
reproman Documentation
Release 0.0.1

ReproMan team

May 05, 2021

Contents

1 Acknowledgments 1

2 Concepts and technologies 3

3 Managing resources 11

4 Executing commands on resources 13

5 Commands and API 17

6 Indices and tables 61

Python Module Index 63

Index 65

i

ii

CHAPTER 1

Acknowledgments

ReproMan development is being performed as part of an NIH funded (1P41EB019936-01A1) “Center for Repro-
ducible Neuroimaging Computation (CRNC)”. Its initial development aims to provide a suite of tools for management
of computational environments, which is the TR&D 3 sub-project of the CRNC, and is lead by Dr. Halchenko.

1

http://nih.gov
https://projectreporter.nih.gov/project_info_details.cfm?aid=8999833&map=y
http://haxbylab.dartmouth.edu/ppl/yarik.html

reproman Documentation, Release 0.0.1

2 Chapter 1. Acknowledgments

CHAPTER 2

Concepts and technologies

2.1 Background and motivation

2.1.1 Vision

TODO

2.1.2 Objective

TODO

2.2 Related efforts and solutions

TODO

2.2.1 Related technologies

• AWS (NITRC-CE)

• Docker/Packer

• Rocket (CoreOS)

• NIH Commons computing

• boutiques

• local clusters (CH to meet with UMMS IT)

• Neuroscience Gateway

3

https://datascience.nih.gov/commons
https://github.com/boutiques/schema
http://www.nsgportal.org/

reproman Documentation, Release 0.0.1

2.3 Environment management use cases

2.4 Glossary

ReproMan uses terminology which is collated from various technologies. This glossary provides definitions for terms
used in the ReproMan documentation and API, and provides additional references where to seek more information

cloud instance TODO

container TODO Docker and Singularity

environment TODO

package TODO

virtual machine TODO

2.5 High-level Package Handling (and ReproZip Architecture Discus-
sion)

2.5.1 What ReproMan aims (not) to be

We want to leverage existing solutions (such as existing containers, cloud providers etc), which we will call ‘backends’,
and provide a very high level, unified API, to interface them with purpose of running computations or interactive
sessions.

We want to concentrate on (re)creation of such computation environments from a specification which is agnostic of
a backend and concentrates on describing what constitutes the content of that environment relevant for the execution
of computation. Backend-specific details of construction, execution and interfacing with the backend should be “tem-
plated” (or otherwise parametrized in sufficient detail) so an advanced user could still provide their tune ups). We will
not aim at the specification to be OS agnostic, i.e. the package configuration will have terms that are specific to an
architecture or distribution.

Construction of such environments would heavily depend on specification of “packages” which contain sufficient
information to reconstruct and execute in the environment. Such specifications could be constructed manually, by
ReproMan from loose human description, or via automated provenance collection of “shell” command. They also
should provide sufficient expressive power to be able to tune them quickly for most common cases (e.g. upgrade from
release X to release Y)

2.5.2 Packages, Package Managers, and Distributions

We would like to be able to identify, record, and install various packages of software and data. A package is a
collection of files, potentially platform specific (in the case of binary packages) or requiring reconstruction (such as
compiling applications from source). In addition, installing a package may have dependencies (additional packages
required by the initial package to correctly operate).

Packages are installed, removed, and queried through the use of “package managers.” There are different package
managers for different components of an environment and have slightly different capabilities. For example, “yum”
and “apt-get” are used to install binary and source files on a Linux operating system. “pip” provides download and
compilation capability for the Python interpreted language, while “conda” is another Python package manager that
can supports “virtual environments” (essentially subdirectories) that provide separate parallel Python environments.
Different packages provide varying amount of meta-information to identify package a particular file belongs to, or

4 Chapter 2. Concepts and technologies

http://docker.io
http://singularity.lbl.gov

reproman Documentation, Release 0.0.1

to gather meta-information identifying that package source so it could be reinstalled later on (e.g. “pip” from a git
repository would not store a URL for that repository anywhere to be recovered).

A “distribution” is a set of packages (typically organized with their dependencies). Some distributions (such as Linux
distros) are self-sufficient, in a sense that they could be deployed on a bare hardware or as an independent virtual-
ized environment which would require nothing else. Many distributions though allow to mix a number of origins,
where any package was or could be obtained from. E.g. it is multiple apt sources for Debian-based distributions and
“channels” in conda.

