
riboSeed Documentation
Release 0.4.9

Nicholas Waters, Florence Abram, Fiona Brennan, Ashleigh Holmes, Leighton Pritchard

Nov 01, 2019

Contents

1 Description 3
1.1 Description . 3

1.1.1 The Problem . 3
1.1.2 The Method . 4
1.1.3 The Results . 4

1.2 Installation . 4
1.2.1 From Pypi . 4
1.2.2 From TestPypi . 5
1.2.3 From GitHub . 5
1.2.4 Dependencies . 5

1.2.4.1 External Requirements . 5
1.3 Choosing an Appropriate Reference . 5

1.3.1 Introduction . 5
1.3.2 Reference Selection via ANI . 6
1.3.3 Kraken Method . 6
1.3.4 reads2type and cgFind Method . 6

1.4 Usage . 7
1.4.1 Minimal example: ribo run . 7

1.4.1.1 Whats going on: . 7
1.4.2 Running individual scripts . 7

1.5 riboSeed Pipeline . 8
1.5.1 Usage . 8
1.5.2 Before We Start . 8
1.5.3 0: Preprocessing . 8

1.5.3.1 scan . 8
1.5.3.2 select . 9

1.5.4 2: De fere novo Assembly . 11
1.5.4.1 seed . 11

1.5.5 Key Parameters . 13
1.5.6 3: Visualization/Assessment . 14

1.5.6.1 snag . 14
1.5.6.2 stack . 15
1.5.6.3 swap . 15
1.5.6.4 spec . 16

1.6 Accessory Scripts . 16
1.6.1 Assessment . 16

i

1.6.2 Visualization . 17
1.6.2.1 riboSnag.py . 17
1.6.2.2 ribo stack . 18

1.6.3 Utilities . 19
1.6.3.1 riboSwap.py . 19
1.6.3.2 seedRand.py . 19

2 Indices and tables 21

ii

riboSeed Documentation, Release 0.4.9

Impatient? See our Quickstart Guide

A brief overview of the theory can be found here.

The manuscript can be found here: Nicholas R Waters, Florence Abram, Fiona Brennan, Ashleigh Holmes, Leighton
Pritchard; riboSeed: leveraging prokaryotic genomic architecture to assemble across ribosomal regions, Nucleic Acids
Research, Volume 46, Issue 11, 20 June 2018, Pages e68, https://doi.org/10.1093/nar/gky212

Contents 1

https://github.com/nickp60/riboSeed/blob/master/icon/logo_1.svg
https://github.com/nickp60/riboSeed/blob/master/quickstart.md
https://nickp60.github.io/riboSeed.html
https://academic.oup.com/nar/article/46/11/e68/4955760
https://academic.oup.com/nar/article/46/11/e68/4955760
https://academic.oup.com/nar/article/46/11/e68/4955760

riboSeed Documentation, Release 0.4.9

2 Contents

CHAPTER 1

Description

riboSeed is an supplemental assembly refinement method to try to address the issue of multiple ribosomal regions in a
genome, as these create repeates unresolvable by short read sequencing. It takes advantage of the fact that while each
region is identical, the regions flanking are unique, and therefore can potentially be used to seed an assembly in such
a way that rDNA regions are bridged.

Contents:

1.1 Description

riboSeed is an supplemental assembly refinement method to try to address the issue of multiple ribosomal regions in a
genome, as these create repeates unresolvable by short read sequencing. It takes advantage of the fact that while each
region is identical, the regions flanking are unique, and therefore can potentially be used to seed an assembly in such
a way that rDNA regions are bridged.

1.1.1 The Problem

As you probably know, repeated regions are difficult to resolve when sequencing with a short read technology. Specif-
ically, if the length of the repeat exceeds the length of the kmers used to construct the de Bruijn graph, the repeat
cannot be resolved.

rDNAs, the genomic regions containing the sequences coding for ribosomal RNAs, are often found multiple times in a
single genome. The rDNAs are usually around 5kb long, which is much longer than the length of short reads. Because
of this, these regions cause breaks in the assembly.

Due to how well rDNA is conserved within a taxa, we hypothesized that if the regions flanking the rDNAs are suffi-
ciently unique within a genome, those regions would be able to locate an rDNA within the genome during assembly.

3

riboSeed Documentation, Release 0.4.9

1.1.2 The Method

We call our method a de fere novo assembly (meaning “starting from almost nothing”), as we use a subassembly
technique to minimize the bias caused by reference choice. We map the short reads to the reference genome, extract
the reads mapping to rDNA (with flanking) regions, and perform subassemblies with SPAdes to reassemble the rDNA
and flanking regions from the reads. These “long reads” are concatenated together separated with 5kb of N’s. The
reads are then mapped to the concatenated sequence and and subassembled for several additional iterations.

