wiki/Family:-MSP430
https://github.com/RIOT-OS/RIOT/wiki/Family%3A-ATmega
https://github.com/RIOT-OS/RIOT/wiki/Family:-native
https://www.gnu.org/software/make/

Test Documentation, Release test

For the native port, PORT has a special meaning: it is used to identify the tap interface if the netdev2_tapmodule is
used. The target debug can be used to invoke a debugger on some platforms. For the native port the additional targets
such as all-valgrind and valgrind exist. Refer to cpu/native/README.md for additional information

Some RIOT directories contain special Makefiles like Makefile.base, Makefile.include or
Makefile.dep. The first one can be included into other Makefiles to define some standard targets. The
files called Makefile.include are used in boards and cpu to append target specific information to variables
like INCLUDES, setting the include paths. Makefile.dep serves to define dependencies.

Unless specified otherwise, make will create an elf-file as well as an Intel hex file in the bin folder of your application
directory.

Learn more about the build system in the Wiki

34.3 Building and executing an examples {#building-and-executing-
and-example}

RIOT provides a number of examples in the examples/ directory. Every example has a README that documents
its usage and its purpose. You can build them by typing

make BOARD=samr21-xpro

or

make all BOARD=samr21-xpro

into your shell.

To flash the application to a board just type

make flash BOARD=samr21-xpro

You can then access the board via the serial interface:

make term BOARD=samr21-xpro

If you are using multiple boards you can use the PORT macro to specify the serial interface:

make term BOARD=samr21-xpro PORT=/dev/ttyACM1

Note that the PORT macro has a slightly different semantic in native. Here it is used to provide the name of the
TAP interface you want to use for the virtualized networking capabilities of RIOT.

We use pyterm as the default terminal application. It is shipped with RIOT in the dist/tools/pyterm/ di-
rectory. If you choose to use another terminal program you can set TERMPROG (and if need be the TERMFLAGS)
macros:

make -C examples/gnrc_networking/ term \
BOARD=samr21-xpro \
TERMPROG=gtkterm \
TERMFLAGS=''-s 115200 -p /dev/ttyACM0 -e''

72 Chapter 34. Compiling RIOT {#compiling-riot}

https://github.com/RIOT-OS/RIOT/wiki/The-Make-Build-System

CHAPTER 35

RIOT Documentation {#mainpage}

[TOC]

73

Test Documentation, Release test

74 Chapter 35. RIOT Documentation {#mainpage}

CHAPTER 36

RIOT in a nutshell {#riot-in-a-nutshell}

RIOT is an open-source microkernel-based operating system, designed to match the requirements of Internet of Things
(IoT) devices and other embedded devices. These requirements include a very low memory footprint (on the order
of a few kilobytes), high energy efficiency, real-time capabilities, communication stacks for both wireless and wired
networks, and support for a wide range of low-power hardware.

RIOT provides a microkernel, multiple network stacks, and utilities which include cryptographic libraries, data struc-
tures (bloom filters, hash tables, priority queues), a shell and more. RIOT supports a wide range of microcontroller
architectures, radio drivers, sensors, and configurations for entire platforms, e.g. Atmel SAM R21 Xplained Pro, Zol-
ertia Z1, STM32 Discovery Boards etc. (see the list of supported hardware. Across all supported hardware (32-bit,
16-bit, and 8-bit platforms). RIOT provides a consistent API and enables ANSI C and C++ application programming,
with multithreading, IPC, system timers, mutexes etc.

75

https://github.com/RIOT-OS/RIOT/wiki/RIOT-Platforms

Test Documentation, Release test

76 Chapter 36. RIOT in a nutshell {#riot-in-a-nutshell}

CHAPTER 37

Contribute to RIOT {#contribute-to-riot}

RIOT is developed by an open community that anyone is welcome to join:

• Download and contribute your code on GitHub. You can read about how to contribute in our GitHub Wiki.

• Subscribe to users@riot-os.org to ask for help using RIOT or writing an application for RIOT (or to just stay in
the loop). A searchable archive of this list is available at the RIOT user Gmane newsgroup

• [Subscribe]((http://lists.riot-os.org/mailman/listinfo/devel) to devel@riot-os.org to follow and discuss kernel
and network stack developement, or hardware support. A searchable archive of this list is available at the
RIOT devel Gmane newsgroup

• Follow us on Twitter for news from the RIOT community.

• Contact us on IRC for live support and discussions: irc.freenode.org #riot-os

77

https://github.com/RIOT-OS/RIOT
https://github.com/RIOT-OS/RIOT/wiki/Contributing-to-RIOT
http://lists.riot-os.org/mailman/listinfo/users
http://news.gmane.org/gmane.os.riot.user
http://news.gmane.org/gmane.os.riot.devel
https://twitter.com/RIOT_OS

Test Documentation, Release test

78 Chapter 37. Contribute to RIOT {#contribute-to-riot}

CHAPTER 38

The quickest start {#the-quickest-start}

You can run RIOT on most IoT devices, on open-access testbed hardware (e.g. IoT-lab), and also directly as a process
on your Linux/FreeBSD/OSX machine (we call this the native port). Try it right now in your terminal window:

git clone git://github.com/RIOT-OS/RIOT.git # assumption: git is pre-installed
git checkout <LATEST_RELEASE>
cd RIOT
./dist/tools/tapsetup/tapsetup # create virtual Ethernet

interfaces to connect to RIOT
cd examples/default/
make all
make term

... and you are in the RIOT shell! Type help to discover available commands. For further information see the
README of the default example.

To use RIOT directly on your embedded platform, and for more hands-on details with RIOT, see @ref getting-started.

Before that, skimming through the next section is recommended (but not mandatory).

79

https://github.com/RIOT-OS/RIOT/tree/

Test Documentation, Release test

80 Chapter 38. The quickest start {#the-quickest-start}

CHAPTER 39

Structure {#structure}

This section walks you through RIOT’s structure. Once you understand this structure, you will easily find your way
around in RIOT’s code base.

RIOT’s code base is structured into five groups.

• The kernel (core)

• Platform specific code (cpu; boards)

• Device drivers (drivers)

• Libraries and network code (sys; pkg)

• Applications for demonstrating features and for testing (examples; tests)

In addition RIOT includes a collection of scripts for various tasks (dist) as well as a predefined environment for
generating this documentation (doc).

The structural groups are projected onto the directory structure of RIOT, where each of these groups resides in one or
two directories in the main RIOT directory.

The following list gives a more detailed description of each of RIOT’s top-level directories:

39.1 core

This directory contains the actual kernel. The kernel consists of the scheduler, inter-process-communication (messag-
ing), threading, thread synchronization, and supporting data-structures and type definitions.

See @ref core for further information and API documentations.

39.2 boards

The platform dependent code is split into two logic elements: CPUs and boards, while maintaining a strict 1-to-n
relationship, a board has exactly one CPU, while a CPU can be part of n boards. The CPU part contains all generic,
CPU specific code (see below).

The board part contains the specific configuration for the CPU it contains. This configuration mainly includes the
peripheral configuration and pin-mapping, the configuration of on-board devices, and the CPU’s clock configuration.

On top of the source and header files needed for each board, this directory additionally may include some script
and configuration files needed for interfacing with the board. These are typically custom flash/debug scripts or e.g.
OpenOCD configuration files. For most boards, these files are located in a dist sub-directory of the board.

81

Test Documentation, Release test

See here @ref boards for further information.

39.3 cpu

For each supported CPU this directory contains a sub-directory with the name of the CPU. These directories then
contain all CPU specific configurations, such as implementations of power management (LPM), interrupt handling
and vectors, startup code, clock initialization code and thread handling (e.g. context switching) code. For most CPUs
you will also find the linker scripts in the ldscripts sub-directory.

In the periph sub-directory of each CPU you can find the implementations of the CPU’s peripheral drivers like SPI,
UART, GPIO, etc. See @ref drivers_periph for their API documentation.

Many CPUs share a certain amount of their code (e.g. all ARM Cortex-M based CPUs share the same code for task
switching and interrupt handling). This shared code is put in its own directories, following a xxxxx_common naming
scheme. Examples for this is code shared across architectures (e.g. cortexm_common, msp430_comon) or code
shared among vendors (e.g. kinetis_common).

