
nideconv Documentation

Tomas Knapen

Jul 09, 2018

Getting started

1 Installing nideconv 3

2 What is Deconvolution? 5

3 Usage examples 9

4 Deconvolution of a single time series 11

5 Deconvolution of a group of timeseries (level 2 analysis) 13

6 Voxelwise deconvolution on Nifti Images 15

7 Simulate data 17

i

ii

nideconv Documentation

Nideconv is an easy-to use Python library that can perform automated deconvolution of (primarily) slowly fluctuating
(proxies of) neural signals like pupil size and BOLD fMRI. It was developed at the Vrije Universiteit and the Spinoza
Centre for Neuroimaging by Gilles de Hollander and Tomas Knapen.

Getting started 1

nideconv Documentation

2 Getting started

CHAPTER 1

Installing nideconv

1.1 From PyPi

When the first Beta of nideconv will be released, it will be possible to install nideconv from pip:

pip install nideconv

1.2 From Github

Right now you can clone the main branch of nideconv using git

git clone https://github.com/VU-Cog-Sci/nideconv

Or download and unpack the zip file from Github under Clone and download -> Download ZIP

Then go to the directory in which the package was cloned

cd nideconv

and install the Python package

python setup.py install

Note: Click here to download the full example code

3

nideconv Documentation

4 Chapter 1. Installing nideconv

CHAPTER 2

What is Deconvolution?

Neuroscientists (amongst others) are often interested in time series that are derived from neural activity, such as fMRI
BOLD and pupil dilation. However, for some classes of data (notably, pupil dilation and fMRI BOLD), neural activity
gets temporally delayed and dispersed. This means that if the time series is related to some behavioral events that are
close together in time, these event-related responses will contaminate each other.

from nideconv import simulate
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('white')
sns.set_context('notebook')

2.1 Simulate data

Here we simulate fMRI data with a “cue - stimulus” design. There are four cues and stimulus pairs. The cue is always
followed by a stimulus in 1, 2, 3, or 4 seconds. The cue leads to a small de-activation (0.5 % signal change), the
stimulus a slight activation (1.0 % signal change)

cue_onsets = [5, 15, 25, 35]
stim_onsets = [6, 17, 28, 39]

cue_pars = {'name':'cue',
'mu_group':-.5,
'std_group':0,
'onsets':cue_onsets}

stim_pars = {'name':'stim',
'mu_group':1,
'std_group':0,
'onsets':stim_onsets}

conditions = [cue_pars,

(continues on next page)

5

nideconv Documentation

(continued from previous page)

stim_pars]

data, onsets, parameters = simulate.simulate_fmri_experiment(conditions,
run_duration=60,
noise_level=0.1)

2.2 Plot simulated data

data.plot()
sns.despine()

for onset in cue_onsets:
l1 =plt.axvline(onset, c='r')

for onset in stim_onsets:
l2 =plt.axvline(onset, c='g')

plt.legend([l1, l2], ['Cue', 'Stimulus'])
plt.gcf().set_size_inches(10, 4)

2.3 Underlying data-generating model

Because we simulated the data, we know that the event-related responses should exactly follow the canonical Hemo-
dynamic Response Function [1]_are

from nideconv.utils import double_gamma_with_d
import numpy as np

plt.figure(figsize=(12, 4))

t = np.linspace(0, 20, 100)
ax1 = plt.subplot(121)
plt.title('Ground truth cue-related response')

(continues on next page)

6 Chapter 2. What is Deconvolution?

nideconv Documentation

(continued from previous page)

plt.plot(t, double_gamma_with_d(t) * -.5,
c=sns.color_palette()[0])

plt.xlabel('Time since event (s)')
plt.ylabel('Percent signal change')
plt.axhline(0, c='k', ls='--')

plt.subplot(122, sharey=ax1)
plt.title('Ground truth stimulus-related response')
plt.plot(t, double_gamma_with_d(t),

c=sns.color_palette()[1])
plt.axhline(0, c='k', ls='--')
plt.xlabel('Time since event (s)')
plt.ylabel('Percent signal change')

sns.despine()

