
REvoSim Documentation
Release 3.0.1

Mark D. Sutton, Russell J. Garwood, Alan R.T. Spencer, Euan Furness

Feb 10, 2024

CONTENTS

1 Relevant references 3
1.1 Software references: . 3
1.2 Other references: . 3

2 Table of Contents 5
2.1 Introduction . 5

2.1.1 Overview . 5
2.1.2 Simulation setup . 6
2.1.3 Output setup . 7
2.1.4 Quick start . 7

2.2 Compiling, Installation, and Requirements . 7
2.2.1 Installation . 7
2.2.2 System requirements . 7
2.2.3 Compiling from Source . 8

2.3 Concepts and Example Usage . 9
2.3.1 Concepts . 9
2.3.2 Example Usage . 10

2.4 Window Layout . 12
2.4.1 Main Menu . 12
2.4.2 Main Toolbar . 15
2.4.3 Population Scene . 16
2.4.4 Environment Scene . 24
2.4.5 Information Bar . 26

2.5 Configuring your Organisms . 27
2.5.1 Organism settings . 27
2.5.2 Breed settings . 28
2.5.3 Settle settings . 29
2.5.4 Genome Words and Systems . 29

2.6 Setting up the Simulation . 30
2.6.1 Environment settings . 30
2.6.2 Simulation size . 30
2.6.3 Simulation settings . 31
2.6.4 Phylogeny settings . 32
2.6.5 Linkages . 32

2.7 Configuring Interactions . 33
2.7.1 Interaction settings . 33
2.7.2 Pathogen settings . 35

2.8 Configuring Outputs and Run End Log . 35
2.8.1 Output options . 36
2.8.2 Run end log . 36

i

2.8.3 Run end log options . 38
2.8.4 Other options . 39
2.8.5 Custom logs . 39

2.9 Running Log . 39
2.9.1 Buttons . 39
2.9.2 Header text . 40
2.9.3 Iteration text . 40
2.9.4 Species text . 40
2.9.5 v3.0.0 log options . 40
2.9.6 v2.0.0 log . 42

2.10 Genome comparison dock . 43
2.11 Advanced Options . 44

2.11.1 Count peaks . 45
2.11.2 Custom Random Numbers . 45

2.12 Command Line Options . 47
2.12.1 Running via SSH . 48
2.12.2 Single-letter switches . 48
2.12.3 Long option only switches . 49

2.13 Tests . 51
2.13.1 REvoSim test log . 52
2.13.2 Failed Tests . 52

ii

REvoSim Documentation, Release 3.0.1

The [R]apid [Evo]lutionary [Sim]ulator program.

REvoSim is an individual-based evolutionary model, using a simplified first-principles evolutionary model to facilitate
high computational efficiency, allowing the simulation of large populations incorporating space, over geological time,
using modest computer hardware. It can simulate populations of 105 –107 digital organisms over geological timescales,
and incorporates spatial and temporal environmental variation, recombinant or asexual reproduction, mutation and
dispersal. Speeds attainable depend on the computer hardware in use, the size of the populations simulated, and details
of the experimental setup (most notably on whether species tracking and fitness recalculation are activated). With
a typical 2018 desktop computer, speeds of between 500,000 and 1,000,000 iterations per hour can be achieved for
populations of around 250,000.

REvoSim has been in development since 2008, and has been released with the intention that it can be used as a mul-
tipurpose platform for the study of many evolutionary phenomena. While it was designed with macroevolutionary
studies in mind, it is also applicable to microevolutionary problems. As such it is complementary to the many other
approaches of studying evolution on a range of different timescales. It is continually developed by the core team to
expand its capabilities.

t:@palaeoware

e:palaeoware@gmail.com

w:https://github.com/palaeoware

CONTENTS 1

https://twitter.com/palaeoware
https://github.com/palaeoware

REvoSim Documentation, Release 3.0.1

2 CONTENTS

CHAPTER

ONE

RELEVANT REFERENCES

1.1 Software references:

Garwood, R.J., Spencer A.R.T. and Sutton, M.D., 2019. REvoSim: Organism-level simulation of macro- and mi-
croevolution. Palaeontology 62(3),339-355. https://doi.org/10.1111/pala.12420

Furness, E.N., Garwood, R.J. & Sutton, M.D. 2023. REvoSim v3: A fast evolutionary simulation tool with ecological
processes. Journal of Open Source Software 8(89): 5284. doi: 10.21105/joss.05284 <10.21105/joss.05284>

1.2 Other references:

Furness, E.N., Garwood, R.J., Mannion, P.D. and Sutton, M.D., 2021. Evolutionary simulations clarify and reconcile
biodiversity-disturbance models. Proceedings of the Royal Society B, 288(1949), p.20210240. https://doi.org/10.1098/
rspb.2021.0240

Furness, E.N., Garwood, R.J., Mannion, P. D. & Sutton, M.D. 2021. Productivity, niche availability, species richness
and extinction risk: Untangling relationships using individual-based simulations. Ecology and Evolution 11(13): 8923-
8940. https://doi.org/10.1002/ece3.7730

3

https://doi.org/10.1111/pala.12420
https://doi.org/10.1098/rspb.2021.0240
https://doi.org/10.1098/rspb.2021.0240
https://doi.org/10.1002/ece3.7730

REvoSim Documentation, Release 3.0.1

4 Chapter 1. Relevant references

CHAPTER

TWO

TABLE OF CONTENTS

2.1 Introduction

2.1.1 Overview

REvoSim can be used to study a range of evolutionary processes. It is based on digital organisms (each is a binary
string of a user-defined length), within an environment defined by the RGB values of a two-dimensional image. It
is highly abstracted, and is designed for computational efficiency. For versatility there are a large number of user-
defined variables: an overview is provided below. This assumes the software has already been installed (instructions
can be found on the page Compiling, Installation, and Requirements). We recommend reading the paper below for full
discussion of REvoSim’s approach, potential limitations, and its strengths:

Garwood, R.J., Spencer A.R.T. and Sutton, M.D., 2019. REvoSim: Organism-level simulation of macro- and mi-
croevolution. Palaeontology. https://doi.org/10.1111/pala.12420

That paper is based on version 2.0.0, versions from 3.0.0 have a number of additional capabilities including, for example,
multi-length genomes (in v2.0.0 these were 64 bits). These changes are documented in the paper:

Furness, E.N., Garwood, R.J. & Sutton, M.D. 2023. REvoSim v3: A fast evolutionary simulation tool with ecological
processes. Journal of Open Source Software 8(89): 5284. doi: 10.21105/joss.05284 <10.21105/joss.05284>

A utility program, EnviroGen, is available to generate environments for REvoSim and thus provide a high level of
control over the nature of the environment used for simulations. This is documented separately.

In brief, controls for the simulation are found on the toolbar at the top of the main window. Hovering a mouse over each
toolbar button (or any other areas for user input in REvoSim) will provide an overview of what it does. The buttons are
as follows:

Run
Launch a simulation

Run for
Launch a simulation and then allow it to continue for a set number of iterations.

Batch
Repeat Run for n times.

Pause
Pause a simulation.

Stop
Cancel a simulation.

Reset
Reset the simulation and reseed with a random digital organism in the central pixel.

5

https://doi.org/10.1111/pala.12420

REvoSim Documentation, Release 3.0.1

Reseed
Launch a dialogue to allow the simulation to be reseeded with a known genome, with two individuals
that share a (random or user defined) genome, or with a large number of organisms with fixed genome
with known properties (see Configuring Interactions).

Genome
Launch Genome Comparison Dock which allows genomes to be inspected and compared.

Settings
Launch Settings Dock which allows variables to be defined.

Logging
Output options are included in a separate dock, launched by clicking this button.

Tests
Switch REvoSim to test mode and run software tests.

About
Launch dialogue with information about REvoSim.

The main part of the window comprises two panels:

Population view
Provides an overview of the population alive at any given polling iteration. The information shown
can be selected with a drop down menu at the top.

Environment
Shows the RGB environment which is used to calculate organism fitness, or - if present - image stacks
being used to control the underlying variables.

Below this is the Information Bar, which shows a number of statistics for the given run, updated each polling iteration.
These include population size, number of species, iterations and speed. You can find more information on the Window
Layout pages.

2.1.2 Simulation setup

Variables can be defined within the settings dock on the right. Full descriptions of these and their implications can be
found in the REvoSim paper. Clicking settings on the toolbar at the top of a window toggles the visibility of this dock.
At the bottom of the dock are three tabs, each of which has variables associated with different aspects of the simulation.

Organism tab
This includes the variables which dictate the behaviour of the digital organisms in a REvoSim run.
This includes chance of mutation, starting age (i.e. length of life), breed threshold and cost, mode of
breeding, and breed settings. More information: Configuring your Organisms

Simulation tab
This includes the settings for the environment and associated files, simulation size, fitness target
(i.e. the nature of the fitness landscape), energy input, settle tolerance, and species tracking. More
information: Setting up the Simulation

Interactions tab
Here you can find the settings for interactions between individuals, and also settings for the predator
system in REvoSim. More information: Configuring Interactions

6 Chapter 2. Table of Contents

REvoSim Documentation, Release 3.0.1

2.1.3 Output setup

The output can be configured within the logging dock on the left, which has two tabs at the bottom of the dock.

Output tab
This includes output options for the simulation: save directory, refresh rate, and logging/output op-
tions. More information: Configuring Outputs and Run End Log

Running log
From v3.0.0 REvoSim includes a highly customisable running log, the contents of which can be
defined using this tab. More information: Configuring Outputs and Run End Log

2.1.4 Quick start

A simulation - using default settings and environment - can be started by hitting the Run button. In addition to the
visualisation, runs can be analysed using log files which are placed by default in a folder called REvoSim_output on the
desktop for all operating systems. A log is written during a run when “Write Log Files” (Logging dock, Output tab) is
checked, and the phylogenetic tree and other more detailed statistics for a run can be written at any point by clicking
the button “Write data (including tree) for current run”.

2.2 Compiling, Installation, and Requirements

2.2.1 Installation

Pre-compiled binary releases and packaged installers can be downloaded from the REvoSim GitHub repository. For
Windows users we provide both a portable binary release (.zip) - which just needs extracting to a convenient location -
and a self contained installer. For Mac we provide a zip containing the REvoSim program that can be downloaded from
the REvoSim GitHub repository. To install the software, drag and drop the required .app folder(s) into the Applications
folder. You may be required to the approve the software in security and privacy settings before it will launch. For Linux
users, the instructions below will allow the software to be built using a limited number of lines of bash. Please contact
palaeoware@gmail.com if you encounter any issues or would like an app image.

2.2.2 System requirements

REvoSim has no minimum requirements as such, and will run on most standard systems (Windows/Linux/Mac); it has
not been tested, however, on versions of Windows older than Windows 10, Ubuntu 16.04, and macOS High Sierra.
Performance will benefit from high processor speed and increased number of processor cores, with large amounts
(>4GB) of available RAM recommended for large simulations. Graphics card performance is not relevant as GPUs are
not currently used in the program’s calculation pipeline. A fast hard drive (e.g. SSD) is recommend when intensive
logging is enabled; as slow I/O response time can affect the iteration cycle speed.

We recommend a minimum of 1GB RAM and a 1.8 GHz or faster, ideally multicore processor. We also recommend a
minimum screen resolution of 1280x720 if using the software without the genome comparison docker (and 1920x1080
if this is enabled).