See @ref cpu for more detailed informtation.

39.4 drivers

This directory contains the drivers for external devices such as network interfaces, sensors and actuators. Each device
driver is put into its own sub-directory with the name of that device.

All of RIOT’s device drivers are based on the peripheral driver API (e.g. SPI, GPIO, etc.) and other RIOT modules
like the xtimer. This way the drivers are completely platform agnostic and they don’t have any dependencies into
the CPU and board code.

See @ref drivers for more details.

39.5 sys

RIOT follows the micro-kernel design paradigm where everything is supposed to be a module. All of these modules
that are not part of the hardware abstraction nor device drivers can be found in this directory. The libraries include
data structures (e.g. bloom, color), crypto libraries (e.g. hashes, AES) , high-level APIs (e.g. Posix implementations),
memory management (e.g. malloc), the RIOT shell and many more.

See @ref sys for a complete list of available libraries

39.6 sys/net

The sys/net sub-directory needs to be explicitly mentioned, as this is where all the networking code in RIOT
resides. Here you can find the network stack implementations (e.g. the GNRC stack) as well as network stack agnostic
code as header definitions or network types.

See @ref net for more details on networking code.

82 Chapter 39. Structure {#structure}

Test Documentation, Release test

39.7 pkg

RIOT comes with support for a number of external libraries (e.g. OpenWSN, microcoap). The way they are included
is that RIOT ships with a custom Makefile for each supported library that downloads the library and optionally applies
a number of patches to make it work with RIOT. These Makefiles and patches can be found in the pkg directory.

See @ref pkg for a detailed description on how this works.

39.8 examples

Here you find a number of example applications that demonstrate certain features of RIOT. The default example found
in this directory is a good starting point for anyone who is new to RIOT.

For more information best browse that directory and have a look at the README.md files that ship with each example.

39.9 tests

Many features/modules in RIOT come with their own test application, which are located in this directory. In contrary
to the examples these tests are mostly focusing on a single aspect than on a set of features. Despite for testing, you
might consider these tests also for insights on understanding RIOT.

39.10 dist & doc

All the tooling around RIOT can be found in these two folders.

doc contains the doxygen configuration and also contains the compiled doxygen output after running make doc.

Lastly, the dist directory contains tools to help you with RIOT. These include the serial terminal application
pyterm, generic scripts for flashing, debugging, reseting (e.g. support for OpenOCD, Jlink), as well as code en-
abling easy integration to open testbeds such as the IoT-LAB. Furthermore you can find here scripts to do all kind of
code and style checks.

Idea for this section: just name each of RIOT’s main features/concepts and link to an appropriate page with further in-
formation: - Create an application - Networking - The main() function - Make system - Include modules - Threading
- Choose the right stack size - IPC - Auto initialization –>

Examples:

39.7. pkg 83

http://www.openwsn.org/
https://github.com/1248/microcoap
http://openocd.org/
https://www.segger.com/jlink_base.html
https://www.iot-lab.info/

Test Documentation, Release test

84 Chapter 39. Structure {#structure}

CHAPTER 40

examples/arduino_hello-world

This application demonstrates the usage of Arduino sketches in RIOT.

The sketch itself is fairly simple. On startup, it initializes the LED pin to output mode, starts the serial port with a
baudrate of 115200 and prints “Hello Arduino!” on the serial port. When running, the application echoes any newline
terminated string that was received on the serial port, while toggling the default LED with a 1Hz frequency.

The sketch just uses some very primitive Arduino API elements for demonstration purposes:

• control of digital pins (pinMode(), digital read and write)

• the delay() function

• reading and writing the serial port using the Serial class

85

Test Documentation, Release test

86 Chapter 40. examples/arduino_hello-world

CHAPTER 41

Arduino and RIOT

For information on the Arduino support in RIOT please refer to the API documentation at http://doc.riot-
os.org/group__sys__arduino.html

87

Test Documentation, Release test

88 Chapter 41. Arduino and RIOT

CHAPTER 42

Usage

Just send any newline terminated string to the board’s serial port, and the board will echo this string.

89

Test Documentation, Release test

90 Chapter 42. Usage

CHAPTER 43

Example output

When using pyterm, the output will look similar to this:

2015-11-26 14:04:58,307 - INFO # main(): This is RIOT! (Version: xxx)
2015-11-26 14:04:58,308 - INFO # Hello Arduino!
hello again
2015-11-26 14:06:29,800 - INFO # Echo: hello again
are you still there?
2015-11-26 14:06:48,301 - INFO # Echo: are you still there?

If your board is equipped with an on-board LED, you should see this LED toggling every half a second.

NOTE: if your board’s STDIO baudrate is not configured to be 115200 (see your board’s board.h), the first line of
the output may not be shown or scrambled.

91

Test Documentation, Release test

92 Chapter 43. Example output

CHAPTER 44

examples/default

This application is a showcase for RIOT’s hardware support. Using it for your board, you should be able to interactively
use any hardware that is supported.

To do this, the application uses the shell and shell_commands modules and all the driver modules each board
supports.

shell is a very simple interactive command interpreter that can be used to call functions. Many of RIOT’s modules
define some generic shell commands. These are included via the shell_commands module.

Additionally, the ps module which provides the ps shell command is included.

93

Test Documentation, Release test

94 Chapter 44. examples/default

CHAPTER 45

Usage

Build, flash and start the application:

export BOARD=your_board
make
make flash
make term

The term make target starts a terminal emulator for your board. It connects to a default port so you can interact with
the shell, usually that is /dev/ttyUSB0. If your port is named differently, the PORT=/dev/yourport variable
can be used to override this.

95

Test Documentation, Release test

96 Chapter 45. Usage

CHAPTER 46

Example output

The shell commands come with online help. Call help to see which commands exist and what they do.

Running the help command on an iotlab-m3:

2015-09-16 16:57:17,723 - INFO # help
2015-09-16 16:57:17,725 - INFO # Command Description
2015-09-16 16:57:17,726 - INFO # ---------------------------------------
2015-09-16 16:57:17,727 - INFO # reboot Reboot the node
2015-09-16 16:57:17,729 - INFO # ps Prints information about running threads.
2015-09-16 16:57:17,731 - INFO # isl29020_init Initializes the isl29020 sensor driver.
2015-09-16 16:57:17,733 - INFO # isl29020_read Prints data from the isl29020 sensor.
2015-09-16 16:57:17,735 - INFO # lps331ap_init Initializes the lps331ap sensor driver.
2015-09-16 16:57:17,737 - INFO # lps331ap_read Prints data from the lps331ap sensor.
2015-09-16 16:57:17,739 - INFO # l3g4200d_init Initializes the l3g4200d sensor driver.
2015-09-16 16:57:17,740 - INFO # l3g4200d_read Prints data from the l3g4200d sensor.
2015-09-16 16:57:17,742 - INFO # lsm303dlhc_init Initializes the lsm303dlhc sensor driver.
2015-09-16 16:57:17,744 - INFO # lsm303dlhc_read Prints data from the lsm303dlhc sensor.
2015-09-16 16:57:17,746 - INFO # ifconfig Configure network interfaces
2015-09-16 16:57:17,747 - INFO # txtsnd send raw data

Running the ps command on an iotlab-m3:

2015-09-16 16:57:57,634 - INFO # ps
2015-09-16 16:57:57,637 - INFO # pid | name | state Q | pri | stack (used) | location
2015-09-16 16:57:57,640 - INFO # 1 | idle | pending Q | 15 | 256 (140) | 0x20000200
2015-09-16 16:57:57,642 - INFO # 2 | main | pending Q | 7 | 1536 (640) | 0x20000300
2015-09-16 16:57:57,645 - INFO # 3 | pktdump | bl rx _ | 6 | 1536 (544) | 0x200025e0
2015-09-16 16:57:57,647 - INFO # 4 | at86rfxx | bl rx _ | 3 | 1024 (360) | 0x2000099c
2015-09-16 16:57:57,649 - INFO # | SUM | | | 4352 (1684)

97

Test Documentation, Release test

98 Chapter 46. Example output

CHAPTER 47

RIOT specific

The ps command is used to analyze the thread’s state and memory status.

