
retools Documentation
Release 0.4.1

Ben Bangert

November 12, 2014

Contents

1 Reference Material 3
1.1 API Documentation . 3
1.2 Changelog . 13

2 Indices and tables 15

Python Module Index 17

i

ii

retools Documentation, Release 0.4.1

retools is a concise set of well-tested extensible Python Redis tools.

retools is available on PyPI at https://pypi.python.org/pypi/retools

• Caching

– Hit/Miss Statistics

– Regions for common expiration periods and invalidating batches of functions at once.

– Write-lock to prevent the Thundering Herd

• Distributed Locking

– Python context-manager with lock timeouts and retries

• Queuing

– Simple forking worker based on Resque

– Jobs stored as JSON in Redis for easy introspection

– setproctitle used by workers for easy worker introspection on the command line

– Rich event system for extending job processing behavior

• Limiter

– Useful for making sure that only N operations for a given process happen at the same time

• Well Tested 1

– 100% statement coverage

– 100% condition coverage (via instrumental)

Contents 1

https://pypi.python.org/pypi/retools
http://en.wikipedia.org/wiki/Thundering_herd_problem
https://github.com/resque/resque
http://pypi.python.org/pypi/setproctitle
http://pypi.python.org/pypi/instrumental

retools Documentation, Release 0.4.1

2 Contents

CHAPTER 1

Reference Material

Reference material includes documentation for every retools API.

1.1 API Documentation

Comprehensive reference material for every public API exposed by retools is available within this chapter. The
API documentation is organized alphabetically by module name.

1.1.1 retools.cache

Caching

Cache regions are used to simplify common expirations and group function caches.

To indicate functions should use cache regions, apply the decorator:

from retools.cache import cache_region

@cache_region(’short_term’)
def myfunction(arg1):

return arg1

To configure the cache regions, setup the CacheRegion object:

from retools.cache import CacheRegion

CacheRegion.add_region("short_term", expires=60)

Constants

retools.cache.NoneMarker
A module global returned to indicate no value is present in Redis rather than a None object.

Functions

retools.cache.cache_region(region, *deco_args, **kwargs)
Decorate a function such that its return result is cached, using a “region” to indicate the cache arguments.

Parameters

3

retools Documentation, Release 0.4.1

• region (string) – Name of the region to cache to

• *deco_args – Optional str()-compatible arguments which will uniquely identify the key
used by this decorated function, in addition to the positional arguments passed to the func-
tion itself at call time. This is recommended as it is needed to distinguish between any two
functions or methods that have the same name (regardless of parent class or not).

Note: The function being decorated must only be called with positional arguments, and the arguments must
support being stringified with str(). The concatenation of the str() version of each argument, combined
with that of the *args sent to the decorator, forms the unique cache key.

Example:

from retools.cache import cache_region

@cache_region(’short_term’, ’load_things’)
def load(search_term, limit, offset):

’’’Load from a database given a search term, limit, offset.’’’
return database.query(search_term)[offset:offset + limit]

The decorator can also be used with object methods. The self argument is not part of the cache key. This is
based on the actual string name self being in the first argument position:

class MyThing(object):
@cache_region(’short_term’, ’load_things’)
def load(self, search_term, limit, offset):

’’’Load from a database given a search term, limit, offset.’’’
return database.query(search_term)[offset:offset + limit]

Classmethods work as well - use cls as the name of the class argument, and place the decorator around the
function underneath @classmethod:

class MyThing(object):
@classmethod
@cache_region(’short_term’, ’load_things’)
def load(cls, search_term, limit, offset):

’’’Load from a database given a search term, limit, offset.’’’
return database.query(search_term)[offset:offset + limit]

Note: When a method on a class is decorated, the self or cls argument in the first position is not included
in the “key” used for caching.

retools.cache.invalidate_region(region)
Invalidate all the namespace’s in a given region

Note: This does not actually clear the region of data, but just sets the value to expire on next access.

