

Welcome to Restraint’s Documentation!

Restraint is designed to execute tasks. These tasks can be tests which
report results or simply code that you want to automate.
Which tasks to execute is determined by a job [1]. The job also describes
where to retrieve the tasks from and what parameters to pass in. These
tasks can report multiple PASS, FAIL, WARN results along with an optional
score. Tasks also have the ability to report log files. Each task can
have metadata describing dependencies and max run time for example.
Execution and reporting can be further enhanced with plugins.

Restraint can be used with Beaker [2] since it talks Beaker’s Harness API [3]
for reporting results. It can also be used stand-alone.

Features

	Tasks can be retrieved directly from git.

	Does not rely on Anaconda/kickstart to install task dependencies.

	Can be statically linked to make it easier to test the system without changing
the system.

	Can be run stand-alone without Beaker.

	Tasks are executed with the same environment (no surprises when run later
in Beaker).

	Developing tasks is much quicker since you don’t have to build task RPMs,
schedule a system, provision a system, etc…

	Can be easily extended with Plugins.

	Uses Beaker’s job XML.

The following documentation will show you how to use Restraint in both
environments.

Contents:

	Installing
	Installing from RPM

	Building from Source

	Starting the Daemon

	Processes and Commands
	restraintd

	restraint

	Legacy RHTS Commands

	Jobs
	Naming Tasks

	Task Roles

	Keeping Your Task Changes Intact

	Installing Tasks

	Parameters

	Tasks
	Restraint Metadata File

	Legacy Metadata File

	Task Environment Variables

	Script/Plugin Environment Variables

	Task Results

	Plugins
	Task Run

	Report Result

	Local Watchdog

	Completed

	Using Restraint
	Running in Beaker

	Running Standalone

	Running in Beaker and Standalone

	Release Notes
	Restraint 0.4.4

	Restraint 0.4.3

	Restraint 0.4.2

	Restraint 0.4.1

	Restraint 0.4.0

	Restraint 0.3.3

	Restraint 0.3.2

	Restraint 0.3.1

	Restraint 0.3.0

	Restraint 0.2.3

	Restraint 0.2.2

	Restraint 0.2.1

	Restraint 0.2.0

	Restraint 0.1.45

	Restraint 0.1.44

	Restraint 0.1.43

	Restraint 0.1.42

	Restraint 0.1.41

	Restraint 0.1.40

	Restraint 0.1.39

	Restraint 0.1.38

	Restraint 0.1.37

	Restraint 0.1.36

	Developer Guide
	Getting Started

	Testing Changes

	Submitting a Patch

	Guide to removing RHTS from Jobs
	Replacement for RHTS Scripts

	Replacement for RHTS testinfo.desc File

	Legacy RHTS Task Environment Variables

Additional Information

[1]
Job XML [http://beaker-project.org/docs/user-guide/job-xml.html].

[2]
Beaker [http://beaker-project.org] is open-source software for managing and automating labs of test computers.

[3]
Alternate Harness [http://beaker-project.org/docs/alternative-harnesses] API.

Indices and Tables

	Index

	Module Index

	Search Page

Installing

Installing from RPM

Pre-built statically linked versions are available for the following OSes:

	RedHatEnterpriseLinux

	Fedora

	CentOS

To get the appropriate repo file for your OS, use one of the commands listed
below:

	RedHatEnterpriseLinux

sudo wget -O /etc/yum.repos.d/beaker-harness.repo https://beaker-project.org/yum/beaker-harness-RedHatEnterpriseLinux.repo

	Fedora

sudo wget -O /etc/yum.repos.d/beaker-harness.repo https://beaker-project.org/yum/beaker-harness-Fedora.repo

	CentOS

sudo wget -O /etc/yum.repos.d/beaker-harness.repo https://beaker-project.org/yum/beaker-harness-CentOS.repo

Once you have the appropriate repo file on your system you can install Restraint
via dnf (or yum on older systems). Although you can install both the server and
the client on the same machine it is not recommended.

Install the Restraint client on your machine if you want to run stand-alone jobs
(i.e.: outside of Beaker):

sudo dnf install restraint-client

Install the Restraint server on the systems that will run the tasks/tests:

sudo dnf install restraint

Building from Source

Source code is located at
https://github.com/beaker-project/restraint/. Restraint can be built
and linked dynamically or statically. To build it dynamically you will
need the development libraries for the following packages installed (minimum
versions are listed):

	zlib-1.2.13

	bzip2-1.0.8

	libffi-3.3

	glib2-2.68.0

	libxml2-2.9.10

	libarchive-3.4.0

	xz-5.2.4

	libsoup-2.52.2

	intltool-0.51.0

	selinux-2.7

	curl-7.68.0

	json-c-0.13.1

	openssl-1.1.1k

Commands that will make sure most of the development libraries required are
installed:

sudo dnf install zlib-devel bzip2-devel libffi-devel glib2-devel libxml2-devel
sudo dnf install libarchive-devel xz-devel libsoup-devel selinux-devel json-c-devel
sudo dnf install intltool openssl-devel libcurl-devel

Once you have all the development libraries installed, you can clone Restraint
from git:

% git clone git@github.com:beaker-project/restraint.git
% cd restraint

Build Restraint:

% make

To build it statically first enter the third-party directory and build the
support libraries:

% pushd third-party
% make
% popd

Then build Restraint with the following command:

% pushd src
% PKG_CONFIG_PATH=../third-party/tree/lib/pkgconfig make STATIC=1
% popd

Installing Restraint:

% make install

Starting the Daemon

Regardless if you installed from RPM or from source you start the daemon one of
two ways. If the system uses systemd use the following commands:

Enable the service for next reboot
systemctl enable restraintd.service
Start the service now
systemctl start restraintd.service

For SysV init based systems use the following commands:

Enable the service for next reboot
chkconfig --level 345 restraintd on
Start the service now
service restraintd start

When Restraint runs as a system service it listens on the port 8081.

Processes and Commands

There are two main restraint processes. The first is the restraint server named
restraintd which processes tasks. The second process supports restraint standalone.
This process is the restraint client named restraint which starts restraintd, provides
the job.xml information to the server, and collects logs and results from the server.

restraintd

restraintd is the daemon which executes the tasks.

Both a SysV init script and a systemd unit file are provided. The included
spec file will use the correct one when built on RHEL/Fedora based systems.

Logging messages from restraintd are printed to stderr and all output from
command execution is printed to stdout.

stderr is redirected to /dev/console to help debug when things
go wrong. The SysV init script redirects both stdout and stderr to
/var/log/restraintd.log. For systemd, use the following journalctl
command to view restraint logs:

journalctl --unit restraintd

-- Logs begin at Thu 2020-03-12 11:45:05 EDT, end at Thu 2020-03-12 12:10:47 EDT. --
Mar 12 11:45:26 virt-test systemd[1]: Starting The restraint harness....
Mar 12 11:45:26 virt-test systemd[1]: Started The restraint harness..
Mar 12 11:45:26 virt-test restraintd[1135]: recipe: * Fetching recipe: http://lc.example.net:8000//recipes/30220/
Mar 12 11:45:26 virt-test restraintd[1135]: Listening on http://localhost:8081
Mar 12 11:45:26 virt-test restraintd[1135]: recipe: * Parsing recipe
Mar 12 11:45:26 virt-test restraintd[1135]: recipe: * Running recipe
Mar 12 11:45:26 virt-test restraintd[1135]: ** Fetching task: 183853 [/mnt/tests/distribution/check-install]
Mar 12 11:45:26 virt-test restraintd[1135]: use_pty:FALSE rstrnt-package reinstall beaker-core-tasks-distribution-check-install
Mar 12 11:45:32 virt-test yum[1194]: Installed: beaker-core-tasks-distribution-check-install-1.0-2.noarch
Mar 12 11:45:33 virt-test restraintd[1135]: ** Preparing metadata
Mar 12 11:45:33 virt-test restraintd[1135]: ** Refreshing peer role hostnames: Retries 0
Mar 12 11:45:33 virt-test restraintd[1135]: ** Updating env vars
Mar 12 11:45:33 virt-test restraintd[1135]: ** Updating external watchdog: 2400 seconds
Mar 12 11:45:33 virt-test restraintd[1135]: ** Installing dependencies
Mar 12 11:45:33 virt-test restraintd[1135]: ** Running task: 183853 [/distribution/check-install]
...
Mar 12 11:45:43 virt-test restraintd[1135]: ** Completed Task : 183853

When restraintd runs as a system service by SysV init or systemd, it
listens on the port 8081.

restraintd can also be paired with the restraint client at which case it does not run as
a service. More details on Standalone can be found at restraint.
In this case, any restraintd stdout/stderr output is directed to the restraint
client output.

The scripts and programs associated with the restraintd server can be
run within the context of a job as well outside a job execution.

Command Usage

Restraint commands are communicated to the running restraintd service
by providing a URL that restraintd is listening to. When the
command is run within a job, the needed information is available by
way of environment variables set by restraintd for each task. When
the command is executed outside a job, you can provide the information
by one of three options. One option relies on setting of environment
variables. Second is the server option which requires you gather restraint
server port, recipe number, and task number for constructing the
command URL. Lastly is a local option which relies on an
environment file created by restraintd.

Environment Variables Option

Most often, many of restraint commands are executed in tasks included in your ‘job.xml’.
As a result, commands look for specific environment variables to be set by restraintd.
The variables are as follows with data such as port, recipe, and task id which is
unique for each job:

HARNESS_PREFIX=RSTRNT_
RSTRNT_URL=http://localhost:<port>
RSTRNT_RECIPE_URL=http://localhost:<port>/recipes/<recipe_id>
RSTRNT_TASKID=<task_id>

Note

<port> is a numeric value representing the port used to communicate with restraintd.
<recipe_id> and <task_id> are the numeric values assigned to your running jobs recipe and task.

 Jobs

Jobs

Restraint parses a sub-set of the Beaker job XML [1]. Here is an example
showing just the elements required for running in the stand-alone configuration.

<job>
 <recipeSet>
 <recipe>
 <task name="/kernel/performance/fs_mark" keepchanges="yes">
 <fetch url="git://fedorapeople.org/home/fedora/bpeck/public_git/tests.git?master#kernel/performance/fs_mark" />
 <params>
 <param name="foo" value="bar"/>
 </params>
 </task>
 .
 .
 .
 <task name="/kernel/foo/checker">
 <rpm name="rh-tests-kernel-foo-checker" path="/mnt/tests/kernel/foo/checker"/>
 </task>
 </recipe>
 </recipeSet>
</job>

Naming Tasks

For reporting purposes it is a good idea to name your tasks. For git tasks we
have settled on a standard where we use the sub-directory path from our git repo
as the task name. You can see that in the following example.