1.1.3 The Results

We generated a simulated genome from the 7 rDNA regions with 5kb flanking regions, and then used ‘ART
(MountRainier-2016-06-05)<https://www.niehs.nih.gov/research/resources/software/biostatistics/art/>‘__ to
generated simulated MiSeq reads of various depths.

mauve_simulated.png

In this ‘Mauve<http://darlinglab.org/mauve/mauve.html>‘__ visualization, we show (from top to bottom) the ref-
erence simulated genome, riboSeed’s de fere novo assembly, de novo assembly, and a negative control de fere novo
assembly using a Klebsiella reference genome. The results show that with riboSeed’s de fere novo assembly correctly
joins six of the seven rDNA regions to reconstruct the simulated genome with only short reads. By contrast, the short
reads alone failed to bridge any gaps caused by the repeated rDNAs, and the assembly using a poor reference choice
only assembled across a single rDNA region. We have run this successfully on many real datasets with positive results

1.2 Installation

From conda (new and recommended!) —

Conda is a cross-platform, cross-language package management system. If you haven’t already installed conda, follow
these instructions here, and install the python3.6 version. Once you have that done, add the appropriate channels.

conda config --add channels defaults
conda config --add channels conda-forge
conda config --add channels bioconda

and then install riboSeed and all of its dependencies with one command:

conda install riboseed

(Note the lowercase “s”)

1.2.1 From Pypi

riboSeed is on Pypi, so you can install with pip, preferably within a virtualenv:

virtualenv -p python3.5 venv-riboSeed
source venv-riboSeed/bin/activate
pip3.5 install riboSeed

4 Chapter 1. Description

https://github.com/nickp60/riboSeed/blob/master/docs/images/mauve_simulated.jpeg
https://bioconda.github.io/index.html

riboSeed Documentation, Release 0.4.9

1.2.2 From TestPypi

To install the bleeding-edge version, install from testpypi:

virtualenv -p python3.5 venv-riboSeed
source venv-riboSeed/bin/activate
pip install --extra-index-url https://testpypi.python.org/pypi riboSeed

1.2.3 From GitHub

You can also clone this repository, create a virtual environment, and run python3.5 setup.py install.

1.2.4 Dependencies

1.2.4.1 External Requirements

riboScan.py

• Barrnap (must be 0.7 or above)

• EMBOSS’s Seqret

riboSelect.py

• None

riboSnag.py

• PRANK or Mafft

• BLAST+ suite

• Barrnap (must be 0.7 or above)

riboSeed.py

• SPAdes v3.8 or higher

• BWA (tested with 0.7.12-r1039)

• SAMTools (must be 1.3.1 or above)

• QUAST (tested with 4.1)

NOTE: barrnap has certain Perl requirements that may not be included on your machine. Ensure barrnap runs fine
before trying riboSeed. Or try python barrnap.

1.3 Choosing an Appropriate Reference

1.3.1 Introduction

Any sort of analysis that involves a reference strain begs the question: which strain should I use? Luckily, riboSeed’s de
fere novo approach gives you a bit of flexiblility here, in that the method is not affected my major genomic restructuring
events, as long as they do not occur in the rDNA region. Still, using a close reference maximizes your chance for a
successful assembly.

There are three ways that we recommend selecting a reference. The first uses average nucleotide identity to select an
optimal reference for a given set of potential genomes – perfect if you are sequencing a popular bug and are spoiled

1.3. Choosing an Appropriate Reference 5

https://github.com/nickp60/barrnap/

riboSeed Documentation, Release 0.4.9

for reference choice. The Kraken method gives great results when nothing is known a priori, and results in a high
degree of certainty, but requires a bit of legwork. The last method can be done entirely through your web browser, but
is much less robust. For popular bugs, we reccomend ANI; otherwise we recommend Kraken, but if you have already
pulled out all of your hair from bioinformatics software installation, reads2Type/cgfind is a nice, painless alternative.

1.3.2 Reference Selection via ANI

With any assembly that uses a reference, the choice of that reference is crucial. Here, we outline a protocol for using
Average Nucleotide Identity via pyANI. We call this pipeline Plenty of Bugs, as it will help you find a compatible
match for your sequenced isolate.

PlentyOfBugs found here

This is easiest to do with Docker (or Singularity)

The following script will identify 25 random E. coli genomes, download then, build the pyani database, do a quick
assembly of your isolate, and find the closest reference to your isolate.

docker run --rm -t -v ${PWD}:/data/ nickp60/plentyofbugs:0.87 -f /data/tests/
→˓references/toy_reads1.fq -o "Escherichia coli" -n 25 -e sample_ecoli -d /data/
→˓results/

1.3.3 Kraken Method

Kraken is a kmer-based phylogeny tool that can be used to idenify the strains present in a metagenomic dataset; the
installation and usage instructions can be found here

• Download and install Kraken, along with the MiniKraken database from their website.

• Run Kraken on your isolate’s reads, and generate the Kraken report.

kraken --db MiniKraken reads1.fq reads2.fastq > sequences.kraken
kraken-translate --db MiniKraken sequences.kraken > sequences.labels
kraken-report --db MiniKraken sequence.kraken

Because the MiniKraken database was built from all the complete genomes from RefSeq, it should be easy to identify
which strain in the database has the closest match to your sequenced isolate.

PS: This is a great time to check if you have any contamination in your sample; thanks, Kraken!

1.3.4 reads2type and cgFind Method

reads2type is also a kmer-based phylogeny tool, but it relies on a lightweight, prebuilt database that allows the analysis
to be performed in your web browser, and it doesn’t require you to upload your whole read file to a webserver. It works
by taking one read at a time from your file, generating 55-mers, and comparing to its databse. If there is not enough
taxanomic information to indentify the isolate off of that read alone, additional reads will be processed until a single
taxonomy is achieved. This method works best on trimmed reads. Instructions and the webserver can be found here

Once you have a genus and species, you can use cgfind, a tool we developed to provide easy access to downloadable
genomes based on the complete prokaryotic genomes found in NCBI. it can be found here Just enter your genus and
species name, and select one of the available strains to download.

