

 Navigation

 	
 index

 	
 next |

 	RingPHP

RingPHP

Provides a simple API and specification that abstracts away the details of HTTP
into a single PHP function. RingPHP be used to power HTTP clients and servers
through a PHP function that accepts a request hash and returns a response hash
that is fulfilled using a promise [https://github.com/reactphp/promise],
allowing RingPHP to support both synchronous and asynchronous workflows.

By abstracting the implementation details of different HTTP clients and
servers, RingPHP allows you to utilize pluggable HTTP clients and servers
without tying your application to a specific implementation.

	Specification
	Handlers

	Requests

	Responses

	Middleware

	Futures
	Promises

	Waiting

	Future Responses

	Cancelling

	Wrapping an existing Promise

	Client Middleware
	Modifying Requests

	Modifying Responses

	Built-In Middleware

	Client Handlers
	Built-In Handlers

	Implementing Handlers

	Testing
	Running Tests

	Test Server

<?php
require 'vendor/autoload.php';

use GuzzleHttp\Ring\Client\CurlHandler;

$handler = new CurlHandler();
$response = $handler([
 'http_method' => 'GET',
 'uri' => '/',
 'headers' => [
 'host' => ['www.google.com'],
 'x-foo' => ['baz']
]
]);

$response->then(function (array $response) {
 echo $response['status'];
});

$response->wait();

RingPHP is inspired by Clojure’s Ring [https://github.com/ring-clojure/ring],
which, in turn, was inspired by Python’s WSGI and Ruby’s Rack. RingPHP is
utilized as the handler layer in Guzzle [http://guzzlephp.org] 5.0+ to send
HTTP requests.

 Copyright 2014, Michael Dowling.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	RingPHP

Specification

RingPHP applications consist of handlers, requests, responses, and
middleware.

Handlers

Handlers are implemented as a PHP callable that accept a request array
and return a response array (GuzzleHttp\Ring\Future\FutureArrayInterface).

For example:

use GuzzleHttp\Ring\Future\CompletedFutureArray;

$mockHandler = function (array $request) {
 return new CompletedFutureArray([
 'status' => 200,
 'headers' => ['X-Foo' => ['Bar']],
 'body' => 'Hello!'
]);
};

This handler returns the same response each time it is invoked. All RingPHP
handlers must return a GuzzleHttp\Ring\Future\FutureArrayInterface. Use
GuzzleHttp\Ring\Future\CompletedFutureArray when returning a response that
has already completed.

Requests

A request array is a PHP associative array that contains the configuration
settings need to send a request.

$request = [
 'http_method' => 'GET',
 'scheme' => 'http',
 'uri' => '/',
 'body' => 'hello!',
 'client' => ['timeout' => 1.0],
 'headers' => [
 'host' => ['httpbin.org'],
 'X-Foo' => ['baz', 'bar']
]
];

The request array contains the following key value pairs:

	request_method

	(string, required) The HTTP request method, must be all caps corresponding
to a HTTP request method, such as GET or POST.

	scheme

	(string) The transport protocol, must be one of http or https.
Defaults to http.

	uri

	(string, required) The request URI excluding the query string. Must
start with “/”.

	query_string

	(string) The query string, if present (e.g., foo=bar).

	version

	(string) HTTP protocol version. Defaults to 1.1.

	headers

	(required, array) Associative array of headers. Each key represents the
header name. Each value contains an array of strings where each entry of
the array SHOULD be sent over the wire on a separate header line.

	body

	(string, fopen resource, Iterator, GuzzleHttp\Stream\StreamInterface)
The body of the request, if present. Can be a string, resource returned
from fopen, an Iterator that yields chunks of data, an object that
implemented __toString, or a GuzzleHttp\Stream\StreamInterface.

	future

	(bool, string) Controls the asynchronous behavior of a response.

Set to true or omit the future option to request that a request
will be completed asynchronously. Keep in mind that your request might not
necessarily be completed asynchronously based on the handler you are using.
Set the future option to false to request that a synchronous
response be provided.

You can provide a string value to specify fine-tuned future behaviors that
may be specific to the underlying handlers you are using. There are,
however, some common future options that handlers should implement if
possible.

	lazy

	Requests that the handler does not open and send the request
immediately, but rather only opens and sends the request once the
future is dereferenced. This option is often useful for sending a large
number of requests concurrently to allow handlers to take better
advantage of non-blocking transfers by first building up a pool of
requests.