99

Test Documentation, Release test

100 Chapter 47. RIOT specific

CHAPTER 48

Networking

The ifconfig command will help you to configure all available network interfaces. On an iolab-m3 it will print
something like:

2015-09-16 16:58:37,762 - INFO # ifconfig
2015-09-16 16:58:37,766 - INFO # Iface 4 HWaddr: 9e:72 Channel: 26 NID: 0x23 TX-Power: 0dBm State: IDLE CSMA Retries: 4
2015-09-16 16:58:37,768 - INFO # Long HWaddr: 36:32:48:33:46:da:9e:72
2015-09-16 16:58:37,769 - INFO # AUTOACK CSMA
2015-09-16 16:58:37,770 - INFO # Source address length: 2

Type ifconfig help to get an online help for all available options (e.g. setting the radio channel via ifconfig
4 set chan 12).

The txtsnd command allows you to send a simple string directly over the link layer using unicast or broadcast. The
application will also automatically print information about any received packet over the serial. This will look like:

2015-09-16 16:59:29,187 - INFO # PKTDUMP: data received:
2015-09-16 16:59:29,189 - INFO # ~~ SNIP 0 - size: 28 byte, type:
NETTYPE_UNDEF (0)
2015-09-16 16:59:29,190 - INFO # 000000 7b 3b 3a 02 85 00 e7 fb 00 00 00 00 01
02 5a 55
2015-09-16 16:59:29,192 - INFO # 000010 40 42 3e 62 f2 1a 00 00 00 00 00 00
2015-09-16 16:59:29,194 - INFO # ~~ SNIP 1 - size: 18 byte, type:
NETTYPE_NETIF (-1)
2015-09-16 16:59:29,195 - INFO # if_pid: 4 rssi: 49 lqi: 78
2015-09-16 16:59:29,196 - INFO # src_l2addr: 5a:55:40:42:3e:62:f2:1a
2015-09-16 16:59:29,197 - INFO # dst_l2addr: ff:ff
2015-09-16 16:59:29,198 - INFO # ~~ PKT - 2 snips, total size: 46 byte

101

Test Documentation, Release test

102 Chapter 48. Networking

CHAPTER 49

gnrc_networking_border_router example

49.1 Requirements

In order to setup a 6LoWPAN border router on RIOT, you need either a board that offers an IPv6 capable network
interface (e.g. the encx24j600 Ethernet chip) or connect it over the serial interface to a Linux host and use the SLIP
standard [1]. The example application in this folder assumes as a default to be run on an Atmel SAM R21 Xplained
Pro evaluation board using an external UART adapter for the second serial interface. However, it is feasible to run the
example on any RIOT supported platform that offers either more than one UART or be equipped with an IPv6 capable
network device. In this case only the Makefile of this application has to be slightly modified, e.g. by replacing the line

USEMODULE += gnrc_slip

with something like

USEMODULE += encx24j600

and specify the target platform as BOARD = myplatform. In order to use the border router over SLIP, please check
the periph_conf.h of the corresponding board and look out for the UART_NUMOF parameter. Its value has to be
bigger than 1.

49.2 Configuration

In order to connect a RIOT 6LoWPAN border router over SLIP you run a small program called tunslip (imported
from Contiki) [2] on the Linux host. The program can be found in the dist/tools/tunslip folder and has to
be compiled before first use (simple calling make should be enough). Now, one can start the program by calling
something like:

cd dist/tools/tunslip
make
sudo ./tunslip6 affe::1/64 -t tun0 -s /dev/ttyUSB0

Assuming that /dev/ttyUSB0 is the device descriptor for the (additional) UART interface of your RIOT board.

On the RIOT side you have to configure the SLIP interface by configuring a corresponding IPv6 address, e.g.

ifconfig 6 add affe::2

and adding the SLIP interface to the neighbor cache (because Linux won’t respond to neighbor solicitations on an
interface without a link-layer address) by calling

ncache add 6 affe::1

103

Test Documentation, Release test

After this you’re basically done and should be able to ping between the border router and the outside world (assuming
that the Linux host is properly forwarding your traffic).

Additionally, you can configure IPv6 addresses on the 6LoWPAN interface for communication with other 6LoWPAN
nodes. See also the gnrc_networking example for further help.

[1] https://tools.ietf.org/html/rfc1055

[2] https://github.com/contiki-os/contiki/blob/master/tools/tunslip.c

104 Chapter 49. gnrc_networking_border_router example

CHAPTER 50

gnrc_networking example

50.1 Connecting RIOT native and the Linux host

Note: RIOT does not support IPv4, so you need to stick to IPv6 anytime. To establish a connection
between RIOT and the Linux host, you will need netcat (with IPv6 support). Ubuntu 14.04 comes with
netcat IPv6 support pre-installed. On Debian it’s available in the package netcat-openbsd. Be aware
that many programs require you to add an option such as -6 to tell them to use IPv6, otherwise they will
fail. If you’re using a Raspberry Pi, run sudo modprobe ipv6 before trying this example, because
raspbian does not load the IPv6 module automatically. On some systems (openSUSE for example), the
firewall may interfere, and prevent some packets to arrive at the application (they will however show up
in Wireshark, which can be confusing). So be sure to adjust your firewall rules, or turn it off (who needs
security anyway).

First, create a tap interface (to which RIOT will connect) and a bridge (to which Linux will connect):

sudo ip tuntap add tap0 mode tap user ${USER}
sudo ip link set tap0 up

Now you can start the gnrc_networking example by invoking make term. This should automatically connect
to the tap0 interface. If this doesn’t work for some reason, run make without any arguments, and then run the binary
manually like so (assuming you are in the examples/gnrc_networking directory):

To verify that there is connectivity between RIOT and Linux, go to the RIOT console and run ifconfig:

> ifconfig
Iface 7 HWaddr: ce:f5:e1:c5:f7:5a
inet6 addr: ff02::1/128 scope: local [multicast]
inet6 addr: fe80::ccf5:e1ff:fec5:f75a/64 scope: local
inet6 addr: ff02::1:ffc5:f75a/128 scope: local [multicast]

Copy the link-local address of the RIOT node (prefixed with fe80) and try to ping it from the Linux node:

ping6 fe80::ccf5:e1ff:fec5:f75a%tap0

Note that the interface on which to send the ping needs to be appended to the IPv6 address, %tap0 in the above
example. When talking to the RIOT node, you always want to send to/receive from the tap0 interface.

If the pings succeed you can go on to send UDP packets. To do that, first start a UDP server on the RIOT node:

> udp server start 8808
Success: started UDP server on port 8808

Now, on the Linux host, you can run netcat to connect with RIOT’s UDP server:

nc -6uv fe80::ccf5:e1ff:fec5:f75a%tap0 8808

105

https://en.wikipedia.org/wiki/Link-local_address

Test Documentation, Release test

The -6 option is necessary to tell netcat to use IPv6 only, the -u option tells it to use UDP only, and the -v option
makes it give more verbose output (this one is optional).

You should now see that UDP messages are received on the RIOT side. Opening a UDP server on the Linux side is
also possible. Do do that, write down the IP address of the host (run on Linux):

ifconfig tap0
tap0 Link encap:Ethernet HWaddr ce:f5:e1:c5:f7:59

inet6 addr: fe80::4049:5fff:fe17:b3ae/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:6 errors:0 dropped:0 overruns:0 frame:0
TX packets:36 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:488 (488.0 B) TX bytes:3517 (3.5 KB)

Then open a UDP server on Linux (the -l option makes netcat listen for incoming connections):

nc -6ul 8808

Now, on the RIOT side, send a UDP packet using:

udp send fe80::4049:5fff:fe17:b3ae 8808 testmessage

You should see testmessage appear in netcat. Instead of using netcat, you can of course write your own software,
but you may have to bind the socket to a specific interface (tap0 in this case). For an example that shows how to do so,
see here.

106 Chapter 50. gnrc_networking example

https://gist.github.com/backenklee/dad5e80b764b3b3d0d3e

CHAPTER 51

Hello World!

This is a basic example how to use RIOT in your embedded application. It prints out the famous text Hello World!.