<task name="/kernel/performance/fs_mark">

This name will be used when reporting on the status of the task and when
reporting results.

Task Roles

Restraint supports role assignment for tasks or whole recipes for use in
multi-host jobs.

<job>
 <recipeSet>
 <recipe role="SERVERS">
 <task name="/kernel/filesystems/nfs/connectathon-mh">
 <fetch url="git://fedorapeople.org/home/fedora/bpeck/public_git/tests.git?master#kernel/filesystems/nfs/connectathon-mh" />
 </task>
 </recipe>
 <recipe>
 <task name="/kernel/filesystems/nfs/connectathon-mh" role="CLIENTS">
 <fetch url="git://fedorapeople.org/home/fedora/bpeck/public_git/tests.git?master#kernel/filesystems/nfs/connectathon-mh" />
 </task>
 </recipe>
 </recipeSet>
</job>

The above example results in environment variables “SERVERS” and “CLIENTS”
containing hostnames assigned to corresponding recipes. The variables will be
available only to tasks with the same padding within recipes.

Recipe roles function as default roles for tasks that have no role specified
and can be overridden by task roles.

Apart from role env variables Restraint also exports 2 more hostname-related
variables:

	RECIPE_MEMBERS - contains hostnames of all hosts within current recipeSet.

	JOB_MEMBERS - contains hostnames of all hosts in current job.

Keeping Your Task Changes Intact

By default Restraint will fetch tasks every time you run a recipe overwriting
any changes you’ve done locally. This is not desirable in some cases, e.g. when
debugging a test. Restraint provides the ability to keep local changes by
setting task property “keepchanges” to “yes” in the job xml.

<task name="/kernel/performance/fs_mark" keepchanges="yes">

Installing Tasks

The above example shows that you can install tasks directly from git or from an
RPM in a yum repo.

Fetch

The first example shows fetching a task from git.

<fetch url="git://fedorapeople.org/home/fedora/bpeck/public_git/tests.git?master#kernel/performance/fs_mark" />

OR

<fetch ssl_verify="off" url="https://fedorapeople.org/cgit/bpeck/public_git/tests.git/snapshot/tests-master.tar.gz#kernel/performance/fs_mark" />

The fetch node accepts git URI’s that conform to the following:

	Prefixed with git:// OR use tarballs with http:// and cgit can serve them
automatically.

	The fully qualified hostname. Remember that the system running restraintd must
be able to reach this host.

	The path to the git repo.

	Optionally you can specify a valid reference which can be a branch, tag or
SHA-1. ie: ?master

	Optionally you can specify a sub-dir. Restraint will only extract this sub-dir
and run the task from here. ie: #kernel/performance/fs_mark. Notice that
there is not a preceding slash here.

	If you need to disable SSL certificate checking you can set ssl_verify
parameter to “off”.

Restraint uses git’s archive protocol to retrieve the contents so make sure
your git server has enabled this. You can enable this on most servers by
putting the following in your git repo config

[daemon]
 uploadarch=true

RPM

The second example will attempt to install the task via yum/rpm.

<rpm name="rh-tests-kernel-foo-checker" path="/mnt/tests/kernel/foo/checker"/>

Currently Restraint does not attempt to set up any repos that you may have
specified in your job.xml. This means that in order for it to install the
above task you must have already configured the task repo on the machine
running restraintd.

The path attribute tells restraint where the task scripts are installed.

Parameters

You can optionally pass parameters to a task via environment variables. The
following snippet from our example would create an environment variable named
‘foo’ with the value ‘bar’.

<params>
 <param name="foo" value="bar"/>
</params>

The parameter KILLTIMEOVERRIDE allows you to specify a different max time than
what is specified in the tasks metadata. KILLTIMEOVERRIDE is provided for
compatibility with legacy RHTS (Red Hat Test System).

As of 0.1.40, the parameter RSTRNT_MAX_TIME has been deprecated in favor of KILLTIMEOVERRIDE
because of confusion with RSTRNT_MAXTIME

The parameter RSTRNT_USE_PTY allows you to either enable or disable using a pty
for task execution. Use true to enable and false to disable. Setting
this value in the job will override the settings in metadata or testinfo.desc.

[1]
Beaker Job XML [http://beaker-project.org/docs/user-guide/job-xml.html].

 Tasks

Tasks

Restraint doesn’t require tasks to be written in any particular language. In
fact, most tests are written in a mixture of shell, python and C code. You do
need to provide some metadata in order for things to work best.

Restraint Metadata File

Restraint will look for a file called metadata in the task directory. The
format for that file is a simple ini file which most people should be familiar
with.

[General]
name=/restraint/env/metadata
owner=User ABC1 <userabc1@example.com>
description=just reports env variables
license=GPLv2
confidential=no
destructive=no

[restraint]
entry_point=./runtest.sh
max_time=5m
dependencies=gcc;emacs
softDependencies=numactl;numactl-devel
environment=META_VAR1=var1value;META_VAR2=var2value;META_VAR3=var3value
repoRequires=general/include;filesystems/include
no_localwatchdog=true
use_pty=false

restraintd does not require any metadata fields to be present. In other words,
there are no checks and reporting of errors if metadata is not present. This allows
flexibility in your configuration.

The General section is mostly used for informational data. The only
element that Restraint will process is the name attribute. If defined,
this will overwrite the task name specified from the job XML.

The restraint section has the following elements which can be defined:

entry_point

This tells Restraint how it should start running the task. If you don’t
specify a program to run it will default to ‘make run’ which is what legacy
RHTS (Red Hat Test System) would do. This would require you provide a
Makefile. Other examples of entry points:

* entry_point=autotest-local control-file
* entry_point=STAF local PROCESS START SHELL COMMAND "ps | grep test | wc >testcount.txt"

max_time

The maximum time a task is expected to run. When restraintd runs a task it
sets up a localwatchdog which will kill the task after this time has expired.
When run in Beaker this is also used for the external watchdog (typically 20-30
minutes later than the local watchdog time). Time units can be specified as
follows:

* d for days
* h for hours
* m for minutes
* s for seconds

To set a max run time for 2 days you would use the following:

max_time=2d

dependencies

A semicolon-delimited (;) list of additional packages (needed to run this
task) to be installed on the system. The task will abort if the dependencies
fail to install.

dependencies=lib-virt;httpd;postgresql;nfs-utils;net-tools;net-snmp;ethereal;wireshark;tcpdump;rusers;bzip2;gcc

environment

A semicolon-delimited (;) list of task environment variables to be set
on the system.

environment=META_VAR1=var1value;META_VAR2=var2value;META_VAR3=var3value

softDependencies

A semicolon-delimited (;) list of optional additional packages to be
installed on the system. The task will proceed even if the soft dependencies
fail to install. This is useful for a task that is intended to run on multiple
platforms, and the task can test platform-specific features (e.g., NUMA) if the
appropriate support packages are installed, but the task will not abort on the
other platforms where the support packages do not exist.

softDependencies=numactl;numactl-devel

repoRequires

A semicolon-delimited (;) list of additional tasks needed for this task to
run.

repoRequires=general/include;filesystems/include

Note: When fetching from git (see Fetch), this is the
#subdirectory portion of the URL, so do not use a leading / character
as was done with RhtsRequires in testinfo.desc for Legacy RHTS tasks.

no_localwatchdog

Normally Restraint will setup a localwatchdog which will attempt to recover
from a hung task before the external watchdog (if running under Beaker)
triggers. But you can tell Restraint to not setup a localwatchdog monitor by
including this key with a value of true. Only true or false are
valid values.

no_localwatchdog=true

use_pty

Before version 0.1.24 Restraint would execute all tasks from a pty. This meant
that programs thought they were running in an interactive terminal and might
produce ANSI codes for coloring and line positioning. Now the default is not to
use a pty which will give much cleaner output. If you find your test is failing
because it expects a pty you can enable the old behavior by setting this.

use_pty=true

OSMajor Specific Options

Any of the above elements can be overridden with OSMajor specific options. In
order for this to work the OSMajor (or “OS family”) attribute must be filled in
the job.xml. If the job was run through Beaker this will have been filled in
for you. If you run a stand-alone job (with restraint-client) you can set the
value in the family attribute of the recipe tag. For example:

<job>
 <recipeSet>
 <recipe family="RedHatEnterpriseLinuxServer5">
 ...

For example, if a task is known to take twice as long on
RedHatEnterpriseLinuxServer5 then you could use following:

max_time=5m
max_time[RedHatEnterpriseLinuxServer5]=10m

Another example where we will install RHDB on RedHatEnterpriseLinuxServer5 and
PostgreSQL on everything else.

dependencies=postgresql
dependencies[RedHatEnterpriseLinuxServer5]=rhdb

Legacy Metadata File

Prior to the Restraint harness, users defined testinfo.desc file as the
metadata file in their job tasks and restraint supported that file. This
is being deprecated and the substitute for this file and variables
within can be found in Replacement for RHTS testinfo.desc File.

 Task Environment Variables

Task Environment Variables

Restraint exports the following environment variables for task use.
They can be altered using the environment variable of the metadata file or
testinfo.desc file (see Tasks).

	Restraint Variables

	Description

	Source

	HOME

	home directory defaults to /root. Can be overwritten
using recipe or task params.

	Static

	HOSTNAME

	Set by task plugin before execution of user task

	Task
Plugin

	LANG

	Environment variable to specify locale. The default
is en_US.UTF-8. It can be overwritten using
recipe or task params.

	Static

	PATH

	Program search path environment variable. The default
default is “/usr/local/bin:/usr/bin:/bin:
/usr/local/sbin:/usr/sbin:/sbin”. It can be
overwritten using recipe or task params.

	Static

	RSTRNT_JOBID

	Populated from the job_id attribute of the recipe
node.

	Job

	RSTRNT_MAXTIME

	Max time in seconds for this task to complete.
Input to local and external watchdog timers.

	Job

	RSTRNT_OSARCH

	OS Architectures. Ex: x86_64, s390x, i386, aarch64,
ppc64, ppc64le, armhfp

	Job/Task
Plugin

	RSTRNT_OSDISTRO

	Name of the distro (Provided if running in Beaker).

	Job

	RSTRNT_OSMAJOR

	OS Major Version of Distro. Ex: Fedora31, CentOS7,
RedHatEnterpriseLinux8

	Job/Task
Plugin

	RSTRNT_OSVARIANT

	Not all distros use variants. Ex: Server, Client

	Job

	RSTRNT_OWNER

	Populated from the owner attribute of the job node.

