
RingPHP
Release

July 07, 2015

Contents

1 Specification 3
1.1 Handlers . 3
1.2 Requests . 3
1.3 Responses . 6
1.4 Middleware . 6

2 Futures 9
2.1 Promises . 9
2.2 Waiting . 9
2.3 Future Responses . 10
2.4 Cancelling . 11
2.5 Wrapping an existing Promise . 11

3 Client Middleware 13
3.1 Modifying Requests . 13
3.2 Modifying Responses . 14
3.3 Built-In Middleware . 14

4 Client Handlers 17
4.1 Built-In Handlers . 17
4.2 Implementing Handlers . 19

5 Testing 21
5.1 Running Tests . 21
5.2 Test Server . 21

i

ii

RingPHP, Release

Provides a simple API and specification that abstracts away the details of HTTP into a single PHP function. RingPHP
be used to power HTTP clients and servers through a PHP function that accepts a request hash and returns a response
hash that is fulfilled using a promise, allowing RingPHP to support both synchronous and asynchronous workflows.

By abstracting the implementation details of different HTTP clients and servers, RingPHP allows you to utilize plug-
gable HTTP clients and servers without tying your application to a specific implementation.

Contents 1

https://github.com/reactphp/promise

RingPHP, Release

2 Contents

CHAPTER 1

Specification

RingPHP applications consist of handlers, requests, responses, and middleware.

1.1 Handlers

Handlers are implemented as a PHP callable that accept a request array and return a response array
(GuzzleHttp\Ring\Future\FutureArrayInterface).

For example:

use GuzzleHttp\Ring\Future\CompletedFutureArray;

$mockHandler = function (array $request) {
return new CompletedFutureArray([

'status' => 200,
'headers' => ['X-Foo' => ['Bar']],
'body' => 'Hello!'

]);
};

This handler returns the same response each time it is invoked. All RingPHP han-
dlers must return a GuzzleHttp\Ring\Future\FutureArrayInterface. Use
GuzzleHttp\Ring\Future\CompletedFutureArray when returning a response that has already
completed.

1.2 Requests

A request array is a PHP associative array that contains the configuration settings need to send a request.

$request = [
'http_method' => 'GET',
'scheme' => 'http',
'uri' => '/',
'body' => 'hello!',
'client' => ['timeout' => 1.0],
'headers' => [

'host' => ['httpbin.org'],
'X-Foo' => ['baz', 'bar']

]
];

3

RingPHP, Release

The request array contains the following key value pairs:

request_method (string, required) The HTTP request method, must be all caps corresponding to a HTTP request
method, such as GET or POST.

scheme (string) The transport protocol, must be one of http or https. Defaults to http.

uri (string, required) The request URI excluding the query string. Must start with “/”.

query_string (string) The query string, if present (e.g., foo=bar).

version (string) HTTP protocol version. Defaults to 1.1.

headers (required, array) Associative array of headers. Each key represents the header name. Each value contains an
array of strings where each entry of the array SHOULD be sent over the wire on a separate header line.

body (string, fopen resource, Iterator, GuzzleHttp\Stream\StreamInterface) The body of the re-
quest, if present. Can be a string, resource returned from fopen, an Iterator that yields chunks of data, an
object that implemented __toString, or a GuzzleHttp\Stream\StreamInterface.

future (bool, string) Controls the asynchronous behavior of a response.

Set to true or omit the future option to request that a request will be completed asynchronously. Keep in
mind that your request might not necessarily be completed asynchronously based on the handler you are using.
Set the future option to false to request that a synchronous response be provided.

You can provide a string value to specify fine-tuned future behaviors that may be specific to the underlying
handlers you are using. There are, however, some common future options that handlers should implement if
possible.

lazy Requests that the handler does not open and send the request immediately, but rather only opens and sends
the request once the future is dereferenced. This option is often useful for sending a large number of
requests concurrently to allow handlers to take better advantage of non-blocking transfers by first building
up a pool of requests.

If an handler does not implement or understand a provided string value, then the request MUST be treated as if
the user provided true rather than the string value.

Future responses created by asynchronous handlers MUST attempt to complete any outstanding future responses
when they are destructed. Asynchronous handlers MAY choose to automatically complete responses when the
number of outstanding requests reaches an handler-specific threshold.

