

Welcome to restnavigator’s documentation!

Contents

	Welcome to restnavigator’s documentation!

	REST Navigator
	Contents

	How to use it
	Links

	GET requests

	Link relation docs

	POST requests

	Errors

	Templated links

	Authentication

	Additional Topics
	Identity Map

	Iterating over a Navigator

	Headers (Request vs. Response)

	Bracket mini-language

	Finding the right link

	Default curie

	Specifying an api name

	Embedded documents

	Development
	Testing

	Planned for the future

	Contributors

	Internal API

	Changelog
	Unreleased

	1.0

REST Navigator

[image: Build Status] [https://travis-ci.org/deontologician/restnavigator] [image: Coverage Status] [https://coveralls.io/r/deontologician/rest_navigator?branch=next] [image: Pypi Status] [https://crate.io/packages/restnavigator/] [image: Documentation Status] [https://readthedocs.org/projects/rest-navigator/?badge=latest]

REST Navigator is a python library for interacting with hypermedia apis
(REST level
3 [http://martinfowler.com/articles/richardsonMaturityModel.html#level3]).
Right now, it only supports
HAL+JSON [http://tools.ietf.org/html/draft-kelly-json-hal-05] but it
should be general enough to extend to other formats eventually. Its
first goal is to make interacting with HAL hypermedia apis as painless
as possible, while discouraging REST anti-patterns.

To install it, simply use pip:

$ pip install restnavigator

Contents

	How to use it
	Links

	GET requests

	Link relation docs

	POST requests

	Errors

	Templated links

	Authentication

	Additional Topics
	Identity Map

	Iterating over a Navigator

	Headers (Request vs. Response)

	Bracket mini-language

	Finding the right link

	Default curie

	Specifying an api name

	Embedded documents

	Development
	Testing

	Planned for the future

How to use it

To begin interacting with a HAL api, you’ve got to create a HALNavigator
that points to the api root. Ideally, in a hypermedia API, the root URL
is the only URL that needs to be hardcoded in your application. All
other URLs are obtained from the api responses themselves (think of your
api client as ‘clicking on links’, rather than having the urls
hardcoded).

As an example, we’ll connect to the haltalk api.

>>> from restnavigator import Navigator
>>> N = Navigator.hal('http://haltalk.herokuapp.com/', default_curie="ht")
>>> N
HALNavigator(Haltalk)

Links

Usually, with the index (normally at the api root), you’re most
interested in the links. Let’s look at those:

>>> N.links()
{u'ht:users': HALNavigator(Haltalk.users),
 u'ht:signup': HALNavigator(Haltalk.signup),
 u'ht:me': TemplatedThunk(Haltalk.users.{name}),
 u'ht:latest-posts': HALNavigator(Haltalk.posts.latest)}

(This may take a moment because asking for the links causes the
HALNavigator to actually request the resource from the server).

Here we can see that the links are organized by their relation type (the
key), and each key corresponds to a new HALNavigator that represents
some other resource. Relation types are extremely important in restful
apis: we need them to be able to determine what a link means in relation
to the current resource, in a way that is automatable.

GET requests

In addition, the root has some state associated with it which you can
get in two different ways:

>>> N() # cached state of resource (obtained when we looked at N.links)
{u'hint_1': u'You need an account to post stuff..',
 u'hint_2': u'Create one by POSTing via the ht:signup link..',
 u'hint_3': u'Click the orange buttons on the right to make POST requests..',
 u'hint_4': u'Click the green button to follow a link with a GET request..',
 u'hint_5': u'Click the book icon to read docs for the link relation.',
 u'welcome': u'Welcome to a haltalk server.'}
>>> N.fetch() # will refetch the resource from the server
{u'hint_1': u'You need an account to post stuff..',
 u'hint_2': u'Create one by POSTing via the ht:signup link..',
 u'hint_3': u'Click the orange buttons on the right to make POST requests..',
 u'hint_4': u'Click the green button to follow a link with a GET request..',
 u'hint_5': u'Click the book icon to read docs for the link relation.',
 u'welcome': u'Welcome to a haltalk server.'}

Calling a HALNavigator will execute a GET request against the resource
and returns its value (which it will cache).