	Job

	RSTRNT_REBOOTCOUNT

	The number of times the system has rebooted for this
task. If no reboot occurred, the values is 0.

	Restraint

	RSTRNT_RECIPEID

	Populated from the id attribute of the recipe node.

	Job

	RSTRNT_RECIPESETID

	Populated from the recipe_set_id attribute of the
recipe node.

	Job

	RSTRNT_TASKID

	Populated from the id attribute of the task node.

	Job

	RSTRNT_TASKNAME

	Name of task from the job.
Ex: “/distribution/command”.

	metadata

	RSTRNT_TASKORDER

	Sequence Order of tasks multiplied by 2. Used by
Restraint when it performs multihosting.

	Restraint

	RSTRNT_TASKPATH

	Where the task is installed.

	rpm path/
Restraint

	TERM

	Terminal type defaults to vt100. Can be
overwritten using recipe or task params.

	Static

	TESTID

	Contains the ID assigned to this task.

	Job

For legacy RHTS variables, refer to Legacy RHTS Task Environment Variables.

Script/Plugin Environment Variables

This table lists environment variables which affect outcome of restraint scripts and plugins.
These variables are often set by the user. They are as follows:

	Restraint Variables

	Description

	Source

	AVC_ERROR

	Refer to Legacy Reporting Mode for replacement.

	User

	FAILURESTRINGS
FALSESTRINGS

	Used by report_result plugin to report user’s task.
Details can be found Report Result

	User

	CLIENTS, SERVERS,
DRIVERS

	Assist in the execution of the scripts
rstrnt-sync-block/set. rstrnt-sync-block

	User

	NEXTBOOT_VALID_TIME

	Assist in the execution of the script
rstrnt-prepare-reboot. rstrnt-prepare-reboot

	Default/
User

	OUTPUTFILE

	Used by localwatchdog plugin to report user’s task
output if set.

	User

	TESTPATH/logs2get

	File used by localwatchdog plugin to log user’s
files listed in logs2get.

	User

	RSTRNT_BACKUP_DIR

	To specify directory when using using Restraint’s
backup/restore scripts. rstrnt-backup

	User

	RSTRNT_DISABLED

	User populated to disable a plugin from running. Do
RSTRNT_DISABLED=”99_reboot” to prevent 99_reboot
from running after local watchdog expires. Do
RSTRNT_DISABLED=”01_dmesg_check 10_avc_check” to
prevent multiple error checking plugins from running
(though disabling these is not advised).

	User

	RSTRNT_DISABLE_LINGER

	Used by task_run plugin to disable user lingering.
Refer to OS command loginctl enable/disable linger
for details. This was introduced due to behavior
changes from Fedora24+. Default is to enable.

	User

	RSTRNT_LOGGING

	Enables debugging for plugins. Default: 3
(1=Debug, 2=Info, 3=Warning, 4=Error, 5=Critical)

	User

	RSTRNT_NOPLUGINS

	Set by restraint to disable some plugin functionality
when “task_run” plugins execute. Further details on
this variable can be found Plugins.

	Restraint

	RSTRNT_PKG_CMD
RSTRNT_PKG_ARGS
RSTRNT_PKG_INSTALL
RSTRNT_PKG_REMOVE
RSTRNT_PKG_RETRIES
RSTRNT_PKG_DELAY

	These variables are used to control the behavior of
the command rstrnt-package. For more details, refer
to rstrnt-package command.

	Default/
User

	RSTRNT_PLUGINS_DIR

	Specifies the directory to run localwatchdog or
report_result plugins.

	Restraint

 Task Results

Task Results

The final result outcome of a task is influenced by what is set when calling
rstrnt-report-result, rstrnt-abort, and the return code the task exits with.

The user controls the output of the task by calling rstrnt-report-result with
test results of SKIP|PASS|WARN|FAIL (listed by severity). It can be called multiple
times in the same task but the final task result wlll be the highest severity
reported so long as the task exits with zero. With these results, the job
will go on to the next task.

If the user also rstrnt-abort, this take precedence over the calls to
rstrnt-report-results. The final task result will be abort and the job
will not go on to the next task.

There is a deviation in behavior when a non-zero exit code is returned by the task.
If the legacy Makefile/testinfo file is present in the user’s task, the final
task result is ABORT regardless of the restraint command calls the user makes.
If the metadata file is present in the user’s task, the final task result is FAIL.
If the user still wants the legacy behavior, they can call the rstrnt-abort command
in their task.

For more details in regard to the command rstrnt-report-result and rstrnt-abort
refer to restraintd command section restraintd.

 Plugins

Plugins

Restraint relies on plugins to execute tasks in the correct environment and to
check for common errors or simply to provide additional logs for debugging
issues. Here is a typical outline of how plugins are executed:

run_task_plugins
 \
 10_bash_login
 |
 15_beakerlib
 |
 20_unconfined
 |
 25_environment
 |
 make run
 |\
 | report_result
 \
 report_result

run_task_plugins
 \
 10_bash_login
 |
 15_beakerlib
 |
 20_unconfined
 |
 25_environment
 |
 run_plugins <- completed.d
 \
 98_restore

The report_result commands above cause the following plugins to be executed:

run_task_plugins
 \
 05_linger
 |
 10_bash_login
 |
 15_beakerlib
 |
 20_unconfined
 |
 25_environment
 |
 30_restore_events
 |
 35_oom_adj
 |
 run_plugins <- report_result.d
 \
 01_dmesg_check
 |
 10_avc_check
 |
 20_avc_clear
 |
 30_dmesg_clear

These plugins do not run from the task under test. They run from restraintd
process. This allows for greater flexibility if your task is running as a
non-root user since a non-root user would not be able to inspect some logs and
wouldn’t be able to clear dmesg log.

Task Run

Task run plugins are used to modify the environment under which the tasks will
execute. Simply place the executable in /usr/share/restraint/task_run.d. The
list of files in this directory will be passed to exec in alphabetical order.

Restraint currently ships with two task run plugins:

	05_linger - Enables session bus for user that Restraint is running as. You
can disable this with RSTRNT_DISABLE_LINGER=1

	10_bash_login - invoke a login shell.

	15_beakerlib - Sets env vars to tell beakerlib how to report results in
Restraint.

	20_unconfined - if selinux is enabled on system run task in unconfined
context.

	25_environment - Will attempt to guess certain variables if they weren’t
defined, (OSARCH, OSMAJOR, etc..).

	30_restore_events - Restores Multi-host states after a reboot.

	35_oom_adj - sets the oom score low so we are less likely to be killed.

So the above plugins would get called like so:

exec 05_linger 10_bash_login 15_beakerlib 20_unconfined 25_environment 30_restore_events 35_oom_adj "$@"

In order for this to work the task run plugins are required to exec “$@” at the
end of the script. Although task run plugins can’t take any arguments they can
make decisions based on environment variables.

It should be pointed out that the task run plugins are executed for all other
plugins! This is to ensure plugins run with the same environment as your task.
When executed under all other plugins the following variable will be defined:

RSTRNT_NOPLUGINS=1

You can do conditionals based on this so lets create a plugin which will start
a TCP capture:

Capture tcpdump data from every task
cat << "EOF" > /usr/share/restraint/plugins/task_run.d/30_tcpdump
#!/bin/sh -x

rstrnt_info "*** Running Plugin: $0"

Don't run from PLUGINS
if [-z "$RSTRNT_NOPLUGINS"]; then
 tcpdump -q -i any -q -w $RUNPATH/tcpdump.cap 2>&1 &
 echo $! > $RUNPATH/tcpdump.pid
fi

exec "$@"
EOF
chmod a+x /usr/share/restraint/plugins/task_run.d/30_tcpdump

Refer to section (Completed) for how to report these results.

Report Result

Every time a task reports a result to Restraint these plugins will execute.

	01_dmesg_check - This plugin checks dmesg output for lines containing
certain values and also allows lines to be omitted. If any lines
are selected, this indicates an error so the task will conclude with failed
results.

	30_dmesg_clear - This plugin clears dmesg log so the next task will
start with a fresh log.

There are 2 variables which manage selection of dmesg output. They are
FAILURESTRINGS and FALSESTRINGS. The FAILURESTRINGS variable contain
values which allow you to select those lines considered in error. The
FALSESTRINGS variable contain values allowing you to omit some lines.
This enables you to omit false positives.

There are 3 ways FAILURESTRINGS and FALSESTRINGS configuration are provided.
They can be configured by way of environment variables, as files, or defaults.
The order of precedence for these variables/files is follows:

1) Task environment variable
2) User defined files
3) and defaults.

FAILURESTRINGS and FALSESTRINGS are processed separately so you could
define FAILURESTRINGS as an environment variable while maintaining
defaults for FALSESTRINGS.

The default values for FAILURESTRINGS are as follows:

Oops|BUG|NMI appears to be stuck|Badness at

The default values for FALSESTRINGS are as follows:

BIOS BUG|DEBUG|mapping multiple BARs.*IBM System X3250 M4

Both of the above strings can be overridden for each task by passing
in your own FAILURESTRINGS or FALSESTRINGS environment variables.
This is configured for each task. To define environment variables,
refer to instructions for metadata or testinfo.desc files in
(see Tasks).

If you want all tasks in a recipe to use the same set of your
user-defined FAILURESTRINGS or FALSESTRINGS, you could start
your recipe with a task which creates the following files
respectively:

/usr/share/rhts/failurestrings
/usr/share/rhts/falsestrings

When configuring these files, each string should be on a separate line instead of
separated with ‘|’. For example, failurestrings would contain something like the
following:

Oops
BUG
NMI appears to be stuck
Badness at

In some cases, the kernel will produce a multi-line error message (including
hardware information and stack trace) in the dmesg output which is delimited by
a “cut here” line at the beginning and an “end trace” line at the end. This
plugin will capture the entire contents of the multi-line trace and considers
it as a single failure. The FALSESTRINGS pattern is applied to the whole trace
to check for false positives.

	10_avc_check - This plugin searches for AVC (Access Vector Cache) errors that
have occurred since the last time a result was reported.

	20_avc_clear - This moves the time stamp used by avc_check forward so that we
don’t see the same AVC’s reported again, some tests might generate AVC’s on
purpose and disable the check but you will still want to move the time stamp
forward.

If you need to skip error checking, refer to RSTRNT_DISABLED as described
in the Task Environment Variables section.

Local Watchdog

These plugins will only be executed if the task runs beyond its expected time
limit. Restraint currently ships with three plugins:

	10_localwatchdog - uploads the resultoutputfile.log of the running task.

	20_sysinfo - Collects and uploads system information.