This example should foremost give you an overview how to use the Makefile system:

• First you must give your application a name, which is commonly the same as the name of the directory it
resides in. Then you can define a default BOARD for which the application was written. By using e.g. make
BOARD=msba2 you can override the default board. With make buildtest the application gets compiled
for all supported boards.

• The variable RIOTBASE contains an absolute or relative path to the directory where you have checked out
RIOT. If your code resides in a subdirectory of RIOT, then you can use $(CURDIR) as it’s done in here.

• The variable QUIET, which is either 1 or 0, defines whether to print verbose compile information, or hide them,
respectively.

• The last line of your Makefile must be include $(RIOTBASE)/Makefile.include.

The code itself may look like your usual C beginners hello-world example.

107

Test Documentation, Release test

108 Chapter 51. Hello World!

CHAPTER 52

IPC Pingpong!

This example is to illustrate the usage of RIOTs IPC messaging system.

The application starts a second thread (in addition to the main thread) and sends messages between these two threads.
The main thread calls thread_send_receive() in an endless loop. The second thread receives the message,
prints 2nd: got msg from x to stdout and sends a reply message with an incrementing number back to the
main thread. The main thread then prints the number it received from the 2nd thread.

The correct output should look like this:

This is RIOT! (Version: xxx)
kernel_init(): jumping into first task...
Starting IPC Ping-pong example...
1st thread started, pid: 1
2nd thread started, pid: 2
2nd: Got msg from 1
1st: Got msg with content 2
2nd: Got msg from 1
1st: Got msg with content 3
2nd: Got msg from 1
1st: Got msg with content 4
2nd: Got msg from 1
1st: Got msg with content 5
2nd: Got msg from 1
1st: Got msg with content 6
2nd: Got msg from 1
1st: Got msg with content 7
2nd: Got msg from 1
1st: Got msg with content 8
2nd: Got msg from 1
1st: Got msg with content 9
2nd: Got msg from 1
1st: Got msg with content 10
[...]

109

Test Documentation, Release test

110 Chapter 52. IPC Pingpong!

CHAPTER 53

examples/posix_sockets

This application is a showcase for RIOT’s POSIX socket support. To keep things simple this application has only
one-hop support and no routing capabilities.

111

Test Documentation, Release test

112 Chapter 53. examples/posix_sockets

CHAPTER 54

Usage

Build, flash and start the application:

export BOARD=your_board
make
make flash
make term

The term make target starts a terminal emulator for your board. It connects to a default port so you can interact with
the shell, usually that is /dev/ttyUSB0. If your port is named differently, the PORT=/dev/yourport (not to be
confused with the UDP port) variable can be used to override this.

113

Test Documentation, Release test

114 Chapter 54. Usage

CHAPTER 55

Example output

The shell commands come with online help. Call help to see which commands exist and what they do.

udp send fe80::1 1337 uiaeue 2015-09-22 14:55:30,686 - INFO # > udp send fe80::1 1337 uiaeue 2015-09-22
14:55:30,690 - INFO # Success: send 6 byte to fe80::1:1337

Running the help command on an iotlab-m3:

2015-09-22 14:54:54,442 - INFO # help
2015-09-22 14:54:54,443 - INFO # Command Description
2015-09-22 14:54:54,444 - INFO # ---------------------------------------
2015-09-22 14:54:54,446 - INFO # udp send data over UDP and listen on UDP ports
2015-09-22 14:54:54,447 - INFO # reboot Reboot the node
2015-09-22 14:54:54,449 - INFO # ps Prints information about running threads.
2015-09-22 14:54:54,451 - INFO # mersenne_init initializes the PRNG
2015-09-22 14:54:54,453 - INFO # mersenne_get returns 32 bit of pseudo randomness
2015-09-22 14:54:54,454 - INFO # ifconfig Configure network interfaces
2015-09-22 14:54:54,455 - INFO # txtsnd send raw data
2015-09-22 14:54:54,457 - INFO # ncache manage neighbor cache by hand
2015-09-22 14:54:54,459 - INFO # routers IPv6 default router list

Running the ps command on an iotlab-m3:

2015-09-22 14:54:57,134 - INFO # > ps
2015-09-22 14:54:57,139 - INFO # pid | name | state Q | pri | stack (used) | location
2015-09-22 14:54:57,143 - INFO # 1 | idle | pending Q | 15 | 256 (136) | 0x200001cc
2015-09-22 14:54:57,157 - INFO # 2 | main | pending Q | 7 | 1536 (620) | 0x200002cc
2015-09-22 14:54:57,164 - INFO # 3 | 6lo | bl rx _ | 3 | 1024 (404) | 0x20003ef8
2015-09-22 14:54:57,169 - INFO # 4 | ipv6 | bl rx _ | 4 | 1024 (436) | 0x20001cc0
2015-09-22 14:54:57,172 - INFO # 5 | udp | bl rx _ | 5 | 1024 (268) | 0x20004660
2015-09-22 14:54:57,177 - INFO # 6 | at86rfxx | bl rx _ | 3 | 1024 (320) | 0x20001888
2015-09-22 14:54:57,183 - INFO # | SUM | | | 5888 (2184)

Start a UDP server with udp server start <udp_port>:

2015-09-22 14:55:09,563 - INFO # > udp server start 1337
2015-09-22 14:55:09,564 - INFO # Success: started UDP server on port 1337

Send a UDP package with udp send <dst_addr> <dst_port> <data>:

2015-09-22 14:55:30,686 - INFO # > udp send fe80::3432:4833:46d4:9e06 1337 test
2015-09-22 14:55:30,690 - INFO # Success: send 4 byte to [fe80::3432:4833:46d4:9e06]:1337

You can get the IPv6 address of the destination by using the ifconfig command on the receiver:

115

Test Documentation, Release test

2015-09-22 14:58:10,394 - INFO # ifconfig
2015-09-22 14:58:10,397 - INFO # Iface 6 HWaddr: 9e:06 Channel: 26 NID: 0x23 TX-Power: 0dBm State: IDLE CSMA Retries: 4
2015-09-22 14:58:10,399 - INFO # Long HWaddr: 36:32:48:33:46:d4:9e:06
2015-09-22 14:58:10,400 - INFO # AUTOACK CSMA MTU:1280 6LO IPHC
2015-09-22 14:58:10,402 - INFO # Source address length: 8
2015-09-22 14:58:10,404 - INFO # Link type: wireless
2015-09-22 14:58:10,407 - INFO # inet6 addr: ff02::1/128 scope: local [multicast]
2015-09-22 14:58:10,415 - INFO # inet6 addr: fe80::3432:4833:46d4:9e06/64 scope: local
2015-09-22 14:58:10,416 - INFO #

116 Chapter 55. Example output

CHAPTER 56

Using C++ and C in a program with RIOT

This project demonstrates how user can use both C++ and C in their application with RIOT.

56.1 Makefile Options

• CXXEXFLAGS : user’s extra flags used to build c++ files should be defined here (e.g -std=gnu++11).

This directory provides some porting information for libraries and programs to use with RIOT (to build an external
module). If you’d like to add a package to RIOT you need to add a directory with the name of your package to this
directory. Your directory should contain at least two files:

• One or more patch files - Your patches of the upstream application of the package to make it build with RIOT.

• Makefile- A Makefile describing how to get the upstream application, apply the patch and how to build the pack-
age as a RIOT module. A rough template for several methods of acquiring a package is provided in Makefile.git,
Makefile.http, and Makefile.svn

117

Test Documentation, Release test

118 Chapter 56. Using C++ and C in a program with RIOT

CHAPTER 57

Creating a patch with git

Assuming your upstream application resides in a git repository, you can create the patch files as follows:

• checkout the targeted version of the upstream application

• conduct necessary changes (e.g. edit, add, or remove some files)

• commit your changes using git commit

• create the patch files using git format-patch -n HEAD~N where N is the number of commits you did

• move the resulting patch files to the corresponding subfolder of pkg

Packages are included to your application as external modules. Thus you only have to add the following line to your
application (and update your INCLUDE path accordingly):

USEPKG += <pkg_name>

Since there is no official public repository for the CMSIS-DSP library, we are using our own repo.