2.2. Compiling, Installation, and Requirements 7

mailto:palaeoware@gmail.com

REvoSim Documentation, Release 3.0.1

2.2.3 Compiling from Source

If you wish to use REvoSim it is generally easiest to use the resources linked above. However, if you wish to develop
features, the software can be compiled as follows.

Windows 64-bit

QT Creator + QT > v5.11 using MSYS2 (64-bit) and MinGW (64-bit). We recommend you install and use MSYS2
(64-bit) a Windows package manager, based on modern Cygwin (POSIX compatibility layer) and MinGW-w64, that
allows easy installation of QT v5.x 64-bit.

1. Download and run the latest version of MSYS2 for 64-bit Windows. This will be name “mysys2-x86_64-. . . ” for
the 64-bit installer.

2. Follow the install instructions. We have used the default install location of “C:mysys64" and it is here that
includes required in the .pro files point. If you install MSYS2 to another location the .pro files will need to be
updated to your install location.

3. Once installed open up MSYS2 shell and run the pacman update command: pacman -Syu Note that as this
will almost certainly update pacman itself you may have to close down and restart the MYSYS2 shell before
re-running the command to finish.

4. Once MSYS2 and pacman are fully updated run the following command to install QT 5.x and its dependencies:
pacman -S mingw-w64-x86_64-qt-creator mingw-w64-x86_64-qt5

5. Optional - if you intend on debugging the software in QT and wish to use GDB then run the following to install
the matching GBD debugger: pacman -S mingw-w64-x86_64-gdb

6. At this stage you should have the following under the MSYS2 install location:

• {install location}/mingw64 (Main ming64 folder)

• {install location}/mingw64/bin/qmake.exe (QMake for QT version)

• {install location}/mingw64/bin/g++.exe (C++ complier)

• {install location}/mingw64/bin/gcc.exe (C complier)

• {install location}/mingw64/bin/gdb.exe (Debugger | OPTIONAL)

7. You should now be able to find the required libraries under “{install location}/mingw64/bin” and the required
header (.h) files for QT v5.x.

8. Open the .pro file in QT Creator, and then use the information above to setup a new 64-bit ming64 kit. Follow
standard QT Creator debug/release procedure.

Ubuntu 18.04/20.04/22.04 64-bit - QT Creator + QT >v5.11 using GCC (64-bit)

To compile from command line.

1. Install GCC and Qt using system packages:

sudo apt-get install build-essential libgl1-mesa-dev
sudo apt install qt5-default

2. Download source code and navigate to folder, or alternatively clone using Git:

git clone https://github.com/palaeoware/revosim.git
cd revosim

3. Within REvoSim folder create makefile:

8 Chapter 2. Table of Contents

https://www.msys2.org/

REvoSim Documentation, Release 3.0.1

qmake ./revosim.pro

4. Build by running the make command:

make

5. Navigate to bin folder (e.g. revosim/bin) and launch software by double clicking on file.

On older operating systems, the OS Qt distribution will result in a large number of compile warnings. None impact on
the functioning of the software.

Using Qt creator.

1. Install Q5.X on your system by running the installer from Qt: https://www.qt.io/download Further instructions
are available here: https://wiki.qt.io/Install_Qt_5_on_Ubuntu

2. Download source code, launch Qt Creator, and open the .pro file. Configure build and follow standard de-
bug/release procedure.

MacOS

QT Creator + QT >v5.11

The above (Linux, using Qt Creator) approach should also work for MacOS builds. This will require xcode to be
installed, which you can do using the app store, followed by QtCreator, which can be achieved through the Qt online
installer. To build the software, download source code, launch Qt Creator, and open the .pro file. Configure build and
follow standard debug/release procedure.

2.3 Concepts and Example Usage

2.3.1 Concepts

There are a number of underlying concepts that are useful to consider when using REvoSim. Please bear in mind that
the model itself is fully described in the publications listed on the Introduction page. Prior to publishing any work
using the software, or for more details on the following, please do check these out. To see how the software fits into
the wider field, the paper Digital Evolution for Ecology Research: A Review provides a useful overview.

If it would be beneficial to have further concepts outlined below, please contact the authors.

Species concept

REvoSim is an individual-based simulation, and thus during runs population(s) of digital organisms evolve under a set
of rules. As they evolve, species can emerge. These stem from the species concept employed by REvoSim which is
based upon reproductive isolation, and is thus akin to the biological species concept. The implementation of this (the
species algorithm) is described in the 2019 paper documenting the model, but involves a pairwise comparison of all
individuals within a simulation every polling iteration to identify reproductively isolated clusters, and then a tracking
function between these iterations. The level of dissimilarity required for reproductive isolation to occur is under user
control: the option Maximum difference to breed dictates how many bits different two genomes are before they are
considered isolated by this algorithm. Lowering this number creates more speciation-prone simulations.

Within this framework, runs in REvoSim - that typically start with a single genome - also start with a single species, that
will go on to dominate the simulation. As a simulation runs, however, the population evolves, and under most settings
species start to appear when populations specialise to a point when none can interbreed with any other organism alive
within the simulation. Sometimes these will be sympatric (i.e. they occur in a single block of colour) but often, as a
simulation runs, species will evolve in, and then start to track, particular colours (~niches) in their environment.

Time

2.3. Concepts and Example Usage 9

https://www.qt.io/download
https://wiki.qt.io/Install_Qt_5_on_Ubuntu
https://www.frontiersin.org/articles/10.3389/fevo.2021.750779/full
https://doi.org/10.1111/pala.12420

REvoSim Documentation, Release 3.0.1

Time in a REvoSim simulation is measured in iterations. Every iteration, the algorithms that comprise the model are
completed once. In order to link this to real world time units, it is useful to consider the average time per generation.
Exactly how iterations map to real time, however, depends on the settings you use for any given run. You can investigate
this using REvoSim’s Running Log system: the *gridGeneration* tag can be used for any settings to calculate and output
the average age of all organisms successfully breeding in a polling iteration. This works on the assumption – which is
true for the majority of settings – that organisms will breed once in their lifetime. This assumption can be tested (and
a correction factor calculated and applied if so desired) by using the *gridNumberAlive* and *gridBreedSuccess* log
outputs to calculate the proportion of breeds for the grid per unit population.

Using this approach demonstrates, for example, that the average generation time for default REvoSim settings is between
11 and 12 iterations.

2.3.2 Example Usage

Setting up REvoSim simulations to test particular eco-evolutionary hypotheses involves several steps. This page will
guide you through setting up simulations to test the “more-individuals” hypothesis of species richness: the hypothesis
that the species richness of ecosystems is controlled by the number of individuals that they contain. REvoSim is used
to test this hypothesis in Furness et al. (2021).

Is REvoSim suitable?

A variety of different tools exist to simulate eco-evolutionary processes under different environmental conditions (see
Dolson & Ofria (2021) for a review). Each one of these tools makes trade offs between complexity and computing effi-
ciency, and so each will be suitable for answering different research questions. As an individual-based eco-evolutionary
simulator, optimised to operate over geological timescales, REvoSim is relatively well placed to test hypotheses re-
garding the process of speciation within large populations. It is therefore suitable to investigate the “more-individuals”
hypothesis, but be aware that other tools, such as gen3sis, may be more appropriate if the phenomena of interest are
operating at the level of the population, rather than the individual.

Choosing logging options

In order for our REvoSim runs to produce useful data, we must select appropriate logging options before running any
simulations. The “v2.0.0 log” option provides a useful default choice for log content, which includes species richness
in every logged iteration and the total number of organisms alive in each logged iteration. The v2.0.0 log is therefore
suitable for testing the more-individuals hypothesis, and also serves as a useful starting point for building a logging
output in general. We must also check the “write to file” box, in order to produce a log in each experiment, and we
must specify a directory to which the log is to be written.

Choosing an environment

REvoSim’s default environment of three vertical blue bars is useful as a tool for demonstrating adaptation of organ-
isms to specific environments. However, it is not a very realistic environment: it contains three distinct habitat types
(i.e.colours), with no gradational change between colours and no temporal variability. We might wish to replace it with
a more realistic environment, such as a lights-type environment generated by the EnviroGen tool. Alternatively, we
might wish to replace the default environment with an environment designed to maximise species richness, such as a
noise environment from the EnviroGen tool, so that we can more easily observe any effects of the number of individuals
on the number of species. In the course of a research project, we probably want to run simulations using both of these
options.

Choosing simulation settings

The default settings in REvoSim have been shown to produce realistic evolutionary phenomena such as adaptation
towards fitness peaks. Consequently, choosing simulation settings for experiments in REvoSim is usually as simple as
modifying settings that are to be treated as variables in the experiments while leaving other settings as defaults. To test
the more-individuals hypothesis, we need to vary the number of individuals in the simulation, which means varying the
energy supplied to the organisms in the simulation for reproduction. We can control this by changing the “energy input”
setting from its default of 2000 to either, for example, a low value of 1000 or a high value of 4000examples. We may

10 Chapter 2. Table of Contents

https://onlinelibrary.wiley.com/doi/10.1002/ece3.7730
https://www.frontiersin.org/articles/10.3389/fevo.2021.750779/full

REvoSim Documentation, Release 3.0.1

Fig. 1: Above: examples of the noise (left) and lights (right) environments from EnviroGen.

also wish to change the “environment mode” setting: the “bounce” setting works well with lights-type environments,
and “static” may be appropriate for a noise environment if we want to allow for the highest possible species diversity.

Running the simulation

Now that our logging options are set, our environment is chosen, and our settings are modified as required, we need to
run the simulation. To ensure that all is functioning as intended, or if only a few runs are needed, we can use the “Run
for” button in the GUI. This will produce a dialogue box that asks us how many iterations we want to run our simulation
for. Generation times under default settings are 10-15 iterations, so 50,000 iterations, representing as many as 5,000
generations, is likely to be sufficient to reach equilibrium. While the simulation runs, it will continuously write logging
information to a text file (REvoSim_output.txt) in the specified logging directory.

If we want to run a large number of replicate simulations, then running each individually would take a lot of effort. The
“Run Batch” button allows us to run several identical simulations back-to-back, outputting logs for each. Alternatively,
if we want to run a large number of simulations with slightly different settings (for example, slightly different energy
levels, representing a gradient from high to low energy), we can use REvoSim’s Command Line Options. Below is an
example of a single instruction to the command line in the Windows operating system that runs a REvoSim simulation.
It will do so with a non-default environment (whatever images are in the folder at the filepath following the “-e” tag) and
non-default simulation settings (“-m Static” means that the environment will not change over time, “-n 4000” means
that the simulation will have an energy input of 4000 units, “-v2log True” means that the simulation will produce a
v2.0.0 log output to the filepath specified after the “-j” tag, and “-auto 50000” means that the simulation will end after
50000 iterations have elapsed):

C:\Users\Guest\Desktop\revosim\bin\revosim.exe -e C:\Users\Guest\Desktop\Folder_
→˓Containing_Environment_Files\ -j C:\Users\Guest\Desktop\Folder_To_Store_Output -m␣
→˓Static -n 4000 -v2log True -auto 50000

This command line approach is often the most useful for running actual experiments in REvoSim, because of its ability
to modify variables along a gradient.