2.4 Naive approach: epoched averaging

A simple approach that is more appropriate for fast electrphysiological signals like EEG and MEG would be to se-
lect little chunks of the time series, corresponding to the onset of our events-of-interest and the first 20 seconds
(“epoching”).

nideconv

2.5 References

Total running time of the script: (0 minutes 1.155 seconds)

2.4. Naive approach: epoched averaging 7

nideconv Documentation

8 Chapter 2. What is Deconvolution?

CHAPTER 3

Usage examples

Note: Click here to download the full example code

3.1 Cortical depth estimation from MGDM segmentation

This example shows how to obtain a cortical laminar depth representation from blabla.

This is like super cool.

import response_fytter

Total running time of the script: (0 minutes 0.000 seconds)

9

nideconv Documentation

10 Chapter 3. Usage examples

CHAPTER 4

Deconvolution of a single time series

4.1 ResponseFitter

class nideconv.ResponseFitter(input_signal, sample_rate, oversample_design_matrix=20,
add_intercept=True, **kwargs)

ResponseFitter takes an input signal and performs deconvolution on it. To do this, it requires event times, and
possible covariates. ResponseFytter can, for each event_type, use different basis function sets, see Event.

Methods

add_confounds(name, confound) Add a timeseries or set of timeseries to the general
design matrix as a confound

add_event(event_name[, onset_times, . . .]) create design matrix for a given event_type.
get_epochs(onsets, interval[, . . .]) Return a matrix corresponding to specific onsets,

within a given interval.
get_rsq() calculate the rsq of a given fit.
predict_from_design_matrix([X]) predict a signal given a design matrix.
regress([type, cv, alphas, store_residuals]) Regress a created design matrix on the input_data.
ridge_regress([cv, alphas, store_residuals]) run CV ridge regression instead of ols fit.

add_intercept
get_residuals
get_time_to_peak
get_timecourses
plot_timecourses

add_confounds(name, confound)
Add a timeseries or set of timeseries to the general design matrix as a confound

Parameters

11

nideconv Documentation

confound [array] Confound of (n_timepoints) or (n_timepoints, n_confounds)

add_event(event_name, onset_times=None, basis_set=’fir’, interval=[0, 10], n_regressors=None, du-
rations=None, covariates=None, **kwargs)

create design matrix for a given event_type.

Parameters

event_name [string] Name of the event_type, used as key to lookup this event_type’s char-
acteristics

**kwargs [dict] keyward arguments to be internalized by the generated and internalized
Event object. Needs to consist of the necessary arguments to create an Event object, see
Event constructor method.

get_epochs(onsets, interval, remove_incomplete_epochs=True)
Return a matrix corresponding to specific onsets, within a given interval. Matrix size is (n_onsets,
n_timepoints_within_interval).

Note that any events that are in the ResponseFitter-object will be regressed out before calculating the
epochs.

get_rsq()
calculate the rsq of a given fit. calls predict_from_design_matrix to predict the signal that has been fit

predict_from_design_matrix(X=None)
predict a signal given a design matrix. Requires regression to have been run.

Parameters

X [np.array, (timepoints, n_regressors)] the design matrix for which to predict data.

regress(type=’ols’, cv=20, alphas=None, store_residuals=False)
Regress a created design matrix on the input_data.

Creates internal variables betas, residuals, rank and s. The beta values are then injected into the event_type
objects the ResponseFitter contains.

Parameters

type [string, optional] the type of fit to be done. Options are ‘ols’ for np.linalg.lstsq, ‘ridge’
for CV ridge regression.

ridge_regress(cv=20, alphas=None, store_residuals=False)
run CV ridge regression instead of ols fit. Uses sklearn’s RidgeCV class

Parameters

cv [int] number of cross-validation folds

alphas [np.array] the alpha/lambda values to try out in the CV ridge regression

12 Chapter 4. Deconvolution of a single time series

CHAPTER 5

Deconvolution of a group of timeseries (level 2 analysis)

In most neuroscience studies, you want to analyze a group of subjects, each of which has one or multiple timeseries
(often called ‘runs‘ in fMRI).