Link relation docs

Let’s register a hal talk account. Unfortunately, we don’t really know
how to do that, so let’s look at the documentation. The ht:signup
link looks promising, let’s check that:

>>> N.docsfor('ht:signup')

A browser will open to http://haltalk.herokuapp.com/rels/signup.

What? Popping up a browser from a library call? Yes, that’s how
rest_navigator rolls. The way we see it: docs are for humans, and while
custom rel-types are URIs, they shouldn’t automatically be dereferenced
by a program that interacts with the api. So popping up a browser serves
two purposes:

	It allows easy access to the documentation at the time when you most
need it: when you’re mucking about in the command line trying to
figure out how to interact with the api.

	It reminds you not to try to automatically dereference the rel
documentation and parse it in your application.

If you need a more robust way to browse the api and the documentation,
HAL Browser [https://github.com/mikekelly/hal-browser] is probably
your best bet.

POST requests

The docs for ht:signup explain the format of the POST request to
sign up. So let’s actually sign up. Since we’ve set "ht" as our
default curie, we can skip typing the curie for convenience. (Note:
haltalk is a toy api for example purposes, don’t ever send plaintext
passwords over an unencrypted connection in a real app!):

>>> fred23 = N['signup'].create(
... {'username': 'fred23',
... 'password': 'hunter2',
... 'real_name': 'Fred 23'}
...)
>>> fred23
HALNavigator(Haltalk.users.fred23)

Errors

If the user name had already been in use, a 400 would have been returned
from the haltalk api. rest_navigator follows the Zen of Python
guideline “Errors should never pass silently”. An exception would have
been raised on a 400 or 500 status code. You can squelch this exception
and just have the post call return a HALNavigator with a 400/500
status code if you want:

>>> dup_signup = N['ht:signup'].create({
... 'username': 'fred23',
... 'password': 'hunter2',
... 'real_name': 'Fred Wilson'
... }, raise_exc=False)
>>> dup_signup
OrphanHALNavigator(Haltalk.signup) # 400!
>>> dup_signup.status
(400, 'Bad Request')
>>> dup_signup.state
{u"errors": {u"username": [u"is already taken"]}}

Templated links

Now that we’ve signed up, lets take a look at our profile. The link for
a user’s profile is a templated link, which restnavigator represents as
a PartialNavigator. Similar to python’s
functools.partial [https://docs.python.org/2/library/functools.html#functools.partial],
a PartialNavigator is an object that needs a few more arguments to
give you a full navigator back. Despite its name, it can’t talk to the
network by itself. Its job is to to generate new navigators for you. You
can see what variables it has by looking at its .variables attribute
(its __repr__ hints at this as well):

>>> N.links().keys()
['ht:latest-posts', 'ht:me', 'ht:users', 'ht:signup']
>>> N['ht:me']
PartialNavigator(Haltalk.users.{name})
>>> N['ht:me'].variables
set(['name'])

The documentation for the ht:me rel type should tell us how the name
parameter is supposed to work, but in this case it’s fairly obvious
(plug in the username). Two provide the template parameters, just call
it with keyword args:

>>> partial_me = N['ht:me']
>>> partial_me.template_uri
'http://haltalk.herokuapp.com/users/{name}'
>>> Fred = partial_me(name='fred23')
>>> Fred
HALNavigator('haltalk.users.fred23')

Now that we have a real navigator, we can fetch the resource:

>>> Fred()
{u'bio': None, u'real_name': u'Fred Wilson', u'username': u'fred23'}

Authentication

In order to post something to haltalk, we need to authenticate with our
newly created account. HALNavigator allows any authentication method
that requests
supports [http://www.python-requests.org/en/latest/user/advanced/#custom-authentication]
(so OAuth etc). For basic auth (which haltalk uses), we can just pass a
tuple.

>>> N.authenticate(('fred23', 'hunter2')) # All subsequent calls are authenticated

This doesn’t send anything to the server, it just sets the
authentication details that we’ll use on the next request. Other
authentication methods may contact the server immediately.