Processing logs

REvoSim is relatively flexible in terms of the format of the logs it produces. However, some processing of these logs
will be necessary in order to visualise or analyse the data that they contain. REvoSim does not include any software

2.3. Concepts and Example Usage 11

REvoSim Documentation, Release 3.0.1

for this processing, but since logs are output as text files, they can be easily manipulated by a variety of other tools.
String handling in Python, or any other appropriate coding language, is a straightforward way of converting data in the
REvoSim log file into a useable dataset. Examples of this code can be found in the supporting information of Furness
et al. (2021), but keep in mind that different logging setups will require different processing code (and note also with
the custom log functionality, logs can be output as e.g. csv files to be loaded into spreadsheet software if desired).

By writing a short piece of code that extracts from each REvoSim log file the number of species and number of indi-
viduals present in each REvoSim simulation in its final iteration, we can build up a picture of the relationship between
these two variables. This allows us to directly test the predictions of the more-individuals hypothesis.

2.4 Window Layout

Each of the above mentioned features is documented in more detail on the following pages:

2.4.1 Main Menu

The Main Menu, located at the top of the program window, allows access to all program actions, functions, and settings.
The menu is currently sub-divided into three sections:

1. Commands

2. Tools

3. Help

12 Chapter 2. Table of Contents

REvoSim Documentation, Release 3.0.1

Commands

Fig. 2: The commands menu

The Commands menu holds the majority of available actions and program functions related to running of one or more
simulations. The options are as follows:

Load Random Numbers
Allows user-selected random numbers to be loaded through a custom file, if you so wish. See Custom
Random Numbers.

Run Reseed with known
These options are provided as alternatives to the buttons on the top toolbar of the GUI.See Main
Toolbar.

Go slow
This option slows the simulation to allow environmental changes and the visualisation in the popu-
lation view to be viewed more clearly. It achieves this by adding a 30ms delay to every iteration.

Save
This saves the current state of the REvoSim simulation, allowing it to be loaded later, including the
masks, organisms, and all settings. This is saved as a binary file to allow the minimum file size
possible.

Load
This loads the above REvoSim file.

Save settings
This saves the settings of REvoSim in a given state. This includes all user-defined variables, but
nothing else. These are saved as a human-readable XML file.

Load settings
Loads a settings file.

Count peaks
This is provided to help the user understand the fitness landscape of their run (albeit in simple terms).
See Count peaks.

Exit
Quits REvoSim.

2.4. Window Layout 13

REvoSim Documentation, Release 3.0.1

Tools

The Tools menu allows access to the built-in dockable widgets (called ‘Docks’) which alter or extend the core program
functions. This includes the main simulation settings dock, described in Configuring your Organisms and Setting up
the Simulation, the output dock, covered in Configuring Outputs and Run End Log, and the genome comparison dock
(Genome comparison dock).

The development version of the software also has a series of custom logs, generally written at the logging iteration, and
placed in the same folder as the main log (many of these can now be achieved using the new logging tools in versions
since REvoSim 3.0.0):

Fitness logging
This is largely obsolete from v3.0.0 as the same functionality is possible with the custom log. It is
kept here for backward compatibility.

Recombination logging
This log outputs the proportion of asexual v.s. sexual breeds when variable breeding is enabled, for
each iteration for the grid as a whole. It also outputs the total breed attempts and fails, and also
number of living organisms.

Variable mutation logging
This outputs the iteration number, and the number of ones in the part of the genome in the variable
mutate system.

Speciation logging
For every speciation event above minimum species size, this outputs iteration number, number of
species in event, shared cells, and then for each species (i.e. parent and daughter[s]) the ID, number
of individuals, number of cells occupied total, and number of cells in which species is sole occupant.
Requires phylogeny mode to be set to Phylogeny and metrics.

Disparity logging
For each polling iteration this does a dump of every single genome, plus its X and Y coordinates.

All logs contain a copy of the run settings, and explanatory text.

Help

The Help menu contains links to useful program information. The first link will allow you to report a bug or request
a feature. The next links to the Palaeoware code repository, and the third to REvoSim documentation. The fourth will
load an about dialogue.

14 Chapter 2. Table of Contents

REvoSim Documentation, Release 3.0.1

2.4.2 Main Toolbar

The main toolbar consists of the following buttons:

Fig. 3: Main toolbar (no simulation running).

Fig. 4: Main toolbar (with simulation running).

The first four (“Run”, “Run for”, “Batch”, “Pause” and “Stop”) control the initiation and cessation of simulation runs.
These commands can also be accessed from the Commands menu.

Run
This button launches a simulation, and then runs it until it is either paused or stopped.

Run for
This launches a simulation and runs it for a user-defined number of iterations.

Batch
For repeated runs using the same settings, REvoSim provides a batch mode: this provides the option
of repeating the environment, or continuing from the last environmental file loaded. Logs in batch
mode will be labelled accordingly. The number of runs, and for how many iterations these should
last, are requested on launching batch mode.

Pause
Pauses a simulation, allowing it to be continued when requested.

Stop
Stops a simulation and resets the GUI, but leaves the simulation in its current state.

Reset
Resets the simulation by removing all digital organisms, and then placing a random individual capable
of surviving in the central pixel.

Reseed
Launches a dialogue to allow the simulation to be reseeded with a known genome, or with two in-
dividuals that share a (random, or user-defined) genome. Not all genomes are capable of surviving
in a REvoSim run: if reseeded with a genome incapable of survival, REvoSim will provide an error.
To allow reseeding with a known genome - but one which can survive in a given environment, the
dialogue provides a list comprising the top ten genomes from the genome comparison dock (which
can be populated prior to a given run). See Genome comparison dock.

Genome
Launch Genome Comparison Dock, described in Genome comparison dock.

Settings
Launch Settings Dock which allows variables to be defined. See Configuring your Organisms, and
Setting up the Simulation.

Logging
Launch Output Dock. See Configuring Outputs and Run End Log.

2.4. Window Layout 15

REvoSim Documentation, Release 3.0.1

Tests
Switch to the REvoSim test mode and run software tests.

About
Launch dialogue with information about REvoSim, including version number, authors, license infor-
mation, and contact details for the Palaeoware team.

The toolbar itself can be moved to one of four available positions using drag and drop: top (default), left, right, and
bottom of the window. The toolbar can also be undocked from the main window and used as a floating toolbar (i.e. an
independent window). To move the toolbar or to undock it as a floating window use the left mouse button on the three
dotted handle (far right of the toolbar by default), then holding the mouse button down drag the window to it desired
position.

2.4.3 Population Scene

The Population Scene is the program’s visual output showing what is taking place within the defined simulation space.
When the program is first started, or after a Reset is called, the Population Scene will default to showing a single
coloured pixel in the centre of the population grid, unless Dual Reseed or 3- or 5-tier Trophic Reseed is selected is
selected. By default this pixel represents the starting genome of the seeding organism: black pixels are those without
any living digital organisms.

Fig. 5: Default Population Scene showing a single starting genome in the centre.

The Population Scene can be set using the drop down menu to show different output modes, as shown below:

The Population Scene can also be saved as an image stack in order to e.g. create movies or analyse runs - see Configuring
Outputs and Run End Log. Currently supported visualisation modes are:

16 Chapter 2. Table of Contents

REvoSim Documentation, Release 3.0.1

Fig. 6: Default Population Scene showing a two genomes, one on left and another on the right, as set by the Duel
Reseed option.

2.4. Window Layout 17

REvoSim Documentation, Release 3.0.1

Population Count

Each grid-square is visualized with a grey-level representing the current number of creatures alive in the square.

Mean Fitness

Each grid-square is visualized with a grey-level representing the mean fitness of all creatures alive in the square, scaled
so that white is maximum fitness (=’Settle Tolerance’).

Visualisation system 1

From v3.0.0 REvoSim features two visualisation systems for user-defined genome words. The words for each are set
in the systems section of the Simulation settings docker. These both work in the same way: for each grid-square, the
most commonly occurring (modal) sequence for the selected genome words is computed. These are then converted
into a colour: e.g. for a single 32-bit word the level of red is the (scaled) count of 1’s in the least significant 11 bits,
the level of green is the (scaled) count of ‘1’s in the next least significant 11 bits, and the level of blue is the (scaled)
count of ‘1’s in the most significant 10 bits. The equivalent operation is applied if > 1 genome words are selected.
This visualization approach provides a quick means of distinguishing sequences, ensuring that small genomic changes
result in small changes in colour. It does not, however, guarantee that the same colour will in all cases represent the
same genome (as many very different genomes may possess the same bit-counts in section of the genome words).

18 Chapter 2. Table of Contents

REvoSim Documentation, Release 3.0.1

2.4. Window Layout 19

REvoSim Documentation, Release 3.0.1

Visualisation system 2

This operates in the same way as first visualisation system, but is included to allow two different word sets to be
visualised (and saved as image stacks) if required.

Settles

Each grid-square is visualized with a grey-level representing the number of successful ‘settling’ events in that square
since the last visualization.

Breed/Settle Fails (R=Breed; G=Settle)

Each grid-square is assigned a colour representing the number of ‘fails’ since the last visualization. The number of
‘breed fails’ (attempts to breed that were aborted due to compatibility) provides the red level, and the number of ‘settle
fails’ (attempts to settle that resulted in a fitness of 0 and hence the death of the settling creature) provides the green
level. Fail visualizations are scaled non-linearly (using v = 100*f*0.8, where f = mean fails per iteration, and v is
visualized intensity on a scale 0-255). Fail visualization maps the edge of species or subspecies ranges, as it highlights
cells where gene-flow is restricted by any mechanism.

20 Chapter 2. Table of Contents

REvoSim Documentation, Release 3.0.1

2.4. Window Layout 21

REvoSim Documentation, Release 3.0.1

Species

REvoSim simulations often produce discrete species, i.e. reproductively isolated gene-pools, and for many macroevo-
lutionary studies the identification and tracking of the fate of species is a requirement. This visualisation option assigns
a unique colour to each species, and colours each grid-square with the species in the lowest occupied slot of that square.

Interactions

This option visualises the difference between the environmental fitness of the first organism in a grid-square, and the
total fitness of that organism including interactions. It thus provides an easy overview of the impact that interactions
are having on fitness when interactions are set to modify organism fitness values.

Breed list

This visualises the breed list, and is of the greatest utility when multiple breed lists are enabled (the following calculation
is applied even when multiple breed lists are not enabled). When selected, every organism in a cell is inspected to
determine the breed list that it is using, and the index of the most frequent breed list is used to determine the colour
intensity of the red channel, the second most for green, and the third for blue. As such, cells with organisms placed in
just one breed list are pure red; cells with a single but established dominant genome are grey (the 2nd and 3rd most
frequent breed list are on either side of the breed list for that dominant genome, due to jitter, and their similar index
values will result in similar intensities in all three colour channels); and cells with more than one dominant genome will
be coloured (the different breed lists for those genomes result in different intensities in the colour channels, creating
non-grey pixels).

22 Chapter 2. Table of Contents

REvoSim Documentation, Release 3.0.1

2.4. Window Layout 23

REvoSim Documentation, Release 3.0.1

Pathogens word 1

This option allows pathogens to be visualised - it follows the same approach as the visualisation systems, albeit with
hard coded pathogen words. If flexibility is required, please request this. This option visualises the first word of the
pathogen genome.

Pathogens word 2

This option is the same as the above, but visualises the second word of the pathogen genome.

Stolen energy

This option visualises the proportion of the total energy collected over the lifetime of the first organism in each cell that
was stolen using the interactions system (if enabled), as opposed to being sourced from the fitness algorithm. White
pixels represent organisms that have obtained all of their energy through interactions with other organisms.