1.2.1 Client Specific Options

The following options are only used in ring client handlers.

client (array) Associative array of client specific transfer options. The client request key value pair can contain the
following keys:

cert (string, array) Set to a string to specify the path to a file containing a PEM formatted SSL client side
certificate. If a password is required, then set cert to an array containing the path to the PEM file in the
first array element followed by the certificate password in the second array element.

connect_timeout (float) Float describing the number of seconds to wait while trying to connect to a server. Use
0 to wait indefinitely (the default behavior).

debug (bool, fopen() resource) Set to true or set to a PHP stream returned by fopen() to enable debug output
with the handler used to send a request. If set to true, the output is written to PHP’s STDOUT. If a PHP
fopen resource handle is provided, the output is written to the stream.

4 Chapter 1. Specification

RingPHP, Release

“Debug output” is handler specific: different handlers will yield different output and various various level
of detail. For example, when using cURL to transfer requests, cURL’s CURLOPT_VERBOSE will be
used. When using the PHP stream wrapper, stream notifications will be emitted.

decode_content (bool) Specify whether or not Content-Encoding responses (gzip, deflate, etc.) are auto-
matically decoded. Set to true to automatically decode encoded responses. Set to false to not decode
responses. By default, content is not decoded automatically.

delay (int) The number of milliseconds to delay before sending the request. This is often used for delaying
before retrying a request. Handlers SHOULD implement this if possible, but it is not a strict requirement.

progress (function) Defines a function to invoke when transfer progress is made. The function accepts the
following arguments:

1. The total number of bytes expected to be downloaded

2. The number of bytes downloaded so far

3. The number of bytes expected to be uploaded

4. The number of bytes uploaded so far

proxy (string, array) Pass a string to specify an HTTP proxy, or an associative array to specify different proxies
for different protocols where the scheme is the key and the value is the proxy address.

$request = [
'http_method' => 'GET',
'headers' => ['host' => ['httpbin.org']],
'client' => [

// Use different proxies for different URI schemes.
'proxy' => [

'http' => 'http://proxy.example.com:5100',
'https' => 'https://proxy.example.com:6100'

]
]

];

ssl_key (string, array) Specify the path to a file containing a private SSL key in PEM format. If a password is
required, then set to an array containing the path to the SSL key in the first array element followed by the
password required for the certificate in the second element.

save_to (string, fopen resource, GuzzleHttp\Stream\StreamInterface) Specifies where the body
of the response is downloaded. Pass a string to open a local file on disk and save the out-
put to the file. Pass an fopen resource to save the output to a PHP stream resource. Pass a
GuzzleHttp\Stream\StreamInterface to save the output to a Guzzle StreamInterface. Omitting
this option will typically save the body of a response to a PHP temp stream.

stream (bool) Set to true to stream a response rather than download it all up-front. This option will only be
utilized when the corresponding handler supports it.

timeout (float) Float describing the timeout of the request in seconds. Use 0 to wait indefinitely (the default
behavior).

verify (bool, string) Describes the SSL certificate verification behavior of a request. Set to true to enable SSL
certificate verification using the system CA bundle when available (the default). Set to false to disable
certificate verification (this is insecure!). Set to a string to provide the path to a CA bundle on disk to
enable verification using a custom certificate.

version (string) HTTP protocol version to use with the request.

1.2. Requests 5

http://curl.haxx.se/libcurl/c/CURLOPT_VERBOSE.html
http://php.net/manual/en/function.stream-notification-callback.php

RingPHP, Release

1.2.2 Server Specific Options

The following options are only used in ring server handlers.

server_port (integer) The port on which the request is being handled. This is only used with ring servers, and is
required.

server_name (string) The resolved server name, or the server IP address. Required when using a Ring server.

remote_addr (string) The IP address of the client or the last proxy that sent the request. Required when using a Ring
server.

1.3 Responses

A response is an array-like object that implements GuzzleHttp\Ring\Future\FutureArrayInterface.
Responses contain the following key value pairs:

body (string, fopen resource, Iterator, GuzzleHttp\Stream\StreamInterface) The body of the re-
sponse, if present. Can be a string, resource returned from fopen, an Iterator that yields chunks of data, an
object that implemented __toString, or a GuzzleHttp\Stream\StreamInterface.

effective_url (string) The URL that returned the resulting response.

error (\Exception) Contains an exception describing any errors that were encountered during the transfer.

headers (Required, array) Associative array of headers. Each key represents the header name. Each value contains
an array of strings where each entry of the array is a header line. The headers array MAY be an empty array in
the event an error occurred before a response was received.

reason (string) Optional reason phrase. This option should be provided when the reason phrase does not match the
typical reason phrase associated with the status code. See RFC 7231 for a list of HTTP reason phrases
mapped to status codes.

status (Required, integer) The HTTP status code. The status code MAY be set to null in the event an error occurred
before a response was received (e.g., a networking error).

transfer_stats (array) Provides an associative array of arbitrary transfer statistics if provided by the underlying han-
dler.

version (string) HTTP protocol version. Defaults to 1.1.