6 Chapter 1. Description

https://github.com/nickp60/plentyofbugs
https://ccb.jhu.edu/software/kraken/
https://cge.cbs.dtu.dk/services/Reads2Type/
https://nickp60.github.io/cgfind

riboSeed Documentation, Release 0.4.9

1.4 Usage

1.4.1 Minimal example: ribo run

The pseudogenome was constructed from the 7 rDNAs separated by several kb of flanking DNA. If can
be found under ./riboSeed/integration_test/concatenated_seq.fasta. If you have installed using setuptools, the
integration_test folder will be installed in the site-packages dir, such as /venv-riboSeed/lib/python3.5/site-
packages/riboSeed/integration_data/.

Two read files can be found in the same directory.

To run the whole riboSeed pipline, use the following command:

ribo run ./riboSeed/integration_data/concatenated_seq.fasta \
-F ./riboSeed/integration_data/test_reads1.fq \
-R ./riboSeed/integration_data/test_reads2.fq \
-o ./test1/ -v 1

1.4.1.1 Whats going on:

ribo run is used to run the pipeline with the most commonly used settings. It first creates a config file, tracking
down your system executables for the required tools, and setting the default parameters for things not specified as args
to run_riboSeed.

Then, ribo scan is run to re-annotate your reference, ribo select calls the rDNA operons, and ribo seed
runs the de fere novo assembly.

If you want to change the behaviour of the programs under the hood, all of the command line options not set by ribo
run are defined in the config file in the output directory. After editing the parameters in the config file, you can submit
it to ribo run using the -c flag.

1.4.2 Running individual scripts

All of the elements of the package can be run individually: Perhaps you want to modify barrnap’s behaviour in scan,
or you want to experiment with different feature selectors in select. Go for it!

$ ribo

Description: A suite of tools to perform de fere novo assembly to bridge
gaps caused by rDNA repeats

Usage: ribo <command> [options]

Available commands:
-run execute pipeline (scan, select, seed, sketch, and score)
-scan reannotate rRNAs in a FASTA file
-select group rRNA annotations into rDNA operons
-seed perform de fere novo assembly
-snag extract rDNA regions and plot entropy
-sim perform simulations used in manuscript
-sketch plot results from a de fere novo assembly
-stack compare coverage depth in rDNA regions to rest of genome
-score score batches of assemblies with BLASTn
-swap swap contigs from assemblies

(continues on next page)

1.4. Usage 7

riboSeed Documentation, Release 0.4.9

(continued from previous page)

-spec use assembly graph to speculate number of rDNAs
-structure view the rRNA operon structure across several genomes
-config write out a blank config file to be used with `run`

1.5 riboSeed Pipeline

1.5.1 Usage

The pipeline consists of 3 main stages: preprocessing, de fere novo assembly, and visualization/assessment. As of
version 0.4.21, the pipeline is run by invoking ribo and then one of the following commands:

[preprocessing]

• scan

• select

[de fere novo assembly]

• seed

[visualizations/assessment]

• snag

• stack

• sketch

• swap

• score

• spec

1.5.2 Before We Start

Please back up any and all data used, and work within a virtualenv.

Genome assembly gobbles RAM. If you, like me, are working on a 4gb RAM lappy, don’t run seed in parallel and
instead run in series by using the --serialize option. That should prevent you from running out of RAM during
the final SPAdes calls.

1.5.3 0: Preprocessing

1.5.3.1 scan

scan preprocesses sequences straight from a multifasta or one or more fasta. The issue with many legacy an-
notations, assemblies, and scaffold collections is rDNAs are often poorly annotated at best, and unannotated at
worst. This is shortcut to happiness without using the full Prokka annotation scheme. It requires `barrnap
<http://www.vicbioinformatics.com/software.barrnap.shtml>‘__ and seqret (from `emboss <http://www.ebi.ac.uk/
Tools/emboss/>‘__) to be available in your path. #### Usage

scan can either use a directory of fastas or one (multi)fasta file. If using a directory of fastas, provide the appropriate
extension using the -e option. If using a (multi)fasta as input, it write out each entry to its own fasta in the contigs
subdirectory that it makes in the output. For each of the fastas, the script renames complex headers (sketchy), scans

8 Chapter 1. Description

http://www.vicbioinformatics.com/software.barrnap.shtml
http://www.ebi.ac.uk/Tools/emboss/
http://www.ebi.ac.uk/Tools/emboss/

riboSeed Documentation, Release 0.4.9

with barrnap and captures the output gff. It then edits the gff to add fake incrementing locus_tags, and uses the
original sequence file through seqret to make a GenBank file that contains just annotated rRNA features. The last step
is a concatenation which, whether or not there are multiple files, makes a single (possibly multi-entry) genbank file
perfect for seed-ing.