To analyze those, you can use the GroupResponseFitter

5.1 GroupResponseFitter

class nideconv.GroupResponseFitter(timeseries, behavior, input_sample_rate, oversam-
ple_design_matrix=20, confounds=None, concate-
nate_runs=True, *args, **kwargs)

Can fit a group of individual subjects and/or runs using a high-level interface.

Methods

add_event
fit
get_conditionwise_timecourses
get_subjectwise_timecourses
get_timecourses
plot_groupwise_timecourses

13

nideconv Documentation

14 Chapter 5. Deconvolution of a group of timeseries (level 2 analysis)

CHAPTER 6

Voxelwise deconvolution on Nifti Images

6.1 NiftiResponseFytter

class nideconv.nifti.NiftiResponseFitter(func_img, sample_rate, mask=None, oversam-
ple_design_matrix=20, add_intercept=True,
detrend=False, standardize=False, con-
founds_for_extraction=None, memory=None,
**kwargs)

Methods

add_confounds(name, confound) Add a timeseries or set of timeseries to the general
design matrix as a confound

add_event(event_name[, onset_times, . . .]) create design matrix for a given event_type.
get_epochs(onsets, interval[, . . .]) Return a matrix corresponding to specific onsets,

within a given interval.
get_rsq() calculate the rsq of a given fit.
regress([type, cv, alphas, store_residuals]) Regress a created design matrix on the input_data.

add_intercept
get_residuals
get_time_to_peak
get_timecourses
plot_timecourses
predict_from_design_matrix
ridge_regress

add_confounds(name, confound)
Add a timeseries or set of timeseries to the general design matrix as a confound

15

nideconv Documentation

Parameters

confound [array] Confound of (n_timepoints) or (n_timepoints, n_confounds)

add_event(event_name, onset_times=None, basis_set=’fir’, interval=[0, 10], n_regressors=None, du-
rations=None, covariates=None, **kwargs)

create design matrix for a given event_type.

Parameters

event_name [string] Name of the event_type, used as key to lookup this event_type’s char-
acteristics

**kwargs [dict] keyward arguments to be internalized by the generated and internalized
Event object. Needs to consist of the necessary arguments to create an Event object, see
Event constructor method.

get_epochs(onsets, interval, remove_incomplete_epochs=True)
Return a matrix corresponding to specific onsets, within a given interval. Matrix size is (n_onsets,
n_timepoints_within_interval).

Note that any events that are in the ResponseFitter-object will be regressed out before calculating the
epochs.

get_rsq()
calculate the rsq of a given fit. calls predict_from_design_matrix to predict the signal that has been fit

predict_from_design_matrix(X=None)
predict a signal given a design matrix. Requires regression to have been run.

Parameters

X [np.array, (timepoints, n_regressors)] the design matrix for which to predict data.

regress(type=’ols’, cv=20, alphas=None, store_residuals=False)
Regress a created design matrix on the input_data.

Creates internal variables betas, residuals, rank and s. The beta values are then injected into the event_type
objects the ResponseFitter contains.

Parameters

type [string, optional] the type of fit to be done. Options are ‘ols’ for np.linalg.lstsq, ‘ridge’
for CV ridge regression.

ridge_regress(*args, **kwargs)
run CV ridge regression instead of ols fit. Uses sklearn’s RidgeCV class

Parameters

cv [int] number of cross-validation folds

alphas [np.array] the alpha/lambda values to try out in the CV ridge regression

16 Chapter 6. Voxelwise deconvolution on Nifti Images

CHAPTER 7

Simulate data

7.1 Simulate fMRI data

nideconv.simulate.simulate_fmri_experiment(conditions=None, TR=1.0, n_subjects=1,
n_runs=1, n_trials=40, run_duration=300,
noise_level=1, n_rois=1, oversample=20,
kernel=’double_hrf’, kernel_pars={})

Simulates an fMRI experiment and returns a pandas DataFrame with the resulting time series in an analysis-
ready format.

By default a single run of a single subject is simulated, but a larger number of subjects, runs, and ROIs can also
be simulated.

