retdec-python Documentation
Release 0.5.2

Petr Zemek and contributors

Jul 26, 2017

Contents

1 Contents 3
LT Quickstart L e e e e e e e e e e e 3
1.2 LAbrary o o o e e e e e e e e e e e 4
1.3 Scripts . . . e 8
1.4 Contributing o e e e e e e 11
L5 Status e e e e e e e e e e e 11

2 Indices 15

retdec-python Documentation, Release 0.5.2

retdec-python is a Python library and tools providing easy access to the retdec.com decompilation service through
their public REST API.

Contents 1

https://github.com/s3rvac/retdec-python
https://retdec.com
https://retdec.com/api/

retdec-python Documentation, Release 0.5.2

2 Contents

CHAPTER 1

Contents

Quickstart

This page gives an overview of the library and tools to get you started.

Requirements

* Python >= 3.3 (CPython or PyPy)

* requests module for making HTTPS calls to the retdec.com API

Installation

The recommended way of installing is from Python Package Index (PyPI) with pip:

’$ pip install retdec-python

This will install the latest stable version, including all dependencies. You can also install the latest development version
directly from GitHub:

’$ pip install git+https://github.com/s3rvac/retdec-python

Prerequisites

To be able to actually use the library and scripts, you need to register at retdec.com. After that, log in and click on
Account. There, you will find your API key, which is used for authentication.

Attention: Be careful not to disclose your API key to anyone! You have to keep it a secret.

http://docs.python-requests.org
https://retdec.com/api/
https://pypi.python.org
http://www.pip-installer.org/
https://retdec.com/registration/
https://retdec.com
https://retdec.com/login/
https://retdec.com/account/
https://retdec.com/api/docs/essential_information.html#authentication

retdec-python Documentation, Release 0.5.2

Library vs Scripts

retdec-python provides both a Python library and scripts. You can either incorporate the library in your own scripts:

from retdec.decompiler import Decompiler

decompiler = Decompiler (api_key='YOUR-API-KEY")

decompilation = decompiler.start_decompilation (input_file="'file.exe')
decompilation.wait_until_finished()

decompilation.save_hll_code ()

or you can use the provided scripts for stand-alone file analyses or decompilations:

$ decompiler -k YOUR-API-KEY file.exe

v23bmYb67R
Waiting for resources (0%) ... [OK]
Pre-Processing:
Obtaining file information (5%)... [OK]
Unpacking (10%) ... [OK]
Front-End:
Initializing (20%) ... [OK]

[..]
Done (100%) ...

Downloading:
- file.c

Either way, file. c then contains the decompiled C code:

$ cat file.c

//

// This file was generated by the Retargetable Decompiler

// Website: https://retdec.com

// Copyright (c) 2016 Retargetable Decompiler <info@retdec.com>
//

#include <stdio.h>
[..]

The library provides support for the decompilation, fileinfo, and test services. For a more detailed list, see the status
page.

Next, we describe the library in a greater detail. If you wish to learn more about the provided scripts, continue here
instead.

Library
This page describes the retdec-python library and its APIL.

Organization

The base package is ret dec. Everything that the library provides is inside this package.

4 Chapter 1. Contents

https://github.com/s3rvac/retdec-python
https://retdec.com/api/docs/decompiler.html
https://retdec.com/api/docs/fileinfo.html
https://retdec.com/api/docs/test.html
https://retdec-python.readthedocs.io/en/latest/status.html
https://github.com/s3rvac/retdec-python

retdec-python Documentation, Release 0.5.2

Authentication

The library needs to authenticate you to retdec.com. To specify your API key, either pass it as a parameter when
creating a resource:

’decompiler = retdec.decompiler.Decompiler (api_key='YOUR-API-KEY")

or set the RETDEC_API_KEY environment variable:

’$ export RETDEC_API_KEY=YOUR-API-KEY

An advantage of the environment variable is that you do not need to specify the API key every time you use the library:

’decompiler = retdec.decompiler.Decompiler ()

Error Handling

The library uses exceptions to signalize errors. The base class is retdec.exceptions.RetdecError, which
you can use to catch all custom exceptions raised by the library:

try:
#

except retdec.exceptions.RetdecError as ex:
Handle the error.

