
Restosaur Documentation
Release 0.7-dev

Marcin Nowak

Mar 30, 2017

Contents

1 About 3

2 Quickstart 5

3 The Guide 17

4 Development status 25

5 Integrations 27

6 Roadmap 29

7 Contribution 31

8 Indices and tables 33

i

ii

Restosaur Documentation, Release 0.7-dev

A nimble RESTful library for any Python web framework.

Contents 1

Restosaur Documentation, Release 0.7-dev

2 Contents

CHAPTER 1

About

What Restosaur is?

Restosaur is a RESTful foundation library for Python, which aims to be a transparent layer for building REST-like or
RESTful services, adaptable to any web framework.

Restosaur helps you to adapt your data and business logic to a powerful RESTful service.

The key concepts are:

• make library layer as transparent as possible,

• operate on object of any type as a model,

• focus on resources and their representations,

• base on content types as a client-server contract machinery,

• do not force an API developer to use any specific structures, patterns, solutions,

• maximize flexibility of constructing control flow and data factories,

• provide clean interface, sane defaults and handy toolkit,

• make library independent from any web framework and provide adapters to common web frameworks,

• follow explicit is better than implicit rule (see PEP20) – no magic inside.

Note: Up to v0.8 Restosaur is a Django-only project for historical reasons. Please follow Roadmap for details.

What Restosaur is not?

Restosaur is not a framework. There are no batteries included. There are no paginators, CRUD mappers, authentica-
tors, permission system nor autogenerated HTML representation (which is a bad concept at all).

3

Restosaur Documentation, Release 0.7-dev

Every REST-like or RESTful API may be very specific. As an API author you shold have possibility to do anything
you want and use any tool you need.

If you’re using a web framework, you have decent tools already.

4 Chapter 1. About

CHAPTER 2

Quickstart

Note: Up to v0.8 Restosaur is a Django-only project for historical reasons, and this Quickstart guide is based on a
Django project. Please follow Roadmap for details.

Installation

Restosaur is hosted on PyPI. Use pip, easy_install or any similar software to install it:

pip install restosaur

Prepare project

To start work with Restosaur is good to create core module for your API, for example:

touch <myproject>/webapi.py

And fill the webapi.py file with:

import restosaur

import handy shortcuts here
from django.shortcuts import get_object_or_404 # NOQA

api = restosaur.API()

5

Restosaur Documentation, Release 0.7-dev

Configure Django

To setup Restosaur with Django, follow these steps:

• Add restosaur to INSTALLED_APPS in your settings module

• Include your API url patterns in main urls.py module

Example of the urls.py module:

from django.conf.urls import url
from webapi import api

urlpatterns = [...] # Your other patterns here
urlpatterns += api.urlpatterns()

If your project is based only on Restosaur, just write:

urlpatterns = api.urlpatterns()

Note: For Django <1.7 you must call autodiscover explicitely. The good place is your urls.py module:

from django.conf.urls import url
from webapi import api

import restosaur
restosaur.autodiscover() # Before api.urlpatterns() call

... rest of urls.py file...

Build your API

Let’s assume you’re creating an another Blog project and the app name is called blog. In your blog/models.py
you have Post model defined as:

class Post(models.Model):
title = models.CharField(max_length=200)
content = models.TextField()

Initializing API module

First, create a restapi.py module, which will be autodiscovered by default:

touch blog/restapi.py

Then import your api object, handy shortcuts and your models:

from webapi import api, get_object_or_404
from .models import Post

6 Chapter 2. Quickstart

Restosaur Documentation, Release 0.7-dev

Creating resources

Now create a resources - first for list of Posts and second for Post detail.

Note: There is no difference between collection and detail - both are just resources but their controller logic and
representation differs.

To do that use resource() factory and provide URL template fragment as an argument:

post_list = api.resource('posts')
post_detail = api.resource('posts/:pk')

Registering HTTP services

Now you have two variables - instances of Resource class. Resource is a container for HTTP method callbacks,
and they can be registered using decorators. You have to choose from:: .get(), .post(), .put(), .patch(),
.delete() and .head().