Some distributions (such as the ones based on PIP, conda), do require some base environment on top of which they
would work. But also might require some minimal set of tools being provided by the base environment. E.g. conda
-based distribution would probably need nothing but basic shell (core OS dependent), and PIP-based would require
Python to be installed. Therefore, there will be a dependency between package managers: Operating system packages
(yum & apt-get) will need to be installed first, enabling other package managers (pip, conda, npm) to then run and
build upon the base packages.

The fundamental challenge of ReproMan’s “trace” ability is to identify and record the package managers, distributions,
and packages from the files used in an experiment. Then to “create” an environment, ReproMan needs to reinstall the
packages from the specification (ideally matching as many properties, such as version, architecture, size, and hash as
possible).

Package Management and Environment Configuration

Here we discuss package managers and key distributions that ReproMan should cover (and list other potential package
managers to consider)

OS Package Managers

• apt-get (dpkg) - Expected on Debian and Ubuntu Gnu/Linux distributions

• yum (rpm) - Expected on CentOS/RHEL and other Red Hat Gnu/Linux distributions

• snap - Linux packages (with sandboxed execution) - http://snapcraft.io/

– Snaps may prove difficult for tracing because commands to download and build executibles can be embed-
ded into snap packages

In addition, we should be aware of specific package repositories that will not stand on their own but depend upon
specific OS distributions or configurations:

• NeuroDebian - a key source for NeuroImaging Debian/Ubuntu packages

• other PPAs/APT repositories, e.g. for cran

Finally, OS package managers (and related repositories and distributions) are typically used to install the language-
specific package managers described in the next section. Therefore, ReproMan “create” will need to install OS pack-
ages first, followed by language-specific packages. We may need to allow the ReproMan environment specification to
allow the user to order the package installation across multiple package managers to ensure resolution of dependencies.

Language-Related Package Managers

Python

• pip

– PyPi Package Index: https://pypi.python.org/pypi

• conda

2.5. High-level Package Handling (and ReproZip Architecture Discussion) 5

http://snapcraft.io/
https://pypi.python.org/pypi

reproman Documentation, Release 0.0.1

– Anaconda Science Platform https://www.continuum.io/downloads

– Conda-Forge https://conda-forge.github.io/

Others

• npm - node.js

• cpan - Perl

• CRAN - R

• brew, linuxbrew, gems - Ruby

Data Package Managers

• DataLad

Environment Configuration

Pretty much in every “computational environment”, environment variables are of paramount importance since they
instrument invocation and possibly pointers to where components would be located when executed. “Overlay” (Non-
OS) packages rely on adjusting (at least) PATH env variable so that components they install, possibly overlaying
OS-wide installation components, take precedence.

• virtualenv

– Impacts the configuration of python environment (where execution is happening, custom python, ENV
changes)

• modules

– http://modules.sourceforge.net

– Commonly used on HPC, which is the way to “extend” a POSIX distribution.

– We might want to be aware of it (i.e., being able to detect etc), since it could provide at least versioning
information which is conventionally specified for every installed “module”. It might come handy during
trace operation.

Provisioners

Provisioners allow you to automatically install software, alter configurations, and maintain files across multiple ma-
chines from a central server (or configuration specification). ReproMan may need to both recognize its use to create
an environment and may have an opportunity to use any of the following provisioners to recreate an environment:

• ansible

• chef

• puppet

• salt

• fabric

6 Chapter 2. Concepts and technologies

https://www.continuum.io/downloads
https://conda-forge.github.io/
http://modules.sourceforge.net

reproman Documentation, Release 0.0.1

Alternate Installation Approaches

While these are technically not package managers, we may wish to support other avenues for configuring software to
be installed. These approaches may be impossible to detect automatically:

• VCS in general (git, git-annex) repositories – we can identify if particular files belong to which repo, where it
is available from, what was the revision etc. We will not collect/record the entirety of the configuration (i.e. all
the settings from .git/config), but only the information sufficient to reproduce the environment, not necessarily
any other possible interaction with a given VCS

• Generic URL download

• File and directory copy, move, and rename

• Execution of specific commands - may be highly dependent upon the environment

NOTE: Packages that would generally be considered “Core OS” packages, could be installed using these alternate
approaches

Backends (engine)

• native

• docker

• singularity (could be created from docker container)

• virtualbox

• vagrant

• aws

• chroot/schroot(somewhat Debian specific on my tries)

• more cloud providers? google CE, azure, etc. . . ?