Parameters region (string) – Region name

retools.cache.invalidate_function(callable, *args)
Invalidate the cache for a callable

Parameters

• callable (callable object) – The callable that was cached

4 Chapter 1. Reference Material

retools Documentation, Release 0.4.1

• *args – Arguments the function was called with that should be invalidated. If the args is
just the differentiator for the function, or not present, then all values for the function will be
invalidated.

Example:

@cache_region(’short_term’, ’small_engine’)
def local_search(search_term):

do search and return it

@cache_region(’long_term’)
def lookup_folks():

look them up and return them

To clear local_search for search_term = ’fred’
invalidate_function(local_search, ’fred’)

To clear all cached variations of the local_search function
invalidate_function(local_search)

To clear out lookup_folks
invalidate_function(lookup_folks)

Classes

class retools.cache.CacheKey(region, namespace, key, today=None)
Cache Key object

Generator of cache keys for a variety of purposes once provided with a region, namespace, and key (args).

class retools.cache.CacheRegion
CacheRegion manager and configuration object

For organization sake, the CacheRegion object is used to configure the available cache regions, query regions
for currently cached keys, and set batches of keys by region for immediate expiration.

Caching can be turned off globally by setting enabled to False:

CacheRegion.enabled = False

Statistics should also be turned on or off globally:

CacheRegion.statistics = False

However, if only some namespaces should have statistics recorded, then this should be used directly.

classmethod add_region(name, expires, redis_expiration=604800)
Add a cache region to the current configuration

Parameters

• name (string) – The name of the cache region

• expires (integer) – The expiration in seconds.

• redis_expiration (integer) – How long the Redis key expiration is set for. Defaults to 1
week.

classmethod invalidate(region)
Invalidate an entire region

1.1. API Documentation 5

retools Documentation, Release 0.4.1

Note: This does not actually clear the region of data, but just sets the value to expire on next access.

Parameters region (string) – Region name

classmethod load(region, namespace, key, regenerate=True, callable=None, statistics=None)
Load a value from Redis, and possibly recreate it

This method is used to load a value from Redis, and usually regenerates the value using the callable when
provided.

If regenerate is False and a callable is not passed in, then NoneMarker will be returned.

Parameters

• region (string) – Region name

• namespace (string) – Namespace for the value

• key (string) – Key for this value under the namespace

• regenerate (bool) – If False, then existing keys will always be returned regardless of cache
expiration. In the event that there is no existing key and no callable was provided, then a
NoneMarker will be returned.

• callable – A callable to use when the cached value needs to be created

• statistics (bool) – Whether or not hit/miss statistics should be updated

1.1.2 retools.exc

retools exceptions

Exceptions

exception retools.exc.RetoolsException
retools package base exception

exception retools.exc.ConfigurationError
Raised for general configuration errors

exception retools.exc.CacheConfigurationError
Raised when there’s a cache configuration error

exception retools.exc.QueueError
Raised when there’s an error in the queue code

exception retools.exc.AbortJob
Raised to abort execution of a job

1.1.3 retools.limiter

Generic Limiter to ensure N parallel operations

Note: The limiter functionality is new. Please report any issues found on the retools Github issue tracker.

The limiter is useful when you want to make sure that only N operations for a given process happen at the same time,
i.e.: concurrent requests to the same domain.

6 Chapter 1. Reference Material

https://github.com/bbangert/retools/issues

retools Documentation, Release 0.4.1

The limiter works by acquiring and releasing limits.

Creating a limiter:

from retools.limiter import Limiter

def do_something():
limiter = Limiter(limit=10, prefix=’my-operation’) # using default redis connection

for i in range(100):
if limiter.acquire_limit(’operation-%d’ % i):

execute_my_operation()
limiter.release_limit(’operation-%d’ % i) # since we are releasing it synchronously

all the 100 operations will be performed with
one of them locked at a time

Specifying a default expiration in seconds:

def do_something():
limiter = Limiter(limit=10, expiration_in_seconds=45) # using default redis connection

Specifying a redis connection:

def do_something():
limiter = Limiter(limit=10, redis=my_redis_connection)

Every time you try to acquire a limit, the expired limits you previously acquired get removed from the set.

