
ReproZip Documentation
Release 0.4.1

Fernando Chirigati, Remi Rampin, Juliana Freire, and Dennis Shasha

November 11, 2014

Contents

1 Contents 3
1.1 Why ReproZip? . 3
1.2 Installation . 3
1.3 Using reprozip . 4
1.4 Using reprounzip . 7
1.5 Developer’s Guide . 12

2 Links 13

i

ii

ReproZip Documentation, Release 0.4.1

Welcome to ReproZip’s documentation!

ReproZip is a tool aimed at simplifying the process of creating reproducible experiments from command-line exe-
cutions. It tracks operating system calls and creates a package that contains all the binaries, files, and dependencies
required to run a given command on the author’s computational environment. A reviewer can then extract the experi-
ment in his own environment to reproduce the results, even if the environment has a different operating system from
the original one.

Currently, ReproZip can only pack experiments that originally run on Linux.

Concretely, ReproZip has two main steps:

• The packing step happens in the original environment, and generates a compendium of the experiment, so as
to make it reproducible. ReproZip tracks operating system calls while executing the experiment, and creates a
.rpz file, which contains all the necessary information and components for the experiment.

• The unpacking step reproduces the experiment from the .rpz file. ReproZip offers different unpacking meth-
ods, from simply decompressing the files in a directory to starting a full virtual machine, and they can be used
interchangeably from the same packed experiment. It is also possible to automatically replace input files and
command-line arguments. Note that this step is also available on Windows and Mac OS X, since ReproZip can
unpack the experiment in a virtual machine for further reproduction.

Contents 1

http://vida-nyu.github.io/reprozip/

ReproZip Documentation, Release 0.4.1

2 Contents

CHAPTER 1

Contents

1.1 Why ReproZip?

Reproducibility is a core component of the scientific process: it helps researchers all around the world to verify
the results and also to build on them, alowing science to move forward. In natural science, long tradition requires
experiments to be described in enough detail so that they can be reproduced by researchers around the world. The
same standard, however, has not been widely applied to computational science, where researchers often have to rely
on plots, tables, and figures included in papers, which loosely describe the obtained results.

The truth is computational reproducibility can be very painful to achieve for a number of reasons. Take the author-
reviewer scenario of a scientific paper as an example. Authors must generate a compendium that encapsulates all
the inputs needed to correctly reproduce their experiments: the data, a complete specification of the experiment and
its steps, and information about the originating computational environment (OS, hardware architecture, and library
dependencies). Keeping track of this information manually is rarely feasible: it is both time-consuming and error-
prone. First, computational environments are complex, consisting of many layers of hardware and software, and the
configuration of the OS is often hidden. Second, tracking library dependencies is challenging, especially for large
experiments. If authors did not plan for reproducibility since the beginning of the project, reproducibility is drastically
hampered.

For reviewers, even with a compendium in their hands, it may be hard to reproduce the results. There may be no
instructions about how to execute the code and explore it further; the experiment may not run on his operating system;
there may be missing libraries; library versions may be different; and several issues may arise while trying to install
all the required dependencies, a problem colloquially known as dependency hell.

ReproZip helps alleviate these problems by allowing the user to easily capture all the necessary components in a single,
distributable package. Also, the tool makes it easier to reproduce an experiment by providing different unpacking
methods and interfaces that avoids the need to install all the required dependencies and that makes it possible to run
the experiment under different inputs.

1.2 Installation

ReproZip is available as open source, released under the Revised BSD License. Please visit ReproZip’s website to
find links to our PyPI packages or our GitHub repository.

1.2.1 Software Requirements

ReproZip is comprised of two components: reprozip (for the packing step) and reprounzip (for the unpack step).
Additional plugins are also provided for reprounzip: reprounzip-vagrant, which unpacks the experiment in a Vagrant

3

http://en.wikipedia.org/wiki/Dependency_hell
http://vida-nyu.github.io/reprozip/
https://github.com/ViDA-NYU/reprozip

ReproZip Documentation, Release 0.4.1

virtual machine, and reprounzip-docker, which unpacks the experiment in a Docker container (please see Additional
Unpackers for more information). More plugins may be developed in the future (and of course, you are free to roll
your own).