Engines might need nesting, e.g.

vagrant > docker aws > docker ssh > singularity

Image

(inspired by docker and singularity?) What represents a state of computation environment in a form which could be
shared (natively or through some export mechanism), and/or could be used as a basis for instantiation of multiple
instances or derived environments.

• native – none? or in some cases could be a tarball with all relevant pieces (think cde, reprozip)

• docker, singularity – image

• virtualbox – virtual appliance

• vagrant – box (virtualbox appliance with some bells iirc)

• aws – AMI

• chroot/schroot – also natively doesn’t have an ‘image’ stage unless we easily enforce it – tarball (or possi-
bly eventually fs/btrfs snapshots etc, would be neat) whatever chroot is bootstrapped!

2.5. High-level Package Handling (and ReproZip Architecture Discussion) 7

reproman Documentation, Release 0.0.1

Instance

• native – none, i.e. there is a singleton instance of the current env

• docker, singularity - container

• virtualbox – VM instance

• vagrant – ???

• aws – instance

• schroot – session (chroot itself doesn’t track anything AFAIK)

2.5.3 Perspective “agents/classes”

Distribution

• bootstrap(spec, backend, instance=None) -> instance/image

initialize (stage 1) which might include batch installation of a number (or all) of necessary pack-
ages; usually offloaded to some utility/backend. (e.g. debootstrap into a dir, docker build from
basic Dockerfile, initiate aws ami from some image, etc). Should return an “instance” we could
work with in “customization” stage

customize (stage 2) more interactive (or provisioned) which would tune installation by interacting
with the environment; so we should provide adapters on how such interaction would happen
(e.g., we could establish common mechanism via ssh, so every env in stage1 would then get
openssh deployed; but that would not work e.g. for schroot as easily)

– at the end it should generate backend-appropriate “instance” which could be reused for derived containers?

– overlay distributions would need an existing ‘instance’ to operate on

static methods (?) - get_package_url(package, version) -> urls

• find a URL providing the package of a given version. So, when necessary we could download/install those
packages

• get_distribution_spec_from_package_list({package: version_spec}) -> spec

– given a set of desired packages (with version specs), figure out distribution specification which would
satisfy the specification. E.g. to determine which snapshot (which codename, date, components) in snap-
shots.d.o would carry specified packages

if instance would come out something completely agnostic of the distribution # since instance could actually “con-
tain” multiple distributions. # Possibly tricky part is e.g. all APT “Distributions” would share invocation # – apt,
although could (via temporarily augmenting pin priorities) tune it # to consider only its part of the distribution for
installation. . . not sure # if needed - install(instance, package(s)) - uinstall(instance, package(s)) - upgrade(instance)

Probably not here but in instance. . . ? and not now

• activate() - for those which require changing of ENV. If we are to allow specification of multiple com-
mands where some aren’t using the specific “distribution” we might want to spec which envs to be used
and turn them on/off for specific commands

• deactivate()

8 Chapter 2. Concepts and technologies

reproman Documentation, Release 0.0.1

Image

to be created by bootstrap or “exported” from instance (e.g. “docker commit” to create an image)

• shrink(spec=None) -> image

– given a specification (or just some generic cleaning operations) we might want to produce a derived image
which would be

??? not clear how image/instance would play out when deploying to e.g. HPC. E.g. having a docker/singularity image,
and then running some task which would require instantiating that image for every job. . . condor has some builtin
support already IIRC for deploying virtual machine images to run the tasks etc. . . familiarize more

Instance (bootstrapped, backend specific)

(many commands inspired by docker?)

• run(command) -> instantiate (possibly new container) environment and run a command

• exec(command) -> run a command in running env

• start(id)

• stop(id)

or it would be the resource (AWS, docker, remote HPC) which would be capable of deploying Instances

Backend

???

• should provide mapping from core Distributions specs to native base images (e.g. how to get base docker image
for specific release of debian/ubuntu, . . . ; which AMIs to use as base, etc)

• we should provide default Core Distributions for case if we have a spec only with “overlay” distros (e.g. conda-
based)

• bootstrap??