119

Test Documentation, Release test

120 Chapter 57. Creating a patch with git

CHAPTER 58

OpenWSN on RIOT

This port of OpenWSN to RIOT is based on current OpenWSN upstream providing a BSP with RIOT’s interfaces.
Currently supported are iotlab-m3 and fox. More boards will follow through improvements in netdev radio driver
interface.

121

Test Documentation, Release test

122 Chapter 58. OpenWSN on RIOT

CHAPTER 59

Usage

A test can be found in tests/openwsn providing a shell command to initialise as root or listening node. And providing
a sample Makefile.

Build using

$> export BOARD=iotlab-m3
$> export PORT=/dev/ttyTHEPORTOFYOURIOTLAB
$> make -B clean flash term

To use OpenWSN with RIOT it has to be added to the used packages variable

USEPKG += openwsn

On the first build the archive will be fetched, patched and built. WARNING A call of make clean also cleans the
OpenWSN tree right now so changes to the source code will be lost in the next build.

123

Test Documentation, Release test

124 Chapter 59. Usage

CHAPTER 60

About

This is a manual test application for the ADT7310 temperature sensor driver.

125

Test Documentation, Release test

126 Chapter 60. About

CHAPTER 61

Usage

This test application will initialize the sensor with the following parameters:

• Mode: 1 SPS

• Resolution: 16 bit

After initialization, the sensor reads the acceleration values every second and prints them to the STDOUT.

127

Test Documentation, Release test

128 Chapter 61. Usage

CHAPTER 62

About

This is a manual test application for the AT86RF2xx radio driver

For running this test, you need to connect/configure the following pins of your radio device:

• SPI MISO

• SPI MOSI

• SPI CLK

• CS (ship select)

• RESET

• SLEEP

• INT (external interrupt)

129

Test Documentation, Release test

130 Chapter 62. About

CHAPTER 63

Usage

For testing the radio driver you can use the netif and txtsnd shell commands that are included in this application.

131

Test Documentation, Release test

132 Chapter 63. Usage

CHAPTER 64

About

This is a manual test application for the HDC1000 driver.

133

Test Documentation, Release test

134 Chapter 64. About

CHAPTER 65

Usage

This test application will initialize the HDC1000 sensor with the following parameters:

• Temperature and humidity are acquired in sequence

• Temperature measurement resolution 14 bit

• Humidity measurement resolution 14 bit

After initialization, the sensor reads the temperature and humidity values every 1s and prints them to STDOUT.

135

Test Documentation, Release test

136 Chapter 65. Usage

CHAPTER 66

About

This is a manual test application for the HIH6130 humidity and temperature sensor.

137

Test Documentation, Release test

138 Chapter 66. About

CHAPTER 67

Usage

After initialization, the sensor reads the measurement values every 100ms and prints them to the STDOUT.

139

Test Documentation, Release test

140 Chapter 67. Usage

CHAPTER 68

About

This is a manual test application for the INA220 current and power monitor driver.

141

Test Documentation, Release test

142 Chapter 68. About

CHAPTER 69

Usage

This test application will initialize the sensor with the following parameters:

• ADC resolution: 12 bit

• Sampling time: 532 us

• Calibration register: 4096

After initialization, the sensor reads the measurement values every 100ms and prints them to the STDOUT.

143

Test Documentation, Release test

144 Chapter 69. Usage

CHAPTER 70

About

This is a manual test application for the ISL29020 light sensor driver.

145

Test Documentation, Release test

146 Chapter 70. About

CHAPTER 71

Usage

This test application will initialize the list sensor with the following parameters:

• Mode: Ambient light measurement

• Range: 16000LUX

After initialization, the sensor value is read every 250ms and printed to the STDOUT.

To verify the seen value you can hold the sensor into a bright light or shield the sensor to see the value changing.

147

Test Documentation, Release test

148 Chapter 71. Usage

CHAPTER 72

About

This is a manual test application for the ISL29125 light sensor driver.

149

Test Documentation, Release test

150 Chapter 72. About

CHAPTER 73

Usage

This test application will initialize the list sensor with the following parameters:

• Mode: All modes are tested once, then RGB mode is used continuously

• Range: 16000 lux

• Resolution: 16 bit

After initialization, the sensor value is read every 250ms and printed to the stdout.

Expose the sensor to varying light sources to see changing readouts.

151

Test Documentation, Release test

152 Chapter 73. Usage

CHAPTER 74

About

This is a manual test application for testing the KW2xrf network device driver.

For running this test, you need to connect/configure the following pins of your radio device:

• SPI DEV

• CS (chip select)

• INT (external interrupt)

153

Test Documentation, Release test

154 Chapter 74. About

CHAPTER 75

Usage

For testing the radio driver you can use the netif and txtsnd shell commands that are included in this application.

155

Test Documentation, Release test

156 Chapter 75. Usage

CHAPTER 76

About

This is a manual test application for the L3G4200D gyroscope driver.

157

Test Documentation, Release test

158 Chapter 76. About

CHAPTER 77

Usage

This test application will initialize the pressure sensor with the following parameters:

• Sampling Rate: 100Hz

• Bandwidth: 25Hz

• Scale: 500DPS

After initialization, the sensor reads the angular speed values every 10ms and prints them to the STDOUT.

159

Test Documentation, Release test

160 Chapter 77. Usage

CHAPTER 78

About

This is a manual test application for the LIS3DH accelerometer driver.

161

Test Documentation, Release test

162 Chapter 78. About

CHAPTER 79

Usage

This test application will initialize the accelerometer with the following parameters:

• Sampling Rate: 100Hz

• Scale: 4G

• Temperature sensor: Enabled

After initialization, the sensor reads the acceleration values every 100ms and prints them to the STDOUT.

163

Test Documentation, Release test

164 Chapter 79. Usage

CHAPTER 80

About

This is a manual test application for the LPS331AP pressure sensor driver.

165

Test Documentation, Release test

166 Chapter 80. About

CHAPTER 81

Usage

This test application will initialize the pressure sensor with the following parameters:

• Sampling Rate: 7Hz

After initialization, the sensor reads the pressure and temperature values every 250ms and prints them to the STDOUT.

167

Test Documentation, Release test

168 Chapter 81. Usage

CHAPTER 82

About

This is a manual test application for the MAG3110 magnetometer driver.

169

Test Documentation, Release test

170 Chapter 82. About

CHAPTER 83

Usage

This test application will initialize the MAG3110 with the following parameters:

• output rate set to 1.25 Hz

• over sample ratio set to 128

After initialization, the sensor reads the x-, y-, z-axis values every 1 s and prints them to STDOUT.

171

Test Documentation, Release test

172 Chapter 83. Usage

CHAPTER 84

About

This is a manual test application for the MMA8652 accelerometer driver.

173

Test Documentation, Release test

174 Chapter 84. About

CHAPTER 85

Usage

This test application will initialize the MMA8652 sensor with the following parameters:

• full scale parameter set to +/-2 g

• 6.25 Hz output data-rate

After initialization, the sensor reads the x-, y-, z-axis values every 1 s and prints them to STDOUT.

175

Test Documentation, Release test

176 Chapter 85. Usage

CHAPTER 86

About

This is a manual test application for the MPL3115A2 driver.

177

Test Documentation, Release test

178 Chapter 86. About

CHAPTER 87

Usage

This test application will initialize the MPL3115A2 sensor with the following parameters:

• oversample ratio 128

After initialization, the sensor reads the pressure and temperature values every 1s and prints them to STDOUT.

179

Test Documentation, Release test

180 Chapter 87. Usage

CHAPTER 88

About

This is a test application for the MPU-9150 Nine-Axis Driver.

181

Test Documentation, Release test

182 Chapter 88. About

CHAPTER 89

Usage

The application will initialize the MPU-9150 motion sensor with the following parameters:

• Accelerometer: ON

• Gyroscope: ON

• Magnetometer: ON

• Sampling Rate: 200Hz

• Compass Sampling Rate: 100Hz

After initialization, the application reads accel, gyro, compass and temperature values every second and prints them to
the STDOUT.