This way if your process dies in the mid of its operation, the keys will eventually expire.

Public API Classes

class retools.limiter.Limiter(limit, redis=None, prefix=’retools_limiter’, expira-
tion_in_seconds=10)

Configures and limits operations

__init__(limit, redis=None, prefix=’retools_limiter’, expiration_in_seconds=10)
Initializes a Limiter.

Parameters

• limit – An integer that describes the limit on the number of items

• redis – A Redis instance. Defaults to the redis instance on the global_connection.

• prefix – The default limit set name. Defaults to ‘retools_limiter’.

• expiration_in_seconds – The number in seconds that keys should be locked if not explic-
itly released.

acquire_limit(key, expiration_in_seconds=None, retry=True)
Tries to acquire a limit for a given key. Returns True if the limit can be acquired.

Parameters

• key – A string with the key to acquire the limit for. This key should be used when releasing.

• expiration_in_seconds – The number in seconds that this key should be locked if not
explicitly released. If this is not passed, the default is used.

• key – Internal parameter that specifies if the operation should be retried. Defaults to True.

1.1. API Documentation 7

retools Documentation, Release 0.4.1

release_limit(key)
Releases a limit for a given key.

Parameters key – A string with the key to release the limit on.

1.1.4 retools.lock

A Redis backed distributed global lock

This code uses the formula here: https://github.com/jeffomatic/redis-exp-lock-js

It provides several improvements over the original version based on: http://chris-lamb.co.uk/2010/06/07/distributing-
locking-python-and-redis/

It provides a few improvements over the one present in the Python redis library, for example since it utilizes the Lua
functionality, it no longer requires every client to have synchronized time.

Classes

class retools.lock.Lock(key, expires=60, timeout=10, redis=None)

__init__(key, expires=60, timeout=10, redis=None)
Distributed locking using Redis Lua scripting for CAS operations.

Usage:

with Lock(’my_lock’):
print "Critical section"

Parameters

• expires – We consider any existing lock older than expires seconds to be invalid in
order to detect crashed clients. This value must be higher than it takes the critical section
to execute.

• timeout – If another client has already obtained the lock, sleep for a maximum of
timeout seconds before giving up. A value of 0 means we never wait.

• redis – The redis instance to use if the default global redis connection is not desired.

Exceptions

exception retools.lock.LockTimeout
Raised in the event a timeout occurs while waiting for a lock

1.1.5 retools.queue

Queue worker and manager

Note: The queueing functionality is new, and has gone through some preliminary testing. Please report any issues
found on the retools Github issue tracker.

Any function that takes keyword arguments can be a job that a worker runs. The QueueManager handles configu-
ration and enqueing jobs to be run.

8 Chapter 1. Reference Material

https://github.com/jeffomatic/redis-exp-lock-js
http://chris-lamb.co.uk/2010/06/07/distributing-locking-python-and-redis/
http://chris-lamb.co.uk/2010/06/07/distributing-locking-python-and-redis/
https://github.com/bbangert/retools/issues

retools Documentation, Release 0.4.1

Declaring jobs:

mypackage/jobs.py

jobs

def default_job():
do some basic thing

def important(somearg=None):
do an important thing

event handlers

def my_event_handler(sender, **kwargs):
do something

def save_error(sender, **kwargs):
record error

Running Jobs:

from retools.queue import QueueManager

qm = QueueManager()
qm.subscriber(’job_failure’, handler=’mypackage.jobs:save_error’)
qm.subscriber(’job_postrun’, ’mypackage.jobs:important’,

handler=’mypackage.jobs:my_event_handler’)
qm.enqueue(’mypackage.jobs:important’, somearg=’fred’)

Note: The events for a job are registered with the QueueManager and are encoded in the job’s JSON blob. Updating
events for a job will therefore only take effect for new jobs queued, and not existing ones on the queue.