Resource

• instantiate (image, . . .) -> instance(s)

– obtain instance and make it available for execution on the resource

– some are deployed since were bootstrapped on the resource, but we want to be able to deploy new docker
image,

– deployment might result in multiple instances being deployed (master + slaves for AWS orchestrated
execution or is that at run stage. . . learn more)

(Possibly naive) questions/TODOs

• AMI – could be generated by taking a “snapshot” of existing/running or shutdown instance?

if not – we might want to provide a mode where initial “investigation” is done locally on a running e.g. docker
instance, then script generated for customization stage and only then full bootstrap (using one of the available
tools for AMI provisioning) is used

2.5. High-level Package Handling (and ReproZip Architecture Discussion) 9

reproman Documentation, Release 0.0.1

• docker – could we export/import an image to get to the same state (possibly loosing overlays etc)

• singularity – the same

Next ones are more in realm of “exec” or “run” aspect which this discussion is not concentrating on ATM:

• anyone played with StarCluster/ElastiCluster?

• we should familiarize ourselves with built-in features of common PBS systems (condor, torque) to schedule jobs
which run within containers. . .

Possibly useful modules/tools

distro-info python module for Debian/Ubuntu information about releases. uses data from distro-info-data

10 Chapter 2. Concepts and technologies

CHAPTER 3

Managing resources

3.1 Managing resources

ReproMan works with a set of known resources, such as SSH-accessible remote machines and local Docker containers.
New resources can be added with reproman create. The following, for example, creates a new ssh resource named
“foo”:

$ reproman create foo --resource-type ssh --backend-parameters host=foo

This takes advantage of the details about this host being defined in an ssh_config configuration file. If a host were
not, you could specify details like the user and port as additional key-value pairs to --backend-parameters.
To see the full list of the available resource types and the associated backend parameters, call reproman backend-
parameters.

Creating a resource adds it to ReproMan’s inventory of resources. You can inspect resources in ReproMan’s inventory
with reproman ls:

$ reproman ls --refresh
RESOURCE NAME TYPE ID STATUS
------------- ---- -- ------
buster docker-container b29085a427de1efedb6 running
foo ssh 7a06ae6b-8097-4c59- ONLINE

The output above includes an entry for the SSH resource create above, “foo”, along with a resource for a Docker
container.

While most of the ReproMan subcommands have an argument that specifies which resource to operate on (e.g., the
resource to execute a command on), there are only few more dedicated subcommands for managing resources: stop,
start, and delete. Together stop and start provide a way to suspend and restart a resource such as a Docker
container or an AWS EC2 instance. For resource types where suspending the resource doesn’t make sense (e.g., for an
ssh resource), calling start or stop will simply tell you the action isn’t supported.

delete is the opposite of create. Calling reproman delete foo would delete the remove the resource
created above from ReproMan’s inventory.

11

reproman Documentation, Release 0.0.1

12 Chapter 3. Managing resources

CHAPTER 4

Executing commands on resources

4.1 Execute

Once a resource is present in your inventory (see Managing resources), ReproMan provides a few ways to execute
command(s) on the resource. The first is to request an interactive shell for a resource with reproman login. Another
is to use reproman execute, which is suitable for running one-off commands on the resource (though, as its manpage
indicates, it’s capable of a bit more). To some degree, you can think of login and execute as analogous to ssh
HOST and ssh HOST COMMAND, respectively, where the ReproMan variants provide a common interface across
resource types.

The final way to execute a command is reproman run.

4.1.1 Run

reproman run is concerned with three high-level tasks:

1. Starting from a call on the local machine, prepare the remote resource for command execution (e.g., copying
input files to the remote).

2. Execute the command on the remote resource, typically through a batch system.

3. Fetch the results to the local machine. The results include command output as well as information about the
execution (e.g., batch system submit files).

Reference example

Let’s first establish a simple example that we can reference as we cover some of the details. In a terminal, we’re
visiting a DataLad dataset where the working tree looks like this:

.
|-- clean.py
`-- data

(continues on next page)

13

https://www.datalad.org/

reproman Documentation, Release 0.0.1

(continued from previous page)

|-- f0.csv -> ../.git/annex/objects/[...]
`-- f1.csv -> ../.git/annex/objects/[...]

The clean.py script takes two positional arguments (e.g., ./clean.py data/f0.csv cleaned/f0.csv),
where the first is a data file to process and the second is a path to write the output (creating directories if necessary).

Note: Although DataLad is not a strict requirement, having it installed on at least the local machine is strongly
recommended, and without it only a limited set of functionality is available. If you are new to DataLad, consider
reading the DataLad handbook.

