
Restosaur Documentation
Release 0.6.7

Marcin Nowak

Mar 30, 2017

Contents

1 About 3

2 Quickstart 5

3 Development status 15

4 Integrations 17

5 Roadmap 19

6 Contribution 21

7 Indices and tables 23

i

ii

Restosaur Documentation, Release 0.6.7

A nimble RESTful library for any Python web framework.

Contents 1

Restosaur Documentation, Release 0.6.7

2 Contents

CHAPTER 1

About

What Restosaur is?

Restosaur is a RESTful foundation library for Python, which aims to be a transparent layer for building REST-like or
RESTful services, adaptable to any web framework.

The key concepts are:

• make library layer as transparent as possible,

• operate on object of any type as a model,

• focus on resources and their representations,

• base on content types as a client-server contract machinery,

• do not force an API developer to use any specific structures, patterns, solutions,

• maximize flexibility of constructing control flow and data factories,

• provide clean interface, sane defaults and handy toolkit,

• make library independent from any web framework and provide adapters to common web frameworks,

• follow explicit is better than implicit rule (see PEP20) – no magic inside.

Note: Up to v0.8 Restosaur is a Django-only project for historical reasons. Please follow Roadmap for details.

What Restosaur is not?

Restosaur is not a framework. There are no batteries included. There are no paginators, CRUD mappers, authentica-
tors, permission system nor autogenerated HTML representation (which is a bad concept at all).

Every REST-like or RESTful API may be very specific. As an API author you shold have possibility to do anything
you want and use any tool you need.

3

Restosaur Documentation, Release 0.6.7

If you’re using a web framework, you have decent tools already. Restosaur just helps you to adapt your data and
business logic to a RESTful service.

4 Chapter 1. About

CHAPTER 2

Quickstart

Note: Up to v0.8 Restosaur is a Django-only project for historical reasons, and this Quickstart guide is based on a
Django project. Please follow Roadmap for details.

Installation

Restosaur is hosted on PyPI. Use pip, easy_install or any similar software to install it:

pip install restosaur

Prepare project

To start work with Restosaur is good to create core module for your API, for example:

touch <myproject>/webapi.py

And fill the webapi.py file with:

import restosaur

import handy shortcuts here
from django.shortcuts import get_object_or_404 # NOQA

api = restosaur.API()

5

Restosaur Documentation, Release 0.6.7

Configure Django

To setup Restosaur with Django, follow these steps:

• Add restosaur to INSTALLED_APPS in your settings module

• Include your API url patterns in main urls.py module

Example of the urls.py module:

from django.conf.urls import url
from webapi import api

urlpatterns = [...] # Your other patterns here
urlpatterns += api.urlpatterns()

If your project is based only on Restosaur, just write:

urlpatterns = api.urlpatterns()

Note: For Django <1.7 you must call autodiscover explicitely. The good place is your urls.py module:

from django.conf.urls import url
from webapi import api

import restosaur
restosaur.autodiscover() # Before api.urlpatterns() call

... rest of urls.py file...

Build your API

Let’s assume you’re creating an another Blog project and the app name is called blog. In your blog/models.py
you have Post model defined as:

class Post(models.Model):
title = models.CharField(max_length=200)
content = models.TextField()

Initializing API module

First, create a restapi.py module, which will be autodiscovered by default:

touch blog/restapi.py

Then import your api object, handy shortcuts and your models:

from webapi import api, get_object_or_404
from .models import Post

6 Chapter 2. Quickstart

Restosaur Documentation, Release 0.6.7

Creating resources

Now create a resources - first for list of Posts and second for Post detail.

Note: There is no difference between collection and detail - both are just resources but their controller logic and
representation differs.

To do that use resource() factory and provide URL template fragment as an argument:

post_list = api.resource('posts')
post_detail = api.resource('posts/:pk')

Registering HTTP services

Now you have two variables - instances of Resource class. Resource is a container for HTTP method callbacks,
and they can be registered using decorators. You have to choose from:: .get(), .post(), .put(), .patch(),
.delete() and .head().