If an handler does not implement or understand a provided string value,
then the request MUST be treated as if the user provided true rather
than the string value.

Future responses created by asynchronous handlers MUST attempt to complete
any outstanding future responses when they are destructed. Asynchronous
handlers MAY choose to automatically complete responses when the number
of outstanding requests reaches an handler-specific threshold.

Client Specific Options

The following options are only used in ring client handlers.

	client

	(array) Associative array of client specific transfer options. The
client request key value pair can contain the following keys:

	cert

	(string, array) Set to a string to specify the path to a file
containing a PEM formatted SSL client side certificate. If a password
is required, then set cert to an array containing the path to the
PEM file in the first array element followed by the certificate
password in the second array element.

	connect_timeout

	(float) Float describing the number of seconds to wait while trying to
connect to a server. Use 0 to wait indefinitely (the default
behavior).

	debug

	(bool, fopen() resource) Set to true or set to a PHP stream returned by
fopen() to enable debug output with the handler used to send a request.
If set to true, the output is written to PHP’s STDOUT. If a PHP
fopen resource handle is provided, the output is written to the
stream.

“Debug output” is handler specific: different handlers will yield
different output and various various level of detail. For example, when
using cURL to transfer requests, cURL’s CURLOPT_VERBOSE [http://curl.haxx.se/libcurl/c/CURLOPT_VERBOSE.html]
will be used. When using the PHP stream wrapper, stream notifications [http://php.net/manual/en/function.stream-notification-callback.php]
will be emitted.

	decode_content

	(bool) Specify whether or not Content-Encoding responses
(gzip, deflate, etc.) are automatically decoded. Set to true to
automatically decode encoded responses. Set to false to not decode
responses. By default, content is not decoded automatically.

	delay

	(int) The number of milliseconds to delay before sending the request.
This is often used for delaying before retrying a request. Handlers
SHOULD implement this if possible, but it is not a strict requirement.

	progress

	(function) Defines a function to invoke when transfer progress is made.
The function accepts the following arguments:

	The total number of bytes expected to be downloaded

	The number of bytes downloaded so far

	The number of bytes expected to be uploaded

	The number of bytes uploaded so far

	proxy

	(string, array) Pass a string to specify an HTTP proxy, or an
associative array to specify different proxies for different protocols
where the scheme is the key and the value is the proxy address.

$request = [
 'http_method' => 'GET',
 'headers' => ['host' => ['httpbin.org']],
 'client' => [
 // Use different proxies for different URI schemes.
 'proxy' => [
 'http' => 'http://proxy.example.com:5100',
 'https' => 'https://proxy.example.com:6100'
]
]
];

	ssl_key

	(string, array) Specify the path to a file containing a private SSL key
in PEM format. If a password is required, then set to an array
containing the path to the SSL key in the first array element followed
by the password required for the certificate in the second element.

	save_to

	(string, fopen resource, GuzzleHttp\Stream\StreamInterface)
Specifies where the body of the response is downloaded. Pass a string to
open a local file on disk and save the output to the file. Pass an fopen
resource to save the output to a PHP stream resource. Pass a
GuzzleHttp\Stream\StreamInterface to save the output to a Guzzle
StreamInterface. Omitting this option will typically save the body of a
response to a PHP temp stream.

	stream

	(bool) Set to true to stream a response rather than download it all
up-front. This option will only be utilized when the corresponding
handler supports it.

	timeout

	(float) Float describing the timeout of the request in seconds. Use 0 to
wait indefinitely (the default behavior).

	verify

	(bool, string) Describes the SSL certificate verification behavior of a
request. Set to true to enable SSL certificate verification using the
system CA bundle when available (the default). Set to false to disable
certificate verification (this is insecure!). Set to a string to provide
the path to a CA bundle on disk to enable verification using a custom
certificate.

	version

	(string) HTTP protocol version to use with the request.

Server Specific Options

The following options are only used in ring server handlers.

	server_port

	(integer) The port on which the request is being handled. This is only
used with ring servers, and is required.

	server_name

	(string) The resolved server name, or the server IP address. Required when
using a Ring server.

	remote_addr

	(string) The IP address of the client or the last proxy that sent the
request. Required when using a Ring server.