Now we can put it all together to create a new post:

>>> N_post = N['me'](name='fred23')['posts'].create({'content': 'My first post'})
>>> N_post
HALNavigator(Haltalk.posts.523670eff0e6370002000001)
>>> N_post()
{'content': 'My first post', 'created_at': '2015-06-13T19:38:59+00:00'}

It is also possible to specify a custom requests Session object when creating
a new navigator.

For example, if you want to talk to a OAuth2 protected api, simply pass
an OAuth2 Session object that will be used for all requests
done by HALNavigator:

>>> from requests_oauthlib import OAuth2Session
>>> oauth2_session = OAuth2Session(r'client_id', token='token')
>>> N = Navigator.hal('https://api.example.com', session=oauth2_session)

Additional Topics

Identity Map

You don’t need to worry about inadvertently having two different
navigators pointing to the same resource. rest_navigator will reuse the
existing navigator instead of creating a new one

Iterating over a Navigator

If a resource has a link with the rel “next”, the navigator for that
resource can be used as a python iterator. It will automatically raise a
StopIteration exception if a resource in the chain does not have a next
link. This makes moving through paged resources really simple and
pythonic:

post_navigator = fred['ht:posts']
for post in post_navigator:
 # the first post will be post_navigator itself
 print(post.state)

Headers (Request vs. Response)

HTTP response headers are available in N.response.headers

Headers that will be sent on each request can be obtained through the
session:

>>> N.session.headers
Cookies, etc

Bracket mini-language

The bracket ([]) operator on Navigators has a lot of power. As we
saw earlier, the main use is to get a new Navigator from a link
relation:

>>> N2 = N['curie:link_rel']

But, it can also go more than one link deep, which is equivalent to
using multiple brackets in a row:

>>> N3 = N['curie:first_link', 'curie:second_link']
equivalent to:
N3 = N['curie:first_link']['curie:second_link']

And of course, if you set a default curie, you can omit it:

>>> N3 = N['first_link', 'second_link']

Internally, this is completely equivalent to repeatedly applying the
bracket operator, so you can even use it to jump over intermediate
objects that aren’t Navigators themselves:

>>> N['some-link', 3, 'another-link']

This would use the some-link link relation, select the third link
from the list, and then follow another-link from that resource.

Finding the right link

Normally, you can chain together brackets to jump from one resource to
another in one go:

>>> N['ht:widget']['ht:gadget']

This will return a Navigator for the ht:widget link relation and
then immediately fetch the resource and return a Navigator for the
ht:gadget link relation. This works great if you have only one link
per relation, but HAL allows multiple links per relation. Say for
instance we have some links like the following:

When we go to get the ht:some_rel, we’ll get multiple results:

>>> N['ht:some_rel']
[HALNavigator(api.widget[1]),
 HALNavigator(api.widget[2]),
 HALNavigator(api.gadget[1])]

How do we know which one is the one we want? The HAL
spec [https://tools.ietf.org/html/draft-kelly-json-hal-06#section-5.5]
says links with the same rel can be disambiguated by the name link
property:

>>> N.links['ht:some_rel'].get_by('name', 'gadget1')
HALNavigator(api.gadget[1])
>>> N.links['ht:some_rel'].named('gadget1') # same as previous
HALNavigator(api.gadget[1])

We could also use other properties to slice and dice the list:

>>> N.links['ht:some_rel'].get_by('profile', 'gadget')
HALNavigator(api.gadget[1])
>>> N.links['ht:some_rel'].getall_by('profile', 'widget')
[HALNavigator(api.widget[1]), HALNavigator(api.widget[2])]

This works for any property on links, not just the standard HAL
properties.

Default curie

You may specify a default curie when creating your Navigator:

>>> N = HALNavigator('http://haltalk.herokuapp.com', curie='ht')

Now, when you follow links, you may leave off the default curie if you
want:

>>> N.links
{'ht:users': [HALNavigator(Haltalk.users)],
 'ht:signup': [HALNavigator(Haltalk.signup)],
 'ht:me': [HALNavigator(Haltalk.users.{name})],
 'ht:latest-posts': [HALNavigator(Haltalk.posts.latest)]
}
>>> N['ht:users']
HALNavigator(Haltalk.users)
>>> N['users']
HALNavigator(Haltalk.users)