Choosing an orchestrator

Before running a command, we need to decide on an orchestrator. The orchestrator is responsible for the first and
third tasks above, preparing the remote and fetching the results. The complete set of orchestrators, accompanied by
descriptions, can be seen by calling reproman run --list=orchestrators.

The main orchestrator choices are datalad-pair, datalad-pair-run, and datalad-local-run. If the
remote has DataLad available, you should go with one of the datalad-pair* orchestrators. These will sync your
local dataset with a dataset on the remote machine (using datalad push), creating one if it doesn’t already exist (using
datalad create-sibling).

datalad-pair differs from the datalad-*-run orchestrators in the way it captures results. After execution has
completed, datalad-pair commits the result on the remote via DataLad. On fetch, it will pull that commit down
with datalad update. Outputs (specified via --outputs or as a job parameter) are retrieved with datalad get.

datalad-pair-run and datalad-local-run, on the other hand, determine a list of output files based on
modification times and packages these files in a tarball. (This approach is inspired by datalad-htcondor.) On fetch,
this tarball is downloaded locally and used to create a datalad run commit in the local repository.

There is one more orchestrator, datalad-no-remote, that is designed to work only with a local shell resource. It
is similar to datalad-pair, except that the command is executed in the same directory from which reproman
run is invoked.

Revisiting our concrete example and assuming we have an SSH resource named “foo” in our inventory, here’s how we
could specify that the datalad-pair-run orchestrator should be used:

$ reproman run --resource foo \
--orc datalad-pair-run --input data/f0.csv \
./clean.py data/f0.csv cleaned/f0.csv

Notice that in addition to the orchestrator, we specify the input file that needs to be available on the remote. This is
only necessary for files that are tracked by git-annex. Files tracked by Git do not need to be declared as inputs because
the same revision of the dataset is checked out on the remote.

Warning: The orchestration with DataLad datasets is work in progress, with some rough edges. You might end
up in a state that ReproMan doesn’t know how to sync. Please report any issues you encounter on the issue tracker
.

Choosing a submitter

Another, easier decision is which submitter to use. This comes down to which, if any, batch system your remote
resource supports. The currently available options are pbs, condor, or local. With local, the job is executed

14 Chapter 4. Executing commands on resources

http://handbook.datalad.org
https://datalad.readthedocs.io/en/latest/generated/man/datalad-push.html
https://datalad.readthedocs.io/en/latest/generated/man/datalad-create-sibling.html
https://datalad.readthedocs.io/en/latest/generated/man/datalad-update.html
https://datalad.readthedocs.io/en/latest/generated/man/datalad-get.html
https://github.com/datalad/datalad-htcondor
http://docs.datalad.org/en/latest/generated/man/datalad-run.html
https://github.com/ReproNim/reproman/issues/

reproman Documentation, Release 0.0.1

directly through sh rather than submitted to a batch system.

Our last example invocation could be extended to use Condor like so:

$ reproman run --resource foo \
--sub condor \
--orc datalad-pair-run --input data/f0.csv \
./clean.py data/f0.csv cleaned/f0.csv

Note that which batch systems are currently supported is mostly a matter of which systems ReproMan developers
currently have at their disposal. If you would like to add support for your system (or have experience with more
general approach like DRMAA), we’d welcome help in this area.

Detached jobs

By default, when a run command is executed, it submits the job, registers it locally, and exits. The registered jobs can
be viewed and managed with reproman jobs. To list all jobs, run reproman jobs without any arguments. To fetch
a completed job back into the local dataset, call reproman jobs NAME, where NAME is a substring of the job ID
that uniquely identifies the job.

In cases where you prefer run to stay attached and fetch the job when it is finished, pass the --follow argument to
reproman run.