	Uploads system log which contains a collection of system information
such as slabinfo, list of blocked tasks derived from sysrq m, t and w,
and pre-existing system log messages. Depending if journalctl exists,
file journalctl or /var/log/messages is uploaded.

	Uploads ps-lwd.log which contains a verbose list of running processes.

	Uploads dmesg log if it contains any output.

	Uploads user logs listed in $TESTPATH/logs2get.

	99_reboot - Simply reboots the system to try and get the system back to a
sane state. If you need to skip this step, you can use RSTRNT_DISABLED
as described in (see Task Environment Variables).

Completed

These plugins will get executed at the end of every task, regardless if the
localwatchdog triggered or not. The only plugin currently shipped with
Restraint is:

	85_sync_multihost_tasks - Synchronizes tasks between client/server jobs
on multihost machines. This will synchronize only if there exists
recipes with role=SERVERS as well as role=CLIENTS. For further details
on this feature, refer to Beaker Multihost documentation [1].

	97_audit_rotate - Searches log files in audit directory to find
avc messages.

	98_restore - Restores files backed up by either rhts-backup or rstrnt-backup.

To finish our tcpdump example from above we can add the following:

#Kill tcpdump and upload
cat << "EOF" > /usr/share/restraint/plugins/completed.d/80_upload_tcpdump
#!/bin/sh -x

kill $(cat $RUNPATH/tcpdump.pid)
rstrnt-report-log -l $RUNPATH/tcpdump.cap
EOF
chmod a+x /usr/share/restraint/plugins/completed.d/80_upload_tcpdump

If you need to skip file restoration, refer to RSTRNT_DISABLED as described
in the environment variable section (see Task Environment Variables).

[1]
Beaker Multihost documentation [https://beaker-project.org/docs/user-guide/multihost.html].

 Using Restraint

Using Restraint

Running in Beaker

Beaker will use restraint by default if you are running Red Hat Enterprise Linux
version 8 or later or if you are running Fedora.

To use Restraint in Beaker for earlier versions of Red Hat Enterprise Linux or
Fedora, you will need to specify ‘restraint’ as the harness:

<recipe ks_meta="harness=restraint">
<repos>
 <repo name="restraint"
 url="https://beaker-project.org/yum/harness/CentOS7/"/>
</repos>
 .
 .
 .
</recipe>

If you have tasks/tests that were written for legacy RHTS (Red Hat Test System)
you can install the restraint-rhts sub-package which will bring in the legacy
commands so that your tests will execute properly. Some tasks/tests have also
been written with beakerlib. Here is an example recipe node that will install
both for you:

<recipe ks_meta="harness='restraint-rhts beakerlib'">
.
.
.
</recipe>

If you are using Beaker command line workflows use these command line options:

bkr <WORKFLOW> --ks-meta="harness=restraint" --repo https://beaker-project.org/yum/harness/CentOS7/

If you need RHTS compatibility and/or beakerlib you can add it here as well:

bkr <WORKFLOW> --ks-meta="harness='restraint-rhts beakerlib'" --repo https://beaker-project.org/yum/harness/CentOS7/

Running Standalone

Restraint can run on its own without Beaker, this is handy when you are
developing a test and would like quicker turn around time. Before Restraint you
either ran the test locally and hoped it would act the same when run inside
Beaker or dealt with the slow turn around of waiting for Beaker to schedule,
provision and finally run your test. This is less then ideal when you are
actively developing a test.

You still need a job XML file which tells Restraint what tasks should be run.
Here is an example where we run three tests directly from git:

<?xml version="1.0"?>
<job>
 <recipeSet>
 <recipe id="1">
 <task name="/kernel/performance/fs_mark">
 <fetch url="git://fedorapeople.org/home/fedora/bpeck/public_git/tests.git?master#kernel/performance/fs_mark"/>
 </task>
 <task name="/kernel/misc/gdb-simple">
 <fetch url="git://fedorapeople.org/home/fedora/bpeck/public_git/tests.git?master#kernel/misc/gdb-simple"/>
 </task>
 <task name="/kernel/standards/usex" role="None">
 <fetch url="git://fedorapeople.org/home/fedora/bpeck/public_git/tests.git#kernel/standards/usex"/>
 </task>
 </recipe>
 </recipeSet>
</job>

Tell Restraint client to run a job:

restraint --job /path/to/job.xml

You probably don’t want to run the restraintd server on the machine you use for day to day
activity. Some tests can be destructive or just make unfriendly changes to your
system. Restraint client allows you to run tasks on a remote system. This means you
can have the task git repo on your development workstation and verify the
results on your test system. In order for this to work your git repo and the
recipe XML need to be accessible to your test system. Be sure to have the
restraint-client package installed on the machine you will be running the
restraint client command from

Here is an example:

restraint --host 1=addressOfMyTestSystem.example.com --job /path/to/job.xml --restraint-path /home/userid/restraint/src/restraintd -v

This will spawn the restraintd server from the path specified in --restraint-path
on host addressOfMyTestSystem.example.com and tell it to run the recipe with id=”1” from
this machine. Also remember that the tasks which are referenced inside of the recipe
need to be accessible a well. Here is the output:

restraint --host 1=addressOfRemoteSystem --job simple_job.xml --restraint-path /home/userid/restraint/src/restraintd -v
Using ./simple_job.07 for job run
* Fetching recipe: http://192.168.1.198:8000/recipes/07/
* Parsing recipe
* Running recipe
* T: 1 [/kernel/performance/fs_mark] Running
** 1 [Default] PASS
** 2 [Random] PASS
** 3 [MultiDir] PASS
** 4 [Random_MultiDir] PASS
* T: 1 [/kernel/performance/fs_mark] Completed: PASS
* T: 2 [/kernel/misc/gdb-simple] Running
** 5 [/kernel/misc/gdb-simple] PASS Score: 0
* T: 2 [/kernel/misc/gdb-simple] Completed: PASS
* T: 3 [/kernel/standards/usex] Running
** : 6 [/kernel/standards/usex] PASS
* T: 3 [/kernel/standards/usex] Completed: PASS

All results will be stored in the job run directory which is ‘simple_job.07’
for this run. In this directory you will find ‘job.xml’ which has all the
results and references to all the task logs. You can convert this into HTML
with the following command:

xsltproc job2html.xml simple_job.07/job.xml >simple_job.07/index.html

job2html.xml is found in Restraint’s client directory.

Running in Beaker and Standalone

Sometimes the tests that I am developing can be destructive to the system so I
don’t want to run them on my development box. Or the test is specific to an
architecture so I can’t use a VM for it on my machine. These are cases where
it’s really handy to use a combination of Beaker for provisioning and
Standalone for executing the tests. By default, Beaker provides a test harness
for all imported distributions. You can replace test harness with your build
by adding a new repository. You can create your build on your own or you can
use different RPM build systems, for example COPR. Be aware that custom
restraint should have higher NVR than the latest released version and your
build needs to be built against distribution you planning to test. Otherwise,
DNF may pick up Restraint provided by Beaker or Restraint may fail to install.

First step is to run the following workflow to reserve a system in Beaker:

<job><whiteboard>restraint reservesys</whiteboard>
 <recipeSet>
 <recipe ks_meta="harness=restraint" id="1">
 <distroRequires>
 <and>
 <distro_family op="=" value="Fedorarawhide"/>
 <distro_variant op="=" value="Everything"/>
 <distro_name op="=" value="Fedora-Rawhide-20200406.n.0"/>
 <distro_arch op="=" value="ppc64le"/>
 </and>
 </distroRequires>
 <hostRequires/>
 <repos>
 <repo name="my_custom_restraint" url="http://copr-be.cloud.fedoraproject.org/path/to/copr/repo/results"/>
 </repos>
 <task name="/distribution/check-install" role="STANDALONE" />
 <task name="/distribution/reservesys" role="None">
 <fetch url="https://github.com/beaker-project/beaker-core-tasks/archive/master.zip#reservesys"/>
 </task>
 </recipe>
 </recipeSet>
</job>

This will reserve a ppc64 system running Fedora Rawhide. The /distribution/reservesys
task will email the submitter of the job when run so you know the system is
available. By default the reservesys task will give you access to the system
for 24 hours, after that the external watchdog will reclaim the system. You can
extend it using extendtesttime.sh on the system.

You can spawn a second instance of restraintd server using the client command below. It will
generate an instance with a different port than the port used by beaker.

restraint --host 1=FQDN.example.com --job simple_job.xml --restraint-path /home/userid/restraint/src/restraintd -v

If you want to run restraint commands such as rstrnt-adjust-watchdog nn or
rstrnt-abort against this test set-up, you must first export the environment
variables which includes the dynamically created communication port. To do this, run
the following:

export $(cat /etc/profile.d/rstrnt-commands-env.sh)

If the task you are developing doesn’t work as expected you can make changes
and try again. Just remember to push your changes to git, the system under test
will pull from the git URL you put in your job XML.

 Release Notes

Release Notes

Restraint 0.4.4

Bug Fixes

	
Fix: Stabilize selinux behavior in RHEL-9

Added a static selinux policy for RHEL-9. The policy is manually
built from a RHEL-9.0.0 host so it will work on all RHEL-9 versions.
If built on a later version of RHEL-9, it will not be backward
compatible with older versions and fail to install.

Restraint 0.4.3

Bug Fixes

	
Fix: Revert fix to fetch either branch ‘main’ or ‘master’

When performing a fetch operation, restraint will continue
to look for master branch only.

	
Fix: Revert Fetch URL fix

Backing out fix to provide precise directory matching for
repoRequires and fetch operation. The problem is not all user
selection data is precise. Some user testing will be hindered
with this change. Due to these unknown cases, requesting users
chose to instead make their directory definitions more precise.
Refer to comment in Issue 272 on 3/13 for more details.
If folks decide to reintroduce this change, they should also
apply pull 289 which provides more flexibility.

Restraint 0.4.2

Bug Fixes

	
Fix: Fetch either branch ‘main’ or ‘master’

When performing a fetch operation, restraint will look
for either main or master branch.

	
Fix: rstrnt-reboot not reliable for UEFI systems

When efibootmgr is present, the BootNext variable is set to reboot
to Current. When rstrnt-prepare-reboot was written, a timer was set
to remove BootNext setting after 180 seconds. rstrnt-reboot
uses the prepare script and the timer wasn’t long enough and not
needed for rstrnt-reboot. This changeset allows NEXTBOOT_VALID_TIME
to be set to 0. When 0, the timer is not set and as a result
BootNext will not be removed. rstrnt-reboot now uses a 0 timer.

