

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Resource API 3.1.1 documentation

Table of contents

Resource API is a framework that allows developers declaratively define resources and relationships between each other.
The framework maintains referential integrity [http://en.wikipedia.org/wiki/Referential_integrity] for all relations
and resources. The integrity is maintained regardless of data storage model.

Also the framework provides means to expose HTTP interface to the resources via a simple JSON document.

	> Tutorial <
	Intro

	1: collect the use cases

	2: determine entities

	3: entity diagram

	4: ontology to code

	5: structure of the entities

	6: structure to code

	7: persistence

	8: primary key

	9: custom UriPolicy

	10: authorization

	11: object interface

	12. HTTP interface

	Interfaces
	Resource

	Link

	Link declaration

	One way links

	Link cardinality

	Schema and QuerySchema

	Service and registry
	Service class

	Resource registration

	Entry point

	Object interface
	Root resource collection

	Resource collection

	Resource item

	Link holder

	Root link collection

	Link collection

	Link instance

	Link to one

	Schema
	Schema example

	General field API

	Primitive fields

	Composite fields

	Built-in exception classes

	HTTP interface
	General principles

	URL schema

	Error status codes

	WSGI Application reference

	HTTP client
	Root resource collection

	Resource collection

	Resource item

	Link holder

	Root link collection

	Link collection

	Link instance

	Link to one

	Descriptor (schema)

 Copyright 2014, F-Secure.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Resource API 3.1.1 documentation

> Tutorial <

The aim of this tutorial is to provide a comprehensive overview of Resource API components and how they are supposed to
be used to implement real-life applications.

Note

Some of the sections and examples of this tutorial intersect with the information provided by the actual code
documentation. This is intentional.

Intro

For the sake of this tutorial lets try to design a simple school course management system backed with a primitive
python shelve [https://docs.python.org/2/library/shelve.html] backend that is reasonable to use during prototype
phase. We shall implement a granular authorization using means of Resource API framework. After the implementation
is done we shall play with direct Python API and HTTP interface.

1: collect the use cases

Our course simple management system must be able to support the following actions:

	students can sign up to courses

	teachers can kick the students out from the courses

	teachers can grade the students during the courses

	students can make comments about the course and rate its teacher respectively

	teachers are supposed to have information like qualification, diploma, etc.

2: determine entities

Based on usecases mentioned above we can list the following entities (in singular):

	student

	teacher

	course

	comment

	student grade

	teacher rating

Also the following links are supposed to exist:

	student can sign up for MANY courses and each course can be attended by MANY students

	teacher can teach MULTIPLE courses but each course can be taught only by a SINGLE teacher

	teacher can grade a student ONCE for every course the teacher owns

	every student can grade every teacher ONCE for every course the teacher was teaching

	every student can make comments about the courses as much as he wants

3: entity diagram

Note

Designing the perfect course management system is not among the goals of this tutorial. It aims to demonstrate how
Resource API facilitates dealing with implementation issues.

There are several ways to model the system. For the sake of this example we shall look at teachers and students as at
separate entities.

[image: _images/entity_diagram.png]
Entity diagram

4: ontology to code

After we managed to come up with an idea on what kind of resources we are supposed to have and how they are expected to
link to one another we need to write python code that would correspond to these structures.

from resource_api.interfaces import Resource, Link

class Student(Resource):
 """ A pupil """

 class Links:

 class courses(Link):
 """ Courses the student has ever attended """
 target = "Course"
 related_name = "students"
 master = True

 class comments(Link):
 """ Comments made by the student """
 target = "Comment"
 related_name = "student"

 class ratings(Link):
 """ Ratings given by the student """
 target = "TeacherRating"
 related_name = "student"

class Teacher(Resource):
 """ A lecturer """

 class Links:

 class ratings(Link):
 """ Ratings given to the teacher """
 target = "TeacherRating"
 related_name = "teacher"

 class courses(Link):
 """ Courses the teacher is responsible for """
 target = "Course"
 related_name = "teacher"

class Course(Resource):
 """ An educational unit represinting the lessons for a specific set of topics """

 class Links:

 class teacher(Link):
 """ The lecturer of the course """
 target = "Teacher"
 related_name = "courses"
 cardinality = Link.cardinalities.ONE
 master = True
 required = True

 class comments(Link):
 """ All comments made about the course """
 target = "Comment"
 related_name = "course"

 class ratings(Link):
 """ All ratings that were given to the teachers of the specific course """
 target = "TeacherRating"
 related_name = "course"

 class students(Link):
 """ All pupils who attend the course """
 target = "Student"
 related_name = "courses"

class Comment(Resource):
 """ Student's comment about the course """

 class Links:

 class student(Link):
 """ The pupil who made the comment """
 target = "Student"
 related_name = "comments"
 cardinality = Link.cardinalities.ONE
 master = True
 required = True

 class course(Link):
 """ The subject the comment was made about """
 target = "Course"
 related_name = "comments"
 cardinality = Link.cardinalities.ONE
 master = True
 required = True

class TeacherRating(Resource):
 """ Student's rating about teacher's performance """

 class Links:

 class student(Link):
 """ The pupil who gave the rating to the teacher """
 target = "Student"
 related_name = "ratings"
 cardinality = Link.cardinalities.ONE
 master = True
 required = True

 class course(Link):
 """ The subject with respect to which the rating was given """
 target = "Course"
 related_name = "ratings"
 cardinality = Link.cardinalities.ONE
 master = True
 required = True

 class teacher(Link):
 """ The lecturer to whom the rating is related """
 target = "Teacher"
 related_name = "ratings"
 cardinality = Link.cardinalities.ONE
 master = True
 required = True

As you can see every relationship (or link) consists of two edges of
a bidirectional relationship [http://graphaware.com/neo4j/2013/10/11/neo4j-bidirectional-relationships.html]. Even
though we will dive into implementation details of the relationships later on it is critical to highlight that the
main purpose of Resource API is to maintain relational integrity in a similar fashion to graph or SQL databases.

There are couple of important things to note in the code above.

First, all links must have a target and related_name defined. A combination of these two attributes lets the
framework bind two edges into a single link entity.

Second, one of the edges must be marked as a master one. Structural validation (if there is any structure) and
authorization are performed against the master edge only. Storing data in one place is a logical way to save storage
space. And the employed approach of authorization lets the following scenario be possible: if someone can add a student
to the course then the same user could add the course to the student’s course list.

Third, there is a cardinality [http://en.wikipedia.org/wiki/Cardinality] attribute. There are two possible values for
this one. ONE and MANY. The edge with cardinality ONE does not differ from the MANY implementation-wise.
However, the framework returns a single object for the ONE and a collection for MANY via
object interface.

Check interface documentation to find out more about link attributes.

5: structure of the entities

Apart from the relationships between the resources there is another bit of knowledge which is vital for modeling the
system. It is the structure of individual resources (e.g.: Student must have an email, first name, last name and a
birthday).

Lets expand our graph to include structural information as well.

[image: _images/entity_diagram_with_structure.png]
Entity diagram with structure

As you can see from the relationship between Course and Student, links may have attributes as well. Resource API
supports link properties in a similar fashion as
Neo4j [http://docs.neo4j.org/chunked/stable/graphdb-neo4j-properties.html].

6: structure to code

Full version of the code can be seen here. Below we shall focus on the
critical bits of the implementation.

Lets have a look at Student’s schema :

class Student(Resource):
 """ A pupil """

 class Schema:
 email = StringField(regex="[^@]+@[^@]+\.[^@]+", pk=True,
 description="Addess to which the notifications shall be sent")
 first_name = StringField(description="Given name(s)")
 last_name = StringField(description="Family name(s)")

As you can see the structure of the entity is exposed declaratively. Instead of writing multiple functions to validate
the input we just say what the input is supposed to be. This approach of describing entities’ structures is similar to
the one used by Django models [https://docs.djangoproject.com/en/1.7/topics/db/models/] for example.

The key difference from Django’s approach is usage of the inner class called Schema. The nested class exists to
prevent naming collisions between user defined fields and the fields that are used by framework internals. Links are
defined in a separate nested class for the same reason.

7: persistence

When we have resource structures defined in our code it is still not enough to make the entities do anything useful.
We need to program how these entities are supposed to be stored an fetched to/from the persistence layer, file system,
etc.

To make the components work we need to implement Resource/Link interface.

A full version of the implementation can be found here. Below we shall focus on
critical implementation details.