2.4.4 Environment Scene

Every grid-square of the Population Scene possess an ‘environment’, which consists of three integer parameters in
the range 0-255. These are visualized as colour, the three parameters representing red, green and blue values (further
details of how this is achieved are available in the REvoSim paper). The environment for the entire grid can thus
conveniently be visualised as a raster (bitmapped) 24-bit colour image in the Environmental Scene. Environments can
be static (specified by a single raster image), or dynamic (specified by a sequence of raster images).

The default environmental scene consists of a static image with three colour zones. This image can be changed from
the Simulation Settings panel.

Dynamic environments can be enabled via the Simulation Settings panel. There are currently three modes of transfor-
mation between image sequences, these are:

24 Chapter 2. Table of Contents

REvoSim Documentation, Release 3.0.1

2.4. Window Layout 25

REvoSim Documentation, Release 3.0.1

Fig. 7: Default Environmental Scene showing three blocks of colour in vertical strips.

1. Once - each image in the sequence is shown in order but only once

2. Loop - each image in the sequence is shown in order, after displaying the last image in the sequence the environ-
ment loops back to the first image (etc.)

3. Bounce - each image is shown in order, after displaying the last image the order is reversed, until the first image
is once again shown, the order is then reversed (etc.)

For dynamic environments, the number of simulation iterations between image updates is configurable but by default
100 (i.e. the environment image advances to the next in sequence every 100 iterations). REvoSim can optionally
interpolate between environmental images to provide smooth transitions.

2.4.5 Information Bar

At the bottom of the GUI - below the population and environment views - is an information bar, which provides an
overview of a number of elements of the current simulation. This is updated every polling generation. The statistics it
provides are:

Batch
When RevoSim is running in batch mode, this shows how many runs are completed out of the total
number requested.

Iteration
The number of iterations that had been completed since the start of the simulation at the last polling
interval.

Iterations per hour
This provides an indication of the speed at which RevoSim is running, and thus it is relatively easy
to calculate how long any given run will take.

Organisms
This is a count of the total number of digital organisms alive at the last polling iteration.

26 Chapter 2. Table of Contents

REvoSim Documentation, Release 3.0.1

Milliseconds per iteration
This is an alternative measure of speed.

Mean fitness
This is the mean fitness of all living organisms in the simulation at the last polling iteration.

Species
If species tracking is on, this will provide the number of species at last poll once a speciation event
has occurred.

Environment
This is the index of the current environmental image, along with the total number that have been
loaded. By default REvoSim loads with a single environmental image.

This is printed to the terminal when REvoSim simulations are initiated from the command line in Unix builds of the
software (Windows lacks this functionality).

2.5 Configuring your Organisms

At the core of the REvoSim simulation are the digital organisms. A number of properties of these organisms can be
defined in the simulation, in the Organism tab of the Settings dock. These settings are as follows:

2.5.1 Organism settings

Chance of mutation
This dictates the chance of a mutation when an organism breeds (if it is set to n, there is a n/256 chance
of mutation). The default is 10, which thus equates to a 10/256 chance that a randomly selected bit
in the words of the genome to which this is applied (see below) is flipped (from 0 to 1 or 1 to 0).

Variable mutation
This uses the number of ones in a user-defined section of the genome to dictate the probability of a
mutation occurring. This uses a cumulative standard normal distribution from -3 to 3, created using
the math.h complementary error function and then scaled between zero and the maximum random
number. This allows the probability of mutation occurring to be controlled by generating a random
number, and applying a mutation with 99.865% probability if an individual has no ones in a 32-bit
section of controlling genome, to 0.24579% with 31 ones. If you are using this you will probably
want the mutation log enabled (Tools → Custom Logging → Variable mutation log). This outputs a
histogram for the grid showing the number of ones in the non-coding genome (as well as providing
an overview of mutation probabilities).

Start age
Every iteration each organism loses one from its age counter. This setting dictates the value at which
this counter is set when an organism is born. As such, this dictates generation times within the
software.

2.5. Configuring your Organisms 27

REvoSim Documentation, Release 3.0.1

2.5.2 Breed settings

Breed threshold
Within a pixel, the energy provided each iteration is split between the digital organisms living within
the pixel based on their fitness. A full description of how this is achieved can be found in the REvoSim
paper. When a digital organism has stored enough energy to pay the breed cost and still exceed the
breed threshold, it attempts to breed.

Breed cost
This is the amount of resource that is removed from an organisms when it successfully breeds.

Maximum difference to breed
In sexual breeding mode, if two organisms attempting to breed have a hamming distance greater than
this value when genomes are compared, breeding fails.

Use max difference to breed
Depending on the nature of a study, maximum difference to breed may not be desired. This tick box
dictates whether it is enforced. If unticked, in sexual modes, breeding failure does not occur on the
basis of genomic distance.

Breed only within species
When this checkbox is ticked, during sexual selections, digital organisms can only breed with other
members of the same species. This only occurs if species tracking is turned on.

Multiple breed lists
In order to promote the coexistence of different genotypes within cells (by reducing the pressure on
organisms to be breed compatible with all other organisms in their cell), this option creates multiple
breed lists per cell. Organisms are placed onto one of 66 breed lists based on the remainder when
their bit count is divided by 67, accompanied by a level of jitter created through adding a random
integer between -1 and 1, to allow mixing between adjacent lists.

Breed mode
REvoSim offers multiple breed modes, given the above caveats (e.g. breed within species):

Obligate sexual
Organisms can only breed with other individuals (this is the case in most animals, for
example).

Facultative sexual
Organisms can reproduce with other individuals, or themselves (see e.g. plants). Asex-
ual reproduction is more common in this mode when populations are small.

Asexual mode
In asexual mode, self-breeding is enforced and organisms are cloned when they have
the required energy reserves to allow breeding.

Variable mode
This uses the same approach as variable mutation - the number of ones in a user-defined
portion of the genome is used to define the probability of breeding asexually v.s. sexu-
ally. It uses the same distribution, and when this is enabled you can select the recom-
bination log enabled (Tools → Custom Logging → Recombination logging). Note that
sexual reproduction when using this mode is facultative, so can include self pairing.
The recombination log records how often each breed mode is used across all breeding
organisms each polling iteration, and then reports this.

28 Chapter 2. Table of Contents

REvoSim Documentation, Release 3.0.1

2.5.3 Settle settings

Dispersal
This figure dictates the extent to which juveniles disperse on settling. Small numbers equate to
significant dispersal, larger numbers increase the likelihood that juveniles settle in the same pixel as
their parent. How this is achieved is described in full in the REvoSim paper.

Nonspatial settling
For some evolutionary phenomena, the impact of space/dispersal may have an unknown impact and
not be the element of interest within a simulation, and thus be undesirable. This tick box allows
juveniles to be randomly placed within the simulation (note that with a non-uniform environment,
space will still have some impact on the simulation).

2.5.4 Genome Words and Systems

From REvoSim 3.0.0, genomes are no longer limited to 64-bits in length - rather the user can set the genome length
of organisms to be between 1 and 32 words, each of which is 32-bits. All options (and associated functions) that can
be applied to bits in a genome are called systems, and these systems can be applied to different words of the genome
to achieve the desired outcome. Thus, for instance, to match the behaviour of REvoSim v2.0.0, organisms can be set
to include a 2 word genome, the fitness system can be applied to word 0, and the breed and species ID systems can
be applied to words 0 and 1. Where there is an on/off toggle in the settings for an option, systems are only applied if
enabled in that toggle.

Genome Size
This dictates the number of genome word for all organisms in the simulation. Its minimum is limited
by the words entered in the systems below (i.e. if a system is applied to word number four, you cannot
reduce this value below that word).

The options below this allow systems to be applied to words of the genome. Counts use C++ numbering, thus start from
zero, and above nine continue from A-V. When a string is entered, the label will turn green if it can be applied with
the current settings. If a string requires that the number of words is increased, this is implemented in the genome size
option above. If an option is not possible, the label turns red. Some options, when changed, provide further prompts
suggesting changes of relevant settings to achieve a viable configuration. Options dictate the following:

Fitness
Which words are used in the REvoSim fitness algorithm.

Breed
Words used to calculate breeding compatibility.

Mutate
Words to which mutations can be applied.

Variable Mutate
Words used to dictate mutation probability.

Pathogens
Words used by the pathogen system.

Species ID
Which words are used in species searches for reproductively isolated clusters.

Interactions
Words use for the interactions systems.

Visualisation 1
Words used for visualisation system 1 (see Population Scene).

2.5. Configuring your Organisms 29

REvoSim Documentation, Release 3.0.1

Visualisation 2
Words used for visualisation system 2.

2.6 Setting up the Simulation

REvoSim provides the user with control of many elements of the simulation. These are introduced herein, and can be
modified within the the Simulation tab of the Settings dock, or from the command line.

2.6.1 Environment settings

Change environmental files
REvoSim launches with a default environment comprising three stripes in different shades of blue.
This can be changed by clicking on this button, which will launch a file explorer. Using this allows
a single, or multiple environment images (any standard image format) to be loaded. Environment
image files are currently limited to 100 x 100 pixels in size.

Environment refresh rate
This dictates how many iterations there are between updates of the environmental images if an image
stack has been loaded, and thus dictates the environmental rate of change (small numbers are faster).

Environment mode
This dictates, if multiple files are loaded, the mode with which these are updated. Static uses just the
first of the chosen images as the environment throughout a run. Once will run from the start of an
image stack to the end, leaving the last image as the environment once this has been loaded. Loop
returns to the first environment image once the last has been reached (which may result in a significant
environmental change in the environment if the first and last image in a stack are different). Bounce
will move from the start to end of an environmental image stack and then back again, repeating this
for the duration of a run.

Interpolate between images
This provides linear interpolation of the environment between refresh iterations, preventing large
stepped changes in organism fitness.

Toroidal environment
By default, when a juvenile settles outside the limits of an environment, it dies. Such boundary
effects can be avoided by selecting toroidal environment, which wraps around in both directions
(e.g. juveniles settling off the left enter the simulation on the right; EnviroGen can simulate toroidal
environments).

2.6.2 Simulation size

Grid X
This dictates the size of the simulation grid in the X direction. If this is smaller than the environmental
image it selects the left side of the image.

Grid Y
This dictates the size of the simulation grid in the Y direction. If that is smaller than the environmental
image it selects the top of the image.

Slots
Every pixel in the simulation grid can have multiple digital organisms - each lives within a slot (this
is equivalent to a Z axis). This dictates the number of slots (how these are filled during reproduction
is outlined in the 2019 REvoSim paper).

30 Chapter 2. Table of Contents

REvoSim Documentation, Release 3.0.1

2.6.3 Simulation settings

Fitness target
This is the target value used by the fitness algorithm as described in the REvoSim paper. In brief,
it is the value that the hamming distance between the gemome words in the fitness system and the
environmental masks (numbers dictated by the colour) is optimised towards. Changing it modifies
the fitness landscape: a value of 48 - with one genome word - has the greatest number of genomes
with peak fitness, and either side of this value, fewer genomes display peak fitness. This is shown in
the graph below, where black points represent the number of genomes with peak fitness for all fitness
targets. The red star is the default value for one word, 66; in this particular set of runs, there there are
~3000 genomes capable of peak fitness with the default target, but this can vary given differing masks.
Note that there are some values for which no organisms will be capable of survival: if this occurs,
REvoSim will provide a warning. Also note that the graph below can be created and distribution
of fitnesses quantified using the count peaks option in the commands menu of REvoSim. When
changing the number of genome words used by the fitness system from the organism tab, REvoSim
will provide the option of updating the fitness target to a commensurate value for the new number of
words. If you would like to further discuss the nature of fitness landscapes within REvoSim please
contact the authors, as this is something we have thought about a lot.

