Rhubarb Documentation
Release

Robert Allen

December 26, 2013

Contents

Rhubarb Documentation, Release

Contents:

Contents 1

Rhubarb Documentation, Release

2 Contents

CHAPTER 1

Installation

1.1 Composer

The recommended method of installation is via composer

composer require zircote/rhubarb:3.1.=«

Depending on your selection of connectors you will also need to require or compile the appropriate ex-
tension or libraries.

Extensions may be installed with pecl i.e.

pecl install mongo

Libraries can be included utilizing the composer command

composer require predis/predis:master-dev

1.2 PECL AMQP

Development of the Official PHP AMQP extension may be found at https://github.com/bkw/pecl-amqp-official as well
as stubs and tests.

Installation via pecl:

To build the ext-amqp from source:

http://getcomposer.org
https://github.com/bkw/pecl-amqp-official

Rhubarb Documentation, Release

4 Chapter 1. Installation

CHAPTER 2

Rhubarb

Celery Worker Execution From PHP

Use of Rhubarb is outlined as follows.

Send Task and Wait For Result

use \Rhubarb\Exception\TimeoutException;

rhubarb = new \Rhubarb\Rhubarb (Soptions);

b->sendTask (' task.add’, array(2,2));

} catch (TimeoutException Se) {
Slog->error ('task failed to return in default timelimit [10] seconds’);

Fire And Forget Task

use \Rhubarb\Exception\TimeoutException;

Srhubarb = new \Rhubarb\Rhubarb (Soptions);
try {
Stask = S$Srhubarb->sendTask (’task.add’, array(2,2));

Sresult = S$task->delay();
} catch (TimeoutException S$Se) {
Slog->error ('task failed to return in default timelimit [10] seconds’);

Getting Task Status

use \Rhubarb\Exception\TimeoutException;
Srhubarb = new \Rhubarb\Rhubarb (Soptions);

Stask = Srhubarb->sendTask (’task.add’, array(2,2));

Rhubarb Documentation, Release

Sresult = S$task->delay();
while (!Stask->successful()) {
echo Stask->state (), PHP_EOL;
// You should have some time based break; statement here
var_dump (Stask->get ());
KWARG Support

use \Rhubarb\Exception\TimeoutException;

Srhubarb = new \Rhubarb\Rhubarb (Soptions);

try {
Stask = Srhubarb->sendTask (’task.add’, array(’argl’ => 2, "arg2’ => 2));
Sresult = S$task->delay();
var_dump (Stask->get ()) ;

} catch (TimeoutException S$e) {
Slog->error ('task failed to return in default timelimit [10] seconds’);

}

Method Specific Queue and/or Exchange

use \Rhubarb\Exception\TimeoutException;

Srhubarb = new \Rhubarb\Rhubarb (Soptions);
try {
Stask = S$Srhubarb->sendTask (’task.add’, array(’argl’ => 2, "arg2’ => 2));
Stask->getMessage ()
->setPropQueue ('priority.high’)
—>setPropExchange (' queue.other’);
Sresult = Stask->delay();
var_dump (Stask->get ()) ;
} catch (TimeoutException S$e) {
Slog->error ('task failed to return in default timelimit [10] seconds’);

}

Advanced Task Options At runtime it may become necessary to utilize a different queue, exchange or various run-
time options. These options may be passed to the __delay__ method when called:

Supported Options are:

e countdown: (int) The task is guaranteed to be executed at some time after the specified date and time, but
not necessarily at that exact time.

 expires: (int) The expires argument defines an optional expiry time, either as seconds after task publish.
e priority: (int) A number between 0 and 9, where 0 is the highest priority. (Supported by: redis)
* utc: (bool) Timestamps are UTC.

 eta: (int) The ETA (estimated time of arrival) in seconds; lets you set a specific date and time that is the
earliest time at which your task will be executed.

* errbacks: TBD
* queue: (string) Simple routing (name <-> name) is accomplished using the queue option.
* queue_args: (array) Key-Value option pairs for the queue arguments.

» exchange: (string) Name of exchange (or a kombu.entity.Exchange) to send the message to.