Let’s create a callback (a controller/view) for Posts list, which will be accessible by HTTP GET method. The callback
takes at least one argument - a context, which is similar to request object. The callback must return a Response
object:

@post_list.get()
def post_list_view(context):

return context.Response(Post.objects.all()) # 200 OK response

Response takes at least one argument - a data object. It may be anything. The data object will be passed “as is” to
representation factories. In the example above we’re passing a Post’s queryset object.

Representations

Now there is time to register a representation factory. The return value must be serializable by content type serializer.
In our case we will use plain Python dict which will be passed internally to JsonSerializer (the default).

The representation factory callbacks takes two positionl arguments:

• a data object returned from controller / view in a Response,

• a context.

Let’s register a representation factory for Posts list:

@post_list.representation()
def posts_list_as_dict(posts, context):

return {
'posts': [post_as_dict(post, context) for post in posts]

}

As you can see Posts list representation factory uses a post_as_dict() method. There is no magic, so you must
implement it:

def post_as_dict(post, context):
return {

'id': post.pk,
'title': post.title,

2.4. Build your API 7

Restosaur Documentation, Release 0.6.7

'content': post.content,
}

Note: Representation factories takes two positional arguments: data object and the context. There is a good practice
to define helper functions in that way. The context contains request state, which may be used for checking permissions,
for example, and provides tool for creating links between resources. You may consider making context optional:

def post_as_dict(post, context=None):
...

Reusing respresentation factories

Now let’s create a Post’s detail controller and bind to HTTP GET method of a post_detail resource:

@post_detail.get()
def post_detail_view(context, pk):

return context.Response(get_object_or_404(Post, pk=pk))

The implementation is very similar to Posts list controller. We’re returning a data object, which is a Post model
instance in our case. There is a second argument defined in our callback (it’s name is taken from URI template, a :pk
var). And we’re raising Http404 exception when Post is not found.

Note: Restosaur catches Http404 exception raised by get_object_or_404 and converts it to
NotFoundResponse internally. This is quite handy shortcut.

We can now create a representation for Post detail. But please note that we have one already! This is a
post_as_dict function. So in that case we need just to register it as a representation:

@post_detail.representation()
def post_as_dict(post, context):

...

Linking to resources

REST services are about representations and relations between them, so linking them together is fundamental. The
links can be cathegorized as internal and external. Internal links are handled by Restosaur, but external links may be
just URIs passed as a strings.

Let’s complete the Post’s representation by adding a URIs of every object. We’ll use context.url_for() method
to generate them:

context.url_for(post_detail, pk=post.pk)

You need just to add this call to post_as_dict factory:

@post_detail.representation()
def post_as_dict(post, context):

return {
'id': post.pk,
'title': post.title,

8 Chapter 2. Quickstart

Restosaur Documentation, Release 0.6.7

'content': post.content,
create link (URI) to this object
'href': context.url_for(post_detail, pk=post.pk),
}

Note: Linking resources by passing URI without HTTP method nor additional description is insufficiet to build really
RESTful service. Restosaur allows you to do anything you want, so you may create own link factories and use them
in yours representaion factories. For example:

def json_link(uri, method='GET', **extra):
data = dict(extra)
data.update({

'uri': uri,
'method': method,
})

return data

@post_detail.representation()
def post_as_dict(post, context):

return {
'id': post.pk,
'title': post.title,
'content': post.content,
'link': json_link(context.url_for(post_detail, pk=post.pk)),
}

Just place json_link helper in your core webapi.py module and import it when needed:

from webapi import api, get_object_or_404, json_link

Complete example of the module

from webapi import api, get_object_or_404
from .models import Post

register resources

post_list = api.resource('posts')
post_detail = api.resource('posts/:pk')

register methods callbacks

@post_list.get()
def post_list_view(context):

return context.Response(Post.objects.all()) # 200 OK response

@post_detail.get()
def post_detail_view(context, pk):

return context.Response(get_object_or_404(Post, pk=pk))