NOTE: If using a reference with long names or containing special characters, use the –name argument to rename the
contigs to something a bit more convenient and less prone to errors when piping results.

usage: ribo scan -o OUTPUT [-e EXT] [-k {bac,euk,arc,mito}] [-t ID_THRESH]
[-b BARRNAP_EXE] [-n NAME] [-c {1,2,4,8,16}]
[-s SEQRET_EXE] [-v {1,2,3,4,5}] [-h]
contigs

Given a directory of one or more chromosomes as fasta files, this facilitates
reannotation of rDNA regions with Barrnap and outputs all sequences as a
single, annotated genbank file

positional arguments:
contigs_dir directory containing one or more chromosomal sequences

in fasta format

required named arguments:
-o OUTPUT, --output OUTPUT

output directory; default:
/home/nicholas/GitHub/seed

optional arguments:
-k {bac,euk,arc,mito}, --kingdom {bac,euk,arc,mito}

whether to look for eukaryotic, archaeal, or bacterial
rDNA; default: bac

-e extension extension of the chromosomal sequences, usually
'.fa', '.fasta' or similar; default: .fa

-t ID_THRESH, --id_thresh ID_THRESH
partial rRNA hits below this threshold will be
ignored. default: 0.5

-b BARRNAP_EXE, --barrnap_exe BARRNAP_EXE
path to barrnap executable; default: barrnap

-n NAME, --name NAME name to give the contig files; default: infered from
file

-s SEQRET_EXE, --seqret_exe SEQRET_EXE
path to seqret executable, usually installed with
emboss; default: seqret

-v {1,2,3,4,5}, --verbosity {1,2,3,4,5}
Logger writes debug to file in output dir; this sets
verbosity level sent to stderr. 1 = debug(), 2 =
info(), 3 = warning(), 4 = error() and 5 = critical();
default: 2

-h, --help Displays this help message

NOTE: If using a reference with long names or containing special characters, use the –name argument to rename the
contigs to something a bit more convenient and less prone to errors when piping results.

1.5.3.2 select

select searches the genome for rRNA annotations, clusters them into likely ribosomal groups, and outputs a colon-
separated list of clustered rRNA locus tags by record id.

1.5. riboSeed Pipeline 9

riboSeed Documentation, Release 0.4.9

You will probably want to preview your file to figure out the syntax used. (ie, 16s vs 16S, rRNA vs RRNA, etc. . .)

If not using scan or if not working with a prokaryotic genome, you will need to change --specific_features
appropriately to reflect the annotations in your reference (ie, for a fungal genome, use --specific_features
5_8S:18S:28S).

NOTE: the format of the output text file is very simple, and due to the relatively small number of such coding se-
quences in bacterial genomes, this can be constructed by hand if the clusters do not look appropriate. The format is
genome_sequence_id locus_tag1:locus_tag2, where each line represents a cluster. See example below,
where 14 rRNAs are clustered into 6 groups:

NOTE 2: In order to streamline things, as of version 0.0.3 there will be a commented header line with the feature type
in the format “#$ FEATURE “, such as #$ FEATURE rRNA.

#$ FEATURE rRNA
CM000577.1 FGSG_20052:FGSG_20051:FGSG_20053
CM000577.1 FGSG_20048:FGSG_20047
CM000577.1 FGSG_20049:FGSG_20050
CM000577.1 FGSG_20054:FGSG_20056:FGSG_20055
CM000577.1 FGSG_20058:FGSG_20057
CM000577.1 FGSG_20075:FGSG_20074

Usage

usage: ribo select [-h] [-o OUTPUT] [-f FEATURE] [-s SPECIFIC_FEATURES]
[--keep_temps] [--clobber] [-c CLUSTERS] [-v VERBOSITY]
[--debug]
genbank_genome

This is used to identify and cluster rRNA regions from a gb file, returns a
text file with the clusters

positional arguments:
genbank_genome Genbank file (WITH SEQUENCE)

optional arguments:
-h, --help show this help message and exit

required named arguments:
-o OUTPUT, --output OUTPUT

output directory;default:
/home/nicholas/GitHub/seed

optional arguments:
-f FEATURE, --feature FEATURE

Feature, rRNA or RRNA; default: rRNA
-s SPECIFIC_FEATURES, --specific_features SPECIFIC_FEATURES

colon:separated -- specific features; default:
16S:23S:5S

--keep_temps view intermediate clustering filesdefault: False
--clobber overwrite previous output files: default: False
-c CLUSTERS, --clusters CLUSTERS

number of rDNA clusters;if submitting multiple
records, must be a colon:separated list whose length
matches number of genbank records. Default is inferred
from specific feature with fewest hits

(continues on next page)

10 Chapter 1. Description

riboSeed Documentation, Release 0.4.9

(continued from previous page)

-v VERBOSITY, --verbosity VERBOSITY
1 = debug(), 2 = info(), 3 = warning(), 4 = error()
and 5 = critical(); default: 2

--debug Enable debug messages

1.5.4 2: De fere novo Assembly

1.5.4.1 seed

seed maps reads to a genome and (1) extracts reads mapping to rDNA regions, (2) perfoms subassemblies on each
pool of extracted reads to recover the rDNA complete with flanking regions (resulting in a pseudocontig) (3) concate-
nates a;; pseudocontigs into them into a pseudogenome with 5kb spacers of N’s in between, (5) map remaining reads
to the pseudogenome, and (6) repeat steps 1-5 for a given number of iterations (default 3 iterations). Finally, seed runs
SPAdes assemblied with and without the pseudocontigs and the resulting assemblies are assessed with QUAST.

Output

The results directory will contain a ‘final_long_reads’ directory with all the pseudocontigs, the mapped fastq files, and
final_de_novo_assembly and final_de_fere_novo_assembly folders, containing the SPAdes results.

NOTE:

If using a consumer-grade computer, it will be advantagous to run with -z/--serialize enabled to run asseblies
in serial rather than parallel.