These are all standard Python packages that you can install using pip. However, reprozip only works on Linux and
needs a C compiler recognized by distutils since it includes a C extension module that will be built during installation.

The operating system compatibility for the two ReproZip components is the following:

Component Linux Mac OS X Windows
reprozip Yes No No
reprounzip Yes Yes 2 Yes 1

Python 2.7.3 or greater 3 is required to run ReproZip. Besides, depending on the component or plugin to be used, some
additional software packages are also required, as described below:

Component / Plugin Required Software Packages
reprozip SQLite, a working C compiler
reprounzip None
reprounzip-vagrant Vagrant
reprounzip-docker Docker

1.2.2 Obtaining the Software

In ReproZip, the components must be installed separately as they fulfill different purposes (and typically, you will use
them on different machines). First, you will need Python and pip. Then, to install a ReproZip component, simply run
the following command:

$ pip install <name>

where <name> is the name of the component.

The additional plugins for reprounzip can also be installed using the same command. They depend on reprounzip, so
it will be installed automatically if you simply install the plugin.

1.3 Using reprozip

The reprozip component is responsible for packing an experiment. In ReproZip, we assume that the experiment can
be executed by a single command line, preferably with no GUI involved (please refer to Further Considerations for
additional information regarding different types of experiments).

There are three steps when packing an experiment with reprozip: tracing the experiment, editing the configuration file
if necessary, and creating the reproducible package for the experiment. Each of these steps is explained in more details
below. Note that reprozip is only available for Linux distributions.

1.3.1 Tracing an Experiment

First, reprozip needs to trace the operating system calls used by the experiment, so as to identify all the necessary
information for its future re-execution, such as binaries, files, library dependencies, and environment variables.

The following command is used to trace an experiment:

1By using either reprounzip-vagrant or reprounzip-docker.
2By using either reprounzip-vagrant or reprounzip-docker.
3 This is because of Python bug 13676 related to sqlite3.

4 Chapter 1. Contents

http://www.sqlite.org/
https://www.vagrantup.com/
https://www.docker.com/
https://pip.pypa.io/en/latest/installing.html
http://bugs.python.org/issue13676

ReproZip Documentation, Release 0.4.1

$ reprozip trace <command-line>

where <command-line> is the command line used to execute the experiment. By running this command, reprozip
executes the experiment and uses ptrace to trace all the system calls issued, storing them in an SQLite database.

By default, if the operating system is Debian or Debian-based (e.g.: Ubuntu), reprozip will also try to automatically
identify the distribution packages that the files come from, using the available package manager of the system. This is
useful to provide more detailed information about the dependencies, as well as to further help when reproducing the
experiment; however, the trace command can take some time doing that after the experiment has finished, depending
on the number of file dependencies that the experiment has. To disable this feature, users may use the flag –dont-
identify-packages:

$ reprozip trace --dont-identify-packages <command-line>

The database, together with a configuration file (see below), are placed in a directory named .reprozip, created
under the path where the reprozip command was issued.

1.3.2 Editing the Configuration File

The configuration file, which can be found in .reprozip/config.yml, contains all the information necessary for
creating the experiment package. It is created by the tracer, and drives the packing step.

It is possible to not change anything, as the automatically-generated file is probably sufficient to generate a working
package, however you may want to edit this file prior to the creation of the package in order to add or remove files.
This can be particularly useful, for instance, to remove big files that can be obtained elsewhere when reproducing the
experiment, so as to keep the size of package small, and also to remove sensitive information that the experiment may
use. The configuration file can also be used to edit the main command line, as well as to add or remove environment
variables.

