

 Navigation

 	
 index

 	require.js 1.0.1 documentation

require.js

Introduction

If you have written code in other programming languages (like Python for example), then you already should know what’s
a module. require.js allows you to write your JavaScript code in a similar manner, to divide code into separate
modules and packages, clearly stating dependencies and relations between files. It’s very powerful idea, that will
change how you write code. Your code will become simpler, more readable and maintainable.

This solution is similar to the RequireJS, which does support asynchronous code loading. See also:

	AMD API wiki [https://github.com/amdjs/amdjs-api/wiki/AMD]

	Why AMD? (RequireJS) [http://requirejs.org/docs/whyamd.html]

	Dojo Tutorial: AMD Modules [http://dojotoolkit.org/documentation/tutorials/1.8/modules/]

If you are an advanced user of RequireJS, then you should know, that the solution described here is
in many areas different and many ‘features’ were not implemented on purpose. Summarizing this up: overall idea is very
similar, but API has many differences.

Written with The Zen of Python [http://www.python.org/dev/peps/pep-0020/] in mind.

What’s a module?

A module is a single JavaScript file, that is a collection of related functions or classes or both. In case of a more
complicated code a module may also contain only one class definition or only one function. Module should be a reusable
piece of code, that you will want to use in many software projects.

A package is a group of modules (usually somewhat related).

JavaScript at the time of writing this, doesn’t support any kind of modules or packages. We’ve borrowed this idea
from other programming languages to make writing complex JavaScript applications easier.

Downloads

You can get require.js from BitBucket or GitHub. You need only the require.js file.

Official Mercurial repository: https://bitbucket.org/PythonFanboy/require.js

Official Git repository: https://github.com/PythonFanboy/require.js

Integrating require.js

Dependencies: None. Supported browsers: All (IE8 and older with an Object.create() polyfill [https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/create]).

To add require.js to your site, just include it before any of your code and other libraries, like jQuery. This is done
usually at the end of the <body> tag:

 ...

 <script src="scripts/require.js"></script> <!-- Add this line -->
 <script src="scripts/settings.js"></script> <!-- This is optional, you need to create this file yourself -->

 <!-- Other modules in your application. Note that third-party modules probably won't be compatible with require.js -->
 <script src="scripts/jquery.js"></script>
 <script src="scripts/my_module.js"></script>
 ...
 </body>
</html>

Note

require.js won’t load your modules asynchronously. This is on purpose, to reduce confusion and increase performance
of complicated applications. Ask your back end developer to merge all JavaScript modules to a single file, this is
done usually by using some third-party static files compressor.

How to ‘create’ a module?

To define a module, just create a JavaScript file, and write something like this:

define('great_module', function() {

 // My module code goes here...
 function myFunction() {
 return 5;
 }

 // 'Export' any things you want other developers (or you) should use.
 return {'myFunction': myFunction};
});

The function statement at the beginning of the above example is a simple way to make all your code private and
decide which functions and classes should be available to others using the return statement at the end of module
definition.

To use myFunction in other modules use the global require() function, which is somewhat similar to Python’s
import statement (at least the whole idea is similar).

// 'great_module' must match with what was specified in the define() call above.
var greatModule = require('great_module');

greatModule.myFunction();

Below is a more practical example:

define('numbers', function() {

 function radians(n) {
 return n * Math.PI / 180;
 }

 function degrees(n) {
 return n * 180 / Math.PI;
 }

 return {
 'radians': radians,
 'degrees': degrees
 };
});

Above is a simple module example with two functions that help converting angles between radians and degrees. When you
want to use these functions, again use require() anywhere in your code:

var numbers = require('numbers');

numbers.degrees(Math.PI);
numbers.radians(180);

Using modules

When you have code divided into many small modules it’s very important to explicitly state, how modules depend on each
other. This is usually written at the beginning of a module’s source code for readability. Using require.js you can
state dependencies in a define() call like this:

// Define a module and use some code from the 'numbers' module without calling require().
define('my_custom_module', ['numbers'], function(numbers) {

 // This is a space of an other module. Here you can use the numbers module from previous example.

 function fullCircle() {
 return numbers.radians(Math.PI * 2);
 }

 return {'fullCircle': fullCircle}
});

In the above example the 'my_custom_module' uses a 'numbers' module, this is stated in the define() call.

dependencies is just an array of module names that are required, so the current module can work.

define(moduleName, [dependencies], function(dependency1, dependency2, ...) {
 ...
});

Using jQuery

By default jQuery is only available as module, there are no jQuery and $ global variables available
(‘no conflict’ mode is on, to change this toggle JQUERY_NO_CONFLICT setting).

define('my_module', ['jquery'], function(jQuery) {

 jQuery('div').remove();

});

An alternate syntax

You can also use a shorter syntax when you want to create module that’s a group of constants or functions.

define('config', {
 'DEBUG': true,
 'FPS': 60,
 ...
});

var config = require('config');

if (config.DEBUG)
 ...

The 'settings' module

You can define configuration options for your application in a 'settings' module. Then, other modules will
reference this settings module and treat it as a central point of a run time configuration.

define('settings', {
 // Used by require.js, defaults to true, used to toggle 'no conflict mode' for jQuery.
 'JQUERY_NO_CONFLICT': false,

 // Other custom, user-defined settings example:
 'DEBUG': true,
 'ANIMATIONS': true,
 'FPS': 60,
 ...
});

Although 'settings' in the above example is a simple JavaScript object, when using it in other modules, require.js
gives you a getter function to ease development.

var settings = require('settings');

if (settings('DEBUG', false))
 ...

settings in this case is a function, that returns given named configuration options and in case of an unknown, not
defined options, this function returns a fallback value (the second argument).

Good practices

Below is a list of good practices, that when followed should somewhat increase code quality and readability.