You can also catch specific exceptions, e.g. retdec.exceptions.AuthenticationError, and react on
them. See the retdec.exceptions module for a list of all custom exceptions.

Decompiler

The retdec.decompiler module provides access to the decompilation service. It allows you to decompile binary
files into a high-level language representation, such as C.

Creating a Decompiler

The decompiler is represented by the retdec.decompiler.Decompiler class:

decompiler = retdec.decompiler.Decompiler (api_key='YOUR-API-KEY")

Starting a Decompilation

To start a decompilation of a file, call start_decompilation () on the created decompiler:

decompilation = decompiler.start_decompilation (input_file=FILE)

FILE is either a path to the file or a file-like object. For a complete list of parameters that you can use when starting a
decompilation, see the description of start_decompilation ().

The returned object is an instance of retdec.decompilation.Decompilation.

1.2. Library 5

https://retdec.com
https://retdec.com/api/docs/decompiler.html

retdec-python Documentation, Release 0.5.2

Waiting For the Decompilation To Finish

After the start_decompilation () call above returns, the decompilation has been automatically started. To wait
until it finishes, call wait_until_finished():

decompilation.wait_until_finished()

If you want to track the decompilation progress (e.g. by showing a progress bar or displaying the log), you can pass a
callback function to wait_until_finished():

def show_progress (decompilation) :
print (decompilation.get_completion())

decompilation.wait_until_finished(
callback=show_progress

)

When the status of the decompilation changes (e.g. it moves to another phase), the callback is automatically called
with the decompilation being passed as its parameter.

Downloading Outputs

To obtain the generated high-level language (HLL) code as a string, call get_hll_ code ():

’print(decompilation.get_hll_code())

Alternatively, you can call save_hll_code (), which obtains and saves the generated HLL code into the given
directory:

’decompilation.save_hll_code('/home/user/downloads’)

Apart from obtaining the HLL code, you can also get the disassembled code, control-flow graphs, call graph,
archive with all the outputs or, in the ¢ mode, the compiled version of the input C file. See the description of
Decompilation for more details.

For a complete example, take a look the retdec/tools/decompiler.py file. It is an implementation of the Decompiler
script.

Fileinfo

The retdec. fileinfo module provides access to the file-analyzing service. It allows you to obtain information
about binary files.

Creating an Analyzer

The analyzer is represented by the retdec.fileinfo.Fileinfo class:

fileinfo = retdec.fileinfo.Fileinfo (api_key='YOUR-API-KEY")

Starting an Analysis

To start an analysis of a file, call start_analysis () on the created analyzer with a file to be analyzed:

6 Chapter 1. Contents

https://github.com/s3rvac/retdec-python/blob/master/retdec/tools/decompiler.py
https://retdec.com/api/docs/fileinfo.html

retdec-python Documentation, Release 0.5.2

analysis = fileinfo.start_analysis (input_file=FILE)

FILE is either a path to the file or a file-like object. Optionally, you can pass the following parameters:
* verbose=True — makes the analysis obtain all available information about the file.

* output_format=7json — causes the output from the analysis to be in the JSON format instead of in the plain
format.

The returned object is an instance of retdec.analysis.Analysis.
Waiting For the Analysis To Finish

After the start_analysis () call above returns, the analysis has been automatically started. To wait until it
finishes, call wait_until_finished():

analysis.wait_until_finished()

Obtaining the Results of the Analysis

To obtain the output from the analysis, call get_output ():

print (analysis.get_output ())

For a complete example, take a look at the retdec/tools/fileinfo.py file. It is an implementation of the Fileinfo script.