The first part of the configuration file gives general information with respect to the experiment execution, including
the command line, environment variables, main input and output files, and machine information:

Run info
version: <reprozip-version>
runs:
- architecture: <machine-architecture>

argv: <command-line-arguments>
binary: <command-line-binary>
distribution: <linux-distribution>
environ: <environment-variables>
exitcode: <exit-code>
gid: <group-id>
hostname: <machine-hostname>
input_files: <input-files>
output_files: <output-files>
system: <system-kernel>
uid: <user-id>
workingdir: <working-directory>

If necessary, users may change the command line parameters by editing <command-line-arguments>, and add or
remove environment variables by editing <environment-variables>. Other attributes should mostly not be changed,
apart from the input_files and output_files (in particular, feel free to remove some of these, and give them more
descriptive names).

The next section in the configuration file shows the files to be packed. If the software dependencies were identified by
the package manager of the system during the trace command execution, they will be listed under packages; the file
dependencies not identified in software packages are listed under other_files:

1.3. Using reprozip 5

http://en.wikipedia.org/wiki/Dpkg

ReproZip Documentation, Release 0.4.1

packages:
- name: <package-name>
version: <package-version>
size: <package-size>
packfiles: <include-package>
files:

Total files used: <used-files-size>
Installed package size: <package-size>
<files-list>

- name: ...
...

other_files:
<files-list>

The attribute packfiles can be used to control which software packages will be packed: its default value is true, but
users may change it to false to inform reprozip that the corresponding software package should not be included. To
remove a file that was not identified as part of a package, users can simply remove it from the list under other_files.

Last, users may add file patterns under additional_patterns to include other files that they think it will be useful for a
future reproduction. As an example, the following would add everything under /etc/apache2/ and all the Python
files of all users from LXC containers (contrieved example):

additional_patterns:
- /etc/apache2/**
- /var/lib/lxc/*/rootfs/home/**/*.py

Note that users can always reset the configuration file to its initial state by running the following command:

$ reprozip reset

1.3.3 Creating a Package

After tracing the experiment and optionally editing the configuration file, the experiment package can be created by
issuing the command below:

$ reprozip pack <package-name>

where <package-name> is the name given to the package. This command generates a .rpz file in the current direc-
tory, which can then be sent to others so that the experiment can be reproduced. For more information regarding the
unpacking step, please see Using reprounzip.

Note that this is only at this point that files will be copied from your environment and into the package; as such, you
should not change any file that the experiment used before packing it, or else the package will contain different files
than the ones the experiment used while it was traced.

1.3.4 Further Considerations

Packing Multiple Command Lines

ReproZip is meant to trace a whole experiment in one go. Therefore, if an experiment comprises multiple successive
commands, users should create a simple script that runs all these commands, and pass that with reprozip trace.

6 Chapter 1. Contents

ReproZip Documentation, Release 0.4.1

Packing GUI and Interactive Tools

Currently, ReproZip cannot ensure that GUI interfaces will be correctly reproduced (support is coming soon), so we
recommend packing tools in a non-GUI mode for a successfull reproduction.

Additionally, there is no restriction in packing interactive experiments (i.e., experiments that require input from users).
Note, however, that if entering something different can make the experiment load additional dependencies, the exper-
iment will probably fail in that case when reproduced on a different machine.

Capturing Connections to Servers

Communication with remote servers is outside the scope of ReproZip: when reproducing an execution, the experiment
will try to connect to the same server, which may or may not fail depending on the status of the server at the moment
of the reproduction. However, if the experiment uses a local server (e.g.: database) that can the user has control over,
this server can also be captured, together with the experiment, to ensure that the connection will succeed. Users should
create a script to:

• start the server,

• execute the experiment, and

• stop the server,

and use reprozip to trace the whole script, rather than the experiment itself. This way, ReproZip is able to capture the
local server as well, which ensures that the server will be alive at the time of the reproduction.

Excluding Sensitive and Third-Party Information

ReproZip automatically tries to identify log and temporary files, removing them from the package, but the configura-
tion file should be edited to remove any sensitive information that the experiment uses, or any third-party file/software
that should not be distributed. Note that the ReproZip team is not responsible for personal and non-authorized files
that may get distributed in a package; users should double-check the configuration file and their package before sending
it to others.