The only exception is where the key being supplied is a IANA registered
link
relation [http://www.iana.org/assignments/link-relations/link-relations.xhtml],
and there is a conflict (hint: this should be quite rare):

>>> N.links
{'ht:next': HALNavigator(Haltalk.unregistered),
 'next': HALNavigator(Haltalk.registered)}
>>> N['next']
HALNavigator(Haltalk.registered)

Specifying an api name

Sometimes the automatic api naming guesses poorly. If you’d like to
override the default name, you can specify it when creating the
navigator:

>>> N = Navigator.hal('http://api.example.com', apiname='MySpecialAPI')
HALNavigator(MySpecialAPI)

Embedded documents

In rest_navigator, embedded documents are treated transparently. This
means that in many cases you don’t need to worry about whether a
document is embedded or whether it’s just linked.

As an example, assume we have a resource like the following:

{
 "_links": {
 ...
 "xx:yams": {
 "href": "/yams"
 }
 ...
 },
 "_embedded": {
 "xx:pickles": {
 "_links": {
 "self": {"href": "/pickles"}
 },
 "state": "A pickle"
 }
 }
 ...
}

From here, you would access both the yams and the pickles
resource with normal bracket syntax:

>>> Yams = N['xx:yams']
>>> Pickles = N['xx:pickles']

The only difference here is that Yams hasn’t been fetched yet, while
Pickles is considered “resolved” already because we got it as an
embedded document.

>>> Yams.resolved
False
>>> Yams.state # None
>>> Pickles.resolved
True
>>> Pickles.state
{'state': 'A pickle'}

If an embedded document has a self link, you can treat it just like you
would any other resource. So if you want to refresh the resource, it’s
as easy as:

>>> Pickles.fetch()

This will fetch the current state of the resource from the uri in its
self link, even if you’ve never directly requested that uri before. If
an embedded resource doesn’t have a self link, it will be an
OrphanNavigator with the parent set to the resource it was embedded
in.

Of course, if you need to directly distinguish between linked resources
and embedded resources, there is an out:

>>> N.embedded()
{'xx:pickles': HALNavigator(api.pickles)
>>> N.links()
{'xx:yams': HALNavigator(api.yams)

However, when using the in operator, it will look in both for a key
you’re interested in:

>>> 'yams' in N # default curie is taken into account!
True
>>> 'xx:yams in N
True
>>> 'xx:pickles' in N
True

Development

Testing

To run tests, first install the pytest
framework [http://pytest.org/latest/getting-started.html]:

$ pip install -U pytest

To run tests, execute following from the root of the source directory:

$ py.test

Planned for the future

	Ability to add hooks for different types, rels and profiles. If a
link has one of these properties, it will call your hook when doing a
server call.

	Since HAL doesn’t specify what content type POSTs, PUTs, and PATCHes
need to have, you can specify the hooks based on what the server will
accept. This can trigger off either the rel type of the link, or rest
navigator can do content negotiation over HTTP with the server
directly to see what content types that resource will accept.

Contributors

Thanks very much to rest navigator’s contributors:

	dudycooly [http://github.com/dudycooly]

	bubenkoff [http://github.com/bubenkoff]

	bbsgfalconer [http://github.com/bbsgfalconer]

Internal API

A library to allow navigating rest apis easy.

	
class restnavigator.halnav.APICore(root, nav_class, apiname=None, default_curie=None, session=None, id_map=None)

	Shared data between navigators from a single api.

This should contain all state that is generally maintained from
one navigator to the next.

	
authenticate(auth)

	Sets the authentication for future requests to the api

	
cache(link, nav)

	Stores a navigator in the identity map for the current
api. Can take a link or a bare uri

	
get_cached(link, default=None)

	Retrieves a cached navigator from the id_map.