Responses

A response is an array-like object that implements
GuzzleHttp\Ring\Future\FutureArrayInterface. Responses contain the
following key value pairs:

	body

	(string, fopen resource, Iterator, GuzzleHttp\Stream\StreamInterface)
The body of the response, if present. Can be a string, resource returned
from fopen, an Iterator that yields chunks of data, an object that
implemented __toString, or a GuzzleHttp\Stream\StreamInterface.

	effective_url

	(string) The URL that returned the resulting response.

	error

	(\Exception) Contains an exception describing any errors that were
encountered during the transfer.

	headers

	(Required, array) Associative array of headers. Each key represents the
header name. Each value contains an array of strings where each entry of
the array is a header line. The headers array MAY be an empty array in the
event an error occurred before a response was received.

	reason

	(string) Optional reason phrase. This option should be provided when the
reason phrase does not match the typical reason phrase associated with the
status code. See RFC 7231 [http://tools.ietf.org/html/rfc7231#section-6.1]
for a list of HTTP reason phrases mapped to status codes.

	status

	(Required, integer) The HTTP status code. The status code MAY be set to
null in the event an error occurred before a response was received
(e.g., a networking error).

	transfer_stats

	(array) Provides an associative array of arbitrary transfer statistics if
provided by the underlying handler.

	version

	(string) HTTP protocol version. Defaults to 1.1.

Middleware

Ring middleware augments the functionality of handlers by invoking them in the
process of generating responses. Middleware is typically implemented as a
higher-order function that takes one or more handlers as arguments followed by
an optional associative array of options as the last argument, returning a new
handler with the desired compound behavior.

Here’s an example of a middleware that adds a Content-Type header to each
request.

use GuzzleHttp\Ring\Client\CurlHandler;
use GuzzleHttp\Ring\Core;

$contentTypeHandler = function(callable $handler, $contentType) {
 return function (array $request) use ($handler, $contentType) {
 return $handler(Core::setHeader('Content-Type', $contentType));
 };
};

$baseHandler = new CurlHandler();
$wrappedHandler = $contentTypeHandler($baseHandler, 'text/html');
$response = $wrappedHandler([/** request hash **/]);

 Copyright 2014, Michael Dowling.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	RingPHP

Futures

Futures represent a computation that may have not yet completed. RingPHP
uses hybrid of futures and promises to provide a consistent API that can be
used for both blocking and non-blocking consumers.

Promises

You can get the result of a future when it is ready using the promise interface
of a future. Futures expose a promise API via a then() method that utilizes
React’s promise library [https://github.com/reactphp/promise]. You should
use this API when you do not wish to block.

use GuzzleHttp\Ring\Client\CurlMultiHandler;

$request = [
 'http_method' => 'GET',
 'uri' => '/',
 'headers' => ['host' => ['httpbin.org']]
];

$response = $handler($request);

// Use the then() method to use the promise API of the future.
$response->then(function ($response) {
 echo $response['status'];
});

You can get the promise used by a future, an instance of
React\Promise\PromiseInterface, by calling the promise() method.

$response = $handler($request);
$promise = $response->promise();
$promise->then(function ($response) {
 echo $response['status'];
});

This promise value can be used with React’s
aggregate promise functions [https://github.com/reactphp/promise#functions].

Waiting

You can wait on a future to complete and retrieve the value, or dereference
the future, using the wait() method. Calling the wait() method of a
future will block until the result is available. The result is then returned or
an exception is thrown if and exception was encountered while waiting on the
the result. Subsequent calls to dereference a future will return the previously
completed result or throw the previously encountered exception. Futures can be
cancelled, which stops the computation if possible.

use GuzzleHttp\Ring\Client\CurlMultiHandler;

$response = $handler([
 'http_method' => 'GET',
 'uri' => '/',
 'headers' => ['host' => ['httpbin.org']]
]);

// You can explicitly call block to wait on a result.
$realizedResponse = $response->wait();

// Future responses can be used like a regular PHP array.
echo $response['status'];

In addition to explicitly calling the wait() function, using a future like
a normal value will implicitly trigger the wait() function.