	
Fix: Fetch URL extract too many matched directories

When fetch url is used, restraint is copying anything that
matches the pattern in https://<snip>#pattern regardless
of the location in the received path. If pattern is include,
both general/include, include directories will match when it
should only be include. Restraint will now only select if it
matches starting from beginning of received path NOT throughout
directory path. But first, the first string/ must be ignored from
the received path since it is superfluous for the match since it
includes the repo and branch name added by curl. Jobs that include
this repo-branch prefix in the fetch pattern will now fail with this
changeset. So fetching https://<snip>#repo-branch/pattern
will fail.

	
Fix: Use of FALSE/FAILURESTRINGS results in ‘too many arguments’

Seeing the following errors in restraint.log files.
restraintd[2330]: ./01_dmesg_check: line 53: [: too many arguments
Added Quote around the value to prevent this.

Restraint 0.4.1

Other

	
Tag 0.4.1 was intentionally skipped.

Restraint 0.4.0

Bug Fixes

	
Set OOMPolicy=continue to prevent killing restraintd (Fedora/RHEL9+)

Upon memory depletion, prevent the kernel from killing restraintd service.
Keep restraintd running, but log the service event. This OOMPolicy setting
is only available for RHEL9+ and Fedora distros. Other distros will
remain unchanged.

	
Prevent restraint client from being interrupted by SIGPIPE signal

Code change is to ignore SIGPIPE then client code will naturally
attempt to retry once determined that the path is broken.

	
rstrnt-reboot to ignore SIGTERM

When this scripts performs a reboot, it does a loop forever to prevent
from returning to the calling process. This changeset ignores SIGTERMs
to keep it from interrupting the loop. We must keep the SIGKILL in place
however so there is still a small window of opportunity of returning to
caller but the window has been narrowed with this change.

Other Notable Changes

	
RHEL 5 and 6 builds are no longer created from this version onward.

This is partly due to upgrades of libraries used by restraint which
are not compatible with the older RHEL releases. Older restraint releases
for RHEL 5 and 6 prior to this 0.4.0 release will still exist in the
download repositories.

Restraint 0.3.3

Bug Fixes

	
Restraint client honors job_id defined in <recipe> tag.

	
Improve error handling on recipe and task state management

Some errors that could indicate a bad saved state are now handled
and reported.

	
Fix distro version check in 20_unconfined

Make it better at detecting Fedora 34 as Fedora and distinguish RHEL
from Fedora in version comparison. The main difference is that it
now picks the right SELinux context for test jobs on Fedora 34
(Rawhide at the time of writing).

Restraint 0.3.2

What’s New

	Enable log manager for log caching

Bug Fixes

	
Upload cached logs in time intervals

The log manager uploads the cached contents of taskout.log and
harness.log every 15 seconds. This allows to follow task progress
and avoids missing logs when the external watchdog aborts the
recipe.

Restraint 0.3.1

Bug Fixes

	
Disable log manager

The log manager is disabled and the behavior for taskout.log and
harness.log is the same as before it was introduced.

Restraint 0.3.0

What’s New

	
Wait on Beaker’s health status

When Restraint runs under Beaker, Beaker’s health status is checked
before performing steps that require communication with Beaker.
Recipe execution is held until Beaker is available.

	
Log manager for log caching

When Restraint runs under Beaker, harness and task logs are cached
in the system. Logs are uploaded to Beaker after the task completes.

Contributed by Ernestas Kulik <ernestask@gnome.org>

Bug Fixes

	
Recognize results reported for non-rhts tasks

When the task reports just SKIP for results, the final task result
should be SKIP. An extra task result is occurring when a non-rhts task
is executed. An non-rhts task is one that uses the metadata file
instead of testinfo file. Bugzilla 1334893 made a change to always
report results PASS for task exiting with zero or FAIL when
exit non-zero for non-rhts tasks. As a result, PASS was being
reported which has a high priority then SKIP so the final task
result was PASS.

Code changes monitor whether user reports results by way of
rstrnt-report-result. If so, give those results priority; otherwise,
hardcode PASS task result for user.

When process exits with non-zero, FAIL for non-rhts will remain as this
provides the user the option to continue with the job. If they want
legacy behavior, they should make a call to rstrnt-abort in their task.

	
Stop logging LWD is disabled every minute

When LWD (Local Watchdog) is disabled, there is a message in the
harness log that reports this every minute. The message looks
like: Localwatchdog at: Disabled! `. This changeset makes sure
it is no longer reported repeatedly when `no_localwatchdog=true
is configured in the task metadata file. To ensure there is some
type of keepalive mechanism, the client now performs ssh keepalive
towards the server. This timeout value is configurable by use
of the restraint client option –timeout which only affects default
behavior. The timeout value has no effect when the rsh argument
is used.

	
Use new task install default for non-RHTS package

For restraint-rhts package, tasks are installed and executed
beneath /mnt/tests. For non-rhts restraint
installations, this path has changed to a more appropriate
location.

The 20_sysinfo plugin processes journalctl log in a temporary location
instead of /mnt as it is just an interim event.

Restraint 0.2.3

Bug Fixes

	Fix noisy Restraint client output

The Restraint client was not honoring the verbosity levels and it
was printing all output available even when the verbosity level was
the lowest.
The Restraint client output now behaves similarly to release 0.1.45.

	Increase retries for recipe fetching

Retries for recipe fetching are increased from 3 attempts in 10
seconds intervals to 12 attempts in 10 seconds intervals.

Restraint 0.2.2

Bug Fixes

	restraint client now honors recipe params as well as task params.

	Correct commands exit status when argument parsing fails due to
bad syntax. Commands always return non-zero in case of failure.

	Resolve loop in local watchdog plugin

When the local watchdog (LWD) expires a task, the LWD plugin 20_sysinfo
goes into an infinite loop since the directory /mnt/testarea is not
created for the non-rhts restraint package. An error returned by diff
utility within an infinite loop was not anticipated. The fix
terminates the infinite loop when diff returns error.

Restraint 0.2.1

What’s New

	
Add ability to select restraintd instance by port to restraint commands

When running commands outside of jobs on the local host,
some restraint commands require manually setting up
environment variables or constructing long URLs before running.
This can be issue if you are trying to extend the watchdog in
a timely fashion. A new option was added which requires the
argument –port <restraint-port-number>. Commands affected
are rstrnt-report-log, rstrnt-report-result, rstrnt-abort, and
rstrnt-watchdog.

	
Restore ability to specify restraintd port

Add the -p, –port option back to restraint daemon and client to specify the
port where restraintd will be listening to. RHBZ#1821342 [https://bugzilla.redhat.com/show_bug.cgi?id=1821342]

	
Document how to remove RHTS from Jobs

Added new section Guide to removing RHTS from Jobs detailing
substitutes for RHTS scripts, environment variables,
and testinfo.desc file and associated variables. RHBZ#1802610 [https://bugzilla.redhat.com/show_bug.cgi?id=1802610]

Bug Fixes

	
Redirect task STDIN back to /dev/null

In release 0.2.0, the task STDIN was redirected to a pipe shared with the server. This
breaks ausearch command when the input is not explicitly specified, as by default, if
STDIN is a pipe, it will read from it, instead of system logs. As the pipe is closed
when the task is running, tests expecting matches failed, and tests expecting no matches
were unreliable. Restoring redirect of task STDIN back to /dev/null ensures that ausearch
reads from system logs by default.

	
Restore default port for restraind system service

In release 0.2.0 the port for restraintd system service is chosen dynamically,
breaking workflows where the port was expected to persist between reboots.
When restraintd runs as a system service, the port defaults to 8081. RHBZ#1823545 [https://bugzilla.redhat.com/show_bug.cgi?id=1823545]

	
Restraintd killed by SIGTRAP

It was discovered that an error logging function (g_error) introduced in 0.2.0 also
performed aborts. The function was replaced with one which logs without undesirable
side effects. RHBZ#1823840 [https://bugzilla.redhat.com/show_bug.cgi?id=1823840], RHBZ#1831824 [https://bugzilla.redhat.com/show_bug.cgi?id=1831824]

	
restraintd fails to start if both, IPv4 and IPv6, are not available on the loopback interface

In this release, restraintd will not fail if it’s able to listen on at least one protocol,
IPv4 or IPv6, although it will still try to listen on both.

	
Fix use of uninitialized FD for STDIN when PTY is requested

When PTY was requested, the FD for the task STDIN was left uninitialized. The value,
set to 0, was still used in a close call, closing the parent STDIN FD and causing
unexpected behavior in task execution. In this release, the FD for STDIN is not used
when PTY is requested.

Restraint 0.2.0

Upgrades

	
RHBZ#1667510 [https://bugzilla.redhat.com/show_bug.cgi?id=1667510]: Remove libssh from restraint client.

The port used by restraint server is no longer static.
If using the restraint client, refer to restraint documentation
for changes to arguments passed since the port is no longer
included in –host argument. The client spawns restraintd
for you so the extra step of starting up a restraintd instance
is no longer needed. Because of these interface changes, the
restraint client and server must be the same version.

(Contributed by Bill Peck and Carol Bouchard)

	
RHBZ#1770230 [https://bugzilla.redhat.com/show_bug.cgi?id=1770230]: Replace rhts-sync- with rstrnt-sync- cmds.

This changeset creates rstrnt-sync- commands and links
rhts-sync- commands to it. The multihost plugin now
uses rstrnt-sync- commands.

(Contributed by Carol Bouchard)

	
RHBZ#1802261 [https://bugzilla.redhat.com/show_bug.cgi?id=1802261]: Upgrade libxml2 to version 2.9.10

(Contributed by Daniel Rodriguez Gonzalez)

Bug Fixes

	
RHBZ#1795915 [https://bugzilla.redhat.com/show_bug.cgi?id=1795915]: Remove execute permission from systemd service file.
There is a warning message in the systemd logs about the file being
executable.

(Contributed by John Villalovos)

Restraint 0.1.45

	
FIXED: RHBZ#1795781 [https://bugzilla.redhat.com/show_bug.cgi?id=1795781]: Multihost sync hangs on remote reboot.
Users multihost synchronization task hangs on block operation
when remote host reboots. This is a corner case difficult to
reproduce.

(Contributed by Carol Bouchard)

	
FIXED: RHBZ#1792466 [https://bugzilla.redhat.com/show_bug.cgi?id=1792466]: Restraint segfault during labcontroller timeout.
On error when gathering peer roles from the lab controller, a double
free of the error structure causes bad behavior in glib
memory management. Eventually this causes restraint server to crash
on a segfault.

(Contributed by Carol Bouchard)

	
FIXED: RHBZ#1691485 [https://bugzilla.redhat.com/show_bug.cgi?id=1691485]: Rstrnt Client not provide task vers in job.xml.
This change affects rpm tasks only. Restraint server gets the
version number from the rpm and returns it in ‘Completed/Aborted’
status message sent to restraint client. The restraint client
writes it out in the job.xml.