Energy input
This is the amount of energy provided per pixel of the environment grid, which is then split between
the digital organisms living in that pixel on the basis of their fitness. This is then used as part of the
breeding system in REvoSim.

Settle tolerance
This it controls the distance from the fitness target at which organisms are no longer viable (i.e. have
zero fitness and, absent energy-based interactions, die). It also provides the maximum attainable
fitness within the simulation.

2.6. Setting up the Simulation 31

REvoSim Documentation, Release 3.0.1

Recalculate fitness
For efficiency REvoSim only calculates organism fitness for any individual on initial settling: sub-
sequent changes in the environment will not modify an individual’s fitness. For some settings (e.g.
rapidly changing environments or long-lived organisms) this may not be desirable. When checked,
this option recalculates the fitness for every organism in the simulation every iteration, overcoming
this limitation but also significantly slowing the simulation.

No selection
This option turns off the fitness algorithm so energy is split equally between organisms in any cell,
irrespective of their fitness.

2.6.4 Phylogeny settings

These radio buttons dictate the mode which by REvoSim tracks phylogeny.

Off
Does not track phylogenies and is thus the fastest mode (this could be useful for - as an example -
studies focussing on changes in fitness).

Basic phylogeny
Identifies species in time slices to allow species to be coloured in the population view, and species
diversity to be recorded.

Phylogeny
Identifies species, and then records their phylogeny, allowing a tree to be created at the end of a run.

Phylogeny and metrics
Does the same as Phylogeny, and also records a number of other metrics for each species, also output
(when requested) at the end of a run.

Note: Moving between off and any form of tracking has a significant performance cost: there is little computational
overhead moving between the different tracking options. Moving from basic to phylogeny to metrics does, however,
come with an increasing memory overhead, as the trees and metrics are by necessity stored in RAM during a run, and
written when the run completes. This could have implications for runs with a significant number of organisms and
large numbers of iterations. See Running Log and Configuring Outputs and Run End Log for more details REvoSim
outputs.

2.6.5 Linkages

This is a capability introduced in v3.0.0 that links REvoSim variables to image maps (or each other, a functionality
that has yet to be added, but is easily implemented on request). As default, REvoSim offers limited linked variables,
however the system is designed so more can be added with ease. Please contact the authors if you would like one to be
added - we will happily do so.

As currently coded, the image stack selected is used to spatially control a variable: specifically, for integer variables,
the value of the R channel is multiplied by the value of the selected variable as defined in the settings docker. So, for
example, if energy is set to 5 overall, for a pixel with an R value of 0 in the image map the energy will be set to 0 for
that iteration. If the R value is set to 255, the energy level for that pixel will be 1275 (5x225). Note that this means that
when using a linked integer variable it is likely that the default values will need to be changed. For boolean variables,
an R channel value of zero is off, all other zero values (1-255) is on.

32 Chapter 2. Table of Contents

REvoSim Documentation, Release 3.0.1

Create new linkage

To create a new linkage, use the push button labelled “Link a variable to an image mask”. This creates a pop up window
with the following options:

Variable
This is the variable to which you would like to control using an image stack.

Load Images
Clicking this image loads a dialogue allowing you to load an image stack that controls the variable
defined above, as described in the introduction to linkages.

Mode
This radio button defines the image mode for the stack controlling the variable. The modes are the
same as used for the environment - see Environment settings.

Interpolate images
As with the environment settings, this defines whether REvoSim interpolates between images.

Refresh rate
The update rate of the image stacks controlling variables does not need to be the same as e.g. the
environmental refresh rate: this spin box defines how often (in iterations) the next image in the stack
is loaded.

Edit linkage

Once added, a linkage appears as a list item in the Current linkages text box on the bottom right of the simulation
docker. To edit one double click on the linkage. Doing so will load a pre-filled dialogue with the same options as the
add new linkage dialogue outlined above, all of which can be changed as required. The linkage can also be deleted
using this dialogue box.

2.7 Configuring Interactions

2.7.1 Interaction settings

Interactions were added to REvoSim for the release of v3.0.0. These are tools that allow individuals (or segments of
individuals’ genomes) in REvoSim simulations to interact with other individuals in the same cell. This occurs when
offspring are settling, or every iteration, as described below. Interactions can increase or decrease the fitness of an
individual, or its energy. In general, interaction systems compare the genomes (or parts thereof) of two individuals -
individual 1, to which any fitness modification is applied, and individual 2. When interactions are applied, individual 1
typically interacts with multiple other individuals (i.e. the program can loop through a random selection of individual
2s), and this process is repeated for every individual in a cell (except in instances where interactions are only applied
on settling, i.e. fitness interactions when recalculate fitness is not selected).

Genome blocks
The genomes of both individuals are split into two-bit blocks: each two bits can be a number from
0-3 (i.e. 00,01,10 or 11). For every two bit block, the numbers in each genome are used to look up
a value from the a-priori interaction table (this is a 4x4 grid of user-set interaction numbers that can
be modified by clicking Edit the interactions grid). The values are summed across all two bit blocks
of the genome. For fitness interactions, this total is added to the fitness of organism 1. See below for
energy interactions.

Genome XOR
Here a bit shift is applied to the genome of individual 1, which is then compared to individual 2.
More specifically, the bits in the genome of individual 1 are shifted one to the right, and the results

2.7. Configuring Interactions 33

REvoSim Documentation, Release 3.0.1

of an exclusive or between the resulting binary string and the genome of individual two are subject
to a bit count, providing a number. The process is then repeated with a bit shift in the other direction
for individual 1, to provide a second number. For fitness interactions, this number is subtracted from
the first, and the resulting number is used to modify the fitness of individual 1. See below for energy
interactions.

Interactions
This sets the number of interactions attempted by each organism. In fitness interactions this occurs
when fitness is calculated - this means that, by default, this only occurs during settling, unless the
simulation is set to recalculate fitness every iteration. When energy interactions are selected this is
is the number of interactions that each individual attempts every iteration.

Interactions Change Fitness
Interactions modify the fitness of organisms (see above for a note on when this is applied). Note that
partners for each are chosen at random, and if an empty slot is selected, no interaction is performed.
The total change to the fitness of an individual is the sum of all successful interactions.

Interactions Change Energy
In energy interactions the absolute value of either the interactions lookup (genome blocks) or the
difference between bit shifts (genome XOR) is subtracted from a predation target, currently hard
coded as 12 * the number of genome words in use in the system. The absolute value of the result is
then subtracted from the predation target, and that number n is used to determine what proportion of
organism 2’s energy is lost by that organism. n/(predation target) of organism 2’s energy is lost.

Interactions Do Nothing
Do not apply interactions.

Edit the interactions grid
Edit the 4x4 grid of user-set interaction numbers.

Min. Predator Score (Energy Only)
It may occasionally be useful to prevent interactions from resulting in any transfer of energy be-
tween organisms unless the predator organism is sufficiently well adapted for predation. In this case,
this setting can be used to prevent organisms from obtaining energy through interactions when their
predation score is below some threshold.

Predation Efficiency (Energy Only)
When interactions result in the direct transfer of energy from one organism to another, only a fraction
of the energy lost by organism 2 is gained by organism 1 (as is realistic). This fraction is 10 * the
value for this setting (e.g. a value of 3 would represent 30% energy transfer efficiency).

Restrict interactions
This setting only functions when interactions change energy, and after 100 iterations to allow trophic
levels to become established. After this point, it prevents organisms from gaining energy through
interactions unless their target organism has a current trophic level (prior to the interaction) at least
0.5 lower than their own trophic level. It thus prevents primary consumers from acting as facultative
secondary consumers in addition to being primary consumers. Trophic level is defined over the
lifetime of an organism, based on an average of the sources from which that organism gains its energy,
weighted by the amount of energy gained from each source.

34 Chapter 2. Table of Contents

REvoSim Documentation, Release 3.0.1

2.7.2 Pathogen settings

REvoSim v3.0.0 also includes a newly added pathogens system. Given the abstract nature of the software, these could
equally be considered equivalent to predators: in a basic sense they act as antagonists. At present there are two options,
drift and evolve:

Drift
With drifting pathogens, there is one pathogen per cell. Each has pathogen comprises a genome of
n words. Pathogens mutate with a user-defined probability/generation, and are applied with a user-
defined frequency. This system works by performing an exclusive or between the pathogen and each
living creature, and then summing the ones. It then uses this sum to define a probability of that
individual dying as a result: when the result of the XOR is zero (i.e. pathogen and organism genome
are identical), the probability of the organism dying from the interaction is 0.5. Where the result
of the XOR is maximised, this is 0. There is a linear relationship between these extremes (other
probability distributions can be provided on request). An organism is killed by setting its age to 1,
resulting in its removal in the next iteration.

Evolve
Pathogens evolve for virulence when this setting is selected. With this setting, there are 5 pathogens
per cell, whose fitness is defined by how many organisms they kill in an iteration. Every iteration, the
pathogens for a given cell, and those orthogonal to it (i.e. a 3 x 3 square of pixels, minus the diago-
nals), are applied to the individuals in a given cell. The pathogen that kills the most organisms living
in that cell (or the first one to reach this number if there is more than one) is applied to the organisms
in the cell. It is then replicated, mutated following the pathogen mutate probability (currently this
is set to n/256 chance of mutation irrespective of number of words the system applies to), and then
placed back in the pathogens layer overwriting a previous pathogen at random prior to the for next
pathogen iteration. Including the cells orthogonal to that which pathogens are being applied allows
the pathogens to move across generations, and thus follow e.g. species and environments.

For both forms of pathogen, the follow options are available:

Pathogen mutation
This defines the probability of a mutation occurring any iteration that pathogens are applied. Smaller
numbers define a smaller probability. This works by generating an 8bit random number (0-255), and
applying a mutation if that number is less than the integer in the checkbox so, for example, if this is
1, the probability of a mutation occurring is 1/256.

Pathogen frequency
This is the frequency, in iterations, with which pathogens are applied.

There are a great many other mechanisms by which antagonists could operate, and if you are interested in modifications,
please contact the authors.

2.8 Configuring Outputs and Run End Log

From v3.0.0, REvoSim has a versatile logging system, that can be accessed by clicking the logging button on the main
toolbar. This launches an Output Dock, which appears in the left dock area and has two tabs, placed at the bottom. The
Output settings tab has a number of options that dictate the behaviour of the REvoSim logging system, and buttons to
output two predefined logs at any point in a run. In addition to these, the Running log tab provides a flexible system
for writing logs as a simulation run progresses.

2.8. Configuring Outputs and Run End Log 35

REvoSim Documentation, Release 3.0.1

2.8.1 Output options

Options in the Output settings tab are as follows:

Output save path
This is the folder into which all outputs from REvoSim (logs, images, any other files) are saved. For
consistency these are all placed within a newly created folder called REvoSim_output. Text files are
placed within the root of this folder, and images are placed in their own folder within REvoSim_output.

Refresh/polling rate
This is the frequency (in iterations) that the simulation is polled. Polling includes running the full
clustering analysis integral to the thorough species-identification algorithm (see RevoSim 2019 pa-
per), writing the in-simulation log, writing any requested image files to disk, and updating the GUI
(unless disabled). Because the species identification system has a significant computational overhead,
if species tracking is on, frequent polling will significantly slow the simulation.