First, lets have a look at Resource implementation:

class Resource(BaseResource):

 def __init__(self, context):
 super(Resource, self).__init__(context)
 self._storage = context["storage"]

 def exists(self, user, pk):
 return pk in self._storage.get(self.get_name(), {})

 def get_data(self, user, pk):
 return self._storage.get(self.get_name(), {}).get(pk)

 def delete(self, user, pk):
 self._storage.get(self.get_name(), {}).pop(pk)
 self._storage.sync()

 def create(self, user, pk, data):
 if self.get_name() not in self._storage:
 self._storage[self.get_name()] = {}
 self._storage[self.get_name()][pk] = data
 self._storage.sync()

 def update(self, user, pk, data):
 self._storage[self.get_name()][pk].update(data)
 self._storage.sync()

 def get_uris(self, user, params=None):
 return self._storage.get(self.get_name(), {}).keys()

 def get_count(self, user, params=None):
 return len(self.get_uris(params))

Next, lets check Link implementation:

class Link(BaseLink):

 def __init__(self, context):
 super(Link, self).__init__(context)
 self._storage = context["storage"]

 def exists(self, user, pk, rel_pk):
 return rel_pk in self._storage.get((pk, self.get_name()), {})

 def get_data(self, user, pk, rel_pk):
 return self._storage.get((pk, self.get_name()), {}).get(rel_pk)

 def create(self, user, pk, rel_pk, data=None):
 key = (pk, self.get_name())
 if key not in self._storage:
 self._storage[key] = {}
 self._storage[key][rel_pk] = data
 self._storage.sync()

 def update(self, user, pk, rel_pk, data):
 self._storage[key][rel_pk].update(data)
 self._storage.sync()

 def delete(self, user, pk, rel_pk):
 self._storage.get((pk, self.get_name()), {}).pop(rel_pk)
 self._storage.sync()

 def get_uris(self, user, pk, params=None):
 return self._storage.get((pk, self.get_name()), {}).keys()

 def get_count(self, user, pk, params=None):
 return len(self.get_uris(pk, params))

As you can see each abstract method of both interfaces are implemented to use Shelve database.

Warning

Note, compensating transactions are one of the TODO features to be added to Resource API in the future. Now any
error in the implementation of the resource when creating/deleting the entity with multiple associated links has
high chances to cause relational inconsistency.

Now let examine the service class:

class ShelveService(Service):

 def __init__(self):
 super(ShelveService, self).__init__()
 self._storage = shelve.open(SHELVE_PATH, writeback=True)

 def _get_context(self):
 return {"storage": self._storage}

 def _get_user(self, data):
 return None

 def __del__(self):
 self._storage.close()

ShelveService implements abstract Service. We had to override two abstract
methods.

First, _get_context. This method must return an object that shall be passed to all resources during initialization.
The context shall be available as a context attribute of resource objects. It makes sense to put service-wide
singletons like DB connections, persistence layers or open sockets into the context.

Second, _get_user. More on it later. But in short it is expected to return a user that would be used for authorization
later on.

In addition to service and entity implementations there are a few more important lines:

srv = ShelveService()
srv.register(Student)
srv.register(Teacher)
srv.register(Course)
srv.register(Comment)

The lines above provide an overview of how to notify the system that certain resources are supposed to be exposed.
Each resource must be registered with a respective method call in order to become a part of the API.

Also notice a setup() method call. It must be invoked after all the required resources are registered. The method
validates that resource relationships point to registered resources. Meaning: if we registered a Student but did not
register a Course - Resource API would raise a
ResourceDeclarationError.

8: primary key

When addressing the resource Resource API follows the standards and employs a
URI [http://en.wikipedia.org/wiki/Uniform_resource_identifier] concept. In the example above the URI is represented
by a field marked as a primary key. What the framework does by default - it takes the value of the field and passes it
to resources set method.
Resource is a synonym of word entity within the context of Resource API.

In contrast with a student resource the following Comment entity has a primary key that does not
have any direct value (unlike the Student’s email) for the end user. Thus passing it together with the rest of the
data during entity creation does not make sense. For this purpose we need to override URI creation mechanism.

9: custom UriPolicy

To change the way URI is generated and processed for a specific resource we need to subclass
UriPolicy and implement a bunch of its methods.

A full version of the service with custom UriPolicy can be found here. Below we
shall focus on important details of the implementation.

Lets have a look at Comment definition:

class Comment(Resource):
 """ Student's comment about the course """

 UriPolicy = AutoGenSha1UriPolicy

In order to override URI creation mechanism we explicitly changed UriPolicy from the
default one to AutoGenSha1UriPolicy.

Lets have a closer look at AutoGenSha1UriPolicy:

class AutoGenSha1UriPolicy(AbstractUriPolicy):
 """ Uses a randomly generated sha1 as a primary key """

 @property
 def type(self):
 return "autogen_policy"

 def generate_pk(self, data):
 return os.urandom(16).encode('hex')

 def serialize(self, pk):
 return pk

 def deserialize(self, pk):
 if not isinstance(pk, basestring):
 raise ValidationError("Has to be string")
 if not RE_SHA1.match(value):
 raise ValidationError("PK is not a valid SHA1")
 return pk

There are three abstract methods that were implemented.

First, getnerate_pk. It returns a random SHA1 string.

Second, serialize method. Since we do not change the URI anyhow when storing the resource we return it as is.

Third, deserialize method. Here we validated that input value is a string and that it fits a SHA1 regular expression.

10: authorization

Since we want to limit the access to various resources only to specific categories of users, we need to implement
authorization using granular can_ methods of Link and Resource subclasses.

Full implementation of authorization can be seen here. Below we shall focus
on authorization details.

Lets have a look at the methods that limit read-only access to the entities only for authenticated users.

 def can_get_data(self, user, pk, data):
 """ Only authenticated users can access data """
 if user.is_anonymous:
 return False
 else:
 return True

 def can_get_uris(self, user):
 """ Only authenticated users can access data """
 if user.is_anonymous:
 return False
 else:
 return True

We just return False if a user is anonymous. We shall see how the user object should be created later on.

Since we wanted to let Students and Teachers update only their own info, we encapsulated authorization logic
within a Person class.

class Person(Resource):

 class Schema:
 email = StringField(regex="[^@]+@[^@]+\.[^@]+", pk=True,
 description="Addess to which the notifications shall be sent")
 first_name = StringField(description="Given name(s)")
 last_name = StringField(description="Family name(s)")

 def can_update(self, user, pk):
 """ Only a person himself can update his own information """
 return user.email == pk or user.is_admin

 def can_delete(self, user, pk):
 """ Only admins can delete people """
 return user.is_admin

And both Student and Teacher inherit from the Person:

class Student(Person):
 """ A pupil """

 class Schema(Person.Schema):
 birthday = DateTimeField()

class Teacher(Person):
 """ A lecturer """

 class Schema(Person.Schema):
 category = StringField(description="TQS Category",
 choices=["four", "five", "five plus", "six"])

Notice, that we also extracted common bits of the schema into Person.Schema. Thus Student and Teacher schemas
inherit from it.

Within the scope of our app it makes sense that teachers can create only courses for themselves and students can
make comments only on their own behalf.

In order to enforce this behavior we introduced a PersonalLink:

class PersonalLink(Link):
 """ Users can link things to their accounts only """

 def can_update(self, user, pk, rel_pk, data):
 return user.email == rel_pk or user.is_admin

 def can_create(self, user, pk, rel_pk, data):
 return user.email == rel_pk or user.is_admin

And made Course‘s link to Teacher and Comment‘s and TeacherRating‘s link to Student inherit from the
PersonalLink:

 class teacher(PersonalLink):
 """ The lecturer of the course """

 class student(PersonalLink):
 """ The pupil who made the comment """

 class student(PersonalLink):
 """ The pupil who gave the rating to the teacher """

One last bit of authorization detail required to understand how the implementation is done - a user object. It can
be virtually anything. However, it is critical to note that this object is passed to all authorization methods as the
first parameter by the framework.

Lets have a look at what the school app does with the user:

 def _get_user(self, data):
 if data is None:
 return User(None)
 else:
 return User(data.get("email"))

Where class User is defined the following way:

class User(object):

 def __init__(self, email=None):

 if email is None:
 self.is_anonymous = True
 else:
 self.is_anonymous = False

 if email == "admin@school.com":
 self.is_admin = True
 else:
 self.is_admin = False

 self.email = email

As simple as that.

11: object interface

Object interface provides a python way for traversing the resources.