(Contributed by Carol Bouchard)

	
FIXED: RHBZ#1793114 [https://bugzilla.redhat.com/show_bug.cgi?id=1793114]: Wrong file permission on 30_dmesg_clear plugin.
The new 30_dmesg_clear plugin does not have execute file permission.
However, other scripts add execution permission so it is correct in
the rpm. This is being fixed in repo to prevent chasing it as
an issue.

(Contributed by Carol Bouchard)

Restraint 0.1.44

	
FIXED: RHBZ#1788252 [https://bugzilla.redhat.com/show_bug.cgi?id=1788252]: restraintd crash in timeout_callback functions.
Ran into timing issues when process_timeout_callback occurs after
process_pid_callback. The task data is NULL so process_timeout_callback
should not attempt to process task data when pid is 0 indicating
process is complete.

(Contributed by Carol Bouchard)

	
FIXED: RHBZ#1781722 [https://bugzilla.redhat.com/show_bug.cgi?id=1781722]: Not executing task when multihost utilized.
Observed that restraint reported the task started but output from
the task itself not making it to taskout.log file. With debug
enabled, found it stopped in 30_restore_events plugin.
Performed more detail unit testing on rstrnt-sync and resolved
a number of issues found.

(Contributed by Carol Bouchard)

	
FIXED: RHBZ#1782422 [https://bugzilla.redhat.com/show_bug.cgi?id=1782422]: Fetch https operation noisy harness.log.
When using <fetch url=”https://github.com/repo#dirname> in task, the
entire repo is downloaded and a log entry for each file/dir found
is logged. These log entries get reported to Lab Controller
which results in reduced performance. Fixed code to report
only entries found beneath the directory name ‘dirname’.

(Contributed by Carol Bouchard)

Restraint 0.1.43

	
FIXED: RHBZ#1774211 [https://bugzilla.redhat.com/show_bug.cgi?id=1774211]: Seeing too many repo extraction.
Under certain conditions, restraint was failing to go
to next repoRequires operation causing redundant
fetch operations to occur.

(Contributed by Carol Bouchard)

	
FIXED: RHBZ#1236568 [https://bugzilla.redhat.com/show_bug.cgi?id=1236568]: Separate dmesg clear from check.
Need for a separate plugin so clear of the dmesg logs
is done independently from check dmesg logs.
Currently this is done during dmesg check plugin.
If dmesg check plugin is disabled, so is the clear
operation leaving the next task will process unrelated
errors. By separating clear from check operation, the clear
operation can always be performed.

(Contributed by Carol Bouchard)

	
FIXED: RHBZ#1749316 [https://bugzilla.redhat.com/show_bug.cgi?id=1749316]: Rstrnt retry refresh role on socket io err.
User periodically observed “Error: Socket I/O Timed out”.
This occurred during the restraint task state
“** Refreshing peer role hostnames” which collects
host roles from lab controller and there is no response
in default 1 minute time frame. To handle network
issues, restraint will retry this event similar to
what is done when performing fetch operations.

(Contributed by Carol Bouchard)

	
FIXED: RHBZ#1762731 [https://bugzilla.redhat.com/show_bug.cgi?id=1762731]: Rstrnt add more metadata UTs.

(Contributed by Carol Bouchard)

	
NEW: RHBZ#1455763 [https://bugzilla.redhat.com/show_bug.cgi?id=1455763]: New command rstrnt-prepare-reboot.
It does the same preparatory work as rstrnt-reboot, but does not
trigger the reboot. Tasks can use this prior to (intentionally)
crashing the system or rebooting it in some other non-standard
way.

(Contributed by Tomas Klohna)

Restraint 0.1.42

	
FIXED: RHBZ#1753652 [https://bugzilla.redhat.com/show_bug.cgi?id=1753652]: Multihost Sync Improvements.
A number of improvements have been made to the Multihost
synchronization feature.
* Only perform multihost sync when roles SERVERS and CLIENTS
 are defined in the environment.
* Add the ability to tune the amount of time to pause before
 another retry attempt.
* Restraint’s retry pause time reduced to 30 from 60.
* Improve log entries to provide insight to multihost sync
 operations.

(Contributed by Carol Bouchard)

	
FIXED: RHBZ#1756515 [https://bugzilla.redhat.com/show_bug.cgi?id=1756515]: FALSESTRINGS not provide consistent results.
If a dmesg log contains “falsestring failurestring”, then
falsestring will override failurestring. If they were
swapped where “failurestring falsestring”, then falsestring
does not override failurestring which is a bug. This
changeset resolves this inconsistency. It also removed
printing of surrounding 5 lines around the matching line.
This will make it easier for users to identify which line
has matched. The full dmesg log file is also provided so
user can easily search through the full dmesg log if they
need to see surrounding lines.

(Contributed by Carol Bouchard)

Restraint 0.1.41

	
FIXED: RHBZ#1753336 [https://bugzilla.redhat.com/show_bug.cgi?id=1753336]: The cli rstrnt-adjust-watchdog command.
was producing random results. The message from restraintd
to the lab controller was getting truncated when the number
of digits for time increased. There is an extra 30 minutes
added to this message for external watchdog so it is possible
for it to increase by 1 byte. Since restraintd used the same
message received for the request, the message length was
already set so the soup library didn’t try to recalculate it.
The solution is to initialize the length to 0 to force the
soup library to recalculate it.

(Contributed by Carol Bouchard)

	
FIXED: RHBZ#1751074 [https://bugzilla.redhat.com/show_bug.cgi?id=1751074]: Rlse 0.1.40 seeing a lot of invalid.
dmesg failures. This behavior only occurs on x86_64 arch.
The rpm task /distribution/install, method VirtWorkaround()
is setting an empty /usr/share/rhts/failurestrings file.
As a result, every line is treated as a failure. Solution
is to make sure the failurestrings file has content
before using it.
Included in this changeset is detail output for next triage.
This output is written to the bottom of resultoutputfile.log when
01_dmesg_check reports failure. This debug code reports which
set of failure and falsestring data was used: environment vars,
files, or hardcoded defaults. It shows content of the
failure/falsestrings variables and if the files exist, if there
is data in them or the files content is also dumped into the
bottom of the log file.

(Contributed by Carol Bouchard)

Restraint 0.1.40

Released 4 September 2019.

	
FIXED: RHBZ#1609330 [https://bugzilla.redhat.com/show_bug.cgi?id=1609330]: Restraint should have a log similar to
beah’s /mnt/testarea/current.log. This file points to unique
task file named /tmp/tmp.XXXX (where XXXX is random). As tasks
change, the link changes to new tmp.XXXX file. File
current.log makes it convenient to find current task log file
as the job is running.

(Contributed by Carol Bouchard)

	
NEW: RHBZ#1713313 [https://bugzilla.redhat.com/show_bug.cgi?id=1713313]: Provide an option for not rebooting the
test box after localwatchdog killed a task. No new code was
written for this since an option already existed. This
changeset documents the option RSTRNT_DISABLED which allows
the user to disable specified plugins.

(Contributed by Carol Bouchard)

	
FIXED: RHBZ#1678549 [https://bugzilla.redhat.com/show_bug.cgi?id=1678549]: Restraint starts too early for the system
to get ready for testing. Instead, wait until network is up
before starting restraint.

(Contributed by Martin Styk)

	
FIXED: RHBZ#1694221 [https://bugzilla.redhat.com/show_bug.cgi?id=1694221]: SELinux tests break. The 20_unconfined plugin
currently checks if process running with SELinux role and domain but
was missing check if user is SELinux user.

(Contributed by Martin Styk)

	
FIXED: RHBZ#1478653 [https://bugzilla.redhat.com/show_bug.cgi?id=1478653]: [RESTRAINT] Error uploading
/var/log/messages. Seeing error Bad Request [soup_http_error_quark, 400].
This error occurs because restraint reports the number of bytes to send
but then sends more as the file continues to grow. Now we only send the
number of bytes from the point the transmission began and ignore
subsequent lines in the log as they are just extra noise.

(Contributed by Carol Bouchard)

	
FIXED: RHBZ#1700886 [https://bugzilla.redhat.com/show_bug.cgi?id=1700886]: Restraint not uploading resultoutputfile.log
when local watchdog expires. The variable OUTPUTFILE was not
being set. It is now set to the tasks current.log (ref: 1609330) so
it is now reported.

(Contributed by Carol Bouchard)

	
FIXED: RHBZ#1730617 [https://bugzilla.redhat.com/show_bug.cgi?id=1730617]: Multihost: Task execution synchronization
does not work in restraint. As documented in Beaker’s Multihost Tasks
section, Task 1 on both server and client must complete before moving
on to Task 2 and so on. A new plugin 85_sync_multihost_tasks was
added to cause synchronization between client and server tasks.

(Contributed by Carol Bouchard)

	
FIXED: RHBZ#1700915 [https://bugzilla.redhat.com/show_bug.cgi?id=1700915]: Resolve inconsistency of MAXTIME vs MAX_TIME
variables. To resolve confusion, RSTRNT_MAX_TIME is being deprecated
with an existing variable KILLTIMEOVERRIDE. This changeset documents
this deprecation.

(Contributed by Tomas Klohna)

	
NEW: RHBZ#1700926 [https://bugzilla.redhat.com/show_bug.cgi?id=1700926]: Allow task to adjust local watchdog. The command
rstrnt-adjust-watchdog only affects the external watchdog. To be
compatible with beah, this commmand also works for the local watchdog.

(Contributed by Carol Bouchard)

	
FIXED: RHBZ#1705223 [https://bugzilla.redhat.com/show_bug.cgi?id=1705223]: Incomplete doc in regards to metadata/testinfo.desc.
This is a spinoff from BZ1120496 but for restraint. This changeset
identified and documented variables in metadata and testinfo file.

(Contributed by Carol Bouchard)

Restraint 0.1.39

Released 27 February 2019.

	
NEW: RHBZ#1552199 [https://bugzilla.redhat.com/show_bug.cgi?id=1552199]: Restraint-client now supports changing
timeout value for the request.

(Contributed by Martin Styk)

	
FIXED: RHBZ#1670377 [https://bugzilla.redhat.com/show_bug.cgi?id=1670377]: Fixed compilation issues for GCC9/Automake.

(Contributed by Martin Styk)

Restraint 0.1.38

Released 29 January 2019.

	
FIXED: RHBZ#1670111 [https://bugzilla.redhat.com/show_bug.cgi?id=1670111]: Fixed crash of Restraint for ppc64le and aarch64
architecture.