Image logging
Any of the simulation visualisations during a run can be saved as an image (png stacks labelled
by iteration number). The tick boxes in this part of the tab dictate which images are saved. See
Population Scene for full descriptions of each option.

2.8.2 Run end log

REvoSim provides a detailed log file at the end of runs - or on request during a run - that features the information below.
This can be automatically output at the end of every run in batch mode (see option Automatically create detailed log
on batch runs below), or dumped as required using the Write data for current run button highlighted below. The log is
written to the current output folder, and is placed in a file called REvoSim_end_run_log.txt. This file is structured as
follows:

Timestamp
The first line is a time stamp highlighting when the run was written, in the following format: 2018-
12-30T11:57:51

Settings
A printout of all REvoSim settings for this run then follows, divided into integers and then bools.
This means that at any point it is possible to revisit and check all settings for that run.

Legend
There is then an explanation of the contents of this log file: “This log features the tree from a finished
run, in Newick format, and then data for all the species that have existed with more individuals than
minimum species size. The exact data provided depends on the phylogeny tracking mode selected in
the GUI.”

Tree
There then follows a tree in Newick format for the run to the point at which the log is written, excluding
species below minimum species as requested, and also excluding species without descendents if
requested. This can then be loaded into, e.g. FigTree to be rendered, or into e.g. R, for analysis. An
example tree is shown below - note species labels are prefaced with id for clarity, and also include
the maximum size of that species as part of their species name, after a hyphen:

(((((((((((((((((((((((((((id27-81050:50,id28-2:50,id29-1:50,id30-1:50,id31-1:50,id32-
→˓5:50,id33-2:50,id34-8:50,id35-1:50)id26-81050:50,id36-3:50,id37-2:50,id38-4:50,id39-
→˓3:50,id40-2:50,id41-3:100,id42-4:100,id43-5:100)id25-81050:50,id44-17:150,id45-4:100,
→˓(id47-23311:100,id48-2:50)id46-23311:50,id49-2:50,id50-2:100)id24-81050:50,id51-4:50,
→˓id52-1:50,id53-5:100,id54-2:50,id55-10:100,id56-11:50,id57-61:200,id58-49:200)id23-
→˓81050:50,id59-2:100,id60-2:50,id61-1:50,id62-4:50)id22-81050:50,id63-13:250,id64-2:50,

(continues on next page)

36 Chapter 2. Table of Contents

REvoSim Documentation, Release 3.0.1

(continued from previous page)

→˓id65-8:50,id66-1:50,id67-1:50,id68-4:50,((id71-24648:50,id72-1:50)id70-24648:50,id73-
→˓2:50,id74-3:100)id69-24648:200)id21-81050:50,id75-3:50,id76-14:150,id77-3:50)id20-
→˓81050:50,id78-2:150,id79-8:50)id19-81050:50,id80-2:50)id18-81050:50,id81-3:50,id82-
→˓2:50,id83-1:50)id17-81050:50,id84-1:50,id85-7:50,id86-2:50,id87-9:150)id16-81050:51,
→˓id88-1:1)id15-81050:18,id89-18:69)id14-81050:16,id90-3:35)id13-81050:13,id91-1:6)id12-
→˓81050:8,id92-2:42)id11-81050:3,id93-2:16)id10-81050:14,id94-1:13)id9-81050:8,id95-
→˓2:11)id8-81050:1,id96-1:9)id7-81050:14,id97-1:12)id6-81050:22,id98-1:12)id5-81050:87,
→˓id99-2:73)id4-81050:2,id100-1:12)id3-81050:4,id101-2:141)id2-81050:64,id102-1:10)id1-
→˓81050:11,id103-3:82)id0-81050:237

Log - detailed species data
The rest of the log file comprises detailed data for each species in csv format, in the same order they
appear in the tree. For each species, for every polling iteration, REvoSim provides the following data:

• Species ID

• Species ID of Parent

• Iteration number (i.e. the polling iteration for which this was recorded)

• Number of individuals at polling iteration (size)

• A sample genome for the species, selected as for running log (i.e. randomly), presented as a 32-bit number

• The above genome as a binary string

• Genomic diversity - i.e. the number of different genomes in the species

• The number of pixels occupied by this species, subtracted 1 (i.e. real range is 1-65536, but -1 allows C++ style
numbering: 0-65535)

• The geographic range in the form of the maximum distance between outliers

• The centroid of range in X - the mean of all X positions

• The centroid of range in Y - the mean of all Y positions

• Mean fitness of all members of species, stored multiplied by 1000 to allow small changes to be easily identified

• Minimum R, G, then B - the log then reports the minimum R, G and B values the species is found in

• Maximum R, G, then B - as above, but maximum values

• Mean R, G, then B - the final three numbers are the mean R, G, and B values the species inhabits

An example log thus appears:

id,ParentID,iteration,size,sampleGenome,sampleGenome_binary,diversity,cellsOccupied,geog_
→˓range,centroid_x,centroid_y,mean_fit,min_env_red,min_env_green,min_env_blue,max_env_
→˓red,max_env_green,max_env_blue,mean_env_red,mean_env_green,mean_env_blue
27,26,1073,34539,17476623570733825285,
→˓1111001010001001011100001000101011011110110011101111110100000101,6780,4199,41,20,49,
→˓9566,30,41,88,35,54,112,30,44,90
28,26,1073,1,18017055526017752864,
→˓1111101000001001011100001000101011011110110001101101111100100000,1,1,0,29,44,10000,30,
→˓44,90,30,44,90,30,44,90
29,26,1073,1,17441298461089501447,
→˓1111001000001011111100001000101011011010110011101001000100000111,1,1,0,31,79,10000,30,
→˓44,90,30,44,90,30,44,90
30,26,1073,1,17312242184062138796,

(continues on next page)

2.8. Configuring Outputs and Run End Log 37

REvoSim Documentation, Release 3.0.1

(continued from previous page)

→˓1111000001000001011100001000101011001110100011100111100110101100,1,1,0,5,6,8000,30,44,
→˓90,30,44,90,30,44,90
31,26,1073,1,17726573350043672487,
→˓1111011000000001011100001000101011011110010000100101111110100111,1,1,0,41,22,9000,30,
→˓44,90,30,44,90,30,44,90
32,26,1073,5,18021559125636701700,
→˓1111101000011001011100001000101011011110010001100101111000000100,1,4,2,3,83,9000,30,44,
→˓90,30,44,90,30,44,90
33,26,1073,2,17439188498342378892,
→˓1111001000000100011100011000101011011110110001100111110110001100,1,2,0,3,9,9000,30,44,
→˓90,30,44,90,30,44,90
34,26,1073,3,17440594842165369120,
→˓1111001000001001011100001001101011001110110001101101100100100000,1,2,1,36,49,9000,30,
→˓44,90,30,44,90,30,44,90
35,26,1073,1,16358041978649091335,
→˓1110001100000011011100001000001011001110010011101001110100000111,1,1,0,36,97,9000,30,
→˓44,90,30,44,90,30,44,90
26,25,1023,34348,17476623570733825285,
→˓1111001010001001011100001000101011011110110011101111110100000101,6582,4201,51,20,49,
→˓9357,30,41,88,70,105,209,30,44,90
...

2.8.3 Run end log options

REvoSim provides the following options for the run end log:

Automatically create detailed log on batch runs
This option outputs the detailed log at the end of each run when REvoSim is operating in batch mode.

Write data for current run
This option outputs the detailed log for the currently running simulation at the point at which the
button is pressed.

Exclude species without descendents
Under most settings a significant number of small, short-lived species may appear regularly within
a REvoSim run. Given the significant amount of data REvoSim can generate, and the fact that these
short lived species will be unimportant for many studies (potentially masking important observa-
tions), this option rationalises REvoSim detailed logs by only including species with descendents in
the end run log and tree.

Minimum species size
It is also possible to filter the species data in the log files so that only species above a certain number
of individuals are included in the logs. This spin box dictates what that minimum cut-off is.

38 Chapter 2. Table of Contents

REvoSim Documentation, Release 3.0.1

2.8.4 Other options

Don’t update GUI
This option allows runs to proceed without updating the GUI (although note that this prevents images
being saved during a run). Checking this allow REvoSim to run marginally faster, and may be of
utility for very long runs.

2.8.5 Custom logs

In addition to the Run end log, and running log (see Running Log), there are a series of custom logs that can be selected
in the tools option of the main menu (see Main Menu).

2.9 Running Log

In addition to the Run end log and image logging (see Configuring Outputs and Run End Log), plus the custom logs
(see Main Menu), REvoSim has a versatile system to write customised logs at every polling iteration during a run.
When enabled, this writes a file called REvoSim_log.txt to the output folder, then updates this by appending more data
every polling iteration, giving an overview of the current run. The v3.0.0 logging systems functions by outputting text
that has been entered in this dock (including line breaks). When doing so, it replaces key words/phrases surrounded
by *stars* with values that document the state of the simulation. The three text areas/boxes in this dock allow different
kinds of text for logs to be entered, as outlined below.

2.9.1 Buttons

Write to file
When this option is checked a log file is written during the course of every run.

Instructions
This button creates a pop up window with simplified instructions for writing the running log.

Validate logs
This button will highlight, in red, any star-bounded *key words* that are not recognised by the logging
system.

Command line log file
This option outputs an XML file for the current log settings that can be loaded from the command
line for batch runs.

v2.0.0 log
This populates the text areas with the default running log text from v2.0.0.

v2.0.0 CSV log
This populates the text areas with the default running log text from v2.0.0, formatted as a CSV.

2.9. Running Log 39

REvoSim Documentation, Release 3.0.1

2.9.2 Header text

This text area can be used for text that should appear at the start of a log file, but is only written when the file is created.
This could include the settings for any given run, comments relevant to the experiment, or a header for the remaining
columns, for example.

2.9.3 Iteration text

This text is written to the log file every polling iteration. This is likely to include statistics about the grid as a whole,
for example, number of living organisms, iteration number, or mean fitness. A full list of options is provided below.

Write header from iteration log
This writes a header in the header text area based on the iteration text. Unrecognised keywords will
be coloured in red.

2.9.4 Species text

This text is written to the log file for each species, for every polling iteration. This data might include species ID, its
origin time, the ID of its parents, and the number of organisms in that species. A full list of options is provided below.

Write header from species log
This writes a header in the header text area based on the species text. Unrecognised keywords will
be coloured in red.

2.9.5 v3.0.0 log options

In v3.0.0 and later, custom logs can be created by entering outputs in the text areas as described above, including
keywords. These keywords are replaced with outputs for further analysis when the log is written (e.g. *iteration* is
replaced with the current iteration number).

Keywords are show below, first per iteration keywords, then per species keywords (although some can be used in either
context). The escape sequence for a star (*) is two stars (**).

Iteration keywords

dumpGenomes
This writes the genomes of every living digital organism, and the X then Y coordinate in which they
are found, separated by commas.

gridBreedEntries
The number of organisms in the grid which are attempting to breed at the polling iteration.

gridBreedFails
The number of failed breeding attempts in the polling iteration for all organisms in the grid.

gridBreedSuccess
The number of successful breeds in the polling iteration for all organisms in the grid.

gridMeanFitness
The mean fitness of all the organisms in the grid at polling iteration.

gridNumberAlive
The number of organisms alive at polling iteration.