Events

The retools queue has events available for additional functionality without having to subclass or directly extend retools.
These functions will be run by the worker when the job is handled.

Available events to register for:

• job_prerun: Runs immediately before the job is run.

• job_wrapper: Wraps the execution of the job, these should be context managers.

• job_postrun: Runs after the job completes successfully, this will not be run if the job throws an exception.

• job_failure: Runs when a job throws an exception.

Event Function Signatures

Event functions have different call semantics, the following is a list of how the event functions will be called:

• job_prerun: (job=job_instance)

• job_wrapper: (job_function, job_instance, **job_keyword_arguments)

• job_postrun: (job=job_instance, result=job_function_result)

• job_failure: (job=job_instance, exc=job_exception)

1.1. API Documentation 9

retools Documentation, Release 0.4.1

Attributes of interest on the job instance are documented in the Job.__init__() method.

Running the Worker

After installing retools, a retools-worker command will be available that can spawn a worker. Queues to
watch can be listed in order for priority queueing, in which case the worker will try each queue in order looking for
jobs to process.

Example invocation:

$ retools-worker high,medium,main

Public API Classes

class retools.queue.QueueManager(redis=None, default_queue_name=’main’, serializer=<function
dumps at 0x7fc895e94ed8>, deserializer=<function loads at
0x7fc895e94e60>)

Configures and enqueues jobs

__init__(redis=None, default_queue_name=’main’, serializer=<function dumps at
0x7fc895e94ed8>, deserializer=<function loads at 0x7fc895e94e60>)

Initialize a QueueManager

Parameters

• redis – A Redis instance. Defaults to the redis instance on the global_connection.

• default_queue_name – The default queue name. Defaults to ‘main’.

• serializer – A callable to serialize json data, defaults to json.dumps().

• deserializer – A callable to deserialize json data, defaults to json.loads().

enqueue(job, **kwargs)
Enqueue a job

Parameters

• job – The pkg_resouce name of the function. I.e. retools.jobs:my_function

• kwargs – Keyword arguments the job should be called with. These arguments must be
serializeable by JSON.

Returns The job id that was queued.

set_queue_for_job(job_name, queue_name)
Set the queue that a given job name will go to

Parameters

• job_name – The pkg_resource name of the job function. I.e. retools.jobs:my_function

• queue_name – Name of the queue on Redis job payloads should go to

subscriber(event, job=None, handler=None)
Set events for a specific job or for all jobs

Parameters

• event – The name of the event to subscribe to.

• job – Optional, a specific job to bind to.

• handler – The location of the handler to call.

10 Chapter 1. Reference Material

retools Documentation, Release 0.4.1

Private API Classes

class retools.queue.Job(queue_name, job_payload, redis, serializer=<function dumps at
0x7fc895e94ed8>, deserializer=<function loads at 0x7fc895e94e60>)

__init__(queue_name, job_payload, redis, serializer=<function dumps at 0x7fc895e94ed8>, deseri-
alizer=<function loads at 0x7fc895e94e60>)

Create a job instance given a JSON job payload

Parameters

• job_payload – A JSON string representing a job.

• queue_name – The queue this job was pulled off of.

• redis – The redis instance used to pull this job.

A Job instance is created when the Worker pulls a job payload off the queue. The current_job global
is set upon creation to indicate the current job being processed.

Attributes of interest for event functions:

•job_id: The Job’s ID

•job_name: The Job’s name (it’s package + function name)

•queue_name: The queue this job came from

•kwargs: The keyword arguments the job is called with

•state: The state dict, this can be used by events to retain additional arguments. I.e. for a retry
extension, retry information can be stored in the state dict.

•func: A reference to the job function

•redis: A redis.Redis instance.

•serializer: A callable to serialize json data, defaults to json.dumps().