Usage:

minimal usage: ribo seed clustered_accession\list.txt -F FASTQ1 -R FASTQ2 -r
REFERENCE_GENOME -o OUTPUT

usage: ribo seed -r REFERENCE_GENBANK -o OUTPUT [-F FASTQ1] [-R FASTQ2]
[-S1 FASTQS1] [-n EXP_NAME] [-l FLANKING] [-m {smalt,bwa}]
[-c CORES] [-k KMERS] [-p PRE_KMERS] [-s SCORE_MIN]
[-a MIN_ASSEMBLY_LEN] [--include_shorts] [--linear]
[--ref_as_contig {None,trusted,untrusted}] [--keep_temps]
[--skip_control] [-i ITERATIONS] [-v {1,2,3,4,5}]
[--target_len TARGET_LEN] [-t {1,2,4}] [-z]
[--smalt_scoring SMALT_SCORING] [--mapper_args MAPPER_ARGS]
[-h] [--spades_exe SPADES_EXE]
[--samtools_exe SAMTOOLS_EXE] [--smalt_exe SMALT_EXE]
[--bwa_exe BWA_EXE] [--quast_exe QUAST_EXE]
[--python2_7_exe PYTHON2_7_EXE]
clustered_loci_txt

Given cluster file of rDNA regions from select and either paired-end or
single-end reads, assembles the mapped reads into pseduocontig 'seeds', and
uses those with the reads to runde fere novo and de novo assembly with SPAdes

positional arguments:
clustered_loci_txt output from select

(continues on next page)

1.5. riboSeed Pipeline 11

riboSeed Documentation, Release 0.4.9

(continued from previous page)

required named arguments:
-r REFERENCE_GENBANK, --reference_genbank REFERENCE_GENBANK

genbank reference, used to estimate insert sizes, and
compare with QUAST

-o OUTPUT, --output OUTPUT
output directory; default:
/home/nicholas/GitHub/seed

optional arguments:
-F FASTQ1, --fastq1 FASTQ1

forward fastq reads, can be compressed
-R FASTQ2, --fastq2 FASTQ2

reverse fastq reads, can be compressed
-S1 FASTQS1, --fastq_single1 FASTQS1

single fastq reads
-n EXP_NAME, --experiment_name EXP_NAME

prefix for results files; default: seed
-l FLANKING, --flanking_length FLANKING

length of flanking regions, in bp; default: 1000
-m {smalt,bwa}, --method_for_map {smalt,bwa}

available mappers: smalt and bwa; default: bwa
-c CORES, --cores CORES

cores for multiprocessing; default: None
-k KMERS, --kmers KMERS

kmers used for final assembly, separated by commas;
default: 21,33,55,77,99,127

-p PRE_KMERS, --pre_kmers PRE_KMERS
kmers used during seeding assemblies, separated bt
commas; default: 21,33,55,77,99

-s SCORE_MIN, --score_min SCORE_MIN
If using smalt, this sets the '-m' param; default with
smalt is inferred from read length. If using BWA,
reads mapping with ASscore lower than this will be
rejected; default with SWA is half of read length

-a MIN_ASSEMBLY_LEN, --min_assembly_len MIN_ASSEMBLY_LEN
if initial SPAdes assembly largest contig is not at
least as long as --min_assembly_len, exit. Set this to
the length of the seed sequence; if it is not
achieved, seeding across regions will likely fail;
default: 6000

--include_shorts if assembled contig is smaller than
--min_assembly_len, contig will still be included in
assembly; default: inferred

--linear if genome is known to not be circular and a region of
interest (including flanking bits) extends past
chromosome end, this extends the seqence past
chromosome origin forward by --padding; default: False

--ref_as_contig {None,trusted,untrusted}
if 'trusted', SPAdes will use the seed sequences as a
--trusted-contig; if 'untrusted', SPAdes will treat as
--untrusted-contig. if '', seeds will not be used
during assembly. See SPAdes docs; default: untrusted

--keep_temps if not --keep_temps, mapping files will be removed
once they are no no longer needed during the
iterations; default: False

--skip_control if --skip_control, no de novo assembly will be done;
(continues on next page)

12 Chapter 1. Description

riboSeed Documentation, Release 0.4.9

(continued from previous page)

default: False
-i ITERATIONS, --iterations ITERATIONS

if iterations>1, multiple seedings will occur after
subassembly of seed regions; if setting --target_len,
seedings will continue until --iterations are
completed or --target_len is matched or exceeded;
default: 3

-v {1,2,3,4,5}, --verbosity {1,2,3,4,5}
Logger writes debug to file in output dir; this sets
verbosity level sent to stderr. 1 = debug(), 2 =
info(), 3 = warning(), 4 = error() and 5 = critical();
default: 2

--target_len TARGET_LEN
if set, iterations will continue until contigs reach
this length, or max iterations (set by --iterations)
have been completed. Set as fraction of original seed
length by giving a decimal between 0 and 5, or set as
an absolute number of base pairs by giving an integer
greater than 50. Not used by default

-t {1,2,4}, --threads {1,2,4}
if your cores are hyperthreaded, set number threads to
the number of threads per processer.If unsure, see
'cat /proc/cpuinfo' under 'cpu cores', or 'lscpu'
under 'Thread(s) per core'.: 1

-z, --serialize if --serialize, runs seeding and assembly without
multiprocessing. This is recommended for machines with
less than 8GB RAM: False

--smalt_scoring SMALT_SCORING
if mapping with SMALT, submit custom smalt scoring via
smalt -S scorespec option; default:
match=1,subst=-4,gapopen=-4,gapext=-3