Future Responses

RingPHP uses futures to return asynchronous responses immediately. Client
handlers always return future responses that implement
GuzzleHttp\Ring\Future\ArrayFutureInterface. These future responses act
just like normal PHP associative arrays for blocking access and provide a
promise interface for non-blocking access.

use GuzzleHttp\Ring\Client\CurlMultiHandler;

$handler = new CurlMultiHandler();

$request = [
 'http_method' => 'GET',
 'uri' => '/',
 'headers' => ['Host' => ['www.google.com']]
];

$response = $handler($request);

// Use the promise API for non-blocking access to the response. The actual
// response value will be delivered to the promise.
$response->then(function ($response) {
 echo $response['status'];
});

// You can wait (block) until the future is completed.
$response->wait();

// This will implicitly call wait(), and will block too!
$response['status'];

Important

Futures that are not completed by the time the underlying handler is
destructed will be completed when the handler is shutting down.

Cancelling

Futures can be cancelled if they have not already been dereferenced.

RingPHP futures are typically implemented with the
GuzzleHttp\Ring\Future\BaseFutureTrait. This trait provides the cancellation
functionality that should be common to most implementations. Cancelling a
future response will try to prevent the request from sending over the wire.

When a future is cancelled, the cancellation function is invoked and performs
the actual work needed to cancel the request from sending if possible
(e.g., telling an event loop to stop sending a request or to close a socket).
If no cancellation function is provided, then a request cannot be cancelled. If
a cancel function is provided, then it should accept the future as an argument
and return true if the future was successfully cancelled or false if it could
not be cancelled.

Wrapping an existing Promise

You can easily create a future from any existing promise using the
GuzzleHttp\Ring\Future\FutureValue class. This class’s constructor
accepts a promise as the first argument, a wait function as the second
argument, and a cancellation function as the third argument. The dereference
function is used to force the promise to resolve (for example, manually ticking
an event loop). The cancel function is optional and is used to tell the thing
that created the promise that it can stop computing the result (for example,
telling an event loop to stop transferring a request).

use GuzzleHttp\Ring\Future\FutureValue;
use React\Promise\Deferred;

$deferred = new Deferred();
$promise = $deferred->promise();

$f = new FutureValue(
 $promise,
 function () use ($deferred) {
 // This function is responsible for blocking and resolving the
 // promise. Here we pass in a reference to the deferred so that
 // it can be resolved or rejected.
 $deferred->resolve('foo');
 }
);

 Copyright 2014, Michael Dowling.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	RingPHP

Client Middleware

Middleware intercepts requests before they are sent over the wire and can be
used to add functionality to handlers.

Modifying Requests

Let’s say you wanted to modify requests before they are sent over the wire
so that they always add specific headers. This can be accomplished by creating
a function that accepts a handler and returns a new function that adds the
composed behavior.

use GuzzleHttp\Ring\Client\CurlHandler;

$handler = new CurlHandler();

$addHeaderHandler = function (callable $handler, array $headers = []) {
 return function (array $request) use ($handler, $headers) {
 // Add our custom headers
 foreach ($headers as $key => $value) {
 $request['headers'][$key] = $value;
 }

 // Send the request using the handler and return the response.
 return $handler($request);
 }
};

// Create a new handler that adds headers to each request.
$handler = $addHeaderHandler($handler, [
 'X-AddMe' => 'hello',
 'Authorization' => 'Basic xyz'
]);

$response = $handler([
 'http_method' => 'GET',
 'headers' => ['Host' => ['httpbin.org']]
]);

Modifying Responses

You can change a response as it’s returned from a middleware. Remember that
responses returned from an handler (including middleware) must implement
GuzzleHttp\Ring\Future\FutureArrayInterface. In order to be a good citizen,
you should not expect that the responses returned through your middleware will
be completed synchronously. Instead, you should use the
GuzzleHttp\Ring\Core::proxy() function to modify the response when the
underlying promise is resolved. This function is a helper function that makes it
easy to create a new instance of FutureArrayInterface that wraps an existing
FutureArrayInterface object.

Let’s say you wanted to add headers to a response as they are returned from
your middleware, but you want to make sure you aren’t causing future
responses to be dereferenced right away. You can achieve this by modifying the
incoming request and using the Core::proxy function.

use GuzzleHttp\Ring\Core;
use GuzzleHttp\Ring\Client\CurlHandler;

$handler = new CurlHandler();

$responseHeaderHandler = function (callable $handler, array $headers) {
 return function (array $request) use ($handler, $headers) {
 // Send the request using the wrapped handler.
 return Core::proxy($handler($request), function ($response) use ($headers) {
 // Add the headers to the response when it is available.
 foreach ($headers as $key => $value) {
 $response['headers'][$key] = (array) $value;
 }
 // Note that you can return a regular response array when using
 // the proxy method.
 return $response;
 });
 }
};

// Create a new handler that adds headers to each response.
$handler = $responseHeaderHandler($handler, ['X-Header' => 'hello!']);

$response = $handler([
 'http_method' => 'GET',
 'headers' => ['Host' => ['httpbin.org']]
]);

assert($response['headers']['X-Header'] == 'hello!');

Built-In Middleware

RingPHP comes with a few basic client middlewares that modify requests
and responses.