•deserializer: A callable to deserialize json data, defaults to json.loads().

enqueue()
Queue this job in Redis

static load_events(event_dict)
Load all the events given the references

Parameters event_dict – A dictionary of events keyed by event name to a list of handlers for
the event.

perform()
Runs the job calling all the job signals as appropriate

run_event(event, **kwargs)
Run all registered events for this job

class retools.queue.Worker(queues, redis=None, serializer=<function dumps at 0x7fc895e94ed8>,
deserializer=<function loads at 0x7fc895e94e60>)

A Worker works on jobs

__init__(queues, redis=None, serializer=<function dumps at 0x7fc895e94ed8>, deserial-
izer=<function loads at 0x7fc895e94e60>)

Create a worker

Parameters

• queues (list) – List of queues to process

1.1. API Documentation 11

retools Documentation, Release 0.4.1

• redis – Redis instance to use, defaults to the global_connection.

In the event that there is only a single queue in the list Redis list blocking will be used for lower latency
job processing

done_working()
Called when we’re done working on a job

immediate_shutdown(*args)
Immediately shutdown the worker, kill child process if needed

kill_child(*args)
Kill the child process immediately

pause_processing(*args)
Cease pulling jobs off the queue for processing

perform()
Run the job and call the appropriate signal handlers

prune_dead_workers()
Prune dead workers from Redis

register_signal_handlers()
Setup all the signal handlers

register_worker()
Register this worker with Redis

reserve(interval, blocking)
Attempts to pull a job off the queue(s)

resume_processing(*args)
Resume pulling jobs for processing off the queue

set_proc_title(title)
Sets the active process title, retains the retools prefic

startup()
Runs basic startup tasks

trigger_shutdown(*args)
Graceful shutdown of the worker

unregister_worker(worker_id=None)
Unregister this worker with Redis

work(interval=5, blocking=False)
Work on jobs

This is the main method of the Worker, and will register itself with Redis as a Worker, wait for jobs, then
process them.

Parameters

• interval (int) – Time in seconds between polling.

• blocking (bool) – Whether or not blocking pop should be used. If the blocking pop is
used, then the worker will block for interval seconds at a time waiting for a new job.
This affects how often the worker can respond to signals.

worker_id
Returns this workers id based on hostname, pid, queues

12 Chapter 1. Reference Material

retools Documentation, Release 0.4.1

worker_pids()
Returns a list of all the worker processes

working_on()
Indicate with Redis what we’re working on

1.2 Changelog

1.2.1 0.4.1 (02/19/2014)

Bug Fixes

• Properly support StrictRedis with ZADD (used in the limiter). Patch by Bernardo Heynemann.

1.2.2 0.4 (01/27/2014)

Features

• Added limiter functionality. Pull request #22, by Bernardo Heynemann.

1.2.3 0.3 (08/13/2012)

Bug Fixes

• Call redis.expire with proper expires value for RedisLock. Patch by Mike McCabe.

• Use functools.wraps to preserve doc strings for cache_region. Patch by Daniel Holth.

API Changes

• Added get_job/get_jobs methods to QueueManager class to get information on a job or get a list of jobs for a
queue.

1.2.4 0.2 (02/01/2012)

Bug Fixes

• Critical fix for caching that prevents old values from being displayed forever. Thanks to Daniel Holth for
tracking down the problem-aware.

• Actually sets the Redis expiration for a value when setting the cached value in Redis. This defaults to 1 week.

Features

• Statistics for the cache is now optional and can be disabled to slightly reduce the Redis queries used to
store/retrieve cache data.

• Added first revision of worker/job Queue system, with event support.

1.2. Changelog 13

retools Documentation, Release 0.4.1

Internals

• Heavily refactored Connection to not be a class singleton, instead a global_connection instance is created
and used by default.

• Increased conditional coverage to 100% (via instrumental).