2.4. Build your API 9

Restosaur Documentation, Release 0.6.7

register representation factories

@post_detail.representation()
def post_as_dict(post, context):

return {
'id': post.pk,
'title': post.title,
'content': post.content,
create link (URI) to this object
'href': context.url_for(post_detail, pk=post.pk),
}

@post_list.representation()
def posts_list_as_dict(posts, context):

return {
'posts': [post_as_dict(post, context) for post in posts]

}

Test your API

• Start your Django project by calling:

python manage.py runserver

• Add some posts by admin interface or directly in database

• And browse your posts via http://localhost:8000/posts

Making resources private

You may want to make some of your resources private, especially when your controllers require a logged user
instance.

To achieve that you’ll need to use a login_required decorator and wrap your controllers/views with it. Add to
your main webapi.py module:

from restosaur.decorators import login_required

import decorator in your blog/restapi.py at the top of the module:

from webapi import login_required

and wrap your controllers with it:

@post_list.get() # must be outermost decorator
@login_required
def post_list_view(context):

...

@post_detail.get() # must be outermost decorator
@login_required

10 Chapter 2. Quickstart

http://localhost:8000/posts

Restosaur Documentation, Release 0.6.7

def post_detail_view(context, pk):
...

Note: The login_required decorator will be moved to restosaur.contrib.django.decorators
module in the future (from v0.8). After upgrading you will need to change just one import in your core webapi.py
module.

Accessing the request object

The original request object will be always delivered as a context.request property. In our casue it will be an
original Django WSGIRequest instance.

Context properties

Restosaur’s context delivers unified request data. You can access query parameters, the payload, uploaded files and
headers.

context.parameters An URI query parameters wrapped with QueryDict dict-like instance.

context.body Deserialized request payload

context.raw Original request payload

context.files Uploaded files dictionary (depends on framework adapter)

context.headers Dictionary that contain normalized HTTP headers

context.request Original HTTP request object, dependent on your web framework used

Response factories

Context object delivers factories for common response types:

• context.Response() – 200 OK response

• context.Created() – 201 Created response

• context.NoContent() – 204 No Content response

• context.SeeOther() – 303 See Other response

• context.NotModified() – 304 Not Modified response

• context.BadRequest() – 400 BadRequest response

• context.Unauthorized() – 401 Forbidden response

• context.Forbidden() – 403 Forbidden response

• context.NotFound() – 404 Not Foud response

Other statuses can be set by context.Response(), for example:

return context.Response(data, status=402)

2.7. Accessing the request object 11

Restosaur Documentation, Release 0.6.7

Extending the context

Restosaur has initial support for middlewares. You can use them to extend the context object as you need.

Middlewares are simple classes similar to Django’s middlewares. You can define set of middlewares in your
restosaur.API instance.

For example, let’s add an user property to our context. To do that extend your webapi.py core module with:

class UserContextMiddleware(object):
def process_request(self, request, context):

context.user = request.user

and change your API object initialization to:

api = restosaur.API(middlewares=[UserContextMiddleware()])

Now you’ll be able to access the user via context.user property. In our case it will be a Django User or
AnonymousUser class instance.

Note: The main advantage over Django middlewares is that the middlewares can be set for every API object inde-
pendely. Your web application server may handle different middlewares depending on your requirements. This is very
important for request-response processing speed.

Permissions

Your API services may be accessible only for:

• a specified group of users – controller/view level permissions,

• the data might be limited – object level permissions,

• and a representations may be limited – content level permissions.

Restosaur allows you to use any method and does not force you to do it in a specified way.

Controller/view level permissions

You may decorate any controller/view with a decorator which checks user’s permissions.