--mapper_args MAPPER_ARGS
submit custom parameters to mapper. And by mapper, I
mean bwa, cause we dont support this option for SMALT,
sorry. This requires knowledge of your chosen mapper's
optional arguments. Proceed with caution! default: -L
0,0 -U 0

-h, --help Displays this help message
--spades_exe SPADES_EXE

Path to SPAdes executable; default: spades.py
--samtools_exe SAMTOOLS_EXE

Path to samtools executable; default: samtools
--smalt_exe SMALT_EXE

Path to smalt executable; default: smalt
--bwa_exe BWA_EXE Path to BWA executable; default: bwa
--quast_exe QUAST_EXE

Path to quast executable; default: quast.py
--python2_7_exe PYTHON2_7_EXE

Path to python2.7 executable, cause QUAST won't run on
python3. default: python2.7

1.5.5 Key Parameters

Results can be tuned by changing several of the default parameters.

• --score_min: This can be used to set the minimum mapping score. If using BWA, the default is not to supply

1.5. riboSeed Pipeline 13

riboSeed Documentation, Release 0.4.9

a minimum and to rely on the BWA default. If submitting a --score_min to BWA, double check that it is
appropriate. It appears to be extremely sensitive to read length, and having a too-low threshold for minimum
mapping can seriously ruin ones day. Check out IGB or similar to view your mappings if greater than, say, 5%
or the reads are mapping in subsequent iterations.

• -l, --flanking_length: Default is 2000. That seems to be a good compromise between gaining unique
sequence and not relying too much on the reference.

• --kmers and --pre_kmers: Adjust these as you otherwise would for a de novo assembly.

• --min_assembly_len: For bacteria, this is about 7000bp, as the rDNA regions for a typical operon of
16S 23S and 5S coding sequences combined usually are about that long. If you are using non-standard rDNA
regions, this should be adjusted to prevent spurious assemblies.

• --ref_as_contig: This can be used to guide how SPAdes treats the long read sequences during the assem-
bly (trusted or untrusted). By default, this is infered from mapping percentage (trusted if over 85%
of reads map to the reference)

• --iterations: Each iteration typically increases the length of the long read by approximately 5%.

1.5.6 3: Visualization/Assessment

1.5.6.1 snag

snag takes the list of clustered locus tags and extracts their sequences with flanking regions, optionally turning the
coding sequences to N’s to minimize bias towards reference. Is used to pull out regions of interest from a Genbank
file. Outputs a directory with a fasta file for each clustered region (and a log file).

Additionally, it does a lot of plotting to visualize the Shannon entropy, coverage, occurrences, and other useful metrics.

Usage:

usage: ribo snag [-o OUTPUT] [-n NAME] [-l FLANKING] [--msa_kmers] [-c]
[-p PADDING] [-v VERBOSITY] [--clobber] [--no_revcomp]
[--skip_check] [--msa_tool {mafft,prank}]
[--prank_exe PRANK_EXE] [--mafft_exe MAFFT_EXE]
[--barrnap_exe BARRNAP_EXE]
[--makeblastdb_exe MAKEBLASTDB_EXE]
[--kingdom {mito,euk,arc,bac}] [-h]
genbank_genome clustered_loci

Use to extract regions of interest based on supplied Locus tags and evaluate
the extracted regions

positional arguments:
genbank_genome Genbank file (WITH SEQUENCE)
clustered_loci output from select

required named arguments:
-o OUTPUT, --output OUTPUT

output directory; default:
/home/nicholas/GitHub/seed

optional arguments:
-n NAME, --name NAME rename the contigs with this prefixdefault: date

(YYYYMMDD)

(continues on next page)

14 Chapter 1. Description

riboSeed Documentation, Release 0.4.9

(continued from previous page)

-l FLANKING, --flanking_length FLANKING
length of flanking regions, in bp; default: 1000

--msa_kmers calculate kmer similarity based on aligned sequences
instead of raw sequences;default: False

-c, --circular if the genome is known to be circular, and an region
of interest (including flanking bits) extends past
chromosome end, this extends the seqence past
chromosome origin forward by 5kb; default: False

-p PADDING, --padding PADDING
if treating as circular, this controls the length of
sequence added to the 5' and 3' ends to allow for
selecting regions that cross the chromosom's origin;
default: 5000

-v VERBOSITY, --verbosity VERBOSITY
1 = debug(), 2 = info(), 3 = warning(), 4 = error()
and 5 = critical(); default: 2

--clobber overwrite previous output filesdefault: False
--no_revcomp default returns reverse complimented seq if majority

of regions on reverse strand. if --no_revcomp, this is
overwriddendefault: False

--skip_check Dont bother calculating Shannon Entropy; default:
False

--msa_tool {mafft,prank}
Path to PRANK executable; default: mafft

--prank_exe PRANK_EXE
Path to PRANK executable; default: prank

--mafft_exe MAFFT_EXE
Path to MAFFT executable; default: mafft

--barrnap_exe BARRNAP_EXE
Path to barrnap executable; default: barrnap

--makeblastdb_exe MAKEBLASTDB_EXE
Path to makeblastdb executable; default: makeblastdb

--kingdom {mito,euk,arc,bac}
kingdom for barrnap; default: bac

-h, --help Displays this help message

1.5.6.2 stack

Decause assembly using short reads often collases rDNA repeats, it is not uncommon to find a reference genome that
has less than the actual number of rDNAs. stack uses bedtools and samtools to determine the coverage across
rDNA regiosn, adn compares that coverage depth to 10 sets of randomly selected non-rDNA regions. If the number
of rDNAs in the reference matches the number of rDNAs in your sequecned isolate, the coverage should be pretty
similar. However, if the coverage in your rDNA regions is significantly higher, than there are likely more rDNAs in
your sequenced isoalte that there are in the reference, which is something to be aware of.