Test

Access to the testing service is provided by the retdec.test module.

Authentication

To check whether you can authenticate successfully, use retdec.test.Test.auth ():

test = retdec.test.Test (api_key='YOUR-API-KEY")
try:
test.auth ()
print ('authentication succeeded')
except retdec.exceptions.AuthenticationError as ex:
print ('authentication failed:', ex)

Parameter Passing

To check that parameters are passed correctly when performing requests to the retdec.com API, use retdec.test.
Test.echo():

test = retdec.test.Test (api_key='YOUR-API-KEY")
result = test.echo(param='value')
print (result) # Prints {'param': 'value'}.

1.2. Library 7

https://en.wikipedia.org/wiki/JSON
https://github.com/s3rvac/retdec-python/blob/master/retdec/tools/fileinfo.py
https://retdec.com/api/docs/test.html
https://retdec.com/api/

retdec-python Documentation, Release 0.5.2

Scripts

This page describes the retdec-python scripts and their usage.

Currently, there are two scripts: decompiler and fileinfo. They provide access to the decompilation and file-
analyzing services, respectively.

Authentication

The scripts need to authenticate you to retdec.com. To specify your API key, either use the -k KEY or ——api-key
KEY parameter:

$ decompiler -k YOUR-API-KEY file.exe

or set the RETDEC_API_KEY environment variable:

$ export RETDEC_API_KEY=YOUR-API-KEY
$ decompiler file.exe

An advantage of the environment variable is that you do not have to specify the API key every time you run a script.

Decompiler

The decompiler script provides access to the decompilation service. It allows you to decompile binary files into a
high-level language representation, such as C.

Usage

$ decompiler [OPTIONS] FILE

Output files are stored into the same directory where the input file is located. For example, if the input file is dir/
prog.exe, then the decompiled code in the C language is saved as dir/prog.c. You can override the output
directory by using the —o/—-output—-dir parameter.

Options

See the official documentation for more details.

* —a ARCH, ——architecture ARCH — Architecture to force when (de)compiling. Supported architectures:
%86, arm, thumb, mips, pic32, powerpc.

* —b, ——brief — Print fewer information during the decompilation.

e —c COMPILER, ——compiler COMPILER — Compiler to use when compiling input C source files. Sup-
ported compilers: gcc, clang.

* —C LEVEL, ——-compiler-optimizations LEVEL — Optimization level to use when compiling input C
source files. Supported levels: 00, 01, 02, 03.

e ——endian — Endianness of the machine code (bin and raw modes only). Supported endians: 1ittle, big.

e —f FORMAT, ——file-format FORMAT - File format to force when compiling input C source files. Sup-
ported formats: el f, pe.

8 Chapter 1. Contents

https://github.com/s3rvac/retdec-python
https://retdec.com/api/docs/decompiler.html
https://retdec.com/api/docs/fileinfo.html
https://retdec.com/api/docs/fileinfo.html
https://retdec.com
https://retdec.com/api/docs/decompiler.html
https://retdec.com/api/docs/decompiler.html#decompilation-parameters

retdec-python Documentation, Release 0.5.2

* —g, ——compiler—debug — Compile the input C file with debugging information (i.e. passes the —g flag to
the used compiler).

* —s, ——compiler-strip — Strip the compiled C file prior its decompilation.
* -k KEY, -—api-key KEY - Specifies the API key to be used.

e -1 LANGUAGE, ——target-language LANGUAGE — Target high-level language. Supported languages: c,
pPy.

* ——graph-format FORMAT — Format of the generated call and control-flow graphs. Supported formats:
png, svg, pdf.

e —m MODE, ——mode MODE — Decompilation mode. Supported modes: bin, c, and raw. By default, the script
performs an automatic detection based on the extension of the input file.

* —o0 DIR, -—output-dir DIR - Save the outputs into this directory.
e —p FILE, -——pdb-file —PDB file associated with the input file.