Identifying Output Files

ReproZip tries to automatically identify the main output files generated by the experiment during the trace command
to provide useful interfaces for users during the unpacking step. However, if the experiment creates unique names for
its outputs every time it is executed (e.g.: names with current date and time), the reprounzip component will not be
able to correctly detect these; it assumes that input and output files don’t move. In this case, handling output files will
fail; it is recommended that users modify their experiment (or use a wrapper script) to generate a symbolic link (with
a default name) that always points to the latest result, and use that as the output file’s path in the configuration.

1.4 Using reprounzip

While reprozip is responsible for tracing and packing an experiment, reprounzip is the component used for the un-
packing step. reprounzip is distributed with three unpackers for Linux (see Unpacking an Experiment in Linux), but
more unpackers can be provided through plugins; some of these are compatible with different environment as well
(see Additional Unpackers).

1.4. Using reprounzip 7

ReproZip Documentation, Release 0.4.1

1.4.1 Inspecting a Package

Showing Package Information

Before unpacking an experiment, it is often useful to have further information with respect to its package. The
following command allows users to do so:

$ reprounzip info <package>

where <package> corresponds to the experiment package (i.e.: the .rpz file). You can pass -v (for verbose) or -v
-v to get more detailed information on the package.

The output of this command has three sections. The first section, Pack Information, contains general information about
the experiment package, including size and total number of files:

----- Pack information -----
Compressed size: <compressed-size>
Unpacked size: <unpacked-size>
Total packed paths: <number>

The next section, Metadata, contains information about dependencies (i.e., software packages), machine architecture
from the packing environment, and experiment execution:

----- Metadata -----
Total software packages: <total-number-software-packages>
Packed software packages: <number-packed-software-packages>
Architecture: <original-architecture> (current: <current-architecture>)
Distribution: <original-operating-system> (current: <current-operating-system>)
Executions:

<command-line>
wd: <working-directory>
exitcode: 0

Note that, for architecture and distribution, the command shows information with respect to both the original envi-
ronment (i.e.: the environment where the experiment was packed) and the current one (i.e.: the environment where
the experiment is to be unpacked). This helps users understand the differences between the environments in order to
provide a better guidance in choosing the most appropriate unpacker.

Last, the section Unpackers shows which of the installed reprounzip unpackers can be successfully used in the current
environment:

----- Unpackers -----
Compatible:

...
Incompatible:

...

Compatible lists the unpackers that can be used in the current environment; Incompatible lists the unpackers that
cannot be used in the current environment. An additional Unknown list shows the installed unpackers that might not
work, for example the vagrant unpacker if the vagrant command is not found in PATH.

For example, for an experiment originally packed on Ubuntu and a user reproducing on Windows, vagrant is compat-
ible (see Vagrant Plugin), but installpkgs is incompatible (we can’t use Linux software packages natively).

Showing Input and Output Files

The showfiles command can be used to list the input and output files defined for that experiment. This is useful if you
want to substitute an input file with another of your files, or get an output file out for further examination:

8 Chapter 1. Contents

ReproZip Documentation, Release 0.4.1

$ reprounzip showfiles package.rpz
Input files:

program_config
ipython_config
input_data

Output files:
rendered_image
logfile

Creating a Provenance Graph

ReproZip also allows users to generate a provenance graph related to the experiment execution. This graph shows
the relationships between files, library dependencies, and binaries during the execution. To generate such a graph, the
following command should be used:

$ reprounzip graph package.rpz graph-file.dot
$ dot -Tpng graph-file.dot -o image.png

where graph-file.dot corresponds to the graph, outputted in the DOT language.

1.4.2 Unpacking an Experiment in Linux

There are three main unpackers specific to Linux environments: directory, chroot, and installpkgs. In the following,
each of these unpackers are explained in detail.