Let’s create a callback (a controller/view) for Posts list, which will be accessible by HTTP GET method. The callback
takes at least one argument - a context, which is similar to request object. The callback must return a Response
object:

@post_list.get()
def post_list_view(context):

return context.Response(Post.objects.all()) # 200 OK response

Response takes at least one argument - a data object. It may be anything. The data object will be passed “as is” to
representation factories. In the example above we’re passing a Post’s queryset object.

Representations

Now there is time to register a representation factory. The return value must be serializable by content type serializer.
In our case we will use plain Python dict which will be passed internally to JsonSerializer (the default).

The representation factory callbacks takes two positionl arguments:

• a data object returned from controller / view in a Response,

• a context.

Let’s register a representation factory for Posts list:

@post_list.representation()
def posts_list_as_dict(posts, context):

return {
'posts': [post_as_dict(post, context) for post in posts]

}

As you can see Posts list representation factory uses a post_as_dict() method. There is no magic, so you must
implement it:

def post_as_dict(post, context):
return {

'id': post.pk,
'title': post.title,

2.4. Build your API 7

Restosaur Documentation, Release 0.7-dev

'content': post.content,
}

Note: Representation factories takes two positional arguments: data object and the context. There is a good practice
to define helper functions in that way. The context contains request state, which may be used for checking permissions,
for example, and provides tool for creating links between resources. You may consider making context optional:

def post_as_dict(post, context=None):
...

Reusing respresentation factories

Now let’s create a Post’s detail controller and bind to HTTP GET method of a post_detail resource:

@post_detail.get()
def post_detail_view(context, pk):

return context.Response(get_object_or_404(Post, pk=pk))

The implementation is very similar to Posts list controller. We’re returning a data object, which is a Post model
instance in our case. There is a second argument defined in our callback (it’s name is taken from URI template, a :pk
var). And we’re raising Http404 exception when Post is not found.

Note: Restosaur catches Http404 exception raised by get_object_or_404 and converts it to
NotFoundResponse internally. This is quite handy shortcut.

We can now create a representation for Post detail. But please note that we have one already! This is a
post_as_dict function. So in that case we need just to register it as a representation:

@post_detail.representation()
def post_as_dict(post, context):

...

Linking

REST services are about representations and relations between them, so linking them together is fundamental. The
links can be cathegorized as internal and external. Internal links are handled by Restosaur, but external links may be
just URIs passed as a strings.

Let’s complete the Post’s representation by adding a URIs of every object.

Linking to resources

We’ll use context.link() method to generate URL for a Post instance detail view:

context.link(post_detail, post)

Note: This will generate a URL for the post_detail resource, which has defined an URL template as posts/
:pk. The :pk variable will be read from post instance.

8 Chapter 2. Quickstart

Restosaur Documentation, Release 0.7-dev

The only rule is that Restosaur expects pk to be an object’s property or a key/index.

This is an equivalent of:

context.url_for(post_detail, pk=post.pk)

You need just to add this call to post_as_dict factory:

@post_detail.representation()
def post_as_dict(post, context):

return {
'id': post.pk,
'title': post.title,
'content': post.content,
create link (URI) to this object
'href': context.link(post_detail, post),
}

Note: Linking resources by passing URI without HTTP method nor additional description is insufficiet to build really
RESTful service. Restosaur allows you to do anything you want, so you may create own link factories and use them
in yours representaion factories. For example:

def json_link(uri, method='GET', **extra):
data = dict(extra)
data.update({

'uri': uri,
'method': method,
})

return data

@post_detail.representation()
def post_as_dict(post, context):

return {
'id': post.pk,
'title': post.title,
'content': post.content,
'link': json_link(context.link(post_detail, post)),
}

Just place json_link helper in your core webapi.py module and import it when needed:

from webapi import api, get_object_or_404, json_link

Linking to models

Restosaur gives a possibility to register link views for your models. This approach is a next layer of encapsulation and
DRY improvement.

The low-level context.url_for()method requires a resource and path’s specific arguments to generate the URL.
There is no encapsulation at all, and DRY is broken.

The context.link() shortcut encapsulates URL generation by passing resource and model instance as arguments.
You don’t need to repeat URL arguments.

2.4. Build your API 9

Restosaur Documentation, Release 0.7-dev

And finally context.link_model() shortcut encapsulates URL generation by referencing directly to the model
instance or class. You don’t need to provide resource nor argument at all. This level of resource linking encapsulation
provides best DRY principles.