6 Chapter 2. Rhubarb

Rhubarb Documentation, Release

Example
Srhubarb = new \Rhubarb\Rhubarb (Soptions);
Sres = S$rhubarb->sendTask (' subtract’, array(3,

Sres—>delay (
array (
"queue’ =>
"exchange’

"priority.high’,
=> "subtract_qgqueue’
)

Sresult = S$Sres->get (2);

Sthis->assertEquals(l, S$Sresult);

2));

Rhubarb Documentation, Release

8 Chapter 2. Rhubarb

CHAPTER 3

Rhubarb Connectors

Contents:

3.1 AMQP

Rhubarb currently supports two AMQP connectors:

e zircote/amqp
* ext-amqp

Note: Note that at this time the ext-amqp extension does not support 7LS; for TLS support you will be required to
utilize the zircote/amqp package.

3.1.1 zircote/amqp

https://packagist.org/packages/zircote/amqp
https://github.com/bkw/php-amqp

Rhubarb Documentation, Release

Configuration

The configuration of the zircote/amgp implementation for Rhubarb is comprised of the following key hierarchy:
* broker
— type: the broker class name without the namespace
— options: the broker specific options
* exchange: the name of the target exchange
* queue: an array of options related to the queue
- name: the queue name
- arguments: an array of arguments related to the queue, these are AMQP specific
and are documented in the zircote/amgqp library
x uri: the amqp server/cluster uri (it should match your celery worker configuration)
¢ result_store
— type: the result_store class name without the namespace
— options: the result_store specific options
+ exchange: the name of the target exchange
— uri: the amqp server/cluster uri (it should match your celery worker configuration)

Note: These options SHOULD match your celery worker configuration.

Soptions = array (
"broker’ => array (
"type’ => ’"Amqgp’,
"options’ => array (
"exchange’ => ’celery’,
"queue’ => array (
"name’ => ’'celery’,
"arguments’ => array (
"x-ha-policy’ => array(’'s’, "all’)

) 4

"connection’ => ’amgp://guest:guest@localhost:5672/celery’

)
"result_store’ => array(
"type’ => 'Amgp’,
"options’ => array (
"exchange’ => ’'celery’,

’

"connection’ => ’'amqgp://guest:guest@localhost:5672/celery

3.1.2 ext-amqp

10 Chapter 3. Rhubarb Connectors

Rhubarb Documentation, Release

Configuration

The configuration of the ext-amgp implementation for Rhubarb is comprised of the following key hierarchy:
* broker
— type: the broker class name without the namespace
— options: the broker specific options
* exchange: the name of the target exchange
* queue: an array of options related to the queue
- name: the queue name
- arguments: an array of arguments related to the queue, these are AMQP specific
+ uri: the amqp server/cluster uri (it should match your celery worker configuration)
* result_store
— type: the result_store class name without the namespace
— options: the result_store specific options
exchange: the name of the target exchange
— uri: the amgp server/cluster uri (it SHOULD match your celery worker configuration)

Note: These options SHOULD match your celery worker configuration.

otions = array (
"broker’ => array (
"type’ => 'PhpAmgp’,
"options’ => array (
"exchange’ => ’'celery’,
"queue’ => array (
"arguments’ => array (
)
) ’

"connection’ => ’amgp://guest:guest@localhost:5672/celery’

) ’
"result_store’ => array(
"type’ => ’'PhpAmgp’,
"options’ => array (
"exchange’ => ’celery’,

"connection’ => ’'amqgp://guest:guest@localhost:5672/celery’

3.2 redis

Rhubarb currently supports one **redis** connectors:

* predis/predis

3.2.1 predis/predis

3.2. redis 11

https://packagist.org/packages/predis/predis

Rhubarb Documentation, Release

Configuration

The configuration of the predis/predis implementation for Rhubarb is comprised of the following key hierarchy:
* broker
— type: the broker class name without the namespace
— options: the broker specific options
% exchange: the name of the target exchange
uri: the amqp server/cluster uri (it should match your celery worker configuration)
¢ result_store
— type: the result_store class name without the namespace
— options: the result_store specific options
exchange: the name of the target exchange
% uri: the amqp server/cluster uri (it should match your celery worker configuration)

Note: These options SHOULD match your celery worker configuration.

Soptions = array(
"broker’ => array (
"type’ => ’Predis’,
"options’ => array (
"exchange’ => ’celery’,
"connection’ => ’'redis://localhost:6379/1’

)I
"result_store’ => array(
"type’ => ’Predis’,
"options’ => array (
"exchange’ => ’'celery’,
)

Srhubarb = new \Rhubarb\Rhubarb (Soptions);

3.3 Mongo

Warning: as of Celery v3.1 MongoDB is no longer officially supported. Refer to Rhubarb v.0.2

12 Chapter 3. Rhubarb Connectors

CHAPTER 4

Indices and tables

* genindex
* modindex

e search

13