Running From a Directory

The directory unpacker (reprounzip directory) allows users to unpack the entire experiment (including library
dependencies) in a single directory, and to reproduce the experiment directly from that directory. It does so by auto-
matically setting up environment variables (e.g.: PATH, HOME, and LD_LIBRARY_PATH) that point the experiment
execution to the created directory, which has the same structure as in the packing environment.

Note however that, although this unpacker is easy to use and does not require any privilege on the reproducing machine,
it is unreliable since the directory is not isolated in any way from the rest of the system; in particular, should the
experiment use absolute paths, they will hit the host system instead. This is fine if the system has the required
packages (see Installing Software Packages), and the experiment’s own files are addressed with relative paths.

To create the directory where the execution will take place, users should use the command setup:

$ reprounzip directory setup <package> <path>

where <path> is the diretory where the experiment will be unpacked.

After creating the directory, the experiment can be reproduced by issuing the run command:

$ reprounzip directory run <path>

which will execute the entire experiment inside the experiment directory. Users may also change the command line of
the experiment by using the argument cmdline:

$ reprounzip directory run <path> --cmdline <new-command-line>

where <new-command-line> is the modified command line. This is particularly useful to reproduce and test the
experiment under different input parameter values.

1.4. Using reprounzip 9

http://en.wikipedia.org/wiki/DOT_(graph_description_language)

ReproZip Documentation, Release 0.4.1

Before reproducing the experiment, users also have the option to change the input files. The input files of the experi-
ment can be listed by running the showfiles command (see Showing Input and Output Files), and then run the upload
command:

$ reprounzip directory upload <path> <input-path>:<input-id>

where <input-path> is the new file’s path and <input-id> is the input file to replace (from showfiles). To restore the
original input file, the same command, but in the following format:

$ reprounzip directory upload <path> :<input-id>

After running the experiment, all the generated output files will be located under the experiment directory. To copy an
output file from this directory to another desired location, users may first list these files by running showfiles, and then
run the download command:

$ reprounzip directory download <path> <output-id>:<output-path>

where <output-id> is the output file to get (from showfiles) and <output-path> is the desired destination of the file. If
no destination is specified, the file will be printed to stdout:

$ reprounzip directory download <path> <output-id>:

The experiment directory can be removed by using the destroy command:

$ reprounzip directory destroy <path>

Limitation: reprounzip directory will fail if the binaries involved in the experiment use hardcoded paths, as
they will point outside the unpacked directory. The other unpackers are more reliable in that regard.

Running With chroot

In the chroot unpacker (reprounzip chroot), similar to reprounzip directory, a directory is created from the
experiment package, but a full system environment is built, which can then be run with chroot(2) (a Linux mecha-
nism to change the root directory / for the experiment to the experiment directory). Therefore, this unpacker addresses
the limitation of reprounzip directory and does not fail in the presence of harcoded paths. It also does not interfere
with the current environment since the experiment is isolated in that single directory.

To create the directory of the chroot environment, users should use the command setup:

$ reprounzip chroot setup <package> <path>

where <path> is the diretory where the experiment will be unpacked for the chroot environment. If users run this
command as root, ReproZip will restore the owner/group of the experiment files by default (unless –no-preserve-owner
is used), and will mount your /dev and /proc directory inside the chroot (unless --dont-mount-magic-dirs
is used).

The commands to replace input files, reproduce the experiment, and copy output files are the same as for
reprounzip directory:

$ reprounzip chroot upload <path> <input-path>:<input-id>
$ reprounzip chroot run <path> --cmdline <new-command-line>
$ reprounzip chroot download <path> <output-id>:<output-path>

To remove the chroot environment, users can execute the command destroy:

$ reprounzip chroot destroy <path>

which unmounts /dev and /proc from the experiment directory and then removes the directory.

10 Chapter 1. Contents

ReproZip Documentation, Release 0.4.1

Warning: do not try to delete the experiment directory, always use reprounzip chroot destroy. If /dev is
mounted inside, you would also delete your system’s device pseudofiles (these can be restored by rebooting or running
the MAKEDEV script).