The context.link_model() requires model view registration. This can be done several ways:

• using a resource class decorator shourcut – resource.model(ModelClass)

• using an API instance – api.register_view(ModelClass, resource)

• using a class decorator on the model class – @api.view(resource)

Example of using a resource shourtcut:

@post_detail.model(Post)
class Post(models.Model):

pass

Example of using an API instance:

api.register_view(Post, post_detail)

Example of using an API class decorator:

@api.view(post_detail)
class Post(models.Model):

pass

Note: Buiding complex API you may split it into many modules. In that cases there is a high risk of circular imports
problem.

Linking shortcuts are designed to avoid import problems and selecting a way of registering view for the model is
highly dependent on specific case.

To avoid circular import problems you may also pass dotted resource path instead of resource instance:

api.register_view(Post, 'blog.restapi.post_detail')

or using a decorator:

@api.view('blog.restapi.post_detail')
class Post(models.Model):

pass

Note: Model can be an object of any type, not only Django’s django.db.Model. There is no limitation.

Complete example of the module

from webapi import api, get_object_or_404
from .models import Post

register resources

post_list = api.resource('posts')
post_detail = api.resource('posts/:pk')

10 Chapter 2. Quickstart

Restosaur Documentation, Release 0.7-dev

register methods callbacks

@post_list.get()
def post_list_view(context):

return context.Response(Post.objects.all()) # 200 OK response

@post_detail.get()
def post_detail_view(context, pk):

return context.Response(get_object_or_404(Post, pk=pk))

register representation factories

@post_detail.representation()
def post_as_dict(post, context):

return {
'id': post.pk,
'title': post.title,
'content': post.content,
create link (URI) to this object
'href': context.link(post_detail, post),
}

@post_list.representation()
def posts_list_as_dict(posts, context):

return {
'posts': [post_as_dict(post, context) for post in posts]

}

Test your API

• Start your Django project by calling:

python manage.py runserver

• Add some posts by admin interface or directly in database

• And browse your posts via http://localhost:8000/posts

Making resources private

You may want to make some of your resources private, especially when your controllers require a logged user
instance.

To achieve that you’ll need to use a login_required decorator and wrap your controllers/views with it. Add to
your main webapi.py module:

from restosaur.contrib.django.decorators import login_required

import decorator in your blog/restapi.py at the top of the module:

2.5. Test your API 11

http://localhost:8000/posts

Restosaur Documentation, Release 0.7-dev

from webapi import login_required

and wrap your controllers with it:

@post_list.get() # must be outermost decorator
@login_required
def post_list_view(context):

...

@post_detail.get() # must be outermost decorator
@login_required
def post_detail_view(context, pk):

...

Accessing the request object

The original request object will be always delivered as a context.request property. In our casue it will be an
original Django WSGIRequest instance.

Context properties

Restosaur’s context delivers unified request data. You can access query parameters, the payload, uploaded files and
headers.

context.parameters An URI query parameters wrapped with QueryDict dict-like instance.

context.body Deserialized request payload

context.raw Original request payload

context.files Uploaded files dictionary (depends on framework adapter)

context.headers Dictionary that contain normalized HTTP headers

context.request Original HTTP request object, dependent on your web framework used

Response factories

Context object delivers shortcut factories for common response types:

• context.OK() – 200 OK response

• context.Created() – 201 Created response

• context.NoContent() – 204 No Content response

• context.SeeOther() – 303 See Other response

• context.NotModified() – 304 Not Modified response

• context.BadRequest() – 400 BadRequest response

• context.Unauthorized() – 401 Forbidden response

• context.Forbidden() – 403 Forbidden response

12 Chapter 2. Quickstart

Restosaur Documentation, Release 0.7-dev

• context.NotFound() – 404 Not Foud response

Other statuses can be set by context.Response(), for example:

return context.Response(data, status=402)

Extending the context

Restosaur has initial support for middlewares. You can use them to extend the context object as you need.

Middlewares are simple classes similar to Django’s middlewares. You can define set of middlewares in your
restosaur.API instance.