It requires a mapping BAM file and the scan output directory as input.

1.5.6.3 swap

Infrequently, seed has joined together contigs that appear incorrect according to your reference. If you are at all
unhappy with a bridging, swap allows swapping of a “bad” contig for one or more syntenic contigs from the de novo
assembly. #### USAGE

1.5. riboSeed Pipeline 15

riboSeed Documentation, Release 0.4.9

usage: ribo swap -o OUTPUT [-v {1,2,3,4,5}] [-h]
de_novo_file de_fere_novo_file bad_contig good_contigs

Given de novo and de fere novo contigs files, a misjoined de fere novo contig
name, and a colon:separated list of de novo contig names, replace the
offending contig with the de novo contig(s)

positional arguments:
de_novo_file multifasta containing de novo contigs
de_fere_novo_file multifasta containing de fere novo contigs
bad_contig name of the bad contig
good_contigs colon separated good contigs for replacement

required named arguments:
-o OUTPUT, --output OUTPUT

output directory; default:
/home/nicholas/GitHub/seed

optional arguments:
-v {1,2,3,4,5}, --verbosity {1,2,3,4,5}

Logger writes debug to file in output dir; this sets
verbosity level sent to stderr. 1 = debug(), 2 =
info(), 3 = warning(), 4 = error() and 5 = critical();
default: 2

-h, --help Displays this help message

1.5.6.4 spec

One limitation in resolving the rDNA repeats is the lack of confidence in the reference genomes that were assembled
from short reads along. ribo spec parses the SPAdes assembly graph in fastg format to take a guess at how many
rDNAs are in the genome based on the nodes and edges represinting the region in the graph. This can help alert the
user that the number of rDNAs in the reference may disagree with the actual number in the genome.

1.6 Accessory Scripts

1.6.1 Assessment

riboScore.py ~~~ Suppose you have a whole bunch of assemblies to assess. The most rigorous way of checking
the assemblies would be to use Mauve (or a similar whole genome alignment visualizer tool) for the job, and manually
check the quality of each assembly, listening to the ends of the contigs, seeking one-ness with the data. Thats all well
and good if you are (a) independantly wealthy and enjoy doing this sort of thing, (b) seeking a meditative state through
mindless clicking, or (c) an undergrad assistant, but for the rest of us, we are willing to sacrifice a bit of accuracy for
throughput. This is, after all, why we aren’t sequencing on gels anymore.

ribo score outputs two types of score repors as text files: one which is easy for humans to read, and the other that
can be easily combined with hundreds like it to make various types of graphs etc.

usage: ribo score [-h] [-o OUTPUT] [-l FLANKING] [-p MIN_PERCENT]
[-f ASSEMBLY_EXT] [-g REF_EXT] [-F] [-v {1,2,3,4,5}]
indir

This does some simple blasting to detect correctness of riboSeed results

(continues on next page)

16 Chapter 1. Description

riboSeed Documentation, Release 0.4.9

(continued from previous page)

positional arguments:
indir dir containing a genbank file and other file

optional arguments:
-h, --help show this help message and exit
-o OUTPUT, --output OUTPUT

directory in which to place the output files
-l FLANKING, --flanking_length FLANKING

length of flanking regions, in bp; default: 1000
-p MIN_PERCENT, --min_percent MIN_PERCENT

minimum percent identity
-f ASSEMBLY_EXT, --assembly_ext ASSEMBLY_EXT

extenssion of reference, usually fasta
-g REF_EXT, --ref_ext REF_EXT

extension of reference, usually .gb
-F, --blast_Full if true, blast full sequences along with just the

flanking. Interpretation is not implemented currently
as false positives cant be detected this way

-v {1,2,3,4,5}, --verbosity {1,2,3,4,5}
Logger writes debug to file in output dir; this sets
verbosity level sent to stderr. 1 = debug(), 2 =
info(), 3 = warning(), 4 = error() and 5 = critical();
default: 2

1.6.2 Visualization

1.6.2.1 riboSnag.py

riboSnag.py takes the list of clustered locus tags and extracts their sequences with flanking regions, optionally
turning the coding sequences to N’s to minimize bias towards reference. Is used to pull out regions of interest from a
Genbank file. Outputs a directory with a fasta file for each clustered region (and a log file).

Additionally, it does a lot of plotting to visualize the Shannon entropy, coverage, occurrences, and other useful metrics.