1.4 Middleware

Ring middleware augments the functionality of handlers by invoking them in the process of generating responses.
Middleware is typically implemented as a higher-order function that takes one or more handlers as arguments followed
by an optional associative array of options as the last argument, returning a new handler with the desired compound
behavior.

Here’s an example of a middleware that adds a Content-Type header to each request.

use GuzzleHttp\Ring\Client\CurlHandler;
use GuzzleHttp\Ring\Core;

$contentTypeHandler = function(callable $handler, $contentType) {
return function (array $request) use ($handler, $contentType) {

return $handler(Core::setHeader('Content-Type', $contentType));
};

6 Chapter 1. Specification

http://tools.ietf.org/html/rfc7231#section-6.1

RingPHP, Release

};

$baseHandler = new CurlHandler();
$wrappedHandler = $contentTypeHandler($baseHandler, 'text/html');
$response = $wrappedHandler([/** request hash **/]);

1.4. Middleware 7

RingPHP, Release

8 Chapter 1. Specification

CHAPTER 2

Futures

Futures represent a computation that may have not yet completed. RingPHP uses hybrid of futures and promises to
provide a consistent API that can be used for both blocking and non-blocking consumers.

2.1 Promises

You can get the result of a future when it is ready using the promise interface of a future. Futures expose a promise
API via a then() method that utilizes React’s promise library. You should use this API when you do not wish to
block.

use GuzzleHttp\Ring\Client\CurlMultiHandler;

$request = [
'http_method' => 'GET',
'uri' => '/',
'headers' => ['host' => ['httpbin.org']]

];

$response = $handler($request);

// Use the then() method to use the promise API of the future.
$response->then(function ($response) {

echo $response['status'];
});

You can get the promise used by a future, an instance of React\Promise\PromiseInterface, by calling the
promise() method.

$response = $handler($request);
$promise = $response->promise();
$promise->then(function ($response) {

echo $response['status'];
});

This promise value can be used with React’s aggregate promise functions.

2.2 Waiting

You can wait on a future to complete and retrieve the value, or dereference the future, using the wait() method.
Calling the wait() method of a future will block until the result is available. The result is then returned or an

9

https://github.com/reactphp/promise
https://github.com/reactphp/promise#functions

RingPHP, Release

exception is thrown if and exception was encountered while waiting on the the result. Subsequent calls to dereference
a future will return the previously completed result or throw the previously encountered exception. Futures can be
cancelled, which stops the computation if possible.

use GuzzleHttp\Ring\Client\CurlMultiHandler;

$response = $handler([
'http_method' => 'GET',
'uri' => '/',
'headers' => ['host' => ['httpbin.org']]

]);

// You can explicitly call block to wait on a result.
$realizedResponse = $response->wait();

// Future responses can be used like a regular PHP array.
echo $response['status'];

In addition to explicitly calling the wait() function, using a future like a normal value will implicitly trigger the
wait() function.

2.3 Future Responses

RingPHP uses futures to return asynchronous responses immediately. Client handlers always return future responses
that implement GuzzleHttp\Ring\Future\ArrayFutureInterface. These future responses act just like
normal PHP associative arrays for blocking access and provide a promise interface for non-blocking access.

use GuzzleHttp\Ring\Client\CurlMultiHandler;

$handler = new CurlMultiHandler();

$request = [
'http_method' => 'GET',
'uri' => '/',
'headers' => ['Host' => ['www.google.com']]

];

$response = $handler($request);

// Use the promise API for non-blocking access to the response. The actual
// response value will be delivered to the promise.
$response->then(function ($response) {

echo $response['status'];
});

// You can wait (block) until the future is completed.
$response->wait();

// This will implicitly call wait(), and will block too!
$response['status'];

Important: Futures that are not completed by the time the underlying handler is destructed will be completed when
the handler is shutting down.

10 Chapter 2. Futures

RingPHP, Release

2.4 Cancelling

Futures can be cancelled if they have not already been dereferenced.

RingPHP futures are typically implemented with the GuzzleHttp\Ring\Future\BaseFutureTrait. This
trait provides the cancellation functionality that should be common to most implementations. Cancelling a future
response will try to prevent the request from sending over the wire.