Either a Link object or a bare uri string may be passed in.

	
is_cached(link)

	Returns whether the current navigator is cached. Intended
to be overwritten and customized by subclasses.

	
class restnavigator.halnav.HALNavigator(link, core, response=None, state=None, curies=None, _links=None, _embedded=None)

	The main navigation entity

	
create(body=None, raise_exc=True, headers=None)

	Performs an HTTP POST to the server, to create a
subordinate resource. Returns a new HALNavigator representing
that resource.

body may either be a string or a dictionary representing json
headers are additional headers to send in the request

	
delete(raise_exc=True, headers=None)

	Performs an HTTP DELETE to the server, to delete resource(s).

headers are additional headers to send in the request

	
fetch(raise_exc=True)

	Performs a GET request to the uri of this navigator

	
patch(body, raise_exc=True, headers=False)

	Performs an HTTP PATCH to the server. This is a
non-idempotent call that may update all or a portion of the
resource this navigator is pointing to. The format of the
patch body is up to implementations.

body may either be a string or a dictionary representing json
headers are additional headers to send in the request

	
upsert(body, raise_exc=True, headers=False)

	Performs an HTTP PUT to the server. This is an idempotent
call that will create the resource this navigator is pointing
to, or will update it if it already exists.

body may either be a string or a dictionary representing json
headers are additional headers to send in the request

	
class restnavigator.halnav.HALNavigatorBase(link, core, response=None, state=None, curies=None, _links=None, _embedded=None)

	Base class for navigation objects

	
authenticate(auth)

	Authenticate with the api

	
docsfor(rel)

	Obtains the documentation for a link relation. Opens in a webbrowser
window

	
embedded()

	Returns a dictionary of navigators representing embedded
documents in the current resource. If the navigators have self
links they can be fetched as well.

	
links()

	Returns a dictionary of navigators from the current
resource. Fetches the resource if necessary.

	
class restnavigator.halnav.Link(uri, properties=None)

	Represents a HAL link. Does not store the link relation

	
relative_uri(root)

	Returns the link of the current uri compared against an api root

	
class restnavigator.halnav.Navigator

	A factory for other navigators. Makes creating them more
convenient

	
static hal(root, apiname=None, default_curie=None, auth=None, headers=None, session=None)

	Create a HALNavigator

	
class restnavigator.halnav.OrphanHALNavigator(link, core, response=None, state=None, curies=None, _links=None, parent=None)

	A Special navigator that is the result of a non-GET

This navigator cannot be fetched or created, but has a special
property called .parent that refers to the navigator this one
was created from. If the result is a HAL document, it will be
populated properly

	
class restnavigator.halnav.PartialNavigator(link, core=None)

	A lazy representation of a navigator. Expands to a full
navigator when template arguments are given by calling it.

	
expand_link(**kwargs)

	Expands with the given arguments and returns a new
untemplated Link object

	
expand_uri(**kwargs)

	Returns the template uri expanded with the current arguments

	
variables

	Returns a set of the template variables in this templated
link

	
exception restnavigator.exc.HALNavigatorError(message, nav=None, status=None, response=None)

	Raised when a response is an error

Has all of the attributes of a normal HALNavigator. The error body can be
returned by examining response.body

	
exception restnavigator.exc.NoResponseError

	Raised when accessing a field of a navigator that has not
fetched a response yet

	
exception restnavigator.exc.OffTheRailsException(traversal, index, intermediates, e)

	Raised when a traversal specified to __getitem__ cannot be
satisfied

	
exception restnavigator.exc.UnexpectedlyNotJSON(uri, response)

	Raised when a non-json parseable resource is gotten

	
exception restnavigator.exc.WileECoyoteException

	Raised when a url has a bad scheme

	
exception restnavigator.exc.ZachMorrisException

	Raised when a url has too many schemes

	
class restnavigator.utils.CurieDict(default_curie, d)

	dict subclass that allows specifying a default curie. This
enables multiple ways to access an item

	
class restnavigator.utils.LinkList(items=None)

	A list subclass that offers different ways of grabbing the values based
on various metadata stored for each entry in the dictionary.

Note: Removing items from this list isn’t really the point, so no attempt
has been made to make this convenient. Deleting items will not remove them
from the list’s metadata.

	
append_with(obj, **properties)

	Add an item to the dictionary with the given metadata properties

	
get_by(prop, val, raise_exc=False)

	Retrieve an item from the dictionary with the given metadata
properties. If there is no such item, None will be returned, if there
are multiple such items, the first will be returned.

	
getall_by(prop, val)

	Retrieves all items from the dictionary with the given metadata

	
named(name)

	Returns .get_by(‘name’, name)

	
serialize

	alias of unicode

	
restnavigator.utils.fix_scheme(url)

	Prepends the http:// scheme if necessary to a url. Fails if a scheme
other than http is used

	
restnavigator.utils.getpath(d, json_path, default=None, sep='.')