Parameters

conditions [list of dictionaries or None] Can be used to customize different conditions. Every
conditions is represented as a dictionary in this list and has the following form:

[{'name':'Condition A',
'mu_group':1,
'std_group':0.1},
{'name':'Condition B',
'mu_group':1,
'std_group':0.1}]

mu_group indicates the mean amplitude of the response to this condition across subjects.
std_group indicates the standard deviation of this amplitude across subjects.

Potentially, customized onsets can also be used as follows:

{'name':'Condition A',
'mu_group':1,
'std_group':0.1
'onsets':[10, 20, 30]}

17

nideconv Documentation

TR [float] Indicates the time between volume acquistisions in seconds (Inverse of the sample
rate).

n_subjects [int] Number of subjects.

n_runs [int] Number of runs per subject.

n_trials [int] Number of trials per condition per run. Only used when no custom onsets are
provided (see conditions).

run_duration [float] Duration of a single run in seconds.

noise_level [float] Standard deviation of Gaussian noise added to time series.

n_rois [int] Number of regions-of-interest. Determines the number of columns of data.

Returns

data [DataFrame] Contains simulated time series with subj_idx, run and time (s) as index.
Columns correspond to different ROIs

onsets [DataFrame] Contains used event onsets with subj_idx, run and trial type as index.

parameters [DataFrame] Contains parameters (amplitude) of the different event type.

Other Parameters

oversample [int] Determines how many times the kernel is oversampled before convolution.
Should usually not be changed.

kernel [str] Sets which kernel to use for response function. Currently only ‘double_hrf ’ can be
used.

Examples

By default, simulate_fmri_experiment simulates a 5 minute run with 40 trials for one subject

>>> data, onsets, params = simulate_fmri_experiment()
>>> print(data.head())

area 1
subj_idx run t
1 1 0.0 -1.280023

1.0 0.908086
2.0 0.850847
3.0 -1.010475
4.0 -0.299650

>>> print(data.onsets)
onset

subj_idx run trial_type
1 1 A 94.317361

A 106.547084
A 198.175115
A 34.941112
A 31.323272

>>> print(params)
amplitude

subj_idx trial_type
1 A 1.0

B 2.0

With n_subjects we can increase the number of subjects

18 Chapter 7. Simulate data

nideconv Documentation

>>> data, onsets, params = simulate_fmri_experiment(n_subjects=20)
>>> data.index.get_level_values('subj_idx').unique()
Int64Index([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,

20],
dtype='int64', name='subj_idx')

7.1. Simulate fMRI data 19

nideconv Documentation

20 Chapter 7. Simulate data

Index

A
add_confounds() (nideconv.nifti.NiftiResponseFitter

method), 15
add_confounds() (nideconv.ResponseFitter method), 11
add_event() (nideconv.nifti.NiftiResponseFitter method),

16
add_event() (nideconv.ResponseFitter method), 12

G
get_epochs() (nideconv.nifti.NiftiResponseFitter

method), 16
get_epochs() (nideconv.ResponseFitter method), 12
get_rsq() (nideconv.nifti.NiftiResponseFitter method), 16
get_rsq() (nideconv.ResponseFitter method), 12
GroupResponseFitter (class in nideconv), 13

N
NiftiResponseFitter (class in nideconv.nifti), 15

P
predict_from_design_matrix() (nide-

conv.nifti.NiftiResponseFitter method), 16
predict_from_design_matrix() (nideconv.ResponseFitter

method), 12

R
regress() (nideconv.nifti.NiftiResponseFitter method), 16
regress() (nideconv.ResponseFitter method), 12
ResponseFitter (class in nideconv), 11
ridge_regress() (nideconv.nifti.NiftiResponseFitter

method), 16
ridge_regress() (nideconv.ResponseFitter method), 12

S
simulate_fmri_experiment() (in module nide-

conv.simulate), 17

21

	Installing nideconv
	What is Deconvolution?
	Usage examples
	Deconvolution of a single time series
	Deconvolution of a group of timeseries (level 2 analysis)
	Voxelwise deconvolution on Nifti Images
	Simulate data