183

Test Documentation, Release test

184 Chapter 89. Usage

CHAPTER 90

Test for nrf24l01p lowlevel functions

90.1 About

This is a small test application to see how the lowlevel-driver functions of the proprietary nrf24l01p-transceiver work.
These functions consist of general SPI and GPIO commands, which abstract the driver-functions from the used board.

90.2 Predefined pin mapping

Please compare the tests/driver_nrf24l01p_lowlevel/Makefile for predefined pin-mappings on dif-
ferent boards. (In addition, you also need to connect to 3V and GND)

90.3 Usage

You should be presented with the RIOT shell, providing you with commands to initialize the transceiver (command:
it), sending one packet (command: send) or read out and print all registers of the transceiver as binary values
(command: prgs).

90.3.1 Procedure

• take two boards and connect a transceiver to each (it should be also possible to use one board with different
SPI-ports)

• depending on your board, you’ll maybe also need to connect a UART/tty converter

• build and flash the test-program to each

• open a terminal (e.g. pyterm) for each

• if possible, reset the board by using the reset-button. You’ll see “Welcome to RIOT” etc.

• type help to see the description of the commands

• initialize both with it

• with one board, send a packet by typing send

• in the next step you can also use send to send data in the other direction

• now you can use send on both boards/transceivers to send messages between them

185

Test Documentation, Release test

90.4 Expected Results

After you did all steps described above, you should see that a 32 Byte sequence (numbers from 32...1) has been
transferred from one device to the other. This sequence is printed out from the receiver after the receive interrupt
occurred and the receive-procedure has been made.

After initialization (it) you should see the following output:

> it

Init Transceiver

Registering nrf24l01p_rx_handler thread...
################## Print Registers ###################
REG_CONFIG:
0x0 returned: 00111111

REG_EN_AA:
0x1 returned: 00000001

REG_EN_RXADDR:
0x2 returned: 00000011

REG_SETUP_AW:
0x3 returned: 00000011

REG_SETUP_RETR:
0x4 returned: 00101111

REG_RF_CH:
0x5 returned: 00000101

REG_RF_SETUP:
0x6 returned: 00100111

REG_STATUS:
0x7 returned: 00001110

REG_OBSERVE_TX:
0x8 returned: 00000000

REG_RPD:
0x9 returned: 00000000

REG_RX_ADDR_P0:
0xa returned: e7 e7 e7 e7 e7

REG_TX_ADDR:
0x10 returned: e7 e7 e7 e7 e7

REG_RX_PW_P0:
0x11 returned: 00100000

REG_FIFO_STATUS:

186 Chapter 90. Test for nrf24l01p lowlevel functions

Test Documentation, Release test

0x17 returned: 00010001

REG_DYNPD:
0x1c returned: 00000000

REG_FEATURE:
0x1d returned: 00000000

After the data has been sent (send), you should see the following output on the receiver terminal:

In HW cb
nrf24l01p_rx_handler got a message: Received packet.
32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

90.4. Expected Results 187

Test Documentation, Release test

188 Chapter 90. Test for nrf24l01p lowlevel functions

CHAPTER 91

Expected result

The test will initialize all basic networking functionality including the minimal NRF51822 radio driver and run the
shell providing netif shell commands.

189

Test Documentation, Release test

190 Chapter 91. Expected result

CHAPTER 92

Background

Use the shell commands to test the link layer functionality of the minimal NRF51822 radio driver (nrfmin).

191

Test Documentation, Release test

192 Chapter 92. Background

CHAPTER 93

About

This is a manual test application for the SPI NVRAM driver.

193

Test Documentation, Release test

194 Chapter 93. About

CHAPTER 94

Usage

This test application will initialize the SPI bus and NVRAM device with the following parameters:

• Baudrate: 10 MHz (overridable by setting TEST_NVRAM_SPI_SPEED)

• SPI config: SPI_CONF_FIRST_RISING (overridable by setting TEST_NVRAM_SPI_CONF)

The memory will be overwritten by the test application. The original contents will not be restored after the test.

195

Test Documentation, Release test

196 Chapter 94. Usage

CHAPTER 95

About

This application is a test for the PDC8544 LCD display driver.

197

Test Documentation, Release test

198 Chapter 95. About

CHAPTER 96

Usage

Use the provided shell commands to control your display.

199

Test Documentation, Release test

200 Chapter 96. Usage

CHAPTER 97

About

This is a manual test application for the PIR motion sensor driver.

In order to build this application, you need to add the board to the Makefile’s WHITELIST first and define a pin
mapping (see below).

201

Test Documentation, Release test

202 Chapter 97. About

CHAPTER 98

Usage

There are two ways to test this. You can either actively poll the sensor state, or you can register a thread which receives
messages for state changes.

98.1 Interrupt driven

Connect the sensor’s “out” pin to a GPIO of your board that can be configured to create interrupts. Compile and flash
this test application like:

export BOARD=your_board
export PIR_GPIO=name_of_your_pin
make clean
make all-interrupt
make flash

The output should look like:

kernel_init(): jumping into first task...

PIR motion sensor test application

Initializing PIR sensor at GPIO_8... [OK]

Registering PIR handler thread... [OK]
PIR handler got a message: the movement has ceased.
PIR handler got a message: something started moving.
PIR handler got a message: the movement has ceased.

98.2 Polling Mode

Connect the sensor’s “out” pin to any GPIO pin of you board. Compile and flash this test application like:

export BOARD=your_board
export PIR_GPIO=name_of_your_pin
make clean
make all-polling
make flash

The output should look like this:

203

Test Documentation, Release test

kernel_init(): jumping into first task...
PIR motion sensor test application

Initializing PIR sensor at GPIO_10... [OK]

Printing sensor state every second.
Status: lo
...
Status: lo
Status: hi
...

204 Chapter 98. Usage

CHAPTER 99

Background

Test for the high level servo driver.

205

Test Documentation, Release test

206 Chapter 99. Background

CHAPTER 100

Expected result

A servo connected to PWM_0 channel 0 should move back and forth inside the angle -90 degrees to +90 degrees,
approximately.

Using a scope should show a varying pulse length between 1000 us to 2000 us long. The requested frequency is 100
Hz, but due to hardware limitations it might not be possible to achieve the selected frequency. The pulse width should,
however, remain the same, only the frequency of pulses (and hence the duty cycle) should differ.

207

Test Documentation, Release test

208 Chapter 100. Expected result

CHAPTER 101

About

This is a manual test application for the SRF02 ultrasonic ranger driver.

209

Test Documentation, Release test

210 Chapter 101. About

CHAPTER 102

Usage

After initialization, the sensor value is read periodically and printed to the STDOUT.

To verify the seen value you can focus the sensor against any reflecting object and vary the distance to see the value
changing.

211

Test Documentation, Release test

212 Chapter 102. Usage

CHAPTER 103

About

This is a manual test application for the SRF08 ultrasonic ranger driver.

213

Test Documentation, Release test

214 Chapter 103. About

CHAPTER 104

Usage

After initialization, the sensor values are read periodically and printed to the STDOUT. Here, three echos are stored.

To verify the seen values you can focus the sensor against any reflecting object and vary the distance to see especially
the first measured value changing.

215

Test Documentation, Release test

216 Chapter 104. Usage

CHAPTER 105

About

This is a manual test application for the TCS37727 driver.

217

Test Documentation, Release test

218 Chapter 105. About

CHAPTER 106

Usage

This test application will initialize the TCS37717 sensor with the following parameters: Gain 4x, RGBC on, Proximity
Detection off

After initialization, the sensor reads the RGBC ADC data every 1s and prints them to STDOUT.

219

Test Documentation, Release test

220 Chapter 106. Usage

CHAPTER 107

About

This is a manual test application for the TMP006 driver.

221

Test Documentation, Release test

222 Chapter 107. About

CHAPTER 108

Usage

This test application will initialize the TMP006 sensor with the following parameters:

• conversion rate 1 per second

After initialization, the sensor reads the temperature values every 1s and prints them to STDOUT.

223

Test Documentation, Release test

224 Chapter 108. Usage

CHAPTER 109

About

This is a manual test application for testing the Xbee S1 network device driver.