Streaming Middleware

If you want to send all requests with the streaming option to a specific
handler but other requests to a different handler, then use the streaming
middleware.

use GuzzleHttp\Ring\Client\CurlHandler;
use GuzzleHttp\Ring\Client\StreamHandler;
use GuzzleHttp\Ring\Client\Middleware;

$defaultHandler = new CurlHandler();
$streamingHandler = new StreamHandler();
$streamingHandler = Middleware::wrapStreaming(
 $defaultHandler,
 $streamingHandler
);

// Send the request using the streaming handler.
$response = $streamingHandler([
 'http_method' => 'GET',
 'headers' => ['Host' => ['www.google.com']],
 'stream' => true
]);

// Send the request using the default handler.
$response = $streamingHandler([
 'http_method' => 'GET',
 'headers' => ['Host' => ['www.google.com']]
]);

Future Middleware

If you want to send all requests with the future option to a specific
handler but other requests to a different handler, then use the future
middleware.

use GuzzleHttp\Ring\Client\CurlHandler;
use GuzzleHttp\Ring\Client\CurlMultiHandler;
use GuzzleHttp\Ring\Client\Middleware;

$defaultHandler = new CurlHandler();
$futureHandler = new CurlMultiHandler();
$futureHandler = Middleware::wrapFuture(
 $defaultHandler,
 $futureHandler
);

// Send the request using the blocking CurlHandler.
$response = $futureHandler([
 'http_method' => 'GET',
 'headers' => ['Host' => ['www.google.com']]
]);

// Send the request using the non-blocking CurlMultiHandler.
$response = $futureHandler([
 'http_method' => 'GET',
 'headers' => ['Host' => ['www.google.com']],
 'future' => true
]);

 Copyright 2014, Michael Dowling.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	RingPHP

Client Handlers

Client handlers accept a request array and return a future response array that
can be used synchronously as an array or asynchronously using a promise.

Built-In Handlers

RingPHP comes with three built-in client handlers.

Stream Handler

The GuzzleHttp\Ring\Client\StreamHandler uses PHP’s
http stream wrapper [http://php.net/manual/en/wrappers.http.php] to send
requests.

Note

This handler cannot send requests concurrently.

You can provide an associative array of custom stream context options to the
StreamHandler using the stream_context key of the client request
option.

use GuzzleHttp\Ring\Client\StreamHandler;

$response = $handler([
 'http_method' => 'GET',
 'uri' => '/',
 'headers' => ['host' => ['httpbin.org']],
 'client' => [
 'stream_context' => [
 'http' => [
 'request_fulluri' => true,
 'method' => 'HEAD'
],
 'socket' => [
 'bindto' => '127.0.0.1:0'
],
 'ssl' => [
 'verify_peer' => false
]
]
]
]);

// Even though it's already completed, you can still use a promise
$response->then(function ($response) {
 echo $response['status']; // 200
});

// Or access the response using the future interface
echo $response['status']; // 200

cURL Handler

The GuzzleHttp\Ring\Client\CurlHandler can be used with PHP 5.5+ to send
requests using cURL easy handles. This handler is great for sending requests
one at a time because the execute and select loop is implemented in C code
which executes faster and consumes less memory than using PHP’s
curl_multi_* interface.

Note

This handler cannot send requests concurrently.