	Gets a value nested in dictionaries containing dictionaries.
Returns the default if any key in the path doesn’t exist.

	
restnavigator.utils.getstate(d)

	Deep copies a dict, and returns it without the keys _links and
_embedded

	
restnavigator.utils.namify(root_uri)

	Turns a root uri into a less noisy representation that will probably
make sense in most circumstances. Used by Navigator’s __repr__, but can be
overridden if the Navigator is created with a ‘name’ parameter.

	
restnavigator.utils.normalize_getitem_args(args)

	Turns the arguments to __getitem__ magic methods into a uniform
list of tuples and strings

	
restnavigator.utils.objectify_uri(relative_uri)

	Converts uris from path syntax to a json-like object syntax.
In addition, url escaped characters are unescaped, but non-ascii
characters a romanized using the unidecode library.

	Examples:

	“/blog/3/comments” becomes “blog[3].comments”
“car/engine/piston” becomes “car.engine.piston”

	
restnavigator.utils.parse_media_type(media_type)

	Returns type, subtype, parameter tuple from an http media_type.
Can be applied to the ‘Accept’ or ‘Content-Type’ http header fields.

Changelog

Unreleased

	TBD

1.0

	Embedded support

	Ability to specify default curies

	Resources with no URL are now represented by a special Navigator type called OrphanNavigators

	IP addresses can be used in the url (@dudycooly)

	All tests pass in python 2.6 -> 3.4 (@bubenkoff), and travis now runs tox to ensure they stay that way

	Support the DELETE, and PATCH methods

	posts allow an empty body (@bbsgfalconer)

	Much improved content negotiation (@bbsgfalconer)

	
	There was also a major refactoring that changed how Navigators are created and internally cleaned up a

	lot of really messy code.

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 restnavigator	

 	
 	
 restnavigator.exc	

 	
 	
 restnavigator.halnav	

 	
 	
 restnavigator.registry	

 	
 	
 restnavigator.utils	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | N
 | O
 | P
 | R
 | S
 | U
 | V
 | W
 | Z

A

 	
 	APICore (class in restnavigator.halnav), [1]

 	append_with() (restnavigator.utils.LinkList method), [1]

 	
 	authenticate() (restnavigator.halnav.APICore method), [1]

 	(restnavigator.halnav.HALNavigatorBase method), [1]

C

 	
 	cache() (restnavigator.halnav.APICore method), [1]

 	
 	create() (restnavigator.halnav.HALNavigator method), [1]

 	CurieDict (class in restnavigator.utils), [1]

D

 	
 	delete() (restnavigator.halnav.HALNavigator method), [1]

 	
 	docsfor() (restnavigator.halnav.HALNavigatorBase method), [1]

E

 	
 	embedded() (restnavigator.halnav.HALNavigatorBase method), [1]

 	
 	expand_link() (restnavigator.halnav.PartialNavigator method), [1]

 	expand_uri() (restnavigator.halnav.PartialNavigator method), [1]

F

 	
 	fetch() (restnavigator.halnav.HALNavigator method), [1]

 	
 	fix_scheme() (in module restnavigator.utils), [1]

G

 	
 	get_by() (restnavigator.utils.LinkList method), [1]

 	get_cached() (restnavigator.halnav.APICore method), [1]

 	
 	getall_by() (restnavigator.utils.LinkList method), [1]

 	getpath() (in module restnavigator.utils), [1]

 	getstate() (in module restnavigator.utils), [1]

H

 	
 	hal() (restnavigator.halnav.Navigator static method), [1]

 	HALNavigator (class in restnavigator.halnav), [1]

 	
 	HALNavigatorBase (class in restnavigator.halnav), [1]

 	HALNavigatorError, [1]

I

 	
 	is_cached() (restnavigator.halnav.APICore method), [1]