For example, let’s add an user property to our context. To do that extend your webapi.py core module with:

class UserContextMiddleware(object):
def process_request(self, request, context):

context.user = request.user

and change your API object initialization to:

api = restosaur.API(middlewares=[UserContextMiddleware()])

Now you’ll be able to access the user via context.user property. In our case it will be a Django User or
AnonymousUser class instance.

Note: The main advantage over Django middlewares is that the middlewares can be set for every API object inde-
pendely. Your web application server may handle different middlewares depending on your requirements. This is very
important for request-response processing speed.

Permissions

Your API services may be accessible only for:

• a specified group of users – controller/view level permissions,

• the data might be limited – object level permissions,

• and a representations may be limited – content level permissions.

Restosaur allows you to use any method and does not force you to do it in a specified way.

Controller/view level permissions

You may decorate any controller/view with a decorator which checks user’s permissions.

Restosaur provides staff_member_required decorator as an example of Django’s decorator of same name. You
need to import it into webapi.py module:

from restosaur.contrib.django.decorators import staff_member_required

import it to your blog/restapi.py module:

2.10. Extending the context 13

Restosaur Documentation, Release 0.7-dev

from webapi import staff_member_required

and just wrap your callbacks with it:

@post_list.get() # must be outermost decorator
@login_required
@staff_member_required
def post_list_view(context):

...

Object level permissions

In that case you should wrap your data generation within views/controllers with a desired filter.

Let’s say that some users should not access a Posts with titles starting with a “X” letter. Create filter somewhere, i.e. a
blog/perms.py file:

def posts_for_user(user, posts):
if not user.has_perm('can_view_posts_starting_with_X_letter'):

posts = posts.exclude(title__startswith='X')
return posts

Then wrap your Posts queryset with that filter:

from . import perms

def get_user_posts(user):
'''Returns a Posts queryest available for a specified user'''
return perms.posts_for_user(user, Posts.objects.all())

def post_list_view(context):
return context.Response(get_user_posts(context.user))

def post_detail_view(context, pk):
posts = get_user_posts(context.user)
return context.Response(get_object_or_404(posts, pk=pk))

Limiting representation data

Let’s assume that non-admin users can’t view Posts content.

To do that you can extend your blog/perms.py with a helper function:

def can_view_post_content(user):
return user.is_superuser

Now modify your representation factory:

def post_as_dict(post, context):
data = {

'id': post.pk,
'title': post.title,

14 Chapter 2. Quickstart

Restosaur Documentation, Release 0.7-dev

}
if perms.can_view_post_content(context.user):

data.update({
'content': post.content,
})

return data

2.11. Permissions 15

Restosaur Documentation, Release 0.7-dev

16 Chapter 2. Quickstart

CHAPTER 3

The Guide

Glossary

Benefits of using Restosaur

Restosaur’s internals

Architecture

Restosaur is a library which provides tools for implementing RESTful server in a Python programming language. It
also provides an Integration Layer which connects Restosaur’s internals to existing web frameworks through a Web
Framework Adapters.

The process of adaptation transforms original HTTP requests into internal Context objects, and transforms internal
Response objects into web framework HTTP responses. Web Framework Adapter connetcs URLs and HTTP callbacks
to the framework’s routing system (just once at the startup stage).

17

Restosaur Documentation, Release 0.7-dev

The Context

A Context is a class which represents a HTTP request data. It is similar to request objects of web frameworks,
but may mutate during dispatching. In such cases it may not be identical to a HTTP request. That’s why it is named
differently.

A Context object holds an original request object, reference to the API instance, matched resource object, normalized
headers, normalized HTTP method name, GET, POST and FILES parameters, and of course the payload of the request
(raw and deserialized).

The context instance is passed to every object during dispatch process, so every part of a pipeline can access not only
for request data, but also for proper API and resource instances.

Context class defines handy response factories (shortcuts).

Resources

Resource is an object, which manages one and the only one unique URI, and allows clients to read and modify it’s
state.

A resource instance can handle GET, POST, PUT, PATCH, DELETE and OPTIONS methods. By default there are no
callbacks registered. If no callback is registered for a requested method, the 405 Method Not Allowed response
will be automatically generated.

A method callbacks are similar to controllers or views, known well from MVC or MVT paradigms, and they must
always return a Response instance.