When using the CurlHandler, custom curl options can be specified as an
associative array of cURL option constants [http://php.net/manual/en/curl.constants.php]
mapping to values in the client option of a requst using the curl key.

use GuzzleHttp\Ring\Client\CurlHandler;

$handler = new CurlHandler();

$request = [
 'http_method' => 'GET',
 'headers' => ['host' => [Server::$host]],
 'client' => ['curl' => [CURLOPT_LOW_SPEED_LIMIT => 10]]
];

$response = $handler($request);

// The response can be used directly as an array.
echo $response['status']; // 200

// Or, it can be used as a promise (that has already fulfilled).
$response->then(function ($response) {
 echo $response['status']; // 200
});

cURL Multi Handler

The GuzzleHttp\Ring\Client\CurlMultiHandler transfers requests using
cURL’s multi API [http://curl.haxx.se/libcurl/c/libcurl-multi.html]. The
CurlMultiHandler is great for sending requests concurrently.

use GuzzleHttp\Ring\Client\CurlMultiHandler;

$handler = new CurlMultiHandler();

$request = [
 'http_method' => 'GET',
 'headers' => ['host' => [Server::$host]]
];

// this call returns a future array immediately.
$response = $handler($request);

// Ideally, you should use the promise API to not block.
$response
 ->then(function ($response) {
 // Got the response at some point in the future
 echo $response['status']; // 200
 // Don't break the chain
 return $response;
 })->then(function ($response) {
 // ...
 });

// If you really need to block, then you can use the response as an
// associative array. This will block until it has completed.
echo $response['status']; // 200

Just like the CurlHandler, the CurlMultiHandler accepts custom curl
option in the curl key of the client request option.

Mock Handler

The GuzzleHttp\Ring\Client\MockHandler is used to return mock responses.
When constructed, the handler can be configured to return the same response
array over and over, a future response, or a the evaluation of a callback
function.

use GuzzleHttp\Ring\Client\MockHandler;

// Return a canned response.
$mock = new MockHandler(['status' => 200]);
$response = $mock([]);
assert(200 == $response['status']);
assert([] == $response['headers']);

Implementing Handlers

Client handlers are just PHP callables (functions or classes that have the
__invoke magic method). The callable accepts a request array and MUST
return an instance of GuzzleHttp\Ring\Future\FutureArrayInterface so that
the response can be used by both blocking and non-blocking consumers.

Handlers need to follow a few simple rules:

	Do not throw exceptions. If an error is encountered, return an array that
contains the error key that maps to an \Exception value.

	If the request has a delay client option, then the handler should only
send the request after the specified delay time in seconds. Blocking
handlers may find it convenient to just let the
GuzzleHttp\Ring\Core::doSleep($request) function handle this for them.

	Always return an instance of GuzzleHttp\Ring\Future\FutureArrayInterface.

	Complete any outstanding requests when the handler is destructed.

 Copyright 2014, Michael Dowling.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	RingPHP

Testing

RingPHP tests client handlers using PHPUnit [https://phpunit.de/] and a
built-in node.js web server.

Running Tests

First, install the dependencies using Composer [https://getcomposer.org].

composer.phar install

Next, run the unit tests using Make.

make test

The tests are also run on Travis-CI on each commit: https://travis-ci.org/guzzle/guzzle-ring

Test Server

Testing client handlers usually involves actually sending HTTP requests.
RingPHP provides a node.js web server that returns canned responses and
keep a list of the requests that have been received. The server can then
be queried to get a list of the requests that were sent by the client so that
you can ensure that the client serialized and transferred requests as intended.

The server keeps a list of queued responses and returns responses that are
popped off of the queue as HTTP requests are received. When there are not
more responses to serve, the server returns a 500 error response.

The test server uses the GuzzleHttp\Tests\Ring\Client\Server class to
control the server.

use GuzzleHttp\Ring\Client\StreamHandler;
use GuzzleHttp\Tests\Ring\Client\Server;

// First return a 200 followed by a 404 response.
Server::enqueue([
 ['status' => 200],
 ['status' => 404]
]);

$handler = new StreamHandler();

$response = $handler([
 'http_method' => 'GET',
 'headers' => ['host' => [Server::$host]],
 'uri' => '/'
]);

assert(200 == $response['status']);

$response = $handler([
 'http_method' => 'HEAD',
 'headers' => ['host' => [Server::$host]],
 'uri' => '/'
]);

assert(404 == $response['status']);

After requests have been sent, you can get a list of the requests as they
were sent over the wire to ensure they were sent correctly.

$received = Server::received();

assert('GET' == $received[0]['http_method']);
assert('HEAD' == $received[1]['http_method']);

 Copyright 2014, Michael Dowling.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	RingPHP

Index

 Copyright 2014, Michael Dowling.
 Created using Sphinx 1.3.5.

 _static/plus.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		RingPHP »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Michael Dowling.
 Created using Sphinx 1.3.5.

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