When a future is cancelled, the cancellation function is invoked and performs the actual work needed to cancel the
request from sending if possible (e.g., telling an event loop to stop sending a request or to close a socket). If no
cancellation function is provided, then a request cannot be cancelled. If a cancel function is provided, then it should
accept the future as an argument and return true if the future was successfully cancelled or false if it could not be
cancelled.

2.5 Wrapping an existing Promise

You can easily create a future from any existing promise using the GuzzleHttp\Ring\Future\FutureValue
class. This class’s constructor accepts a promise as the first argument, a wait function as the second argument, and
a cancellation function as the third argument. The dereference function is used to force the promise to resolve (for
example, manually ticking an event loop). The cancel function is optional and is used to tell the thing that created the
promise that it can stop computing the result (for example, telling an event loop to stop transferring a request).

use GuzzleHttp\Ring\Future\FutureValue;
use React\Promise\Deferred;

$deferred = new Deferred();
$promise = $deferred->promise();

$f = new FutureValue(
$promise,
function () use ($deferred) {

// This function is responsible for blocking and resolving the
// promise. Here we pass in a reference to the deferred so that
// it can be resolved or rejected.
$deferred->resolve('foo');

}
);

2.4. Cancelling 11

RingPHP, Release

12 Chapter 2. Futures

CHAPTER 3

Client Middleware

Middleware intercepts requests before they are sent over the wire and can be used to add functionality to handlers.

3.1 Modifying Requests

Let’s say you wanted to modify requests before they are sent over the wire so that they always add specific headers.
This can be accomplished by creating a function that accepts a handler and returns a new function that adds the
composed behavior.

use GuzzleHttp\Ring\Client\CurlHandler;

$handler = new CurlHandler();

$addHeaderHandler = function (callable $handler, array $headers = []) {
return function (array $request) use ($handler, $headers) {

// Add our custom headers
foreach ($headers as $key => $value) {

$request['headers'][$key] = $value;
}

// Send the request using the handler and return the response.
return $handler($request);

}
};

// Create a new handler that adds headers to each request.
$handler = $addHeaderHandler($handler, [

'X-AddMe' => 'hello',
'Authorization' => 'Basic xyz'

]);

$response = $handler([
'http_method' => 'GET',
'headers' => ['Host' => ['httpbin.org']]

]);

13

RingPHP, Release

3.2 Modifying Responses

You can change a response as it’s returned from a middleware. Remember that responses returned from an handler
(including middleware) must implement GuzzleHttp\Ring\Future\FutureArrayInterface. In order to
be a good citizen, you should not expect that the responses returned through your middleware will be completed syn-
chronously. Instead, you should use the GuzzleHttp\Ring\Core::proxy() function to modify the response
when the underlying promise is resolved. This function is a helper function that makes it easy to create a new instance
of FutureArrayInterface that wraps an existing FutureArrayInterface object.

Let’s say you wanted to add headers to a response as they are returned from your middleware, but you want to
make sure you aren’t causing future responses to be dereferenced right away. You can achieve this by modifying the
incoming request and using the Core::proxy function.

use GuzzleHttp\Ring\Core;
use GuzzleHttp\Ring\Client\CurlHandler;

$handler = new CurlHandler();

$responseHeaderHandler = function (callable $handler, array $headers) {
return function (array $request) use ($handler, $headers) {

// Send the request using the wrapped handler.
return Core::proxy($handler($request), function ($response) use ($headers) {

// Add the headers to the response when it is available.
foreach ($headers as $key => $value) {

$response['headers'][$key] = (array) $value;
}
// Note that you can return a regular response array when using
// the proxy method.
return $response;

});
}

};

// Create a new handler that adds headers to each response.
$handler = $responseHeaderHandler($handler, ['X-Header' => 'hello!']);

$response = $handler([
'http_method' => 'GET',
'headers' => ['Host' => ['httpbin.org']]

]);

assert($response['headers']['X-Header'] == 'hello!');

3.3 Built-In Middleware

RingPHP comes with a few basic client middlewares that modify requests and responses.