40 Chapter 2. Table of Contents

REvoSim Documentation, Release 3.0.1

gridGeneration
This calculates the average age (thus generation time) of all successful parents in the polling iteration.
Note that it calculates this based on the assumption (which is true for the majority of settings), that
organisms will only successfully breed once in their lifetime. This assumption can be checked using
the *gridNumberAlive* and *gridBreedSuccess* outputs to calculate the mean number of breeding
individuals at any generation.

gridTrophicHistograms
This outputs a histogram of the trophic levels of all the organisms in the grid, at 0.1 intervals between
0 and 3.

gridSpeciesRange
This reports the average range of the species alive at the polling iteration: it is a mean of the number
of pixels each species is found in, across all species.

iteration
The current iteration.

printSettings
This prints a string of all REvoSim settings at the polling iteration, or start of the run if placed in the
header.

printTime
A string showing the time.

speciesCount
The number of species alive at polling iteration.

Species keywords

Ca
This is the sum of the gene frequency differences from the origin of a species for the word(s) included
in the fitness algorithm.

completeSpeciesData
This writes the complete species data for any given species, of the form described for the end run log
(see Configuring Outputs and Run End Log).

Cr
This is the sum of the gene frequency differences from the last polling iteration for the word(s) in-
cluded in the fitness algorithm.

currentGeneFrequencies
This writes the mean number of on bits for every position of the genome across a species.

originTime
This is the polling iteration at which the species was first identified as reproductively isolated (see
2019 paper for a description of the species algorithm).

originalGeneFrequencies
This writes the mean number of on bits for every position of the genome across a species at its
origination.

NCa
This is the sum of the gene frequency differences from the origin of a species for the word(s) not
included in the fitness algorithm.

NCr
This is the sum of the gene frequency differences from the last polling iteration for the word(s) not
included in the fitness algorithm.

2.9. Running Log 41

REvoSim Documentation, Release 3.0.1

speciesGenomeDiversity
This is the number of distinct genomes included within a species.

speciesID
REvoSim’s ID for a species, which is useful for correlating statistics with the tree output by the
software.

speciesMeanEnvironmentalFitness
The mean fitness of the species from the environmental fitness algorithm.

speciesMeanFitness
The mean fitness of the species from the environmental fitness algorithm plus any interactions that
impact on fitness.

speciesMeanRunningEnergy
This is the mean total lifetime energy of the organisms within a species (see Configuring Interactions).

speciesMeanRunningStolenEnergy
This is the mean total lifetime stolen energy of the organisms within a species (see Configuring
Interactions).

speciesModalGenome
This outputs the modal genome of the species.

speciesParent
This outputs the REvoSim species ID for the parent species.

speciesSize
The number of individuals within the species.

speciesTrophicLevel
The mean trophic level of the organisms in a species.

2.9.6 v2.0.0 log

The v2.0.0 log is structured as follows:

Timestamp
The first line is a time stamp highlighting when the run was written, in the following format: 2018-
12-30T11:57:51

Settings
A printout of all REvoSim settings for this run then follows, divided into integers and then bools.
This means that at any point it is possible to revisit and check all settings for that run.

Legend
There is then an explanation of the structure of the log files. Every iteration, the log records data about
the simulation to file in a format designed to be easy to parse into a range of analytical environments
(e.g. R, Python). This structure is as follows for each iteration:

- [I] Iteration Number
- [P] Population Grid Data:
- Number of living digital organisms
- Mean fitness of living digital organisms
- Number of entries on the breed list
- Number of failed breed attempts
- Number of species
- Trophic histograms

(continues on next page)

42 Chapter 2. Table of Contents

REvoSim Documentation, Release 3.0.1

(continued from previous page)

- [S] Species Data:
- Species ID
- Species origin (iterations)
- Species parent
- Species current size (number of individuals)
- Species mean Environmental Fitness
- Species current genome (the modal genome of the species, the genome that occurs most␣

→˓frequently)
- Species trophic level (the mean trophic level of individuals in the species)
- Species genome diversity

Log data
The log then begins. Iterations are separated by new line breaks. Every iteration has a single [I] line,
one [P] line, and then an [S] line for every species above the minimum species size. We note that it
does not exclude species without descendents because it is written during the simulation, appending
to the file for speed. To filter out those species without descendents would introduce the need to store
and then regularly filter the log data, and thus would come with a notable computational overhead.

CSV format
If the ‘Log file formatted as CSV’ option is checked in output settings, the log file has a different
and simpler format using the ‘comma separated value’ system. This may be easier to parse in some
software (e.g. spreadsheets). A single header row is generated at the start of the file, providing
titles for columns. Subsequent rows are generated for each [S] record described above, but these also
include columns with the [I] and [P] records in each row. All fields described above are included in
the output.

This logging system is designed to allow as many potential elements of a RevoSim run to be quantified as possible.
Should any further measures or statistics be required, please file a feature request.

2.10 Genome comparison dock

The Genome Comparison Dock allows genomes to be inspected and compared within RevoSim, and can be launched
from the main menu or the toolbar. By default it appears landscape on the bottom of the main window. Its landscape
orientation is intended to allow whole genomes to be viewed without scrolling on most operating systems, however we
note that on operating systems with low resolution displays, the REvoSim GUI may struggle to accommodate the docker
in its default position: the environment and population views may be forced to be small, or the genome comparison
docker may not have the vertical extent to show more than one genome. If this is the case, the docker can be floated, or
alternatively docked to the right or left of the main window.

A genome can be added to the comparison dock by right clicking on the population scene. By default, this will add the
genomes of all of the digital organisms living within that pixel to the comparison dock, rendering them as zeros and
ones, as well as displaying, from left to right in the row, the colour of that organism’s environment, that organism’s
species ID, the colour assigned to that species ID, that organism’s environmental fitness (EF) in its environment, that
organism’s current fitness (F) (after interactions), the lifetime total energy accumulated by that organism (Le), and the
total energy acquired by that organism through direct energy theft in interactions (Se). A colour is also displayed for
each genome word, to highlight differences between genome words among organisms. Alternatively, as shown in the
video above, when Modal genome only is selected on the right of the dock, this adds just the model genome for any
clicked pixel. By default, auto compare is also enabled: this compares and highlights the differences between each
entry on the genome list and that before it.

The genomes can be deleted individually from the table by selecting a genome and using the Delete button. Alternatively
all genomes in the table can be removed from Genome Comparison Dock the using the Reset All button.

2.10. Genome comparison dock 43

https://github.com/palaeoware/revosim/issues

REvoSim Documentation, Release 3.0.1

The first ten genomes from the Genome Comparison Dock are pulled through to the reseed dialogue (shown in figure
below): this allows one to be selected as the starting genome for a new run. This allows multiple repeats of simulations
using the same genome, which is known to be capable of surviving within a given environment using the masks loaded
at launch (note that these will not persist between sessions unless through loading a saved simulation).

Fig. 8: Reseed dialogue showing first ten genomes as selected in the Genome Comparison Dock (created with v2.0.0).

2.11 Advanced Options

REvoSim has the following options available for experienced users.

44 Chapter 2. Table of Contents

REvoSim Documentation, Release 3.0.1

2.11.1 Count peaks

A key element of REvoSim is its fitness algorithm, described in depth in the REvoSim paper. The countpeaks command
in the REvoSim main menu is included to provide a simple quantification of the fitness landscape given the current
masks. These change when the software is restarted, and thus in any given run there will be shifts in the fitness
landscape.

To provide quantification, the count peaks command cycles through every possible 32-bit number, calculating its fit-
ness for the current masks, selected fitness target, and user-defined RGB values (these are requested from the user on
initiation of the count peaks command). When this is complete, the software outputs these in a text file written to the
output folder (as defined in the Output tab of the Settings dock) that lists fitness vs genome count. An example is shown
below.

REvoSim Peak Counting 2018-12-17T16:56:57
===================

Below is a histogram showing the different fitnesses for all potential 32-bit organisms␣
→˓in REvoSim under the user-defined RGB levels.

===================

Fitness counts for red=128, green=128, blue=128

0,3400873943
1,261711486
2,206660322
3,154146136
4,108257580
5,71295660
6,43807340
7,24949080
8,13052205
9,6196135
10,2627235
11,976050
12,310646
13,82512
14,18036
15,2930

The above result is for a typical run, which provides a distribution within those organisms capable of surviving as
follows, for red=128, green=128, blue=128:

2.11.2 Custom Random Numbers

As of version 3.0.0, REvoSim employs QT’s random number library QRandomGenerator to create its random numbers.
Specifically, it uses a QRandomGenerator::global() that is securely seeded. More information about this library can be
found at in the Qt documentation: QRandomGenerator class. Earlier versions of REvoSim employed a pre-generated
table of 65,536 random numbers 0-255 sourced from 10Mb of quantum-generated random numbers from randomnum-
bers.info that were packaged into the executable. REvoSim still offers the option to employ this approach via the option
to load a custom random numbers file if preferred by the user.

To load a custom file of random numbers use the ‘Commands → Load Random Numbers. . . ’ command from the main
menu to open a file selection dialogue.

2.11. Advanced Options 45

https://doc.qt.io/qt-5/qrandomgenerator.html
http://www.randomnumbers.info
http://www.randomnumbers.info

REvoSim Documentation, Release 3.0.1

Fig. 9: Custom Random Number file open dialogue.

46 Chapter 2. Table of Contents

REvoSim Documentation, Release 3.0.1

The random number file should be encoded as a random binary string, and should be a minimum of 65536 bytes. Once
the desired file is selected press the ‘Open’ button to import the new random numbers. REvoSim will then ask for a
byte offset to read the file from (thus allowing runs to be repeated with the same random numbers, if desired).

Fig. 10: Custom Random Number byte offset form.

Note that REVOSIM will always read 65536 bytes; and will throw an error message if it cannot.

Fig. 11: Custom Random Number error on load message.

On success a pop-up message reading “New random numbers read successfully” will appear.

2.12 Command Line Options

REvoSim provides command line options to enable full control of simulations from command line or batch file environ-
ments. Every parameter configurable in the GUI can be set from the command line, and the program can be instructed
to execute a simulation and then exit.

This document does not provide instructions on how to write a batch file, or determine correct paths (which will differ
between operating systems).

Command line switches are documented below, and examples are given of their usage. Any combination of switches in
any order is allowed. Note that on some systems, path names with spaces may cause problems: these are best avoided,
but alternatively paths can be encased in double quotes if they contain a space.

Note in particular the –auto command, which automatically starts a simulation, and exits the program at its end. This
will be required in most batch scenarios, as will the -k switch to turn on one or both types of logging.

e.g. a command line to run a simulation on the environment files in “c:\revosim\data\env1” for 50000 iterations, using
normal (running) logs, and with settings at defaults except for ‘toroidal’ (on):

c:\\revosim\\revosim.exe -e c:\\revosim\\data\\env1 -t=On -k=Normal \--auto=50000

On Linux this command (assuming you are in the same folder as the REvoSim binary):

./revosim -e /home/user/environment/ -t=On -k=Normal \--auto=50000

2.12. Command Line Options 47

REvoSim Documentation, Release 3.0.1

The easiest way of modifying multiple variables for runs - and of setting custom log text, which was added in REvoSim
v3.0.0 - is to use the software to output a settings files, and then to load this from the command line (--settings).