* —g, ——quiet — Print only errors, nothing else (not even progress).

e -V, ——version — Print the script and library version.

e ——var-names STYLE — Naming style for variables. Supported styles: readable, address,
hungarian, simple, and unified.

e -0 LEVEL, -—optimizations LEVEL — Level of optimizations performed by the decompiler. Supported
levels: none, 1imited, normal, and aggressive.

* —K, ——keep-unreach-funcs — Decompile all functions, even if they are not reachable.

e ——only-funcs — Decompile only the given functions (a comma-separated list of function names, e.g.
funcl, func?2).

e ——only-ranges' —Decompile only the given address ranges (a comma-separated list of address ranges, e.g.
0x100-0x200, 0x500-0%x600).

* ——decoding — What should be decoded in a selective decompilation? Supported types: everything,
only.

e ——no-addresses — Disable the emission of addresses in comments in the generated code.

e ——raw-entry-point — Virtual memory address where execution flow should start in the machine code (raw
mode only).

e ——raw-section-vma — Address where the section created from the machine code will be placed in virtual
memory (raw mode only).

* ——ar-index — Index of the object file in the input archive to be decompiled when decompiling an archive.
e ——ar-name — Name of the object file in the input archive to be decompiled when decompiling an archive.
e ——with-cg - Generate a call graph when the decompilation ends.

* ——with-cfgs — Generate call graphs for all functions when the decompilation ends.

* ——with-archive — Generate an archive containing all decompilation outputs when the decompilation ends.

Example

$ decompiler -k YOUR-API-KEY file.exe

v23bmYb67R

1.3. Scripts 9

https://retdec.com/api/docs/decompiler.html#decompilation-modes

retdec-python Documentation, Release 0.5.2

Waiting for resources (0%) ...
Pre-Processing:
Obtaining file information (5%) ...
Unpacking (10%) ... [OK]
Front-End:
Initializing
[..]

Done

(20%) ...

(100%) ...

Downloading:
- file.c

file. c then contains the decompiled C code.

Fileinfo

The fileinfo script provides access to the file-analyzing service. It allows you to obtain information about binary

files.

Usage

$ fileinfo [OPTIONS] FILE

Options

* -k KEY, -—api-key KEY - Specifies the API key to be used.

e —f FORMAT, ——output—-format — Format in which the output should be printed. Available formats are

plain (plain text; the default) and json (JSON).
e —v, ——verbose — Print all available information about the file.

e -V, ——version — Print the script and library version.

Example

$ fileinfo -k YOUR-API-KEY file.exe

Input file : file.exe

File format : PE

File class 32-bit

File type Executable file

Architecture x86 (or later and compatible)
Endianness Little endian

Entry point address 0x4014e0

Entry point offset 0x8e0

Entry point section name .text

Entry point section index: 0

Bytes on entry point 31ed5e89e183e4£05054526860c1040868£0c00408515668

Detected compiler/packer GCC (x86_64-unknown-linux—gnu)

(4.7.2) (100%)

10

Chapter 1. Contents

https://retdec.com/api/docs/fileinfo.html
https://en.wikipedia.org/wiki/JSON

retdec-python Documentation, Release 0.5.2

Contributing

Any contributions are welcomed! I will be very glad to get your feedback, pull requests, issues, or just a simple
Thanks. Feel free to contact me for any questions you might have!

Coding Style

The code should be PEP8 compliant, except for line length, which may be greater than 79 when suitable (but never
exceeding 100 characters).

Testing

The code is 100% covered with unit tests. When you make a pull request, please include unit tests for your code to
keep the coverage at 100%.

Make Targets
* Project documentation can be generated by running make docs (you need to have sphinx and
sphinx_rtd_theme installed).
 To run unit tests, execute make tests (you need to have nose installed).