In order to do the traversal on our school service we need to fetch the entry point.

entry_point = srv.entry_point({"email": "admin@school.com"})
student_root_collection = entry_point.get_resource(Student)
student_root_collection.create({"email": "student@school.com",
 "first_name": "John",
 "last_name": "Smith",
 "birthday": "2000-09-25"})

Note

Please check object interface docs for more detailed information on how to use the direct
Python API.

12. HTTP interface

In order to make HTTP interface work, service instance has to be passed to a WSGI application:

srv = ShelveService()
srv.register(Student, "school.Student")
srv.register(Teacher, "school.Teacher")
srv.register(Course, "school.Course")
srv.register(Comment, "school.Comment")
srv.register(TeacherRating, "school.TeacherRating")

from resource_api_http.http import Application
from werkzeug.serving import run_simple
app = Application(srv)
run_simple('localhost', 8080, app, use_reloader=True)

Full version of the file (which can be executed as a full featured app) can be found
here.

Lets have a look at the most significant bits in the declaration.

First, notice how the resources are registered:

srv.register(ResourceClass, "namespace.ResourceName")

This is in general a good practice to register all entities under a specific name so that the API is not too tightly
coupled with Python modules & class names. Module name and class name are used by default as a namespace and a resource
name respectively.

Second, we removed setup() call. WSGI application does it internally anyways.

Third, the application is passed to Werkzeug [http://werkzeug.pocoo.org/]‘s method. Werkzeug is a WSGI library
powering Resource API HTTP component.

When the service is up and running it is possible to do HTTP requests with
CURL [http://curl.haxx.se/docs/httpscripting.html]:

Fetch service descriptor via OPTIONS request:

curl -X OPTIONS 127.0.0.1:8080 | python -m json.tool

Fetch a collection of students:

curl 127.0.0.1:8080/foo.Student

Oh. 403 status code. This is because we did not include authentication information required for authorization.

curl --header "email: admin@school.com" 127.0.0.1:8080/school.Student

Empty collection. Lets create a student.

curl -X POST --header "email: admin@school.com" --header "Content-Type: application/json" \
 -d '{"email":"foo@bar.com","first_name": "John", "last_name": "Smith", "birthday": "1987-02-21T22:22:22"}' \
 127.0.0.1:8080/school.Student

Lets fetch Student collection again:

curl --header "email: admin@school.com" 127.0.0.1:8080/school.Student

As you can see a new student appeared in the list.

Please check HTTP interface reference for more information.

 Copyright 2014, F-Secure.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Resource API 3.1.1 documentation

Interfaces

There are two major entities in this framework: resources and links between them.

Resource API defines interfaces to be implemented in order to expose the entities.

NOTE: all methods must be implemnted. In case if some of the methods are not supposed to do anything, raise
NotImplemntedError within their implementations and return False for respective authorization methods if needed.

Resource

Resource concept is similar to
the one mentioned [http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm#sec_5_2_1_1]
in Roy Fielding’s desertation.

	
class resource_api.interfaces.Resource(context)

	Represents entity that is supposed to be exposed via public interface

Methods have the following arguments:

	pk

	PK of exisiting resource

	data (dict)

	information to be stored within the resource

	params (dict)

	extra parameters to be used for collection filtering

	user (object)

	entity that corresponds to the user that performs certain operation on the resource

	
UriPolicy

	alias of PkUriPolicy

	
__init__(context)

	
	context (object)

	entity that is supposed to hold DAL (data access layer) related functionality like database connections,
network sockets, etc.

	
can_create(user, data)

	Returns True if user is allowed to create resource with certain data

	
can_delete(user, pk)

	Returns True if user is allowed to delete the resource

	
can_discover(user, pk)

	Returns False if user is not allowed to know about resoure’s existence

	
can_get_data(user, pk, data)

	Returns only the fields that user is allowed to fetch

	
can_get_uris(user)

	Returns True if user is allowed to list the items in the collection or get their count

	
can_update(user, pk, data)

	Returns True if user is allowed to update the resource

	
create(user, pk, data)

	Creates a new instance

	
delete(user, pk)

	Removes the resource

	
exists(user, pk)

	Returns True if the resource exists

	
get_count(user, params=None)

	Returns total amount of items that fit filtering criterias

	
get_data(user, pk)

	Returns fields of the resource

	
get_uris(user, params=None)

	Returns an iterable over primary keys

	
update(user, pk, data)

	Updates specified fields of a given instance

URI is represented by a PK (Primary Key) in Resource API.

Resource interface defines two types of methods.

First, DAL [http://en.wikipedia.org/wiki/Data_access_layer] related
CRUD [http://en.wikipedia.org/wiki/Create,_read,_update_and_delete] methods: get_data, get_pks, set, delete, exists

Second, authorization related methods starting with can_

Each resource must define a UriPolicy:

	
class resource_api.interfaces.AbstractUriPolicy(resource_instance)

	Defines a way to generate URI [http://en.wikipedia.org/wiki/Uniform_resource_identifier] based on data that was
passed when creating the resource.

	
__init__(resource_instance)

	
	resource_instance (Resource instance)

	entity that can be used to access previously created items

	
deserialize(pk)

	Transforms data sent over the wire into sth. usable inside DAL

	pk

	PK value as it comes over the wire - e.g. string in case of HTTP

	@return

	PK transformed to the data type expected to by DAL in order to fetch data

	
generate_pk(data, link_data=None)

	Generates a PK based on input data

	data (dict):

	the same data that is passed to Resource’s create method

	link_data (dict):

	the same link_data that is passed to Resource’s create method

	@return

	generated PK

	
get_schema()

	Returns meta information (dict) to be included into resource’s schema

	
serialize(pk)

	Transforms value into sth. ready to transfer over the wire

	pk

	PK value used within DAL to identify stored entries

	@return

	PK transformed into something that can be sent over the wire - e.g. string in case of HTTP

	
type

	A string that would give a hint to the client which PK policy is in use

The default pk policy is this one:

	
class resource_api.interfaces.PkUriPolicy(resource_instance)

	Uses value of a field marked as “pk=True” as resource’s URI

Note, there are certain cases when the URI is supposed to be generated within peristence (data acess) layer. E.g.
via autoincrementing primary key in SQL database. In such case the URI is supposed to be returned by create method.

class Example(Resource):

 class UriPolicy(AbstractUriPolicy):

 def deserialize(self, pk):
 try:
 return int(pk)
 except ValueError:
 raise ValidationError("URI is not int")

 def serialize(self, pk):
 return pk

 @property
 def type(self):
 return "autoincrement_pk_policy"

 def generate_pk(self, data, link_data=None):
 return None

 def create(self, pk, data):
 # assert pk is None
 row_id = self._sql_database.create_row(data)
 return row_id

 ...

Link

Link concept is derived from RDF triples [http://www.robertprice.co.uk/robblog/2004/10/what_is_an_rdf_triple_-shtml/]
. RDF [http://www.w3.org/RDF/] is at the same time a part of two big W3C standardized concepts:
Linked Data [http://linkeddata.org/] and
Semantic Web [http://semanticweb.org/].

NOTE: Resource API does not aim to follow any of standards defined by the
concepts mentioned above. It just uses a portion of interesting ideas that those concepts describe.

	
class resource_api.interfaces.Link(context)

	Represents a relationship between two resources that needs to be exposed via public interface

Methods have the following arguments:

	pk

	PK of exisiting source resource (the one that defines link field)

	data (dict)

	extra information to be stored for this relationship

	rel_pk (digit|string)

	PK of exisiting target resource (the one to which we are linking to)

	params (dict)

	extra parameters to be used for collection filtering

	user (object)

	entity that corresponds to the user that performs certain operation on the link

	
__init__(context)

	
	context (object)

	entity that is supposed to hold DAL (data access layer) related functionality like database connections,
network sockets, etc.

	
can_create(user, pk, rel_pk, data)

	Returns True if user is allowed to create resource with certain data

	
can_delete(user, pk, rel_pk)

	Returns True if user is allowed to delete the resource

	
can_discover(user, pk, rel_pk)

	Returns False if user is not allowed to know about resoure’s existence

	
can_get_data(user, pk, rel_pk, data)

	Returns only the fields that user is allowed to fetch

	
can_get_uris(user, pk)

	Returns True if user is allowed to list the items in the collection or get their count

	
can_update(user, pk, rel_pk, data)

	Returns True if user is allowed to update the resource

	
create(user, pk, rel_pk, data=None)

	Creates a new link with optional extra data

	
delete(user, pk, rel_pk)

	Removes the link. If rel_pk is None - removes all links

	
exists(user, pk, rel_pk)

	Returns True if the link exists (is not nullable)

	
get_count(user, pk, params=None)

	Returns total amount of items that fit filtering criterias

	
get_data(user, pk, rel_pk)

	Returns link data

	
get_uris(user, pk, params=None)

	Returns an iterable over target primary keys

	
update(user, pk, rel_pk, data)

	Updates exisiting link with specified data

Link interface defines two types of methods similar to the ones of Resource interface.