2.12.1 Running via SSH

In many instances it may be beneficial to run REvoSim on a remote machine. With remote desktopping solutions
that provide a GUI, this can be achieved very easily following the normal operating procedures. However, due to the
development of REvoSim, launching the software via the command line launches the GUI. This means that it is not
possible to launch the command line version via SSH unless X-forwarding or another such solution is implemented.
However, if no interaction with the GUI is required, there are a number of solutions that can bypass this requirement.
The simplest, that will work on the majority of systems with Qt installed, is to include the flag -platform offscreen:

/revosim \--auto 1000 -platform offscreen

This co-opts a Qt platform plugin to simply render to an offscreen buffer. Another option is to install XVFB - this is an
“X server that can run on machines with no display hardware and no physical input device” (More information). Once
installed, you can launch revosim as follows:

xvfb-run -a ./revosim \--auto 1000

In any case, once a run is complete, you can then use e.g. SFTP to collect output files as required.

2.12.2 Single-letter switches

These can be used as either in single letter form (-a) or long form (--startage - note the double -). All require a value,
which can be separated from the switch using a space or an equals - or in single character mode, without a separator at
all (this doesn’t work in – long form, where a separator IS required). Where no parameter is noted in square brackets
this is a boolean option, which is either On or Off (you can also use 1/0, true/false, yes/no, y/n - which are not case
sensitive). e.g.

• -a30

• -a=30

• -a 30

• --startage=30

• --startage 30

For a boolean:

• -q On

• -q 1

• -q=truE

• -q Y

• --recalcfitness True

• --recalcfitness = Y

Full list of single-letter switches (also available using switch -h, help):

• -a, --startage <age (integer)> Starting age for organisms.

• -b, --breedthreshold <threshold (integer)> Breed threshold.

• -c, --breedcost <cost (integer)> Breed cost.

48 Chapter 2. Table of Contents

https://www.x.org/releases/X11R7.6/doc/man/man1/Xvfb.1.xhtml

REvoSim Documentation, Release 3.0.1

• -d, --maxdifftobreed <maxdifftobreed (integer)> Maximum difference to breed.

• -e, --environment <directory> Directory containing environment images.

• -f, --usemaxdifftobreed <On/Off> Use maximum difference to breed criterion.

• -g, --breedwithinspecies <On/Off> Only allow breeding within a species.

• -i, --disperal <distance (integer)> maximum dispersal distance.

• -j, --outputpath <path> path for output logs.

• -k, --logtype <Phylogeny/Normal/Both> logs to generate (phylogeny is end run log, normal is
running log).

• -l, --excludenodescendents <On/Off> Exclude species without descendents from phylogeny
logs.

• -m, --environmentmode <mode (Static|Once|Loop|Bounce)> Environment file cycling mode.

• -n, --energy <energy (integer)> Energy input.

• -o, --tolerance <tolerance (integer)> Settle tolerance.

• -p, --phylogeny <Off|Basic|Phylogeny|Metrics> Phylogeny logging mode.

• -q, --recalcfitness <On/Off> recalculate fitness each iteration.

• -r, --refreshrate <rate (integer)> environment refresh rate.

• -s, --slots <slots (integer)> Slots per pixel.

• -t, --toroidal <On/Off> Toroidal environment.

• -u, --mutation <chance (integer)> Chance of mutation (0-255).

• -v, --csv <On/Off> Use CSV format for normal log.

• -w, --interpolate <On/Off> Interpolate environmental images

• -x, --gridx <size (integer)> Grid (image) size, x.

• -y, --gridy <size (integer)> Grid (image) size, y.

• -z, --genomesize <size (integer)> Number of words in genome.

2.12.3 Long option only switches

We ran out of letters! These require the long format, with --. Otherwise they work as above.

• --polling <rate [integer]> Set polling rate for logging and screen refresh.

• --auto <iterations [integer]> Automatically start simulation and exit program after completion
of specified number of iterations.

• --nonspatial <On/Off> Use non-spatial simulation mode.

• --minspeciessize <size [integer]> Minimum species size to appear in logs.

• --fitnesstarget <target [integer]> Fitness target.

• --breed <Obligate/Facultative/Variable/Asexual> Breeding mode.

• --variablemutate <On/Off> Variable mutation rates.

• --nogui <On/Off> Don’t update GUI.

• --pathogens <On/Off> Turn pathogens on or off.

2.12. Command Line Options 49

REvoSim Documentation, Release 3.0.1

• --pathogenmutate <chance (integer)> Chance of mutation (0-255).

• --pathogenfrequency <frequency (integer)> Frequency pathogens are applied.

• --customlogging <On/Off> Record all custom logs.

• --disparityLogging <On/Off> Record disparity log.

• --interactblocks <On/Off> Turn block interactions on/off.

• --multibreedlist <On/Off> Turn multiple breed lists on/off.

• --interactrate <frequency (integer)> Frequency at which interactions occur.

• --pathogenevolve <On/Off> Set pathogens to evolve (on or off). If this is not set, the default is
drift.

• --minpredatorscore <threshold (integer)> Minimum predator score required for direct energy
theft.

• --predationefficiency <integer> Trophic efficiency of direct energy theft predation.

• --interactXOR <On/Off> Turns XOR interactions mechanism on/off.

• --log, --logFile <file> XML File containing the log outputs.

• --v2log <On/Off> Initiates v2.0.0 logging style.

• --interactfitness <On/Off> Interactions modify fitness.

• --interactenergy <On/Off> Interactions modify energy.

• --li_population <On/Off> Log images for population.

• --li_fitness <On/Off> Log images for mean fitness.

• --li_sys_visualisation <On/Off> Log images for visualisation system 1.

• --li_sys_visualisation2 <On/Off> Log images for visualisation system 2.

• --li_species <On/Off> Log images for species.

• --li_settles <On/Off> Log images for settles.

• --li_fails <On/Off> Log images for breed/settle fails.

• --li_environment <On/Off> Log images for environment.

• --sys_fitness <Word string> Fitness system.

• --sys_breed <Word string> Breed system.

• --sys_mutate <Word string> Mutate system.

• --sys_var_mutate <Word string> Variable mutate system.

• --sys_var_breed <Word string> Variable breed system.

• --sys_pathogens <Word string> Pathogens system.

• --sys_species_ID <Word string> Species ID system.

• --sys_interactions <Word string> Interactions system.

• --sys_visualisation <Word string> Visualisation system.

• --sys_visualisation2 <Word string> visualisation2 system.

• --settings <file> Load a REvoSim settings file.

• --maxthreads <thread count (integer)> Specify maximum threads to use.

50 Chapter 2. Table of Contents

REvoSim Documentation, Release 3.0.1

• --L1_variable <Energy/No_selection/Mutation_rate> Variable to be linked (required).

• --L1_imageSequence <directory> Directory containing linkage mask images (required).

• --L1_mode <mode (Static|Once|Loop|Bounce)> Image file cycling mode (defaults to static).

• --L1_interpolate <On/Off> Image interpolation (defaults to true).

• --L1_change_rate <rate (integer)> Image refresh rate (defaults to 100).

• --L2_variable <Energy/No_selection/Mutation_rate> Second variable to be linked (required).

• --L2_imageSequence <directory> Directory containing second linkage mask images (re-
quired).

• --L2_mode <mode (Static|Once|Loop|Bounce)> Image file cycling mode (defaults to static).

• --L2_interpolate <On/Off> Image interpolation (defaults to true).

• --L2_change_rate <rate (integer)> Image refresh rate.

2.13 Tests

REvoSim has a test mode which is toggled by hitting the Tests button on the menu bar. This runs a series of software
tests and then displays the output within the REvoSim main window (the Test Log). The GUI of the software when in
test mode is shown below.

Fig. 12: REvoSim main window in test mode.

2.13. Tests 51

REvoSim Documentation, Release 3.0.1

2.13.1 REvoSim test log

Our chosen approach allows all users to visually inspect the outputs of the tests if they so wish, even if they are not able
to build the software themselves. Tests that fail will appear in bright green font with a test failed message at the front.
If you are using the software for your research, please do feel free to inspect the test outputs and contact the authors
with any queries.

The expectations of each test, as well as the results, are written to a test log. Outputs are generally either numbers, or
text strings which should be identical. The latter are output as MD5 checksums for space and clarity (if the text is the
same, the checksum will be too). Each test generally comprises multiple components testing the different elements of
a logically connected element of the software. An annotated example of one of these is shown below.

Test zero - Annotated output

As an example of one of REvoSim’s test, we use here test zero - which ensures REvoSim’s random numbers are working
as expected. The output is as follows:

Running test on random number functions (these run off QT’s QRandomGenerator if you want to read
about the system).

Many tests will provide useful information regarding the functioning of the underlying elements – in this case,
REvoSim’s random numbers rely upon the QRandomGenerator class of the Qt framework.

Created 256000 random 8 bit numbers. Should have gotten each ~1000 times. Minimum was 914 maxi-
mum was 1093.

The first element of the test ensures an even spread of random 8 bit numbers, and reports the outputs. The outputs will
vary, but will numbers within sensible bounds will allow the test to pass.

Created 65536000 random 16 bit numbers. Should have gotten each ~1000 times. Minimum was 875
maximum was 1135.

The second element of the test ensures an even spread of random 16 bit numbers, and reports the outputs.

Now created 100000000 random 32 bit numbers - checking instead for max and min to make sure we’re
using the full range, Minimum was 52 highest distance away from maximum was 460.

Now created 10000000 random 64 bit numbers - checking that the largest is greater than 232 (it
is18446743327367295525). This ensures the random is at least >32 bit.

REvoSim also relies on longer random numbers. In the interests of speed, the tests change from checking for an even
spread, to ensuring that in a large number of randoms, the minimum and maximum are close to the bounds of the
number.

Randoms test passed.

As long as all of the individual parts of a test pass, the test as a whole does.

2.13.2 Failed Tests

If a test fails, the outputs appear in green with a failure message at the top, and message at the bottom highlighting
explaining what has failed.

52 Chapter 2. Table of Contents

https://doc.qt.io/qt-5/qrandomgenerator.html

REvoSim Documentation, Release 3.0.1

Fig. 13: A failed REvoSim test. Don’t panic, it’s in the development branch.

2.13. Tests 53

	Relevant references
	Software references:
	Other references:

	Table of Contents
	Introduction
	Overview
	Simulation setup
	Output setup
	Quick start

	Compiling, Installation, and Requirements
	Installation
	System requirements
	Compiling from Source

	Concepts and Example Usage
	Concepts
	Example Usage

	Window Layout
	Main Menu
	Commands
	Tools
	Help

	Main Toolbar
	Population Scene
	Population Count
	Mean Fitness
	Visualisation system 1
	Visualisation system 2
	Settles
	Breed/Settle Fails (R=Breed; G=Settle)
	Species
	Interactions
	Breed list
	Pathogens word 1
	Pathogens word 2
	Stolen energy

	Environment Scene
	Information Bar

	Configuring your Organisms
	Organism settings
	Breed settings
	Settle settings
	Genome Words and Systems

	Setting up the Simulation
	Environment settings
	Simulation size
	Simulation settings
	Phylogeny settings
	Linkages
	Create new linkage
	Edit linkage

	Configuring Interactions
	Interaction settings
	Pathogen settings

	Configuring Outputs and Run End Log
	Output options
	Run end log
	Run end log options
	Other options
	Custom logs

	Running Log
	Buttons
	Header text
	Iteration text
	Species text
	v3.0.0 log options
	Iteration keywords
	Species keywords

	v2.0.0 log

	Genome comparison dock
	Advanced Options
	Count peaks
	Custom Random Numbers

	Command Line Options
	Running via SSH
	Single-letter switches
	Long option only switches

	Tests
	REvoSim test log
	Test zero - Annotated output

	Failed Tests