L

 	
 	Link (class in restnavigator.halnav), [1]

 	
 	LinkList (class in restnavigator.utils), [1]

 	links() (restnavigator.halnav.HALNavigatorBase method), [1]

N

 	
 	named() (restnavigator.utils.LinkList method), [1]

 	namify() (in module restnavigator.utils), [1]

 	
 	Navigator (class in restnavigator.halnav), [1]

 	NoResponseError, [1]

 	normalize_getitem_args() (in module restnavigator.utils), [1]

O

 	
 	objectify_uri() (in module restnavigator.utils), [1]

 	
 	OffTheRailsException, [1]

 	OrphanHALNavigator (class in restnavigator.halnav), [1]

P

 	
 	parse_media_type() (in module restnavigator.utils), [1]

 	
 	PartialNavigator (class in restnavigator.halnav), [1]

 	patch() (restnavigator.halnav.HALNavigator method), [1]

R

 	
 	relative_uri() (restnavigator.halnav.Link method), [1]

 	restnavigator (module), [1]

 	restnavigator.exc (module), [1]

 	
 	restnavigator.halnav (module), [1]

 	restnavigator.registry (module), [1]

 	restnavigator.utils (module), [1]

S

 	
 	serialize (restnavigator.utils.LinkList attribute), [1]

U

 	
 	UnexpectedlyNotJSON, [1]

 	
 	upsert() (restnavigator.halnav.HALNavigator method), [1]

V

 	
 	variables (restnavigator.halnav.PartialNavigator attribute), [1]

W

 	
 	WileECoyoteException, [1]

Z

 	
 	ZachMorrisException, [1]

Internal API

A library to allow navigating rest apis easy.

	
class restnavigator.halnav.APICore(root, nav_class, apiname=None, default_curie=None, session=None, id_map=None)

	Shared data between navigators from a single api.

This should contain all state that is generally maintained from
one navigator to the next.

	
authenticate(auth)

	Sets the authentication for future requests to the api

	
cache(link, nav)

	Stores a navigator in the identity map for the current
api. Can take a link or a bare uri

	
get_cached(link, default=None)

	Retrieves a cached navigator from the id_map.

Either a Link object or a bare uri string may be passed in.

	
is_cached(link)

	Returns whether the current navigator is cached. Intended
to be overwritten and customized by subclasses.

	
class restnavigator.halnav.HALNavigator(link, core, response=None, state=None, curies=None, _links=None, _embedded=None)

	The main navigation entity

	
create(body=None, raise_exc=True, headers=None)

	Performs an HTTP POST to the server, to create a
subordinate resource. Returns a new HALNavigator representing
that resource.

body may either be a string or a dictionary representing json
headers are additional headers to send in the request

	
delete(raise_exc=True, headers=None)

	Performs an HTTP DELETE to the server, to delete resource(s).

headers are additional headers to send in the request

	
fetch(raise_exc=True)

	Performs a GET request to the uri of this navigator

	
patch(body, raise_exc=True, headers=False)

	Performs an HTTP PATCH to the server. This is a
non-idempotent call that may update all or a portion of the
resource this navigator is pointing to. The format of the
patch body is up to implementations.

body may either be a string or a dictionary representing json
headers are additional headers to send in the request

	
upsert(body, raise_exc=True, headers=False)

	Performs an HTTP PUT to the server. This is an idempotent
call that will create the resource this navigator is pointing
to, or will update it if it already exists.

body may either be a string or a dictionary representing json
headers are additional headers to send in the request

	
class restnavigator.halnav.HALNavigatorBase(link, core, response=None, state=None, curies=None, _links=None, _embedded=None)

	Base class for navigation objects

	
authenticate(auth)

	Authenticate with the api

	
docsfor(rel)

	Obtains the documentation for a link relation. Opens in a webbrowser
window

	
embedded()

	Returns a dictionary of navigators representing embedded
documents in the current resource. If the navigators have self
links they can be fetched as well.

	
links()

	Returns a dictionary of navigators from the current
resource. Fetches the resource if necessary.

	
class restnavigator.halnav.Link(uri, properties=None)

	Represents a HAL link. Does not store the link relation

	
relative_uri(root)