For running this test, you need to connect the following pins of a Xbee S1 module to your board:

• UART RX

• UART TX

• VCC (3V3)

• GND

NOTE: when you use an Arduino Xbee shield, the Xbee module is connected to the same UART as RIOTs standard
out. In this case you must redefine the STDIO to another UART interface in the board.h and connect a UART-to-USB
adapter to that UART.

225

Test Documentation, Release test

226 Chapter 109. About

CHAPTER 110

Usage

For testing the Xbee driver you can use the netif shell commands that are included in this application.

227

Test Documentation, Release test

228 Chapter 110. Usage

CHAPTER 111

Expected result

This application should infinitely print ‘-‘ characters. If it prints only a single ‘+’ characters the test must be considered
as failed.

229

Test Documentation, Release test

230 Chapter 111. Expected result

CHAPTER 112

Background

This test was introduced due to an error for floating point handling in an older newlib version.

The idea for this test is taken from: http://sourceware.org/ml/newlib/2010/msg00149.html

231

Test Documentation, Release test

232 Chapter 112. Background

CHAPTER 113

Expected result

When running this test, you should see the samples of all configured ADC channels continuously streamed to std-out.

233

Test Documentation, Release test

234 Chapter 113. Expected result

CHAPTER 114

Background

This test application will initialize each configured ADC device to sample with 10-bit accuracy. Once configured the
application will continuously convert each available channel and print the conversion results to std-out.

For verification of the output connect the ADC pins to known voltage levels and compare the output.

235

Test Documentation, Release test

236 Chapter 114. Background

CHAPTER 115

About

This is a test application for a digital to analog converter (DAC).

This test application will initialize each configured DAC and one ADC (ADC_O) device to sample with 10-bit accu-
racy. The ADC is only initialized if there is one available on your board.

After initialization, values from 0 to 1000 are converted through the DACs in a loop. Shortly after the digital to analog
conversion of one number, the ADC_0 samples its input signal. The numbers that are given to the DACs and the
numbers that are sampled by the ADC were printed to the STDOUT.

237

Test Documentation, Release test

238 Chapter 115. About

CHAPTER 116

Usage

a) Connect an oscilloscope to the DAC pins and look at the ten iteration signal levels

or

b) Connect the ADC input to the DAC outputs successively and compare if the sampled input value correlates with the
printed output value at each DAC port.

239

Test Documentation, Release test

240 Chapter 116. Usage

CHAPTER 117

Expected result

This test enables you to test all available low-level I2C functions. Consult the ‘help’ shell command for available
actions.

241

Test Documentation, Release test

242 Chapter 117. Expected result

CHAPTER 118

Background

Test for the low-level I2C driver.

243

Test Documentation, Release test

244 Chapter 118. Background

CHAPTER 119

Expected result

If everything is running as supposed to, you should see a 1KHz PWM with oscillating duty cycle on each channel of
the selected PWM device.

245

Test Documentation, Release test

246 Chapter 119. Expected result

CHAPTER 120

Background

Test for the low-level PWM driver.

247

Test Documentation, Release test

248 Chapter 120. Background

CHAPTER 121

Expected result

This test outputs a sequence of random bytes, starting with one, then two and so on, until 20 random bytes are printed.
Then the application sleeps for a second and starts over.

249

Test Documentation, Release test

250 Chapter 121. Expected result

CHAPTER 122

Background

This test was introduced to test the implementation of the low-level random number generator driver. For most plat-
forms the implementation is based on hardware CPU peripherals.

251

Test Documentation, Release test

252 Chapter 122. Background

CHAPTER 123

Expected result

When everything works as expected, you should see a alarm message after 10 seconds from start-up.

253

Test Documentation, Release test

254 Chapter 123. Expected result

CHAPTER 124

Background

Test for the low-level RTC driver.

255

Test Documentation, Release test

256 Chapter 124. Background

CHAPTER 125

Expected result

When everything works as expected, you should see a hello message popping up every 10 seconds.

257

Test Documentation, Release test

258 Chapter 125. Expected result

CHAPTER 126

Background

Test for the low-level RTT driver.

259

Test Documentation, Release test

260 Chapter 126. Background

CHAPTER 127

Expected result

You should be presented with the RIOT shell, providing you with commands to initialize a board as master or slave,
and to send and receive data via SPI.

261

Test Documentation, Release test

262 Chapter 127. Expected result

CHAPTER 128

Background

Test for the low-level SPI driver.

263

Test Documentation, Release test

264 Chapter 128. Background

CHAPTER 129

Unittests

129.1 Building and running tests

Tests can be built by calling:

cd tests/unittests
make

If there are tests for a module you even can build tests specifically for this module:

make tests-<module>
e.g.
make tests-core

You then can run the tests by calling

make term

or flash them to your board as you would flash any RIOT application to the board (see [[board documentation|RIOT-
Platforms]]).

129.1.1 Other output formats

Other output formats using embUnit‘s textui library are available by setting the environment variable OUTPUT:

• Compiler: OUTPUT="COMPILER"

• Text: OUTPUT="TEXT"

• XML: OUTPUT="XML"

• Color: OUTPUT="COLOR" (like default, but with red/green output)

• Colored-Text: OUTPUT="COLORTEXT" (like TEXT, but with red/green output)

Compile example

OUTPUT=''COMPILER'' make tests-core
make term

(only outputs in case of test failures)

265

http://embunit.sourceforge.net/

Test Documentation, Release test

Text example

OUTPUT=''TEXT'' make tests-core
make term

- core_bitarithm_tests
1) OK test_SETBIT_null_null
2) OK test_SETBIT_null_limit
3) ...
- core_clist_tests
25) ...
- ...

OK (... tests)

XML example

OUTPUT=''XML'' make tests-core
make term

<?xml version=''1.0'' encoding='shift_jis' standalone='yes' ?>
<TestRun>
<core_bitarithm_tests>
<Test id=''1''>
<Name>test_SETBIT_null_null</Name>
</Test>
<Test id=''2''>
<Name>test_SETBIT_null_limit</Name>
</Test>
...
</core_bitarithm_tests>
<core_clist_tests>
<Test id=''25''>
<Name>test_clist_add_one</Name>
</Test>
...
</core_clist_tests>
<Statistics>
<Tests>...</Tests>
</Statistics>
</TestRun>

129.2 Writing unit tests

129.2.1 File struture

RIOT uses embUnit for unit testing. All unit tests are organized in tests/unittests and can be build
module-wise, if needed. For each module there exists a tests-<modulename>/tests-<modulename>.h
file, at least one C file in tests-<modulename>/ and a tests-<modulename>/Makefile. It is recom-
mended to add a C file named tests-<modulename>/tests-<modulename>-<headername>.c for ev-
ery header file that defines functions (or macros) implemented in the module. If there is only one such header file
tests-<modulename>/tests-<modulename>.c should suffice.

266 Chapter 129. Unittests

http://embunit.sourceforge.net/

Test Documentation, Release test

Each *.c file should implement a function defined in tests-<modulename>/tests-<modulename>.h,
named like

Test *tests_<modulename>_<headername>_tests(void);

/* or respectively */

Test *tests_<modulename>_tests(void);

129.2.2 Testing a module

To write new tests for a module you need to do three things:

1. Create a Makefile: add a file tests-<modulename>/Makefile

2. Define a test header: add a file tests-<modulename>/tests-<modulename>.h

3. Implement tests: for each header file, that defines a function or macro implemented or related
to the module, add a file tests-<modulename>/tests-<modulename>-<headername>.c or
tests-<modulename>/tests-<modulename>.c if there is only one header.

Create a Makefile

The Makefile should have the following content:

include $(RIOTBASE)/Makefile.base

Define a test header.

The test header tests-<modulename>/tests-<module>.h of a module you add to tests/unittests/
should have the following structure

/*
* Copyright (C) <year> <author>

*
* This file is subject to the terms and conditions of the GNU Lesser

* General Public License v2.1. See the file LICENSE in the top level

* directory for more details.

*/

/**
* @addtogroup unittests

* @{

*
* @file

* @brief Unittests for the ``module`` module

*
* @author <author>

*/
#ifndef TESTS_<MODULE>_H_
#define TESTS_<MODULE>_H_
#include ``embUnit/embUnit.h''

#ifdef __cplusplus
extern ``C'' {

129.2. Writing unit tests 267

Test Documentation, Release test

#endif

/**
* @brief Generates tests for <header1>.h

*
* @return embUnit tests if successful, NULL if not.