3.3.1 Streaming Middleware

If you want to send all requests with the streaming option to a specific handler but other requests to a different
handler, then use the streaming middleware.

use GuzzleHttp\Ring\Client\CurlHandler;
use GuzzleHttp\Ring\Client\StreamHandler;

14 Chapter 3. Client Middleware

RingPHP, Release

use GuzzleHttp\Ring\Client\Middleware;

$defaultHandler = new CurlHandler();
$streamingHandler = new StreamHandler();
$streamingHandler = Middleware::wrapStreaming(

$defaultHandler,
$streamingHandler

);

// Send the request using the streaming handler.
$response = $streamingHandler([

'http_method' => 'GET',
'headers' => ['Host' => ['www.google.com']],
'stream' => true

]);

// Send the request using the default handler.
$response = $streamingHandler([

'http_method' => 'GET',
'headers' => ['Host' => ['www.google.com']]

]);

3.3.2 Future Middleware

If you want to send all requests with the future option to a specific handler but other requests to a different handler,
then use the future middleware.

use GuzzleHttp\Ring\Client\CurlHandler;
use GuzzleHttp\Ring\Client\CurlMultiHandler;
use GuzzleHttp\Ring\Client\Middleware;

$defaultHandler = new CurlHandler();
$futureHandler = new CurlMultiHandler();
$futureHandler = Middleware::wrapFuture(

$defaultHandler,
$futureHandler

);

// Send the request using the blocking CurlHandler.
$response = $futureHandler([

'http_method' => 'GET',
'headers' => ['Host' => ['www.google.com']]

]);

// Send the request using the non-blocking CurlMultiHandler.
$response = $futureHandler([

'http_method' => 'GET',
'headers' => ['Host' => ['www.google.com']],
'future' => true

]);

3.3. Built-In Middleware 15

RingPHP, Release

16 Chapter 3. Client Middleware

CHAPTER 4

Client Handlers

Client handlers accept a request array and return a future response array that can be used synchronously as an array or
asynchronously using a promise.

4.1 Built-In Handlers

RingPHP comes with three built-in client handlers.

4.1.1 Stream Handler

The GuzzleHttp\Ring\Client\StreamHandler uses PHP’s http stream wrapper to send requests.

Note: This handler cannot send requests concurrently.

You can provide an associative array of custom stream context options to the StreamHandler using the
stream_context key of the client request option.

use GuzzleHttp\Ring\Client\StreamHandler;

$response = $handler([
'http_method' => 'GET',
'uri' => '/',
'headers' => ['host' => ['httpbin.org']],
'client' => [

'stream_context' => [
'http' => [

'request_fulluri' => true,
'method' => 'HEAD'

],
'socket' => [

'bindto' => '127.0.0.1:0'
],
'ssl' => [

'verify_peer' => false
]

]
]

]);

// Even though it's already completed, you can still use a promise

17

http://php.net/manual/en/wrappers.http.php

RingPHP, Release

$response->then(function ($response) {
echo $response['status']; // 200

});

// Or access the response using the future interface
echo $response['status']; // 200

4.1.2 cURL Handler

The GuzzleHttp\Ring\Client\CurlHandler can be used with PHP 5.5+ to send requests using cURL easy
handles. This handler is great for sending requests one at a time because the execute and select loop is implemented
in C code which executes faster and consumes less memory than using PHP’s curl_multi_* interface.

Note: This handler cannot send requests concurrently.

When using the CurlHandler, custom curl options can be specified as an associative array of cURL option constants
mapping to values in the client option of a requst using the curl key.

use GuzzleHttp\Ring\Client\CurlHandler;

$handler = new CurlHandler();

$request = [
'http_method' => 'GET',
'headers' => ['host' => [Server::$host]],
'client' => ['curl' => [CURLOPT_LOW_SPEED_LIMIT => 10]]

];

$response = $handler($request);

// The response can be used directly as an array.
echo $response['status']; // 200

// Or, it can be used as a promise (that has already fulfilled).
$response->then(function ($response) {

echo $response['status']; // 200
});

4.1.3 cURL Multi Handler

The GuzzleHttp\Ring\Client\CurlMultiHandler transfers requests using cURL’s multi API. The
CurlMultiHandler is great for sending requests concurrently.

use GuzzleHttp\Ring\Client\CurlMultiHandler;

$handler = new CurlMultiHandler();

$request = [
'http_method' => 'GET',
'headers' => ['host' => [Server::$host]]

];

// this call returns a future array immediately.
$response = $handler($request);

18 Chapter 4. Client Handlers

http://php.net/manual/en/curl.constants.php
http://curl.haxx.se/libcurl/c/libcurl-multi.html

RingPHP, Release

// Ideally, you should use the promise API to not block.
$response

->then(function ($response) {
// Got the response at some point in the future
echo $response['status']; // 200
// Don't break the chain
return $response;

})->then(function ($response) {
// ...