	Returns the link of the current uri compared against an api root

	
class restnavigator.halnav.Navigator

	A factory for other navigators. Makes creating them more
convenient

	
static hal(root, apiname=None, default_curie=None, auth=None, headers=None, session=None)

	Create a HALNavigator

	
class restnavigator.halnav.OrphanHALNavigator(link, core, response=None, state=None, curies=None, _links=None, parent=None)

	A Special navigator that is the result of a non-GET

This navigator cannot be fetched or created, but has a special
property called .parent that refers to the navigator this one
was created from. If the result is a HAL document, it will be
populated properly

	
class restnavigator.halnav.PartialNavigator(link, core=None)

	A lazy representation of a navigator. Expands to a full
navigator when template arguments are given by calling it.

	
expand_link(**kwargs)

	Expands with the given arguments and returns a new
untemplated Link object

	
expand_uri(**kwargs)

	Returns the template uri expanded with the current arguments

	
variables

	Returns a set of the template variables in this templated
link

	
exception restnavigator.exc.HALNavigatorError(message, nav=None, status=None, response=None)

	Raised when a response is an error

Has all of the attributes of a normal HALNavigator. The error body can be
returned by examining response.body

	
exception restnavigator.exc.NoResponseError

	Raised when accessing a field of a navigator that has not
fetched a response yet

	
exception restnavigator.exc.OffTheRailsException(traversal, index, intermediates, e)

	Raised when a traversal specified to __getitem__ cannot be
satisfied

	
exception restnavigator.exc.UnexpectedlyNotJSON(uri, response)

	Raised when a non-json parseable resource is gotten

	
exception restnavigator.exc.WileECoyoteException

	Raised when a url has a bad scheme

	
exception restnavigator.exc.ZachMorrisException

	Raised when a url has too many schemes

	
class restnavigator.utils.CurieDict(default_curie, d)

	dict subclass that allows specifying a default curie. This
enables multiple ways to access an item

	
class restnavigator.utils.LinkList(items=None)

	A list subclass that offers different ways of grabbing the values based
on various metadata stored for each entry in the dictionary.

Note: Removing items from this list isn’t really the point, so no attempt
has been made to make this convenient. Deleting items will not remove them
from the list’s metadata.

	
append_with(obj, **properties)

	Add an item to the dictionary with the given metadata properties

	
get_by(prop, val, raise_exc=False)

	Retrieve an item from the dictionary with the given metadata
properties. If there is no such item, None will be returned, if there
are multiple such items, the first will be returned.

	
getall_by(prop, val)

	Retrieves all items from the dictionary with the given metadata

	
named(name)

	Returns .get_by(‘name’, name)

	
serialize

	alias of unicode

	
restnavigator.utils.fix_scheme(url)

	Prepends the http:// scheme if necessary to a url. Fails if a scheme
other than http is used

	
restnavigator.utils.getpath(d, json_path, default=None, sep='.')

	Gets a value nested in dictionaries containing dictionaries.
Returns the default if any key in the path doesn’t exist.

	
restnavigator.utils.getstate(d)

	Deep copies a dict, and returns it without the keys _links and
_embedded

	
restnavigator.utils.namify(root_uri)

	Turns a root uri into a less noisy representation that will probably
make sense in most circumstances. Used by Navigator’s __repr__, but can be
overridden if the Navigator is created with a ‘name’ parameter.

	
restnavigator.utils.normalize_getitem_args(args)

	Turns the arguments to __getitem__ magic methods into a uniform
list of tuples and strings

	
restnavigator.utils.objectify_uri(relative_uri)

	Converts uris from path syntax to a json-like object syntax.
In addition, url escaped characters are unescaped, but non-ascii
characters a romanized using the unidecode library.

	Examples:

	“/blog/3/comments” becomes “blog[3].comments”
“car/engine/piston” becomes “car.engine.piston”

	
restnavigator.utils.parse_media_type(media_type)

	Returns type, subtype, parameter tuple from an http media_type.
Can be applied to the ‘Accept’ or ‘Content-Type’ http header fields.

 nav.xhtml

 Table of Contents

 		Welcome to restnavigator's documentation!

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/comment.png