There are conceptual differences between those methods in Link and Resource though.

First, link uses a triple (mentioned above) to address exisiting entities.

Second, data is optional for links.

It is critical to note that predicate part of a triple is not passed to any of Link methods. Since all links are
supposed to be defined via nested classes in the context of resources they connect - link classes themselves serve as
those predicates.

Link declaration

Links between resources are defined using nested classes:

class Course(Resource):

 class Links:

 class attendants(Link):
 target = "Student"
 related_name = "active_cources"
 master = True

 def get(self, pk, rel_pk):
 ...

class Student(Resource):

 class Links:

 class active_cources(Link):
 target = "Course"
 related_name = "attendants"

 def get(self, pk, rel_pk):
 ...

target has to be a string. It can point to a resource in the same module (“Target”) or in any other one
(“module.name.Target”). related_name must be defined as a string as well and it should equal to the name of a related
link.

Also one of the links must be defined as a master one. Authorization is done against master link. And extra data
is stored only in DAL related to master link.

Any link can be marked as changeable = False. Unchangeable links can be set only upon resource creation. Once the
resource is created links cannot be modified (i.e. updated/set or deleted).

All link declarations must be done within Links inner class.

One way links

Note

If the link is marked as one_way Resource API will not be able to enforce relational integrity.

One way links do not need a related_name nor a master flag to be defined. One way links can be declared the
following way:

class Source(Resource):

 class Links:

 class targets:
 target = "foo.bar.Target"
 one_way = True

Link cardinality

More on relationship cardinality - here [http://en.wikipedia.org/wiki/Cardinality_(data_modeling)].

MANY to ONE relationship can be defined this way:

class Target(Resource):

 class Links:

 class sources(Link):
 cardinality = Link.cardinalities.MANY # could be ommited - it is the default one
 target = "Source"
 related_name = "target"

class Source(Resource):

 class Links:

 class target(Link):
 cardinality = Link.cardinalities.ONE
 target = "Target"
 related_name = "sources"
 master = True
...

ONE to ONE relationship can be defined this way:

class Target(Resource):

 class Links:

 class source(Link):
 cardinality = Link.cardinalities.ONE
 target = "Source"
 related_name = "target"

class Source(Resource):

 class Links:

 class target(Link):
 cardinality = Link.cardinalities.ONE
 target = "Target"
 related_name = "source"
 master = True
...

MANY to MANY is the default one but explicitly can be defined this way:

class Target(Resource):

 class Links:

 class sources(Link):
 cardinality = Link.cardinalities.MANY # could be ommited - it is the default one
 target = "Source"
 related_name = "targets"

class Source(Resource):

 class Links:

 class targets(Link):
 cardinality = Link.cardinalities.MANY # could be ommited - it is the default one
 target = "Target"
 related_name = "sources"
 master = True
...

NOTE: relationships with cardinality ONE can be marked as required:

class Target(Resource):

 class Links:

 class sources(Link):
 cardinality = Link.cardinalities.MANY # could be ommited - it is the default one
 target = "Source"
 related_name = "target"

class Source(Resource):

 class Links:

 class target(Link):
 cardinality = Link.cardinalities.ONE
 target = "Target"
 related_name = "sources"
 required = True
 master = True
...

Relationships with MANY cardinality cannot be marked as required.

In case of required relationships, data for them must be passed together with main resource data during creation phase.

Schema and QuerySchema

Resources and Links may define schema that shall be used via Resource API for input validation.

The schema is defined the following way:

class CustomResource(Resource):

 class Schema:
 name = schema.StringField(pk=True)
 count = schema.IntegerField()

 class Links:

 class target(Link):
 class Schema:
 timestamp = schema.DateTimeField()

Schema fields are defined within a nested class with a reserved name Schema. A comprehensive reference for built-in
fields can be found here.

Additionally both Resources and Links may define query schema to validate all parameters that client uses for
filtering the collections.

Query schema is defined the following way:

class CustomResource(Resource):

 class QuerySchema:
 name = schema.StringField(pk=True)
 count = schema.IntegerField()

 class Links:

 class target(Link):
 class QuerySchema:
 timestamp = schema.DateTimeField()

Query parameters are defined in a similar manner as Schema ones but inside QuerySchema nested subclass. The key
functional difference between two schemas is the fact that Schema may have required fields and QuerySchema may
not.

NOTE: it is not necessary for Schema and QuerySchema inner classes to inherit from Schema class. Resource API
adds this inheritance automatically.

 Copyright 2014, F-Secure.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Resource API 3.1.1 documentation

Service and registry

Service class

The entity main in Resource API is called Service.

	
class resource_api.service.Service

	Entity responsible for holding a registry of all resources that are supposed to be exposed

Service has to be subclassed in order to implement usecase specific _get_context and _get_user methods.

NOTE: do not override any of the public methods - it may cause framework’s misbehavior.

	
_get_context()

	MUST BE OVERRIDEN IN A SUBCLASS

Must return an object holding all database connections, sockets etc. It is later on passed to all individual
resources.

	
_get_user(data)

	MUST BE OVERRIDEN IN A SUBCLASS

Must return an object representing currently authenticated user. It is later on passed to individual can_??
methods of various resources for authorization purposes.

	
get_entry_point(data)

	Returns entry point

	data

	intormation to be used to construct user object via _get_user method

	
get_schema(human=True)

	Returns schema for all registered resources.

	human (bool = True)

	if True it returns schema with namespaces used during registration
if False it returns schema with resource module names as namespaces

	
register(resource, name=None)

	Add resource to the registry

	resource (Resource subclass)

	entity to be added to the registry

	name (string)

	string to be used for resource registration, by default it is resource’s module name + class name with ”.”
as a delimiter

	
setup()

	Finalizes resource registration.

MUST be called after all desired resources are registered.

Resource registration

Lets say that there are multiple resources declared somewhere. In this case they can be registered the following way:

class MultiSQLService(Service):

 def _get_context(self):
 return {
 "db1": create_connection(...),
 "db2": create_connection(...)
 }

srv = MultiSQLService()
srv.register(Student)
srv.register(Teacher)
srv.register(Course)
srv.setup()

Entry point

In order to get access to the object interface user must call get_entry_point method.

entry_point = srv.get_entry_point({"username": "FOO"})

 Copyright 2014, F-Secure.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Resource API 3.1.1 documentation

Object interface

Object interface is accessible via so called entry point. Check here to understand how entry
points are obtained.

NOTE: Whenever user performs an operation and the operation fails one of built-in exceptions is
raised.

	
class resource_api.service.EntryPoint(service, user)

	Represents user specific means of access to object interface.

	
get_resource(resource_class)

	resource_class (Resource subclass)

>>> entry_point.get_resource(Student)
<RootResourceCollection object>

	
get_resource_by_name(resource_name)

	
	resource_name (string)

	namespace + ”.” + resource_name, where namespace can be a custom namespace or resource’s module name

>>> entry_point.get_resource_by_name("school.Student")
<RootResourceCollection object>
>>> entry_point.get_resource_by_name("com.example.module.education.Student")
<RootResourceCollection object>

	
user

	User object returned by Service._get_user method

Root resource collection

	
class resource_api.resource.RootResourceCollection(entry_point, resource_interface, params=None)

	Root resource collection is actually a normal resource collection with two extra methods: create and get.

	
create(data, link_data=None)

	>>> student_collection = entry_point.get_resource(Student)
>>> new_student = student_collection.create({"first_name": "John",
>>> "last_name": "Smith",
>>> "email": "foo@bar.com",
>>> "birthday": "1987-02-21T22:22:22"},
>>> {"courses": [{"@target": "Maths", "grade": 4},
>>> {"@target": "Sports"}]})

	
get(pk)

	>>> student_collection = entry_point.get_resource(Student)
>>> existing_student = student_collection.get("john@example.com")

Resource collection

	
class resource_api.resource.ResourceCollection(entry_point, resource_interface, params=None)

	The entity that represents a pile of resources.

>>> student_collection = entry_point.get_resource(Student)

The collection is iterable:

>>> for student in student_collection:
>>> ...