Usage:

usage: riboSnag.py [-o OUTPUT] [-n NAME] [-l FLANKING] [--msa_kmers] [-c]
[-p PADDING] [-v VERBOSITY] [--clobber] [--no_revcomp]
[--skip_check] [--msa_tool {mafft,prank}]
[--prank_exe PRANK_EXE] [--mafft_exe MAFFT_EXE]
[--barrnap_exe BARRNAP_EXE]
[--makeblastdb_exe MAKEBLASTDB_EXE]
[--kingdom {mito,euk,arc,bac}] [-h]
genbank_genome clustered_loci

Use to extract regions of interest based on supplied Locus tags and evaluate
the extracted regions

positional arguments:
genbank_genome Genbank file (WITH SEQUENCE)
clustered_loci output from riboSelect

required named arguments:

(continues on next page)

1.6. Accessory Scripts 17

riboSeed Documentation, Release 0.4.9

(continued from previous page)

-o OUTPUT, --output OUTPUT
output directory; default:
/home/nicholas/GitHub/riboSeed

optional arguments:
-n NAME, --name NAME rename the contigs with this prefixdefault: date

(YYYYMMDD)
-l FLANKING, --flanking_length FLANKING

length of flanking regions, in bp; default: 1000
--msa_kmers calculate kmer similarity based on aligned sequences

instead of raw sequences;default: False
-c, --circular if the genome is known to be circular, and an region

of interest (including flanking bits) extends past
chromosome end, this extends the seqence past
chromosome origin forward by 5kb; default: False

-p PADDING, --padding PADDING
if treating as circular, this controls the length of
sequence added to the 5' and 3' ends to allow for
selecting regions that cross the chromosom's origin;
default: 5000

-v VERBOSITY, --verbosity VERBOSITY
1 = debug(), 2 = info(), 3 = warning(), 4 = error()
and 5 = critical(); default: 2

--clobber overwrite previous output filesdefault: False
--no_revcomp default returns reverse complimented seq if majority

of regions on reverse strand. if --no_revcomp, this is
overwriddendefault: False

--skip_check Dont bother calculating Shannon Entropy; default:
False

--msa_tool {mafft,prank}
Path to PRANK executable; default: mafft

--prank_exe PRANK_EXE
Path to PRANK executable; default: prank

--mafft_exe MAFFT_EXE
Path to MAFFT executable; default: mafft

--barrnap_exe BARRNAP_EXE
Path to barrnap executable; default: barrnap

--makeblastdb_exe MAKEBLASTDB_EXE
Path to makeblastdb executable; default: makeblastdb

--kingdom {mito,euk,arc,bac}
kingdom for barrnap; default: bac

-h, --help Displays this help message

1.6.2.2 ribo stack

Because assembly using short reads often collases rDNA repeats, it is not uncommon to find a reference genome that
has less than the actual number of rDNAs. riboStack uses bedtools and samtools to determine the coverage
across rDNA regiosn, adn compares that coverage depth to 10 sets of randomly selected non-rDNA regions. If the
number of rDNAs in the reference matches the number of rDNAs in your sequecned isolate, the coverage should be
pretty similar. However, if the coverage in your rDNA regions is significantly higher, than there are likely more rDNAs
in your sequenced isoalte that there are in the reference, which is something to be aware of.

It requires a mapping BAM file and the riboScan output directory as input.

18 Chapter 1. Description

riboSeed Documentation, Release 0.4.9

1.6.3 Utilities

1.6.3.1 riboSwap.py

Infrequently, riboSeed has joined together contigs that appear incorrect according to your reference. If you are at all
unhappy with a bridging, ribo swap allows swapping of a “bad” contig for one or more syntenic contigs from the
de novo assembly. #### USAGE

usage: ribo swap -o OUTPUT [-v {1,2,3,4,5}] [-h]
de_novo_file de_fere_novo_file bad_contig good_contigs

Given de novo and de fere novo contigs files, a misjoined de fere novo contig
name, and a colon:separated list of de novo contig names, replace the
offending contig with the de novo contig(s)

positional arguments:
de_novo_file multifasta containing de novo contigs
de_fere_novo_file multifasta containing de fere novo contigs
bad_contig name of the bad contig
good_contigs colon separated good contigs for replacement

required named arguments:
-o OUTPUT, --output OUTPUT

output directory; default:
/home/nicholas/GitHub/riboSeed

optional arguments:
-v {1,2,3,4,5}, --verbosity {1,2,3,4,5}

Logger writes debug to file in output dir; this sets
verbosity level sent to stderr. 1 = debug(), 2 =
info(), 3 = warning(), 4 = error() and 5 = critical();
default: 2

-h, --help Displays this help message

1.6.3.2 seedRand.py

There is no convenient unix command to generate seeded random numbers from the command line. This standalone
script uses numpy (if availible) or the built-in random module to generate n random numbers given a seed.

Note: numpy should give you the same random numbers given the same seed across platforms: this is not the case
with python’s build-in random module.

usage: seedRand.py [-h] seed n

Given a seed, return a pseudrando integer between 1 and 9999, separated by
newlines, to stdout. usage : `seedRand.py 27 10` would return 10 random
numbers seeded with 27

positional arguments:
seed seed
n number of random numbers to return, must be > 0

optional arguments:
-h, --help show this help message and exit

1.6. Accessory Scripts 19

riboSeed Documentation, Release 0.4.9

20 Chapter 1. Description

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

21

	Description
	Description
	The Problem
	The Method
	The Results

	Installation
	From Pypi
	From TestPypi
	From GitHub
	Dependencies
	External Requirements

	Choosing an Appropriate Reference
	Introduction
	Reference Selection via ANI
	Kraken Method
	reads2type and cgFind Method

	Usage
	Minimal example: ribo run
	Whats going on:

	Running individual scripts

	riboSeed Pipeline
	Usage
	Before We Start
	0: Preprocessing
	scan
	select

	2: De fere novo Assembly
	seed

	Key Parameters
	3: Visualization/Assessment
	snag
	stack
	swap
	spec

	Accessory Scripts
	Assessment
	Visualization
	riboSnag.py
	ribo stack

	Utilities
	riboSwap.py
	seedRand.py

	Indices and tables