	Module names should match 1:1 to JavaScript file names (without extension). Module 'numbers' should reside in a
file named numbers.js. Modules that are inside sub-directories should include those directories in the module name.
So a module numbers placed in a directory math should be named 'math/numbers'.

Usually file names are all lower case, also consider separating words with an underscore character. Actually
CamelCase in module names is not supported and when such module name is used, define() will throw an exception.

	Although everything in a module code is private, you should export as much as possible, so other developers won’t
have problems to reuse your code. When some variables or functions are considered internal, then you may prepend
an underscore character to their name, so other developers will know that they are messing with some internals.

	In case of many dependencies it’s recommended to write them using the require() function. Instead:

define('my_module', ['dep1', 'dep1', 'dep3', 'dep4', ...], function(dep1, dep2, dep3, dep4, ...) {
 ...

Write this:

define('my_module', function() {
 var dep1 = require('dep1');
 var dep2 = require('dep2');
 var dep3 = require('dep3');
 var dep4 = require('dep4');
 ...

The above notation is more verbose, but also more readable in case of many dependencies.

	If your module needs to initialize itself in some way, it’s better if time of this initialization can be chosen
at run time. For example instead of adding event listeners to some DOM elements, you could write a pair if functions
install()/uninstall() or enable()/disable(), so other developers using your module can decide when they want
to initialize given libraries (probably as late as possible to improve loading time).

Differences from other popular implementations

	Simple.

	Just look at the source code, it’s just damn 2 simple functions. Actually it’s more error checking than actual code.

	Compatible.

	Well, almost. Syntax is very near to the RequireJS, so if you won’t like this solution or need more
features, then you should be able to painlessly swap implementations.

	No asynchronous code loading.

	When dividing your project into many small modules you may end up with lots of JavaScript files. Loading them into
browser will be slow, so merging them to a single file is recommended. What’s also recommended is to let your
back end developers combine and compress JS files into single one.

Loading other files, like text, CSV files is also not possible. If you need these features then use RequireJS,
but it may also mean that you’re probably making your code complicated (hope you’ve a reason to!).

	Cruft-free.

	No need to install any temporarily-popular servers, package managers, parsers and other useless
stuff. It’s just one JavaScript file.

	Exceptions.

	define() and require() will throw meaningful exceptions that should ease you debugging in case
you get lost. No error should pass silently.

	Small.

	Around 5 KB of code when uncompressed, mostly due to custom exception classes. Less than 1 KB compressed
and gzipped.

	Settings.

	Standardizes one place to store all your app-wide configuration options, that your modules can leverage.

	Bug-free.

	Seriously, the code is very simple, also lack of redundant or useless features helps in this regard.

	jQuery support.

	You can toggle ‘no conflict mode’ in the settings module. Include jQuery after require.js and after
settings.js (if you have one).

API Reference

	
define(moduleName, [dependencies,]moduleCode)

	Creates a module from moduleCode and stores it in the define.modules container for later retrieval with
require().

	Arguments:	
	moduleName (string) – Must be a string with proper name. Allowed characters are lower case letters, digits, underscores
and slashes (when module nested in sub-directories). moduleName should be an absolute path to a module,
including the file name, but without extension. This value must be unique, no two modules with the same name are
allowed.

	dependencies (array) – Optional, can be specified only if moduleCode is a function. dependencies must be an
array of strings, where each string is name of some other module. Each module must be loaded prior to this point
and will be passed as an argument to the function specified in moduleCode.

	moduleCode – Should be a callback function that returns module definition. It will be called immediately and will
receive all modules specified in dependencies as arguments. moduleCode can be also any other object, which
may prove useful in case of defining application settings or other constant values.

	Throws:	
	define.Error – When define() is called with dependencies specified, but moduleCode is not a function.

	define.ArgumentCountError – When called with not enough or too many arguments.

	define.InvalidModuleNameError – When moduleName contains not allowed characters or is empty or is not a string.

	define.InvalidModuleError – When moduleCode is undefined or it’s function that doesn’t return anything.

	define.DuplicateModuleError – When given moduleName is already used by an other module.

	Returns:	undefined

	
require(moduleName)

	Retrieves module from the internal module storage (IE. define.modules). moduleName must be a string.

	Throws:	
	require.Error – When given module specified in moduleName doesn’t exist (was not defined).

	require.ArgumentsError – When arguments count is not one or moduleName is not a string.

	Returns:	module definition, that is any object stored previously with define() call.

Settings

	
JQUERY_NO_CONFLICT

	Toggles jQuery ‘no conflict mode’ [http://api.jquery.com/jQuery.noConflict/] (default is true).

Testing

Tests are written using Jasmine framework [http://pivotal.github.io/jasmine/]. Just open the
tests/require.html file in any browser to run tests.

Version history

	v1.0.1

	Added IE8 and IE7 support when an Object.create() polyfill is present.

	v1.0.0

	Initial release.

License

The MIT License (MIT)

Copyright © 2013 Tomasz Grajewski

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sub license, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Jasmine
© 2008-2013 Pivotal Labs

 Copyright 2013, Tomasz Grajewski.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	require.js 1.0.1 documentation

Index

 D
 | J
 | R

D

 	

 	define() (built-in function)

J

 	

 	JQUERY_NO_CONFLICT (global variable or constant)

R

 	

 	require() (built-in function)

 Copyright 2013, Tomasz Grajewski.
 Created using Sphinx 1.2.2.

 _static/up.png

_static/comment-bright.png

_static/down.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		require.js 1.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Tomasz Grajewski.
 Created using Sphinx 1.2.2.

_static/down-pressed.png

_static/comment-close.png

_static/up-pressed.png

_static/comment.png

_static/file.png

_static/minus.png

_static/plus.png