If Resource.get_uris is implemented to return an
indexable entity the collection elements can be accessed by index as well:

>>> student = student_collection[15]

	
count()

	Returns count of all items within the system that satisfy filtering criterias.

NOTE: len(collection) is supposed to return the same result as collection.count(). The key
difference between them is that len needs to fetch all items in the collection meanwhile
collection.count() relies on
Resource.get_count

>>> len(student_collection)
4569
>>> student_collection.count()
4569

	
filter(params=None)

	Filtering options can be applied to collections to return new collections that contain a subset of original
items:

NOTE: filtering operations applied to root collections return normal collections

>>> student_collection = entry_point.get_resource(Student)
>>> new_collection = student_collection.filter(params={"name__startswith": "Abr"})

Resource item

	
class resource_api.resource.ResourceInstance(entry_point, resource_interface, pk)

	Whenever creating new or fetching existing resources
resource instances are returned. Resource instances are also returned whenever iterating over
resource collections.

	
data

	Returns data associated with the resource

>>> student.data
{"first_name": "John", "last_name": "Smith", "email": "foo@bar.com", "birthday": "1987-02-21T22:22:22"}

	
delete()

	Removes the resource

>>> student.delete()
>>> student.data
...
DoesNotExist: ...

	
links

	Returns a link holder

	
pk

	Returns PK of the resource

>>> student.pk
"foo@bar.com"

	
update(data)

	Changes specified fields of the resource

>>> student.update({"first_name": "Looper"})
>>> student.data
{"first_name": "Looper", "last_name": "Smith", "email": "foo@bar.com", "birthday": "1987-02-21T22:22:22"}

Link holder

	
class resource_api.link.LinkHolder(entry_point, resource_instance, pk)

	Accessor for all the links associated with the resource

For link with cardinality “MANY” RootLinkCollection is returned:

>>> student.links.courses
<RootLinkCollection object>

For link with cardinality “ONE” LinkToOne is returned:

>>> course.links.teacher
<LinkToOne object>

Root link collection

	
class resource_api.link.RootLinkCollection(target_collection, forward_link_instance, backward_link_instance, source_pk, params=None)

	Root link collection is actually a normal link collection with two extra methods: create and get.

	
create(data)

	
	data (dict)

	has to have at least one key called @target - its value must be a PK of target resource instance

>>> student_courses = student.links.courses
>>> new_link_to_course = student_courses.create({"@target": "Maths"})

	
get(target_pk)

	
	target_pk

	PK of target resource instance

>>> student_courses = student.links.courses
>>> exisiting_link_to_course = student_courses.get("Biology")

Link collection

	
class resource_api.link.LinkCollection(target_collection, forward_link_instance, backward_link_instance, source_pk, params=None)

	The entity that represents a pile of resource links.

>>> student_courses = student.links.courses

The collection is iterable:

>>> for link in student_courses:
>>> ...

If Link.get_uris is implemented to return an
indexable entity the collection elements can be accessed by index as well:

>>> link = student_courses[15]

	
count()

	Returns count of all items within the system that satisfy filtering criterias.

NOTE: len(collection) is supposed to return the same result as collection.count(). The key
difference between them is that len needs to fetch all items in the collection meanwhile
collection.count() relies on
Link.get_count

>>> len(student_courses)
4569
>>> student_courses.count()
4569

	
filter(params=None)

	Filtering options can be applied to collections to return new collections that contain a subset of original
items:

NOTE: filtering operations applied to root collections return normal collections

>>> student_courses = student.links.courses
>>> new_link_collection = student_courses.filter(grade__gte=3)

Link instance

	
class resource_api.link.LinkInstance(target_collection, forward_link_instance, backward_link_instance, source_pk, target_pk)

	Whenever creating new or fetching existing links
link instances are returned. Link instances are also returned whenever iterating over
link collections.

	
data

	Returns data associated with the link

>>> link.data
{"grade": 3}

	
delete()

	Removes the link

>>> link.delete()
>>> link.data
...
DoesNotExist: ...

	
target

	Returns a ResourceInstance associated with target
resource.

>>> link.target.pk
"Maths"

	
update(data)

	Changes specified fields of the link

>>> link.update({"grade": 4})
>>> link.data
{"grade": 4}

NOTE: CANNOT be used to change @target

Link to one

	
class resource_api.link.LinkToOne(target_collection, forward_link_instance, backward_link_instance, source_pk)

	Represents a relationship with cardinality ONE

	
item

	Returns LinkInstance if it exists, raises
DoesNotExist error otherwise

>>> course.links.teacher.item.delete()
>>> course.links.teacher.item
...
DoesNotExist ...

	
set(data)

	Does the same thing as update method but CAN change the
@target

>>> course.links.teacher.item.target.pk
"Hades"
>>> course.links.teacher.set({"@target": "Zeuz"})
>>> course.links.teacher.item.target.pk
"Zeus"

 Copyright 2014, F-Secure.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Resource API 3.1.1 documentation

Schema

A collection of fields is represented by:

	
class resource_api.schema.Schema(validate_required_constraint=True, with_errors=True)

	Base class for containers that would hold one or many fields.

it has one class attribute that may be used to alter shcema’s validation flow

	has_additional_fields (bool = False)

	If True it shall be possible to have extra fields inside input data that will not be validated

NOTE: when defining schemas do not use any of the following reserved keywords:

	find_fields

	deserialize

	get_schema

	serialize

	has_additional_fields

Schema example

A schema for a page with title, text, creation timestamp and a 5 star rating would look the following way:

class PageSchema(Schema):
 title = StringField(max_length=70)
 text = StringField()
 creation_time = DateTimeField()
 rating = IntegerField(min_value=1, max_value=5)

General field API

All fields inherit from BaseField and thus have its attributes in common.

	
class resource_api.schema.BaseField(description=None, required=True, **kwargs)

	Superclass for all fields

	description (None|string = None)

	help text to be shown in schema. This should include the reasons why this field actually needs to exist.

	required (bool = False)

	flag that specifes if the field has to be present

	**kwargs

	extra parameters that are not programmatically supported

There are two extra parameters supported by Resource API:

	readonly (bool=False)

	if True field cannot be set nor changed but is a logical part of the resource. Resource creation time would be
a good example.

	changeable (bool=False)

	if True field can be set during creation but cannot be change later on. User’s birth date is a valid example.

Primitive fields

There are two types of digit fields supported by schema. Integers and floats. Fields that represent them have a common
base class:

	
class resource_api.schema.DigitField(min_val=None, max_val=None, **kwargs)

	Base class for fields that represent numbers

	min_val (int|long|float = None)

	Minumum threshold for incoming value

	max_val (int|long|float = None)

	Maximum threshold for imcoming value

The fields representing integers and floats respecively are:

	
class resource_api.schema.IntegerField(min_val=None, max_val=None, **kwargs)

	Transforms input data that could be any number or a string value with that number into long

	
class resource_api.schema.FloatField(min_val=None, max_val=None, **kwargs)

	Transforms input data that could be any number or a string value with that number into float

Time related fields are represented by:

	
class resource_api.schema.DateTimeField(description=None, required=True, **kwargs)

	datetime object serialized into YYYY-MM-DDThh:mm:ss.sTZD.

E.g.: 2013-09-30T11:32:39.984847

	
class resource_api.schema.DateField(description=None, required=True, **kwargs)

	date object serialized into YYYY-MM-DD.

E.g.: 2013-09-30

	
class resource_api.schema.TimeField(description=None, required=True, **kwargs)

	time object serialized into hh:mm:ssTZD.

E.g.: 11:32:39.984847

	
class resource_api.schema.DurationField(description=None, required=True, **kwargs)

	timedelta object serialized into PnYnMnDTnHnMnS.

E.g.: P105DT9H52M49.448422S

Strings are represented by:

	
class resource_api.schema.StringField(regex=None, min_length=None, max_length=None, **kwargs)

	Represents any arbitrary text

	regex (string = None)

	Python regular expression [https://docs.python.org/2/library/re.html#regular-expression-syntax]
used to validate the string.

	min_length (int = None)

	Minimum size of string value

	max_length (int = None)

	Maximum size of string value

Various boolean flags exist in the schape of:

	
class resource_api.schema.BooleanField(default=None, **kwargs)

	Expects only a boolean value as incoming data

Composite fields

	
class resource_api.schema.ListField(item_type, **kwargs)

	Represents a collection of primitives. Serialized into a list.

	item_type (python primitve|Field instance)

	value is used by list field to validate individual items
python primitive are internally mapped to Field instances according to
PRIMITIVE_TYPES_MAP

PRIMITIVE_TYPES_MAP = {
 int: IntegerField,
 float: FloatField,
 str: StringField,
 unicode: StringField,
 basestring: StringField,
 bool: BooleanField
}

	
class resource_api.schema.ObjectField(schema, **kwargs)

	Represents a nested document/mapping of primitives. Serialized into a dict.

	schema (class):

	schema to be used for validation of the nested document, it does not have to be Schema subclass - just a
collection of fields

ObjectField can be declared via two different ways.