Backwards Incompatibilities

• Changing the default global Redis connection has changed semantics, instead of using
Connection.set_default, you should set the global_connection’s redis property directly:

import redis
from retools import global_connection

global_connection.redis = redis.Redis(host=’myhost’)

Incompatibilities

• Removed clear argument from invalidate_region, as removing keys from the set but not removing the hit statis-
tics can lead to data accumulating in Redis that has no easy removal other than .keys() which should not be run
in production environments.

• Removed deco_args from invalidate_callable (invalidate_function) as its not actually needed since the names-
pace is already on the callable to invalidate.

1.2.5 0.1 (07/08/2011)

Features

• Caching in a similar style to Beaker, with hit/miss statistics, backed by a Redis global write-lock with old values
served to prevent the dogpile effect

• Redis global lock

14 Chapter 1. Reference Material

http://pypi.python.org/pypi/instrumental

CHAPTER 2

Indices and tables

• genindex

• modindex

15

retools Documentation, Release 0.4.1

16 Chapter 2. Indices and tables

Python Module Index

r
retools.cache, 3
retools.exc, 6
retools.limiter, 6
retools.lock, 8
retools.queue, 8

17

retools Documentation, Release 0.4.1

18 Python Module Index

Index

Symbols
__init__() (retools.limiter.Limiter method), 7
__init__() (retools.lock.Lock method), 8
__init__() (retools.queue.Job method), 11
__init__() (retools.queue.QueueManager method), 10
__init__() (retools.queue.Worker method), 11

A
AbortJob, 6
acquire_limit() (retools.limiter.Limiter method), 7
add_region() (retools.cache.CacheRegion class method),

5

C
cache_region() (in module retools.cache), 3
CacheConfigurationError, 6
CacheKey (class in retools.cache), 5
CacheRegion (class in retools.cache), 5
ConfigurationError, 6

D
done_working() (retools.queue.Worker method), 12

E
enqueue() (retools.queue.Job method), 11
enqueue() (retools.queue.QueueManager method), 10

I
immediate_shutdown() (retools.queue.Worker method),

12
invalidate() (retools.cache.CacheRegion class method), 5
invalidate_function() (in module retools.cache), 4
invalidate_region() (in module retools.cache), 4

J
Job (class in retools.queue), 11

K
kill_child() (retools.queue.Worker method), 12

L
Limiter (class in retools.limiter), 7
load() (retools.cache.CacheRegion class method), 6
load_events() (retools.queue.Job static method), 11
Lock (class in retools.lock), 8
LockTimeout, 8

N
NoneMarker (in module retools.cache), 3

P
pause_processing() (retools.queue.Worker method), 12
perform() (retools.queue.Job method), 11
perform() (retools.queue.Worker method), 12
prune_dead_workers() (retools.queue.Worker method),

12

Q
QueueError, 6
QueueManager (class in retools.queue), 10

R
register_signal_handlers() (retools.queue.Worker

method), 12
register_worker() (retools.queue.Worker method), 12
release_limit() (retools.limiter.Limiter method), 7
reserve() (retools.queue.Worker method), 12
resume_processing() (retools.queue.Worker method), 12
retools.cache (module), 3
retools.exc (module), 6
retools.limiter (module), 6
retools.lock (module), 8
retools.queue (module), 8
RetoolsException, 6
run_event() (retools.queue.Job method), 11

S
set_proc_title() (retools.queue.Worker method), 12
set_queue_for_job() (retools.queue.QueueManager

method), 10

19

retools Documentation, Release 0.4.1

startup() (retools.queue.Worker method), 12
subscriber() (retools.queue.QueueManager method), 10

T
trigger_shutdown() (retools.queue.Worker method), 12

U
unregister_worker() (retools.queue.Worker method), 12

W
work() (retools.queue.Worker method), 12
Worker (class in retools.queue), 11
worker_id (retools.queue.Worker attribute), 12
worker_pids() (retools.queue.Worker method), 12
working_on() (retools.queue.Worker method), 13

20 Index

	Reference Material
	API Documentation
	Changelog

	Indices and tables
	Python Module Index