Responses

Responses are objects which holds information required to generate final HTTP response. They holds a HTTP response
code, context instance, response HTTP headers, response content type and optional resource state object.

Restosaur defines common types of responses:

18 Chapter 3. The Guide

Restosaur Documentation, Release 0.7-dev

Class Context shortcut Code
responses.OKResponse ctx.OK() 200
responses.CreatedResponse ctx.Created() 201
responses.NoContentResponse ctx.NoContent() 204
responses.SeeOtherResponse ctx.SeeOther(uri) 303
responses.NotModifiedResponse ctx.NotModified() 304
responses.BadRequestResponse ctx.BadRequest() 400
responses.UnauthorizedResponse ctx.Unauthorized() 401
responses.ForbiddenResponse ctx.Forbidden() 403
responses.NotFoundResponse ctx.NotFound() 404
responses.MethodNotAllowedResponse ctx.MethodNotAllowed() 405
responses.NotAcceptableResponse ctx.NotAcceptable() 406
responses.UnsupportedMediaTypeResponse ctx.UnsupportedMediaType() 415
responses.InternalErrorResponse – 500
responses.NotImplementedResponse – 501

API objects

Web Framework Adapters

Data flow

Note: The facts worth remembering:

• HTTP callbacks are responsible for reading and changing a resource state.

• Representation factories are responsible for transforming the state into transport structure.

Let’s assume you have a Car class and a car_detail resource, which is responsible for managing a single car
identitfied by plate_number. A GET method callback of the resource is responsible for reading a Car state from
the database. The resource has a registered representation for an application/json type and a Car class, which
is responsible for translating Car instance into pure Python’s dict.

When client requests a details of a car, in a application/json format, a GET callback is called. After handling
a HTTP method Restosaur begins a content negotiation procedure. The application/json callback is found as
the best matching and Car translates into a dict. Then a dict object is simply serialized for a streaming.

Preparing the environment

Initializing the API instance

Restosaur is designed to support multi-apps project, so at least one API instance is required to start working with the
library.

There is no special place nor style to do it, but a common practice is to create a decicated module or package with
your’s API internals. The typical name is just webapi.py. The only one requirement is that your module/package
must be importable.

The restosaur package contains common objects imported to it’s namespace. This is a top level interface of a
package. In most cases you’ll need just one import, or just few flat-style imports directly from restosaur. A rare
exceptions are related to a contrib packages.

3.4. Preparing the environment 19

Restosaur Documentation, Release 0.7-dev

Note: It is very handy to make your webapi module/package a top-level interface of the API. Just import there
common objects from a restosaur namespace and define or import custom helpers.

The common rule of thumb is to avoid direct imports from a restosaur namespace in a rest of your code.

Let’s make an API instance by importing adequate class. For Django it will be restosaur.contrib.django.
API:

from restosaur.contrib.django import API

webapi = API('api')

The webapi object holds now API instance, which is responsible mostly for managing the API resources, serializers
registry, models and their views registry, and configured middlewares.

The interface of an API initializer is:

restosaur.api.API.__init__(
path=None, middlewares=None, context_class=None,
default_charset=None, debug=False)

path An URL prefix of your API instance (relative).

Leave it empty if you want to bind the API instance as a root resource.

middlewares iterable of instantiated middlewares

context_class a class used by internal context factory

default_charset the default charset of the text/html output (default: utf-8)

debug a flag that turns on debug mode

Note: API instance holds no resources by default. If you want to make an API root view, you must create a resource
explicitely:

root = webapi.resource('/')

Creating a resources

To create a resource you’ll need to use a factory method:

webapi.resource(path, *args, **kwargs)

This is a factory of the restosaur.resource.Resource class. Resource class holds callbacks for HTTP meth-
ods and representations registry. It describes how to read and manage the resource’s state, and how to build the state
representation understandable for clients.

path required resource’s path, relative to the API’s path.

Let’s create two resources, one for a list (collection) and second for a details view:

car_list = webapi.resource('cars')
car_detail = webapi.resource('cars/:plate_number')

As a result a two endpoints will be available as a URL patterns (Django example):

20 Chapter 3. The Guide

Restosaur Documentation, Release 0.7-dev

• /api/cars

• /api/cars/(?P<plate_number>w+)

Note that no trailing slash is generated. If you need to be compatible with Django’s APPEND_SLASH setting, you
must:

• append trailing slashes explicitely in resource paths,

• instantiate restosaur.contrib.django.API with append_slash set to True.