First, if there is a reusable schema defined elsewhere:

>>> class Sample(Schema):
>>> object_field = ObjectField(ExternalSchema, required=False, description="Zen")

Second, if the field is supposed to have a unique custom schema:

>>> class Sample(Schema):
>>> object_field = ObjectField(required=False, description="Zen", schema=dict(
>>> "foo": StringField()
>>>))

 Copyright 2014, F-Secure.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Resource API 3.1.1 documentation

Built-in exception classes

NOTE: do not raise framework exceptions yourself - otherwise the components might misbehave.

Framework itself raises a bunch of errors that give a descriptive information regarding the status of triggered
operations.

NOTE: the framework does not wrap any internal errors within implementations - they are raised without any changes.

Copyright (c) 2014-2015 F-Secure
See LICENSE for details

	
exception resource_api.errors.AuthorizationError

	Raised when user is not allowed to perform a specific operation with resource instance or resource collection

	
exception resource_api.errors.DataConflictError

	Raised when user tries to perform something that conflicts with a current state of data
- create Resource or Link that was already create before

	
exception resource_api.errors.DeclarationError

	Raised by the framework during initialization phase if there are some issues with declarations

	
exception resource_api.errors.DoesNotExist

	Raised when trying to fetch a non-existent Resource or Link instance

	
exception resource_api.errors.Forbidden

	Raised whenever user tries to perform something that is prohibited due to the structure of data
- remove required LinkToOne
- create one to many link

	
exception resource_api.errors.FrameworkError

	Base class for all the errors that are raised by the framework

	
exception resource_api.errors.MultipleFound

	Raised when user tries to fetch link to one instance and the framework manages to find multiple entries

	
exception resource_api.errors.ResourceDeclarationError(resource, message)

	Raised by the framework when there are issues with resource declarations

	
exception resource_api.errors.ValidationError

	Raised for any issue related to data sent by user including linking errors

 Copyright 2014, F-Secure.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Resource API 3.1.1 documentation

HTTP interface

Resource API can be exposed via HTTP interface with 2nd level of
REST Maturity Model [http://martinfowler.com/articles/richardsonMaturityModel.html]

It can be achieved by passing Resource API service instance to
WSGI application:

from werkzeug.serving import run_simple
from custom_app.service import CustomService
from resource_api_http.http import Application

srv = CustomService()
app = Application(srv, debug=True)
run_simple('127.0.0.1', 5000, app, use_debugger=True, use_reloader=True)

NOTE: there is no need to call setup() method before passing the service
to WSGI app. WSGI app shall make the call itself.

General principles

	structure of the resource is not exposed via URL schema

	links between the resources are exposed via URL schema

	it is not be possible to get links related to the resource via the same url as the resource itself

	there isn’t any url to get a collection of the resources’ representations. Instead there are URLs to get a list of
URIs first and later on use individual HTTP requests to fetch representations of each resource.

	all resources have one and only one URI

URL schema

Http service has the follwoing URL schema:

LINK = RELATIONSHIP
RESOURCE_NAME = NAMESPACE.ACTUAL_RESOURCE_NAME
ID = Individual resource's URI
LINK_NAME = Name of the relationship in a triple
TARGET_ID = URI of the target resource in relationship's triple

has to contain all required fields
{new_link_data} = {"@target": TARGET_PK, key: value}
has to contain only the fields to be changed. Can't contain "@target".
{partial_link_data} = {key: value}

has to contain all required fields
{new_resource_data} = {key: value, "@links": {link_to_many_name: [{new_link_data}, ...],
 link_to_one_name: {new_link_name}}}
has to contain only the fields to be changed. Can't contain "@links".
{partial_resource_data} = {key: value} # does not have to contain all fields

Schema

OPTIONS /
>> {service_schema}

Resource operations

 # create new resource
 POST {new_resource_data} /RESOURCE_NAME
 >> PK, 201 || None, 204

 # get a collection of IDs
 GET /RESOURCE_NAME
 >> [ID1, ID2, ..., IDN], 200

 # get a filtered collection of IDs
 GET /RESOURCE_NAME?query_param=value
 >> [ID1, ID2, ..., IDN], 200

 # get resource's representation
 GET /RESOURCE_NAME/ID
 >> {key: value}, 200

 # update certain fields of the resource
 PATCH {partial_resource_data} /RESOURCE_NAME/ID
 >> None, 204

 # remove the resource
 DELETE /RESOURCE_NAME/ID
 >> None, 204

 # get number of resources
 GET /RESOURCE_NAME:count
 >> integer count, 200

 # get number of resources with filtering
 GET /RESOURCE_NAME:count?query_param=value
 >> integer count, 200

Link operations

 ### Link to one operations

 NOTE: "link" string is a part of the URL

 # get target resource's ID
 GET /RESOURCE_NAME/ID/LINK_NAME/item
 >> TARGET_ID, 200

 # update the link
 PATCH /RESOURCE_NAME/ID/LINK_NAME/item {partial_link_data}
 >> None, 204

 # create a new link or completely overwrite the existing one
 PUT /RESOURCE_NAME/ID/LINK_NAME {new_link_data}
 >> None, 204

 # get data related to the link
 GET /RESOURCE_NAME/ID/LINK_NAME/item:data
 >> {key: value}, 200

 # remove the link
 DELETE /RESOURCE_NAME/ID/LINK_NAME/item
 >> None, 204

 ### Link to many operations

 # get a collection of TARGET_IDs
 GET /RESOURCE_NAME/ID/LINK_NAME
 >> [TARGET_ID1, TARGET_ID2, ...], 200

 # get a filtered collection of TARGET_IDs
 GET /RESOURCE_NAME/ID/LINK_NAME?query_param=value
 >> [TARGET_ID1, TARGET_ID2, ...], 200

 # get number of links
 GET /RESOURCE_NAME/ID/LINK_NAME:count
 >> integer count, 200

 # get number of links with filtering
 GET /RESOURCE_NAME/ID/LINK_NAME:count?query_param=value
 >> integer count, 200

 # create a new link
 POST /RESOURCE_NAME/ID/LINK_NAME {new_link_data}
 >> None, 204

 # get data related to the link
 GET /RESOURCE_NAME/ID/LINK_NAME/TARGET_ID:data
 >> {partial_link_data}, 200

 # update the link
 PATCH /RESOURCE_NAME/ID/LINK_NAME/TARGET_ID {partial_link_data}
 >> None, 204

 # remove the link
 DELETE /RESOURCE_NAME/ID/LINK_NAME/TARGET_ID
 >> None, 204

Error status codes

	400 in case if request body is invalid

	403 for any issue related to user authentication/authorization. E.g. if user has no permission to change
certain fields.

	404 if the resource/link being accessed does not exist

	405 when some HTTP method is not allowed with a specific URL

	409 when trying to perform the operation that causes conflicts

	501 when some functionality is not implemented

	500 when unknown server error takes place

WSGI Application reference

	
class resource_api_http.http.Application(service, debug=False)

	Plain WSGI application for Resource API service

	service (Service's subclass instance)

	Service to generate HTTP interface for

	debug (bool)

	If True 500 responses will include detailed traceback describing the error

 Copyright 2014, F-Secure.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Resource API 3.1.1 documentation

HTTP client

HTTP clinet interface is similar in its design to object interface.

	
class resource_api_http_client.client.Client(base_url, transport_client)

	Client side entry point.