*/
Test *tests_<module>_<header1>_tests(void);

/**
* @brief Generates tests for <header2>.h

*
* @return embUnit tests if successful, NULL if not.

*/
Test *tests_<module>_<header2>_tests(void);

/* ... */

#ifdef __cplusplus
}
#endif

#endif /* TESTS_<MODULE>_H_ */
/** @} */

Implement tests

Every tests-<modulename>/tests-<module>*.c file you add to tests/unittests/ should have the
following structure:

/*
* Copyright (C) <year> <author>

*
* This file is subject to the terms and conditions of the GNU Lesser

* General Public License v2.1. See the file LICENSE in the top level

* directory for more details.

*/

/* clib includes */

#include ``embUnit/embUnit.h''

#include ``<header>.h''

#include ``tests-<module>.h''

/* your macros */

/* your global variables */

static void set_up(void)
{

/* omit if not needed */
}

268 Chapter 129. Unittests

Test Documentation, Release test

static void tear_down(void)
{

/* omit if not needed */
}

static void test_<function1>_<what1>(void) {
/* ... */

TEST_ASSERT(/* ... */);
}

static void test_<function1>_<what2>(void) {
/* ... */

TEST_ASSERT(/* ... */);
}

/* ... */

static void test_<function2>_<what1>(void) {
/* ... */

TEST_ASSERT(/* ... */);
}

static void test_<function2>_<what2>(void) {
/* ... */

TEST_ASSERT(/* ... */);
}

/* ... */

Test *tests_<module>_<header>_tests(void)
{

EMB_UNIT_TESTFIXTURES(fixtures) {
new_TestFixture(test_<function1>_<what1>),
new_TestFixture(test_<function1>_<what2>),
new_TestFixture(test_<function2>_<what1>),
new_TestFixture(test_<function2>_<what2>),
/* ... */

};

EMB_UNIT_TESTCALLER(<module>_<header>_tests, ``<module>_<header>_tests'',
tests_<module>_<header>_set_up,
tests_<module>_<header>_tear_down, fixtures);

/* set up and tear down function can be NULL if omitted */

return (Test *)&<module>_<header>;
}

The following assertion macros are available via embUnit

129.2. Writing unit tests 269

Test Documentation, Release test

270 Chapter 129. Unittests

CHAPTER 130

Test warning on conflicting features

Using conflicting features provided by boards was invisible for the user until the used features resulted in a traceable
problem or the user was aware of the conflict in advance from documentation ect. Now, existing and known conflicts
can be recorded into FEATURES_CONFLICT for each board to inform the user on a conflict situation during compile
time.

This test requires conflicting features in its Makefile, i.e. FEATURES_REQUIRED = periph_dac
periph_spi. It is expected to be presented with a warning on the conflicts with a short description message during
compile time for the stm32f4discovery by now, i.e. :

$ make BOARD=stm32f4discovery
The following features may conflict: periph_dac periph_spi
Rationale: On stm32f4discovery boards there are the same pins for the DAC and/or SPI_0.

EXPECT undesired behaviour!

The warning presents the conflicting features derived from FEATURES_CONFLICT
and an optional message derived from FEATURES_CONFLICT_MSG provided int the
./RIOT/board/stm32f4discovery/Makefile.features.

Whenever an application, such as this test, requires board features that match a conflict group, e.g.
FEATURES_REQUIRED = periph_dac periph_spi, a similar warning to the above will be displayed dur-
ing compile time.

###Usage of conflict groups:

• Conflicting features are described in groups separated by a : (doublecolon) for each feature, e.g.:
FEATURES_CONFLICT = periph_spi:periph_dac, which states that periph_spi conflicts with
periph_dac. As seen above, this is the conflict of SPI_0 pinout is shared with DAC on the stm32f4discovery
board.

• Distinct groups of conflicts are whitespace separated, e.g.: featureA:featureB featureC:featureD,
which states that featureA conflicts with featureB, and featureC conflicts with featureD. This also
means, that e.g. FEATURES_REQUIRED = featureA featureD would not produce a warning.

• The groups can have an arbitrary number of conflicting features, e.g.:
featureA:featureB:featureC:featureX:featureY:featureZ

• An optional information can be given using the FEATURES_CONFLICT_MSG, e.g.:
FEATURES_CONFLICT_MSG = "featureA uses the same pins as featureB"

• If the required features match multiple conflict groups, ALL conflicting features are provided
to the user, e.g.: FEATURES_CONFLICT = featureA:featureB featureC:featureD and

271

https://github.com/RIOT-OS/RIOT/wiki/Board%3A-STM32F4discovery
https://github.com/RIOT-OS/RIOT/wiki/Board%3A-STM32F4discovery

Test Documentation, Release test

FEATURES_REQUIRED = featureA featureB featureC featureD would result in: The
following features may conflict: featureA featureB featureC featureD

RST files:

272 Chapter 130. Test warning on conflicting features

	FEATURES
	GETTING STARTED
	USING THE NATIVE PORT WITH NETWORKING

	CONTRIBUTE
	MAILING LISTS
	LICENSE
	CONTRIBUTE
	Platform configurations for RIOT-OS
	Mulle OpenOCD configuration files
	Zolertia Re-Mote platform
	Port Features
	Requirements
	Install a Toolchain
	Drivers

	More Reading
	K60 tools
	Watchdog disable

	Valgrind Support
	Network Support
	Setting Up A Tap Network
	Daemonization
	Compile Time Options
	RIOT integration into IoT-LAB
	Control IoT-LAB via Make

	About
	Example usage
	Default options
	What to do about the findings
	cmdline2xml.sh
	Instrucions

	About
	Usage
	RIOT Sniffer Application
	About
	Dependencies
	Usage

	Creating a SLIP network interface
	Installation
	Usage
	USB to serial adapter tools
	Usage
	Exit codes
	Makefile example usage
	Limitations

	Getting started {#getting-started}
	Downloading RIOT code {#downloading-riot-code}
	Compiling RIOT {#compiling-riot}
	Setting up a toolchain {#setting-up-a-toolchain}
	The build system {#the-build-system}
	Building and executing an examples {#building-and-executing-and-example}

	RIOT Documentation {#mainpage}
	RIOT in a nutshell {#riot-in-a-nutshell}
	Contribute to RIOT {#contribute-to-riot}
	The quickest start {#the-quickest-start}
	Structure {#structure}
	core
	boards
	cpu
	drivers
	sys
	sys/net
	pkg
	examples
	tests
	dist & doc

	examples/arduino_hello-world
	Arduino and RIOT
	Usage
	Example output
	examples/default
	Usage
	Example output
	RIOT specific
	Networking
	gnrc_networking_border_router example
	Requirements
	Configuration

	gnrc_networking example
	Connecting RIOT native and the Linux host

	Hello World!
	IPC Pingpong!
	examples/posix_sockets
	Usage
	Example output
	Using C++ and C in a program with RIOT
	Makefile Options

	Creating a patch with git
	OpenWSN on RIOT
	Usage
	About
	Usage
	About
	Usage
	About
	Usage
	About
	Usage
	About
	Usage
	About
	Usage
	About
	Usage
	About
	Usage
	About
	Usage
	About
	Usage
	About
	Usage
	About
	Usage
	About
	Usage
	About
	Usage
	About
	Usage
	Test for nrf24l01p lowlevel functions
	About
	Predefined pin mapping
	Usage
	Expected Results

	Expected result
	Background
	About
	Usage
	About
	Usage
	About
	Usage
	Interrupt driven
	Polling Mode

	Background
	Expected result
	About
	Usage
	About
	Usage
	About
	Usage
	About
	Usage
	About
	Usage
	Expected result
	Background
	Expected result
	Background
	About
	Usage
	Expected result
	Background
	Expected result
	Background
	Expected result
	Background
	Expected result
	Background
	Expected result
	Background
	Expected result
	Background
	Unittests
	Building and running tests
	Writing unit tests

	Test warning on conflicting features