Concurrent subjobs

If you’re submitting a job to a batch system, it’s likely that you want to submit concurrent subjobs. To continue with
the toy example from above, you’d want to have two jobs, each one running clean.py on a different input file.

reproman run has two options for specifying subjobs: --batch-parameter and --batch-spec. The first
can work for simple cases, like our example:

$ reproman run --resource foo --sub condor --orc datalad-pair-run \
--batch-parameter name=f0,f1 \
--input 'data/{p[name]}.csv' \
./clean.py data/{p[name]}.csv cleaned/{p[name]}.csv

A subjob will be created for each name value, with any {p[name]} field in the input, output, and command strings
formatted with the value. In this case, the two commands executed on the remote would be

./clean.py data/f0.csv cleaned/f0.csv

./clean.py data/f1.csv cleaned/f1.csv

The --batch-spec option is the more cumbersome but more flexible counterpart to --batch-parameter.
Its value should point to a YAML file that defines a series of records, each one with all of the parameters for a
single subjob command. The equivalent of --batch-parameter name=f0,f1 would be a YAML file with the
following content:

- name: f0
- name: f1

Warning: When there is more than one subjob, *-run orchestrators do not create a valid run commit. Specifi-
cally, datalad rerun could not be used to rerun the commit on the local machine because the values for the inputs,
outputs, and command do not correspond to concrete values. This is an unresolved issue, but at this point the

4.1. Execute 15

https://en.wikipedia.org/wiki/DRMAA
http://docs.datalad.org/en/latest/generated/man/datalad-rerun.html

reproman Documentation, Release 0.0.1

commit should be considered as a way to capture the information about the remote command execution—one that
certainly provides more information than logging into the remote and running condor_submit yourself.

Job parameters

To define a job, ReproMan builds up a “job spec” from job parameters. Call reproman run
--list=parameters to see a list of available parameters. The parameters can be specified within a file passed to
the --job-spec option, as a key-value pair specified via the --job-parameter option, or through a dedicate
command-line option.

The last option is only available for a subset of parameters, with the intention of giving these parameters
more exposure and making them slightly more convenient to use. In the examples so far, we’ve only seen
job parameters in the form of a dedicated command-line argument, things like --orc datalad-pair-run.
Alternatively this could be expressed more verbosely through --job-parameter as --job-parameter
orchestrator=datalad-pair-run. Or it could be contained as a top-level key-value pair in a YAML file
passed to --job-spec.

When a value is specified in multiple sources, the order of precedence is the dedicated option, then the value spec-
ified via --job_parameters, and finally the value contained in a --job-spec YAML file. When multiple
--job-spec arguments are given and define a conflicting key, the value from the last specified file wins.

Captured job information

When using any DataLad-based orchestrator, the run will ultimately be captured as a commit in the dataset. In
addition to working tree changes that the command caused (e.g., files it generated), the commit will include new
files under a .reproman/jobs/<resource name>/<job ID>/ directory. Of the files from that directory,
the ones described below are likely to be of the most interest to callers.

submit The batch system submit file (e.g., when the submitter is condor, the file passed to condor_submit).

runscript The wrapper script called by the submit file. It runs the subjob command indicated by its sole command-
line argument, an integer that represents the subjob.

std{out,err}.N The standard output and standard error for each subjob command. If subjob N, stderr.N is where
you should look first for more information.

spec.yaml The “job spec” mentioned in the last section. Any key that does not start with an underscore is a job
parameter that can be specified by the caller.

In addition to recording information about the submitted job, this spec can provide a starting point for future
reproman run calls. You can copy it to a new file, tweak it as desired, and feed it in via --job-spec.
Or, instead of copying the file, you can give the original file to --job-spec and then override the values as
needed with command-line arguments or later --job-spec values.

16 Chapter 4. Executing commands on resources

CHAPTER 5

Commands and API

5.1 Command line reference

5.1.1 Main command

reproman

Synopsis

reproman [-h] [-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}]
[--version] [--dbg] [--idbg] [-C PATH] [-c CONFIG]
{create,install,delete,start,stop,login,execute,run,ls,jobs,backend-parameters,

→˓retrace,diff,test}
...

Description

ReproMan aims to ease construction and execution of computation environments based on collected provenance data.

Commands for manipulating computation environments

• create: Create a computation environment

• install: Install packages according to the provided specification(s)

• delete: Delete a computation environment

• start: Start a computation environment

• stop: Stop a computation environment

• login: Log into a computation environment

• execute: Execute a command in a computation environment

17

reproman Documentation, Release 0.0.1

• run: Run a command on the specified resource

Miscellaneous commands

• ls: List known computation resources, images and environments

• jobs: View and manage reproman run jobs

• backend-parameters: Display available backend parameters

• retrace: Gather detailed package information from paths or a ReproZip trace file

• diff: Report if a specification satisfies the requirements in another

• test: Run internal ReproMan (unit)tests

General information

Detailed usage information for individual commands is available via command-specific –help, i.e.: reproman <com-
mand> –help