Restosaur provides staff_member_required decorator as an example of Django’s decorator of same name. You
need to import it into webapi.py module:

from restosaur.decorators import staff_member_required

import it to your blog/restapi.py module:

from webapi import staff_member_required

and just wrap your callbacks with it:

@post_list.get() # must be outermost decorator
@login_required
@staff_member_required

12 Chapter 2. Quickstart

Restosaur Documentation, Release 0.6.7

def post_list_view(context):
...

Note: The staff_member_required decorator will be moved to restosaur.contrib.django.
decorators module in the future (from v0.8). After upgrading you will need to change just one import in your
core webapi.py module.

Object level permissions

In that case you should wrap your data generation within views/controllers with a desired filter.

Let’s say that some users should not access a Posts with titles starting with a “X” letter. Create filter somewhere, i.e. a
blog/perms.py file:

def posts_for_user(user, posts):
if not user.has_perm('can_view_posts_starting_with_X_letter'):

posts = posts.exclude(title__startswith='X')
return posts

Then wrap your Posts queryset with that filter:

from . import perms

def get_user_posts(user):
'''Returns a Posts queryest available for a specified user'''
return perms.posts_for_user(user, Posts.objects.all())

def post_list_view(context):
return context.Response(get_user_posts(context.user))

def post_detail_view(context, pk):
posts = get_user_posts(context.user)
return context.Response(get_object_or_404(posts, pk=pk))

Limiting representation data

Let’s assume that non-admin users can’t view Posts content.

To do that you can extend your blog/perms.py with a helper function:

def can_view_post_content(user):
return user.is_superuser

Now modify your representation factory:

def post_as_dict(post, context):
data = {

'id': post.pk,
'title': post.title,
}

2.11. Permissions 13

Restosaur Documentation, Release 0.6.7

if perms.can_view_post_content(context.user):
data.update({

'content': post.content,
})

return data

14 Chapter 2. Quickstart

CHAPTER 3

Development status

Restosaur is currently in alpha stage, but it is pretty stable. API may be changed a little in newer versions, especially
from v0.7.

Restosaur v0.6 is used in some production environments and works without any problems, although it is lacking some
functionality.

The unit tests does not cover 100% of the code, currently.

As always – use it at your own risk.

15

Restosaur Documentation, Release 0.6.7

16 Chapter 3. Development status

CHAPTER 4

Integrations

Restosaur v0.6 works only with Django. The supported versions are:

• Django 1.6

• Django 1.7

• Django 1.8

• Django 1.9

• Django 1.10 (beta1)

Plain WSGI interface will be supported starting from v0.8. Built-in support for other web frameworks will be added
in v1.0. It is possible that web framework adapters will be provided as a separate Python packages.

17

Restosaur Documentation, Release 0.6.7

18 Chapter 4. Integrations

CHAPTER 5

Roadmap

0.6 (alpha, current)

• Django-only

• A prototype of a final interface

• Basic represenation support and content negotiaion

0.7 (beta)

• stable representations and services API

• removed obsolete code

• better test coverage

• enhanced content negotiation and requests dispatching

• added final middleware support

0.8 (beta)

First web framework independent release:

• added wsgi interface

• moved Django adapter to contrib module

• moved Django helpers to contrib module

19

Restosaur Documentation, Release 0.6.7

0.9 (beta)

• Python 3.x support

1.0

• stable API

• ~100% test coverage

• adapters for common web frameworks

• Python 2 and Python 3 support

• complete documentation

20 Chapter 5. Roadmap

CHAPTER 6

Contribution

The repository

Restosaur is hosted on GitHib – https://github.com/marcinn/restosaur

If you would like to contribute, please create issues on GitHub, make a fork and send pull requests.

Coding standards

• Please follow PEP8 guidelines

21

https://github.com/marcinn/restosaur

Restosaur Documentation, Release 0.6.7

22 Chapter 6. Contribution

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

23

	About
	Quickstart
	Development status
	Integrations
	Roadmap
	Contribution
	Indices and tables