Installing Software Packages

By default, ReproZip identifies if the current environment already has the required software packages for the experi-
ment, using the installed ones; for the non-installed software packages, it uses the dependencies packed in the original
environment and extracted under the experiment directory.

Users may also let ReproZip to try installing all the dependencies of the experiment in their environment by using the
installpkgs unpacker (reprounzip installpkgs). This unpacker currently works for Debian and Debian-based
operating systems only (e.g.: Ubuntu), and uses the dpkg package manager to automatically install all the required
software packages directly on the current machine, thus interfering with this environment.

To install the required dependencies, the following command should be used:

$ reprounzip installpkgs <package>

Users may use flag y or assume-yes to automatically confirm all the questions from the package manager; flag missing
to install only the software packages that were not originally included in the experiment package (i.e.: software
packages excluded in the configuration file); and flag summary to simply provide a summary of which software
packages are installed or not in the current environment without installing any dependency.

Note that this unpacker is only used to install software packages. Users still need to use either reprounzip directory or
reprounzip chroot to extract the experiment and execute it.

1.4.3 Additional Unpackers

ReproZip has some plugins for the reprounzip component that provide a new range of unpackers for the system, even
allowing a Linux experiment to be reproduced in different environments (e.g.: Mac OS X and Windows). These
plugins do not come builtin with reprounzip and need to be installed separately, after installing reprounzip.

Vagrant Plugin

The reprounzip-vagrant plugin allows an experiment to be unpacked and reproduced using a virtual machine created
through Vagrant. Therefore, the experiment can be reproduced in any environment supported by this tool, i.e.: Linux,
Mac OS X, and Windows. Note that the plugin assumes that Vagrant is installed in the current environment.

To create the virtual machine for an experiment package, the setup command should be used:

$ reprounzip vagrant setup <package> <path>

where <path> is the destination directory for the Vagrant virtual machine.

The commands to replace input files, reproduce the experiment, and copy output files are the same as other unpackers:

$ reprounzip vagrant upload <path> <input-path>:<input-id>
$ reprounzip vagrant run <path> --cmdline <new-command-line>
$ reprounzip vagrant download <path> <output-id>:<output-path>

Users can also suspend the virtual machine (without destroying it) by using the suspend command:

$ reprounzip vagrant suspend <path>

1.4. Using reprounzip 11

http://en.wikipedia.org/wiki/Dpkg
https://www.vagrantup.com/

ReproZip Documentation, Release 0.4.1

After suspended, the virtual machine can be resumed by using the setup/start command.

To destroy the virtual machine, the following command must be used:

$ reprounzip vagrant destroy <path>

Docker Plugin

ReproZip can also extract and reproduce experiments using Docker containers. The reprounzip-docker plugin is the
one responsible for such integration and it assumes that Docker is already installed in the current environment.

To create the container for an experiment package, the following command should be used:

$ reprounzip docker setup <package> <path>

where <path> is the destination directory for the Docker files.

The commands to replace input files, reproduce the experiment, and copy output files are the same as in previous
unpackers:

$ reprounzip docker upload <path> <input-path>:<input-id>
$ reprounzip docker run <path> --cmdline <new-command-line>
$ reprounzip docker download <path> <output-id>:<output-path>

To destroy the container, the following command must be used:

$ reprounzip docker destroy <path>

1.4.4 Further Considerations

Reproducing Multiple Execution Paths

The reprozip component can only guarantee that reprounzip will successfully reproduce the same execution path that
the original experiment followed. There is no guarantee that the experiment won’t need a different set of files if you
use a different configuration; if some of these files were not packed into the .rpz package, the reproduction may fail.

1.5 Developer’s Guide

Coming Soon!

12 Chapter 1. Contents

https://www.docker.com/

CHAPTER 2

Links

• Project website

• Github repository

13

http://vida-nyu.github.io/reprozip/
https://github.com/ViDA-NYU/reprozip

	Contents
	Why ReproZip?
	Installation
	Using reprozip
	Using reprounzip
	Developer's Guide

	Links