 Test coverage can be generated by executing make tests-coverage (once again, you need to have nose
installed).

* To ensure that the code complies to PEPS, execute make 1lint (you need to have flake8 installed).

See the contents of Makefile to for all the possible targets.

Status

A summary of the supported parts of the retdec.com API.

Decompiler

The decompilation service.
e Starting a new decompilation
* Decompilation modes
- bin
-c
- raw
e Input files
- input
- pdb

* Decompilation parameters

1.4. Contributing 11

https://github.com/s3rvac/retdec-python/pulls
https://github.com/s3rvac/retdec-python/issues
https://www.python.org/dev/peps/pep-0008/
https://pypi.python.org/pypi/Sphinx
https://pypi.python.org/pypi/sphinx_rtd_theme
https://pypi.python.org/pypi/nose
https://pypi.python.org/pypi/nose
https://www.python.org/dev/peps/pep-0008/
https://pypi.python.org/pypi/flake8
https://github.com/s3rvac/retdec-python/blob/master/Makefile
https://retdec.com/api/docs/index.html
https://retdec.com/api/docs/decompiler.html#starting-a-new-decompilation
https://retdec.com/api/docs/decompiler.html#decompilation-modes
https://retdec.com/api/docs/decompiler.html#input-files
https://retdec.com/api/docs/decompiler.html#decompilation-parameters

retdec-python Documentation, Release 0.5.2

— Mode-independent parameters
* target_language
* graph_format
* decomp_var_names
% decomp_optimizations
* decomp_unreach_funcs
* decomp_emit_addresses
% generate_cg
* generate_cfgs
* generate_archive
— Parameters for the bin mode
%+ architecture
* endian
* sel_decomp_funcs
% sel_decomp_ranges
% sel_decomp_decoding
* ar_index
* ar_name
— Parameters for the raw mode
* architecture
* endian
% raw_entry_point
% raw_section_vma
— Parameters for the ¢ mode
architecture
¥ file_format
* comp_compiler
* comp_optimizations
% comp_debug
* comp_strip
* Checking status
— general (running, finished, etc.)
— completion
— phases
* part

* name

12 Chapter 1. Contents

https://retdec.com/api/docs/decompiler.html#mode-independent-parameters
https://retdec.com/api/docs/decompiler.html#parameters-only-for-the-bin-mode
https://retdec.com/api/docs/decompiler.html#parameters-only-for-the-raw-mode
https://retdec.com/api/docs/decompiler.html#parameters-only-for-the-c-mode
https://retdec.com/api/docs/decompiler.html#checking-status

retdec-python Documentation, Release 0.5.2

% description
* completion
* warnings

- cg

- cfgs

— archive

* Obtaining outputs

- hll

— dsm

- cg

- cfgs

— archive

— binary

¢ Error reporting

Fileinfo

The file-analyzing service.
* Starting a new analysis
* Optional parameters
— output_format
— verbose

* Checking status

— general (running, finished, etc.)

* Obtaining output

* Error reporting

Test

The testing service.
* Authentication

» Parameter passing

1.5. Status

13

https://retdec.com/api/docs/decompiler.html#obtaining-outputs
https://retdec.com/api/docs/decompiler.html#error-reporting
https://retdec.com/api/docs/fileinfo.html#starting-a-new-analysis
https://retdec.com/api/docs/fileinfo.html#optional-parameters
https://retdec.com/api/docs/fileinfo.html#checking-status
https://retdec.com/api/docs/fileinfo.html#obtaining-output
https://retdec.com/api/docs/fileinfo.html#error-reporting
https://retdec.com/api/docs/test.html#authentication
https://retdec.com/api/docs/test.html#parameter-passing

retdec-python Documentation, Release 0.5.2

14 Chapter 1. Contents

CHAPTER 2

Indices

* genindex

¢ modindex

15

	Contents
	Quickstart
	Library
	Scripts
	Contributing
	Status

	Indices