});

// If you really need to block, then you can use the response as an
// associative array. This will block until it has completed.
echo $response['status']; // 200

Just like the CurlHandler, the CurlMultiHandler accepts custom curl option in the curl key of the client
request option.

4.1.4 Mock Handler

The GuzzleHttp\Ring\Client\MockHandler is used to return mock responses. When constructed, the han-
dler can be configured to return the same response array over and over, a future response, or a the evaluation of a
callback function.

use GuzzleHttp\Ring\Client\MockHandler;

// Return a canned response.
$mock = new MockHandler(['status' => 200]);
$response = $mock([]);
assert(200 == $response['status']);
assert([] == $response['headers']);

4.2 Implementing Handlers

Client handlers are just PHP callables (functions or classes that have the __invoke magic method). The callable ac-
cepts a request array and MUST return an instance of GuzzleHttp\Ring\Future\FutureArrayInterface
so that the response can be used by both blocking and non-blocking consumers.

Handlers need to follow a few simple rules:

1. Do not throw exceptions. If an error is encountered, return an array that contains the error key that maps to
an \Exception value.

2. If the request has a delay client option, then the handler should only send the request af-
ter the specified delay time in seconds. Blocking handlers may find it convenient to just let the
GuzzleHttp\Ring\Core::doSleep($request) function handle this for them.

3. Always return an instance of GuzzleHttp\Ring\Future\FutureArrayInterface.

4. Complete any outstanding requests when the handler is destructed.

4.2. Implementing Handlers 19

RingPHP, Release

20 Chapter 4. Client Handlers

CHAPTER 5

Testing

RingPHP tests client handlers using PHPUnit and a built-in node.js web server.

5.1 Running Tests

First, install the dependencies using Composer.

composer.phar install

Next, run the unit tests using Make.

make test

The tests are also run on Travis-CI on each commit: https://travis-ci.org/guzzle/guzzle-ring

5.2 Test Server

Testing client handlers usually involves actually sending HTTP requests. RingPHP provides a node.js web server that
returns canned responses and keep a list of the requests that have been received. The server can then be queried to
get a list of the requests that were sent by the client so that you can ensure that the client serialized and transferred
requests as intended.

The server keeps a list of queued responses and returns responses that are popped off of the queue as HTTP requests
are received. When there are not more responses to serve, the server returns a 500 error response.

The test server uses the GuzzleHttp\Tests\Ring\Client\Server class to control the server.

use GuzzleHttp\Ring\Client\StreamHandler;
use GuzzleHttp\Tests\Ring\Client\Server;

// First return a 200 followed by a 404 response.
Server::enqueue([

['status' => 200],
['status' => 404]

]);

$handler = new StreamHandler();

$response = $handler([
'http_method' => 'GET',
'headers' => ['host' => [Server::$host]],

21

https://phpunit.de/
https://getcomposer.org
https://travis-ci.org/guzzle/guzzle-ring

RingPHP, Release

'uri' => '/'
]);

assert(200 == $response['status']);

$response = $handler([
'http_method' => 'HEAD',
'headers' => ['host' => [Server::$host]],
'uri' => '/'

]);

assert(404 == $response['status']);

After requests have been sent, you can get a list of the requests as they were sent over the wire to ensure they were
sent correctly.

$received = Server::received();

assert('GET' == $received[0]['http_method']);
assert('HEAD' == $received[1]['http_method']);

<?php
require 'vendor/autoload.php';

use GuzzleHttp\Ring\Client\CurlHandler;

$handler = new CurlHandler();
$response = $handler([

'http_method' => 'GET',
'uri' => '/',
'headers' => [

'host' => ['www.google.com'],
'x-foo' => ['baz']

]
]);

$response->then(function (array $response) {
echo $response['status'];

});

$response->wait();

RingPHP is inspired by Clojure’s Ring, which, in turn, was inspired by Python’s WSGI and Ruby’s Rack. RingPHP
is utilized as the handler layer in Guzzle 5.0+ to send HTTP requests.

22 Chapter 5. Testing

https://github.com/ring-clojure/ring
http://guzzlephp.org

	Specification
	Handlers
	Requests
	Responses
	Middleware

	Futures
	Promises
	Waiting
	Future Responses
	Cancelling
	Wrapping an existing Promise

	Client Middleware
	Modifying Requests
	Modifying Responses
	Built-In Middleware

	Client Handlers
	Built-In Handlers
	Implementing Handlers

	Testing
	Running Tests
	Test Server