It can be instanciated the following way with a URL of the HTTP service and authentication headers as parameters:

>>> client = Client.create(base_url="http://example.com/api",
 auth_headers={"auth_token": "foo-bar-17"})

	
classmethod create(base_url, auth_headers=None)

	Instanciates the client

	base_url (string)

	URL of Resource API server (e.g.: “http://example.com/api”)

	auth_headers (dict || None)

	Dictionary with fields that are later on used to
construct user object <resource_api.service.Service_get_user>

	
get_resource_by_name(resource_name)

	
	resource_name (string)

	E.g.: “school.Student”

	@return

	<RootResourceCollection instance>

	
schema

	Contains Resource API schema

Root resource collection

	
class resource_api_http_client.client.RootResourceCollection(client, name, params=None)

	Root resource collection is actually a normal resource collection with two extra methods: create and get.

	
create(data, link_data=None)

	>>> student_collection = client.get_resource_by_name("school.Student")
>>> new_student = student_collection.create({"first_name": "John", "last_name": "Smith", "email": "foo@bar.com",
>>> "birthday": "1987-02-21T22:22:22"})

	
get(pk)

	>>> student_collection = client.get_resource_by_name("school.Student")
>>> existing_student = student_collection.get("john@example.com")

Resource collection

	
class resource_api_http_client.client.ResourceCollection(client, name, params=None)

	The entity that represents a pile of resources.

>>> student_collection = client.get_resource_by_name("school.Student")

The collection is iterable:

>>> for student in student_collection:
>>> ...

	
count()

	Returns count of all items within the system that satisfy filtering criterias.

NOTE: len(collection) is supposed to return the same result as collection.count(). The key
difference between them is that len needs to fetch all items in the collection meanwhile
collection.count() relies on /<ResourceName>:count URL

>>> len(student_collection)
4569
>>> student_collection.count()
4569

	
filter(params=None)

	Filtering options can be applied to collections to return new collections that contain a subset of original
items:

NOTE: filtering operations applied to root collections return normal collections

>>> student_collection = client.get_resource_by_name("school.Student")
>>> new_collection = student_collection.filter(params={"name__startswith": "Abr"})

Resource item

	
class resource_api_http_client.client.ResourceInstance(client, name, pk, data=None)

	Whenever creating new or fetching existing
resources resource instances are returned. Resource instances are also returned whenever iterating over
resource collections.

	
data

	Returns data associated with the resource

>>> student.data
{"first_name": "John", "last_name": "Smith", "email": "foo@bar.com", "birthday": "1987-02-21T22:22:22"}

	
delete()

	Removes the resource

>>> student.delete()
>>> student.data
...
DoesNotExist: ...

	
links

	Returns a link holder

	
pk

	Returns PK of the resource

>>> student.pk
"foo@bar.com"

	
update(data)

	Changes specified fields of the resource

>>> student.update({"first_name": "Looper"})
>>> student.data
{"first_name": "Looper", "last_name": "Smith", "email": "foo@bar.com", "birthday": "1987-02-21T22:22:22"}

Link holder

	
class resource_api_http_client.client.LinkHolder(client, url, schema)

	Accessor for all the links associated with the resource

For link with cardinality “MANY” RootLinkCollection
is returned:

>>> student.links.courses
<RootLinkCollection object>

For link with cardinality “ONE” LinkToOne is returned:

>>> course.links.teacher
<LinkToOne object>

Root link collection

	
class resource_api_http_client.client.RootLinkCollection(client, base_url, target_name, name, params=None)

	Root link collection is actually a normal link collection with two extra methods: create and get.

	
create(data)

	
	data (dict)

	has to have at least one key called @target - its value must be a PK of target resource instance

>>> student_courses = student.links.courses
>>> new_link_to_course = student_courses.create({"@target": "Maths"})

	
get(target_pk)

	
	target_pk

	PK of target resource instance

>>> student_courses = student.links.courses
>>> exisiting_link_to_course = student_courses.get("Biology")

Link collection

	
class resource_api_http_client.client.LinkCollection(client, base_url, target_name, name, params=None)

	The entity that represents a pile of resource links.

>>> student_courses = student.links.courses

The collection is iterable:

>>> for link in student_courses:
>>> ...

Accessing items by index is also possible:
>>> link = student_courses[15]

	
count()

	Returns count of all items within the system that satisfy filtering criterias.

NOTE: len(collection) is supposed to return the same result as collection.count(). The key
difference between them is that len needs to fetch all items in the collection meanwhile
collection.count() relies on /<ResourceName>:count URL

>>> len(student_courses)
4569
>>> student_courses.count()
4569

	
filter(params=None)

	Filtering options can be applied to collections to return new collections that contain a subset of original
items:

NOTE: filtering operations applied to root collections return normal collections

>>> student_courses = student.links.courses
>>> new_link_collection = student_courses.filter(grade__gte=3)

Link instance

	
class resource_api_http_client.client.LinkInstance(client, base_url, target_name, target_pk, data=None, unique=False)

	Whenever creating new or fetching existing links
link instances are returned. Link instances are also returned whenever iterating over
link collections.

	
data

	Returns data associated with the link

>>> link.data
{"grade": 3}

	
delete()

	Removes the link

>>> link.delete()
>>> link.data
...
DoesNotExist: ...

	
target

	Returns a ResourceInstance associated with target
resource.

>>> link.target.pk
"Maths"

Link to one

	
class resource_api_http_client.client.LinkToOne(client, base_url, target_name, name)

	Represents a relationship with cardinality ONE

	
item

	Returns LinkInstance if it exists, raises
DoesNotExist error otherwise

>>> course.links.teacher.item.delete()
>>> course.links.teacher.item
...
DoesNotExist ...

	
set(data)

	Does the same thing as update method but CAN
change the @target

>>> course.links.teacher.item.target.pk
"Hades"
>>> course.links.teacher.set({"@target": "Zeuz"})
>>> course.links.teacher.item.target.pk
"Zeus"

 Copyright 2014, F-Secure.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Resource API 3.1.1 documentation

Descriptor (schema)

Descriptor is Resource API’s way to notify the client about the structure of resources and relationships between them.

Lets say that there is the following collection of resources:

class User(Resource):
 """ Represents a person who uses the system """

 class Schema:
 email = StringField(regex="[^@]+@[^@]+\.[^@]+", pk=True)
 name = StringField(max_length=70, description="First name and last name")

 class Links:

 class cars(Link):
 """ All cars that belong to the user """
 target = "Car"
 related_name = "owner"

class Car(Resource):
 """ The item being sold/bought within the system """

 class Schema:
 pk = IntegerField(pk=True, description="Integer identifier")
 model = StringField(description="E.g. BMW")
 brand = StringField(description="E.g. X6")
 year_of_production = DateTimeField(
 description="Time when the car was produced to estimate its age")

 class QuerySchema:
 age = IntegerField(description="Age of the car in years")

 class Links:

 class owner(Link):
 """ User who owns the car """
 target = "User"
 related_name = "cars"
 cardinality = Link.cardinalities.ONE
 master = True

 class Schema:
 acquisition_data = DateTimeField(
 description="Time when the car changed its owner")

And they are registered:

srv = Service()
srv.register(User, "auth.User")
srv.register(Car, "shop.Car")
srv.setup()

In this case the descriptor shall look like:

 {
 "shop.Car": {
 "pk_policy": {
 "description": " Uses value of a field marked as \"pk=True\" as resource's URI "
 },
 "description": " The item being sold/bought within the system ",
 "links": {
 "owner": {
 "related_name": "cars",
 "description": " User who owns the car ",
 "required": false,
 "target": "auth.User",
 "cardinality": "ONE",
 "schema": {
 "acquisition_data": {
 "type": "datetime",
 "description": "Time when the car changed its owner"
 }
 }
 }
 },
 "schema": {
 "pk": {
 "pk": true,
 "type": "int",
 "description": "Integer identifier"
 },
 "brand": {
 "type": "string",
 "description": "E.g. X6"
 },
 "model": {
 "type": "string",
 "description": "E.g. BMW"
 },
 "year_of_production": {
 "type": "datetime",
 "description": "Time when the car was produced to estimate its age"
 }
 },
 "query_schema": {
 "age": {
 "type": "int",
 "description": "Age of the car in years"
 }
 }
 }
 },
 "auth.User": {
 "pk_policy": {
 "description": " Uses value of a field marked as \"pk=True\" as resource's URI "
 },
 "description": " Represents a person who uses the system ",
 "links": {
 "cars": {
 "related_name": "owner",
 "description": " All cars that belong to the user ",
 "required": false,
 "target": "shop.Car",
 "cardinality": "MANY",
 "schema": {
 "acquisition_data": {
 "type": "datetime",
 "description": "Time when the car changed its owner"
 }
 }
 }
 },
 "schema": {
 "email": {
 "regex": "[^@]+@[^@]+\\.[^@]+",
 "pk": true,
 "type": "string",
 "description": null
 },
 "name": {
 "max_length": 70,
 "type": "string",
 "description": "First name and last name"
 }
 }
 }
}

As it can be seen, the descriptor is a one to one mapping of the structure declared in python to JSON document.