(Contributed by Bill Peck)

Restraint 0.1.37

Released 11 January 2019.

	
NEW: RHBZ#1665390 [https://bugzilla.redhat.com/show_bug.cgi?id=1665390]: Added feature to set family from client XML.

(Contributed by Bill Peck)

	
NEW: RHBZ#1656466 [https://bugzilla.redhat.com/show_bug.cgi?id=1656466]: Restraint now supports @module syntax for
dependencies for RHEL8+.

(Contributed by Martin Styk)

	
FIXED: RHBZ#1663125 [https://bugzilla.redhat.com/show_bug.cgi?id=1663125]: Restraint now listens separately for IPv4 and IPv6. One
running version of the protocol is sufficient for restraintd run.

(Contributed by Bill Peck)

	
FIXED: RHBZ#1663825 [https://bugzilla.redhat.com/show_bug.cgi?id=1663825]: When BootCurrent is not available, Restraint will
try to fall back to /root/EFI_BOOT_ENTRY.TXT.

(Contributed by Martin Styk)

	
FIXED: RHBZ#1659353 [https://bugzilla.redhat.com/show_bug.cgi?id=1659353]: Fixed obsolete URL for Bzip2 package in Makefile.

(Contributed by Martin Styk)

	
FIXED: RHBZ#1599550 [https://bugzilla.redhat.com/show_bug.cgi?id=1599550]: Fixed crash of Restraint for RHEL6 arch s390 caused
by glib2.

(Contributed by Matt Tyson)

	
FIXED: RHBZ#1608262 [https://bugzilla.redhat.com/show_bug.cgi?id=1608262]: Fixed guest-host synchronization.

(Contributed by Dan Callaghan)

Restraint 0.1.36

Released 24 August 2018.

	
NEW: RHBZ#1506064 [https://bugzilla.redhat.com/show_bug.cgi?id=1506064]: The dmesg error checking plugin can now match patterns
against multi-line “cut here” style traces. The plugin now ignores a warning
about “mapping multiple BARs” on IBM x3250m4 systems, matching the existing
behaviour of the RHTS dmesg checker.

(Contributed by Jacob McKenzie)

	
FIXED: RHBZ#1592376 [https://bugzilla.redhat.com/show_bug.cgi?id=1592376]: Restraint resets the SIGPIPE handler before executing
task processes. Previously the tasks would inherit the “ignore” action for
SIGPIPE from the Restraint parent process, which would prevent normal shell
broken pipe handling from working correctly in the task.

(Contributed by Matt Tyson)

	
FIXED: RHBZ#1595167 [https://bugzilla.redhat.com/show_bug.cgi?id=1595167]: When the local watchdog timer expires, Restraint will
now upload the output from journalctl in favour of
/var/log/messages if the systemd journal is present. Previously it
would attempt to upload /var/log/messages even if the file did not
exist, causing the local watchdog handling to enter an infinite loop.

(Contributed by Matt Tyson)

	
FIXED: RHBZ#1593595 [https://bugzilla.redhat.com/show_bug.cgi?id=1593595]: Fixed an improper buffer allocation which could cause
Restraint to crash with a segmentation fault instead of reporting an error
message in certain circumstances.

(Contributed by Róman Joost)

	
FIXED: RHBZ#1600825 [https://bugzilla.redhat.com/show_bug.cgi?id=1600825]: Fixed a file conflict introduced in Restraint 0.1.35
between the restraint package and the rhts-test-env package.

(Contributed by Matt Tyson)

	
FIXED: RHBZ#1601705 [https://bugzilla.redhat.com/show_bug.cgi?id=1601705]: Fixed a shell syntax error in the RPM %post scriptlet
on RHEL4 which caused the package to be un-installable.

(Contributed by Dan Callaghan)

	
FIXED: RHBZ#1585904 [https://bugzilla.redhat.com/show_bug.cgi?id=1585904]: Fixed a shell syntax error in the restraintd init
script which caused it to fail to start on RHEL4.

(Contributed by Dan Callaghan)

 Developer Guide

Developer Guide

If you have questions related to Restraint’s development that are not
currently answered in this guide, the two main ways to contact the
Restraint development team are the same as those for getting
general assistance with using and installing Beaker:

	the development mailing list [https://lists.fedorahosted.org/mailman/listinfo/beaker-devel]

	the #beaker IRC channel on FreeNode

This document focuses on the mechanics of working with Restraint’s
code base with the target audience being a Restraint user interested
in learning more about Restraint’s working or a potential Restraint
contributor.

Getting Started

Restraint is written in C. The source lives in a git repo on
http://github.com/beaker-project/ along with other related projects. The
following creates a local clone of the Restraint source.

git clone git@github.com:beaker-project/restraint.git

Restraint uses a number of external libraries/tools, so before you can
build Restraint you need to install the external libraries using
dnf builddep restraint.spec. Once you have installed these dependencies,
running a make all at the source directory root will compile and build
restraint, restraintd, and commands. To also run a quick sanity check, it is
a good idea to run the unit tests using make check. The unit tests use a
simple Python HTTP server and git-daemon, so you will need to install
this as well
(dnf install git-daemon).

Testing Changes

If you have fixed an existing bug or implemented a new feature, it is
a good idea to add a relevant test. The existing tests can be found in
the src/ directory in the source files with names starting with
test_.

It may also be a good idea to run a recipe by building the Restraint
daemon and client from the modified code base. You can build the
binaries using make all in the src directory.

From the same directory, run the restraint client with a reference to a job.xml.
The following shows how to initiate the restraint client to execute a recipe:

restraint --host 1=127.0.0.1 --job /path/to/job.xml --restraint-path /my_development_path/restraint/src/restraintd

Developers should use the option --restraint-path to point to the development path
of the restraintd server. More details on this can be found in Running Standalone.

Submitting a Patch

All patches are submitted using GitHub Pull Requests feature.
To do that you have to have the fork of the Restraint.

Created patch should also have a note for release notes.
The note has to be created by Reno [https://docs.openstack.org/reno/latest/user/usage.html].

 Guide to removing RHTS from Jobs

Guide to removing RHTS from Jobs

For some products, Test Requirements include running restraint by itself.
This requires the exclusion of the legacy RHTS package or restraint-rhts
package installation. Below lists areas to draw attention in order
to eliminate RHTS references.

	Install the restraint harness package and not restraint-rhts in
your jobs.

	Avoid defining tasks or dependencies which cause installation of the RHTS library.

	Replace RHTS scripts with Restraint scripts. Replacement for RHTS Scripts provides
a table which maps legacy to restraint scripts.

	Change your tasks to utilize Restraint’s metadata file instead of RHTS
testinfo.desc file. Replacement for RHTS testinfo.desc File provides details on mapping
legacy testinfo.desc variables to restraint metadata variables. Depending
on how your task is written, you may have to update or remove Makefiles so they
do not process the testinfo.desc file. An example of this is also
included in the referenced section.

	The final results for a task is influenced by whether your task is defined with
a metadata file (non-rhts) versus Makefile/testinfo.desc (rhts). If a task
exits with a zero and the user did not call rstrnt-report-result,
the task will conclude with PASS instead of New making sure there is some
valid conclusion to this task. If task exits with non-zero, the task will
result with FAIL for non-rhts instead of ABORT. For further details,
refer to Task Results.

	Replace RHTS environment variables with Restraint variables. A table listing
RHTS Legacy Variables to Restraint Substitute can be found in
Legacy RHTS Task Environment Variables.

Replacement for RHTS Scripts

The table below lists known legacy RHTS commands. Some are provided in the
restraint-rhts package and some are from rhts package. It is encouraged for people
to use Restraint’s substitute for these commands as they are actively supported.
Included in the table are the Restraint substitutes and which RHTS commands are deprecated.

	RHTS Legacy Script

	Restraint Substitute

	rhts-abort

	rstrnt-abort

	rhts-backup

	rstrnt-backup

	rhts-db-submit-result
rhts_db_submit_result

	rstrnt-report-result.d plugin
Report Result (See Note)

	rhts-environment.sh
rhts_environment.sh

	None

	rhts-extend

	rstrnt-adjust-watchdog

	rhts-flush

	None

	rhts-lint

	None

	rhts-power

	None

	rhts-reboot

	rstrnt-reboot

	rhts-recipe-sync-block
rhts_recipe_sync_block

	rstrnt-sync-block

	rhts-recipe-sync-set
rhts_recipe_sync_set

	rstrnt-sync-set

	rhts-report-result

	rstrnt-report-result

	rhts-restore

	rstrnt-restore

	rhts-run-simple-test

	None

	rhts-submit-log
rhts_submit_log

	rstrnt-report-log

	rhts-sync-block
rhts_sync_block

	rstrnt-sync-block

	rhts-sync-set
rhts_sync_set

	rstrnt-sync-set

	rhts-system-info

	localwatchdog.d 20_sysinfo plugin
Local Watchdog (See Note)

Note

Some functionality in RHTS scripts are replaced by Restraint plugins. Links
for details on those plugins are contained in the Restraint Substitute column.

 Index

Index

 Symbols
 | C
 | E
 | L
 | M
 | N
 | T

Symbols

 	
 	
 --any

 	command line option

 	
 --host <recipe_id>=[<user>@]<host>

 	command line option

 	
 --job </yourdir/your-job.xml>

 	command line option

 	
 --no-plugins

 	command line option

 	
 --restraint-path </dir/restraintd>

 	command line option

 	
 --retry <time>

 	command line option

 	
 --timeout <timeout>

 	command line option

 	
 	
 -e, --rsh <command>

 	command line option

 	
 -l, --filename <logfilename>

 	command line option

 	
 -o, --outputfile <outfilename>

 	command line option

 	
 -p, --disable-plugin <plugin-name(s)>

 	command line option

 	
 -s <state>

 	command line option

 	
 -v

 	command line option

C

 	
 	
 command line option

 	--any

 	--host <recipe_id>=[<user>@]<host>

 	--job </yourdir/your-job.xml>

 	--no-plugins

 	--restraint-path </dir/restraintd>

 	--retry <time>

 	--timeout <timeout>

 	-e, --rsh <command>

 	-l, --filename <logfilename>

 	-o, --outputfile <outfilename>

 	-p, --disable-plugin <plugin-name(s)>

 	-s <state>

 	-v

 	LOGFILE

 	METRIC

 	TESTNAME

 	TESTRESULT

 	time

E

 	
 	
 environment variable

 	NEXTBOOT_VALID_TIME, [1], [2]

L

 	
 	
 LOGFILE

 	command line option

M

 	
 	
 METRIC

 	command line option

N

 	
 	NEXTBOOT_VALID_TIME, [1], [2]

T

 	
 	
 TESTNAME

 	command line option

 	
 TESTRESULT

 	command line option

 	
 	
 time

 	command line option

 restraint Client Manual Page

restraint Client Manual Page

Synopsis

Used for stand-alone execution

Description

Use the restraint command to spawn restraintd server on a remote test machine
containing restraintd image. You can run them on the same machine but it is not
recommended since some tasks reboot the system. Hosts are tied to recipe IDs
inside job XML.

restraint --host 1=addressOfMyTestSystem.example.com --job /path/to/simple_job.xml --restraint-path /home/userid/restraint/src/restraintd

Restraint will look for the next available directory to store the results in.
In the above example, it will see if the directory simple_job.01 exists. If
it does, because of a previous run, it will then look in simple_job.02. It
will continue doing this until it finds a directory that doesn’t exist.