API.view(resource, view_name=None)(model_class)

A decorator which binds a model_class to the resource as a named view. If view_name is not specified, the resource
is linked to the model as a default one.

An example:

car_detail = webapi.resource('cars/:plate_number')

@webapi.view(car_detail)
class Car(object):

def __init__(self, plate_number, name):
self.plate_number = plate_number
self.name = name

The above example creates a default link between car_detail resource and Car class.

This will allow you to generate an URLs to the Car resources in a DRY approach. Anytime you’ll need to change a
resource‘s URI, the linking to the model will not require a change:

@car_detail.representation('application/json')
def car_json(car, ctx):

return {
'plate_number': car.plate_number,
'name': car.name,
'@id': ctx.link_model(car),

}

3.4. Preparing the environment 21

Restosaur Documentation, Release 0.7-dev

Handling HTTP methods

Middlewares

Building The Model

Key concepts

Models

Representations

Linking

Validators

Big application layout

HTTP layer

Registering method callbacks

Content negotiation

Serialization

Caching

Integrations

Django

Accessing request object

Accessing user object

Binding to the URL resolver

Linking Querysets

Making private resources

22 Chapter 3. The Guide

Restosaur Documentation, Release 0.7-dev

Reusing decorators

Switching to Restosaur

Building the API together with Django REST Framework

Migrating from Django REST Framework

Advanced topics

Going RESTfull with JSON-LD

Integrate with your framework

Custom context classes

Streaming responses

Predicates

Building interchangeable APIs

Troubleshooting

3.8. Switching to Restosaur 23

Restosaur Documentation, Release 0.7-dev

24 Chapter 3. The Guide

CHAPTER 4

Development status

Restosaur is currently in alpha stage, but it is pretty stable. API may be changed a little in newer versions, especially
from v0.7.

Restosaur v0.6 is used in some production environments and works without any problems, although it is lacking some
functionality.

The unit tests does not cover 100% of the code, currently.

As always – use it at your own risk.

25

Restosaur Documentation, Release 0.7-dev

26 Chapter 4. Development status

CHAPTER 5

Integrations

Restosaur v0.7 works only with Django. The supported versions are:

• Django 1.8

• Django 1.9

• Django 1.10

Support for Django 1.6 and 1.7 is officially dropped, but you can try to use it using Python 2.7, 3.3 or 3.4.

Plain WSGI interface will be supported starting from v0.8. Built-in support for other web frameworks will be added
in v1.0. It is possible that web framework adapters will be provided as a separate Python packages.

27

Restosaur Documentation, Release 0.7-dev

28 Chapter 5. Integrations

CHAPTER 6

Roadmap

0.6 (alpha, current)

• Django-only

• A prototype of a final interface

• Basic represenation support and content negotiaion

0.7 (beta)

• stable representations and services API

• remove obsolete code

• better test coverage

• enhance content negotiation and requests dispatching

• add final middleware support

• Python 3.x support

0.8 (beta)

First web framework independent release:

• add wsgi interface

• move Django adapter to contrib module

• move Django helpers to contrib module

29

Restosaur Documentation, Release 0.7-dev

1.0

• stable API

• ~100% test coverage

• adapters for common web frameworks

• Python 2 and Python 3 support

• complete documentation

30 Chapter 6. Roadmap

CHAPTER 7

Contribution

Development

Restosaur is hosted on GitHib – https://github.com/marcinn/restosaur

If you would like to contribute, please create issues on GitHub, make a fork and send pull requests.

Coding standards

• Please follow PEP8 guidelines

Documentation

The documentation is hosted in the same repository. It is built with Sphinx.

Translation

The documentation requires a correction and translations. Help in translation and working with English version is very
appreciated.

31

https://github.com/marcinn/restosaur

Restosaur Documentation, Release 0.7-dev

32 Chapter 7. Contribution

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

33

	About
	Quickstart
	The Guide
	Development status
	Integrations
	Roadmap
	Contribution
	Indices and tables