There is a couple of things to note about the descriptor:

	description fields are generated from resources’/links’ docstrings and description argument of schema fields.
If one of them is missing description is intentionally marked as null.

	target corresponds to the name that was used when registering a specific resource

 Copyright 2014, F-Secure.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Resource API 3.1.1 documentation

 Python Module Index

 r

 			

 		
 r	

 	[image: -]
 	
 resource_api	

 	
 	
 resource_api.errors	

 Copyright 2014, F-Secure.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Resource API 3.1.1 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | V

_

 	

 	__init__() (resource_api.interfaces.AbstractUriPolicy method)

 	

 	(resource_api.interfaces.Link method)

 	(resource_api.interfaces.Resource method)

 	_get_context() (resource_api.service.Service method)

 	

 	_get_user() (resource_api.service.Service method)

A

 	

 	AbstractUriPolicy (class in resource_api.interfaces)

 	Application (class in resource_api_http.http)

 	

 	AuthorizationError

B

 	

 	BaseField (class in resource_api.schema)

 	

 	BooleanField (class in resource_api.schema)

C

 	

 	can_create() (resource_api.interfaces.Link method)

 	

 	(resource_api.interfaces.Resource method)

 	can_delete() (resource_api.interfaces.Link method)

 	

 	(resource_api.interfaces.Resource method)

 	can_discover() (resource_api.interfaces.Link method)

 	

 	(resource_api.interfaces.Resource method)

 	can_get_data() (resource_api.interfaces.Link method)

 	

 	(resource_api.interfaces.Resource method)

 	can_get_uris() (resource_api.interfaces.Link method)

 	

 	(resource_api.interfaces.Resource method)

 	

 	can_update() (resource_api.interfaces.Link method)

 	

 	(resource_api.interfaces.Resource method)

 	Client (class in resource_api_http_client.client)

 	count() (resource_api.link.LinkCollection method)

 	

 	(resource_api.resource.ResourceCollection method)

 	(resource_api_http_client.client.LinkCollection method)

 	(resource_api_http_client.client.ResourceCollection method)

 	create() (resource_api.interfaces.Link method)

 	

 	(resource_api.interfaces.Resource method)

 	(resource_api.link.RootLinkCollection method)

 	(resource_api.resource.RootResourceCollection method)

 	(resource_api_http_client.client.Client class method)

 	(resource_api_http_client.client.RootLinkCollection method)

 	(resource_api_http_client.client.RootResourceCollection method)

D

 	

 	data (resource_api.link.LinkInstance attribute)

 	

 	(resource_api.resource.ResourceInstance attribute)

 	(resource_api_http_client.client.LinkInstance attribute)

 	(resource_api_http_client.client.ResourceInstance attribute)

 	DataConflictError

 	DateField (class in resource_api.schema)

 	DateTimeField (class in resource_api.schema)

 	DeclarationError

 	

 	delete() (resource_api.interfaces.Link method)

 	

 	(resource_api.interfaces.Resource method)

 	(resource_api.link.LinkInstance method)

 	(resource_api.resource.ResourceInstance method)

 	(resource_api_http_client.client.LinkInstance method)

 	(resource_api_http_client.client.ResourceInstance method)

 	deserialize() (resource_api.interfaces.AbstractUriPolicy method)

 	DigitField (class in resource_api.schema)

 	DoesNotExist

 	DurationField (class in resource_api.schema)

E

 	

 	EntryPoint (class in resource_api.service)

 	

 	exists() (resource_api.interfaces.Link method)

 	

 	(resource_api.interfaces.Resource method)

F

 	

 	filter() (resource_api.link.LinkCollection method)

 	

 	(resource_api.resource.ResourceCollection method)

 	(resource_api_http_client.client.LinkCollection method)

 	(resource_api_http_client.client.ResourceCollection method)

 	FloatField (class in resource_api.schema)

 	

 	Forbidden

 	FrameworkError

G

 	

 	generate_pk() (resource_api.interfaces.AbstractUriPolicy method)

 	get() (resource_api.link.RootLinkCollection method)

 	

 	(resource_api.resource.RootResourceCollection method)

 	(resource_api_http_client.client.RootLinkCollection method)

 	(resource_api_http_client.client.RootResourceCollection method)

 	get_count() (resource_api.interfaces.Link method)

 	

 	(resource_api.interfaces.Resource method)

 	get_data() (resource_api.interfaces.Link method)

 	

 	(resource_api.interfaces.Resource method)

 	get_entry_point() (resource_api.service.Service method)

 	

 	get_resource() (resource_api.service.EntryPoint method)

 	get_resource_by_name() (resource_api.service.EntryPoint method)

 	

 	(resource_api_http_client.client.Client method)

 	get_schema() (resource_api.interfaces.AbstractUriPolicy method)

 	

 	(resource_api.service.Service method)

 	get_uris() (resource_api.interfaces.Link method)

 	

 	(resource_api.interfaces.Resource method)

I

 	

 	IntegerField (class in resource_api.schema)

 	

 	item (resource_api.link.LinkToOne attribute)

 	

 	(resource_api_http_client.client.LinkToOne attribute)

L

 	

 	Link (class in resource_api.interfaces)

 	LinkCollection (class in resource_api.link)

 	

 	(class in resource_api_http_client.client)

 	LinkHolder (class in resource_api.link)

 	

 	(class in resource_api_http_client.client)

 	LinkInstance (class in resource_api.link)

 	

 	(class in resource_api_http_client.client)

 	

 	links (resource_api.resource.ResourceInstance attribute)

 	

 	(resource_api_http_client.client.ResourceInstance attribute)

 	LinkToOne (class in resource_api.link)

 	

 	(class in resource_api_http_client.client)

 	ListField (class in resource_api.schema)

M

 	

 	MultipleFound

O

 	

 	ObjectField (class in resource_api.schema)

P

 	

 	pk (resource_api.resource.ResourceInstance attribute)

 	

 	(resource_api_http_client.client.ResourceInstance attribute)

 	

 	PkUriPolicy (class in resource_api.interfaces)

R

 	

 	register() (resource_api.service.Service method)

 	Resource (class in resource_api.interfaces)

 	resource_api.errors (module)

 	ResourceCollection (class in resource_api.resource)

 	

 	(class in resource_api_http_client.client)

 	

 	ResourceDeclarationError

 	ResourceInstance (class in resource_api.resource)

 	

 	(class in resource_api_http_client.client)

 	RootLinkCollection (class in resource_api.link)

 	

 	(class in resource_api_http_client.client)

 	RootResourceCollection (class in resource_api.resource)

 	

 	(class in resource_api_http_client.client)

S

 	

 	Schema (class in resource_api.schema)

 	schema (resource_api_http_client.client.Client attribute)

 	serialize() (resource_api.interfaces.AbstractUriPolicy method)

 	Service (class in resource_api.service)

 	

 	set() (resource_api.link.LinkToOne method)

 	

 	(resource_api_http_client.client.LinkToOne method)

 	setup() (resource_api.service.Service method)

 	StringField (class in resource_api.schema)

T

 	

 	target (resource_api.link.LinkInstance attribute)

 	

 	(resource_api_http_client.client.LinkInstance attribute)

 	TimeField (class in resource_api.schema)

 	

 	type (resource_api.interfaces.AbstractUriPolicy attribute)

U

 	

 	update() (resource_api.interfaces.Link method)

 	

 	(resource_api.interfaces.Resource method)

 	(resource_api.link.LinkInstance method)

 	(resource_api.resource.ResourceInstance method)

 	(resource_api_http_client.client.ResourceInstance method)

 	UriPolicy (resource_api.interfaces.Resource attribute)

 	

 	user (resource_api.service.EntryPoint attribute)

V

 	

 	ValidationError

 Copyright 2014, F-Secure.
 Created using Sphinx 1.2.2.

 _images/entity_diagram_with_structure.png
+ratings

+teacher

+courses

+course

+teacher

+students +courses

+ratings

+ratings

+course

+comments

+student

_images/entity_diagram.png
+courses +teacher

+students +courses

N +ratings
+ratings +comments

+ratings

+course

+teacher +course

+student

_static/minus.png

_static/comment.png

_static/plus.png

_static/comment-bright.png

_static/comment-close.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Resource API 3.1.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, F-Secure.
 Created using Sphinx 1.2.2.

_static/up.png

_static/down-pressed.png

_static/down.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