By default restraint will report the start and stop of each task run like this

Using ./simple_job.07 for job run
* Fetching recipe: http://192.168.1.198:8000/recipes/07/
* Parsing recipe
* Running recipe
* T: 1 [/kernel/performance/fs_mark] Running
* T: 1 [/kernel/performance/fs_mark] Completed: PASS
* T: 2 [/kernel/misc/gdb-simple] Running
* T: 2 [/kernel/misc/gdb-simple] Completed: PASS
* T: 3 [restraint/vmstat] Running
* T: 3 [restraint/vmstat] Completed

It is recommended to specify the location of the restraintd image using
the --restraint-path argument. If not provided, it will attempt to
execute the installed restraintd server.

You can pass -v for more verbose output which will show every task reported.
If you pass another -v you will get the output from the tasks written to your
screen as well.

But all of this information is stored in the job.xml which in this case is
stored in ./simple_job.07.

Result Conversion

job2html.xml

An XSLT (eXtensible Stylesheet Language Transformations) template to convert
the stand-alone job.xml results into a HTML doc. The template can be found in
Restraint’s client directory.

Here is an example to convert a job run XML into an HTML doc. This HTML doc
can be easily navigated with a browser to investigate results and logs.

xsltproc job2html.xml simple_job.07/job.xml > simple_job.07/index.html

job2junit.xml

An XSLT template to convert the stand-alone job.xml into junit results.
The template can be found in Restraint’s client directory.

Here is an example to covert a job run XML into JUnit results.

xsltproc job2junit.xml simple_job.07/job.xml > simple_job.07/junit.xml

 restraintd Manual Page

restraintd Manual Page

Synopsis

restraintd is the daemon which executes the tasks.

Logging

All messages from restraintd will be printed to stderr and all output from
executing commands will be printed to stdout.

stderr is redirected to /dev/console to help debug when things
go wrong. The SysV init script will redirect both stdout + stderr to
/var/log/restraintd.log. For systemd you can use the journalctl command:

journalctl --unit restraintd

-- Logs begin at Fri 2014-04-11 16:39:13 EDT, end at Fri 2014-04-11 16:46:36 EDT. --
Apr 11 16:40:20 virt-test systemd[1]: Starting The restraint harness....
Apr 11 16:40:20 virt-test systemd[1]: Started The restraint harness..
Apr 11 16:40:20 virt-test restraintd[567]: Waiting for client!
Apr 11 16:40:20 virt-test restraintd[567]: * Fetching recipe: http://beaker.example.com:8000//recipes/1079/
Apr 11 16:40:21 virt-test restraintd[567]: ** (restraintd:567): WARNING **: Ignoring Server Running state
Apr 11 16:40:21 virt-test restraintd[567]: * Parsing recipe
Apr 11 16:40:21 virt-test restraintd[567]: * Running recipe
Apr 11 16:40:21 virt-test restraintd[567]: ** Fetching task: 1562 [/mnt/tests/distribution/install]
Apr 11 16:40:27 virt-test restraintd[567]: Resolving Dependencies
Apr 11 16:40:27 virt-test restraintd[567]: --> Running transaction check
Apr 11 16:40:27 virt-test restraintd[567]: ---> Package beaker-distribution-install.noarch 0:1.10-15 will be installed
Apr 11 16:40:30 virt-test restraintd[567]: --> Finished Dependency Resolution
.
.
.
Apr 11 16:40:36 virt-test restraintd[567]: Installed:
Apr 11 16:40:36 virt-test restraintd[567]: beaker-distribution-install.noarch 0:1.10-15
Apr 11 16:40:36 virt-test restraintd[567]: Complete!
Apr 11 16:40:36 virt-test restraintd[567]: ** Parsing metadata
Apr 11 16:40:36 virt-test restraintd[567]: ** Updating env vars
Apr 11 16:40:36 virt-test restraintd[567]: ** Updating watchdog
Apr 11 16:40:37 virt-test restraintd[567]: ** Installing dependencies
Apr 11 16:41:00 virt-test restraintd[567]: Nothing to do
Apr 11 16:41:00 virt-test restraintd[567]: ** Running task: 1562 [/distribution/install]
Apr 11 16:41:00 virt-test restraintd[567]: TASK_RUNNER_PLUGINS: /usr/share/restraint/plugins/task_run.d/10_bash_login
/usr/share/restraint/plugins/task_run.d/15_beakerlib /usr/share/restraint/plugins/task_run.d/20_unconfined make run
Apr 11 16:41:01 virt-test restraintd[567]: -- INFO: selinux enabled: trying to switch context...
.
.
.
Apr 11 16:41:12 virt-test restraintd[567]: *** Running Plugin: 98_restore
Apr 11 16:41:12 virt-test restraintd[567]: Nothing to restore.
Apr 11 16:41:12 virt-test restraintd[567]: ** Completed Task : 1562

Commands

rstrnt-report-result

Report Pass/Fail/Warn, optional score

Reporting plugins can be disabled by passing the plugin name to the –disable
option. Here is an example of reporting a result but disabling the built in
AVC (Access Vector Cache) checker:

rstrnt-report-result --disable 10_avc_check $RSTRNT_TASKNAME/sub-result PASS 100

Multiple plugins can be disabled by passing in multiple –disable arguments.

To stay compatible with legacy RHTS (Red Hat Test System) tasks, restraint also
looks to see if the environment variable AVC_ERROR is set to +no_avc_check. If
this is true then it’s the same as the above –disable 10_avc_check argument.

rstrnt-report-log

Upload a log or some other file

rstrnt-reboot

Helper to reboot the system. On UEFI systems it will use efibootmgr to set next
boot to what is booted currently.

rstrnt-backup

Helper to backup a config file.

rstrnt-restore

Helper to restore a previously backed up file. There is a plugin which is
executed at task completion which will call this command for you.

rstrnt-adjust-watchdog

If you are running in Beaker this allows you to adjust the external watchdog.
This does not modify the localwatchdog, so its usually only useful to tasks
that have no_localwatchdog set to true in their task metadata.

check_beaker

Run from init/systemd, will run a Beaker job.

 rhts Manual Page

rhts Manual Page

Synopsis

These commands are provided in order to support legacy tests written for RHTS
(Red Hat Test System).

Commands

rhts-reboot

Use rstrnt-reboot instead

rhts-backup

Use rstrnt-backup instead

rhts-restore

Use rstrnt-restore instead

rhts-environment.sh

Deprecated

rhts-lint

Deprecated - only provided so that testinfo.desc can be generated

rhts-run-simple-test

Deprecated

_static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Restraint’s Documentation!

 		
 Installing

 		
 Installing from RPM

 		
 Building from Source

 		
 Starting the Daemon

 		
 Processes and Commands

 		
 restraintd

 		
 Command Usage

 		
 rstrnt-abort

 		
 rstrnt-adjust-watchdog

 		
 rstrnt-backup

 		
 rstrnt-package

 		
 rstrnt-prepare-reboot

 		
 rstrnt-reboot

 		
 rstrnt-report-log

 		
 rstrnt-report-result

 		
 rstrnt-restore

 		
 rstrnt-sync-block

 		
 rstrnt-sync-set

 		
 restraint

 		
 job2html.xml

 		
 job2junit.xml

 		
 Legacy RHTS Commands

 		
 Jobs

 		
 Naming Tasks

 		
 Task Roles

 		
 Keeping Your Task Changes Intact

 		
 Installing Tasks

 		
 Fetch

 		
 RPM

 		
 Parameters

 		
 Tasks

 		
 Restraint Metadata File

 		
 entry_point

 		
 max_time

 		
 dependencies

 		
 environment

 		
 softDependencies

 		
 repoRequires

 		
 no_localwatchdog

 		
 use_pty

 		
 OSMajor Specific Options

 		
 Legacy Metadata File

 		
 Task Environment Variables

 		
 Script/Plugin Environment Variables

 		
 Task Results

 		
 Plugins

 		
 Task Run

 		
 Report Result

 		
 Local Watchdog

 		
 Completed

 		
 Using Restraint

 		
 Running in Beaker

 		
 Running Standalone

 		
 Running in Beaker and Standalone

 		
 Release Notes

 		
 Restraint 0.4.4

 		
 Bug Fixes

 		
 Restraint 0.4.3

 		
 Bug Fixes

 		
 Restraint 0.4.2

 		
 Bug Fixes

 		
 Restraint 0.4.1

 		
 Other

 		
 Restraint 0.4.0

 		
 Bug Fixes

 		
 Other Notable Changes

 		
 Restraint 0.3.3

 		
 Bug Fixes

 		
 Restraint 0.3.2

 		
 What’s New

 		
 Bug Fixes

 		
 Restraint 0.3.1

 		
 Bug Fixes

 		
 Restraint 0.3.0

 		
 What’s New

 		
 Bug Fixes

 		
 Restraint 0.2.3

 		
 Bug Fixes

 		
 Restraint 0.2.2

 		
 Bug Fixes

 		
 Restraint 0.2.1

 		
 What’s New

 		
 Bug Fixes

 		
 Restraint 0.2.0

 		
 Upgrades

 		
 Bug Fixes

 		
 Restraint 0.1.45

 		
 Restraint 0.1.44

 		
 Restraint 0.1.43

 		
 Restraint 0.1.42

 		
 Restraint 0.1.41

 		
 Restraint 0.1.40

 		
 Restraint 0.1.39

 		
 Restraint 0.1.38

 		
 Restraint 0.1.37

 		
 Restraint 0.1.36

 		
 Developer Guide

 		
 Getting Started

 		
 Testing Changes

 		
 Submitting a Patch

 		
 Guide to removing RHTS from Jobs

 		
 Replacement for RHTS Scripts

 		
 Replacement for RHTS testinfo.desc File

 		
 Example of removing testinfo.desc file

 		
 Legacy RHTS Task Environment Variables

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/up-pres