Options

{create,install,delete,start,stop,login,execute,run,ls,jobs,backend-parameters,retrace,diff,test}

-h, –help, –help-np

show this help message and exit. –help-np forcefully disables the use of a pager for displaying the help message

-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}, –log-level {criti-
cal,error,warning,info,debug,1,2,3,4,5,6,7,8,9}

level of verbosity. Integers provide even more debugging information

–version

show the program’s version and license information and exit

–dbg

enter Python debugger when uncaught exception happens

–idbg

enter IPython debugger when uncaught exception happens

-C PATH

run as if reproman were started in <path> instead of the current working directory. When multiple -C options are
given, each subsequent non-absolute -C <path> is interpreted relative to the preceding -C <path>. This option affects
the interpretations of the path names in that they are made relative to the working directory caused by the -C option

18 Chapter 5. Commands and API

reproman Documentation, Release 0.0.1

-c CONFIG, –config CONFIG

path to ReproMan configuration file. This option can be given multiple times, in which case values in the later files
override previous ones.

“Reproducibly Manage Your Environments”

Authors

reproman is developed by The ReproMan Team and Contributors <team@reproman.org>.

5.1.2 Environment operations

reproman-ls

Synopsis

reproman-ls [--version] [-h]
[-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}]
[--resref-type TYPE] [-v] [-r]
[RESOURCE [RESOURCE ...]]

Description

List known computation resources, images and environments

Examples

$ reproman ls

Options

RESOURCE

Restrict the output to this resource name or ID. [Default: None]

–version

show the program’s version and license information and exit

-h, –help, –help-np

show this help message and exit. –help-np forcefully disables the use of a pager for displaying the help message

5.1. Command line reference 19

mailto:team@reproman.org

reproman Documentation, Release 0.0.1

-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}, –log-level {criti-
cal,error,warning,info,debug,1,2,3,4,5,6,7,8,9}

level of verbosity. Integers provide even more debugging information

–resref-type TYPE

A resource can be referenced by its name or ID. In the unlikely case that a name collides with an ID, explicitly specify
‘name’ or ‘id’ to disambiguate. Constraints: value must be one of (‘auto’, ‘name’, ‘id’) [Default: ‘auto’]

-v, –verbose

provide more verbose listing. [Default: False]

-r, –refresh

Refresh the status of the resources listed. [Default: False]

Authors

reproman is developed by The ReproMan Team and Contributors <team@reproman.org>.

reproman-create

Synopsis

reproman-create [--version] [-h]
[-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}]
[-t RESOURCE_TYPE] [-b PARAM]
NAME

Description

Create a computation environment

Options

NAME

Name of the resource to create. Constraints: value must be a string

–version

show the program’s version and license information and exit

20 Chapter 5. Commands and API

mailto:team@reproman.org

reproman Documentation, Release 0.0.1

-h, –help, –help-np

show this help message and exit. –help-np forcefully disables the use of a pager for displaying the help message

-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}, –log-level {criti-
cal,error,warning,info,debug,1,2,3,4,5,6,7,8,9}

level of verbosity. Integers provide even more debugging information

-t RESOURCE_TYPE, –resource-type RESOURCE_TYPE

Resource type to create. Constraints: value must be a string

-b PARAM, –backend-parameters PARAM

One or more backend parameters in the form KEY=VALUE. Use the command reproman backend-parameters to see
the list of available backend parameters.

Authors

reproman is developed by The ReproMan Team and Contributors <team@reproman.org>.

reproman-install

Synopsis

reproman-install [--version] [-h]
[-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}]
[--resref-type TYPE]
RESOURCE SPEC [SPEC ...]

Description

Install packages according to the provided specification(s)

Examples

$ reproman install docker recipe_for_failure.yml

Options

RESOURCE

Name or ID of the resource to operate on. To see available resources, run ‘reproman ls’. Constraints: value must be a
string

5.1. Command line reference 21

mailto:team@reproman.org

reproman Documentation, Release 0.0.1

SPEC

file with specifications (in supported formats) of packages used in executed environment. Constraints: value must be
a string

–version

show the program’s version and license information and exit

-h, –help, –help-np

show this help message and exit. –help-np forcefully disables the use of a pager for displaying the help message

-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}, –log-level {criti-
cal,error,warning,info,debug,1,2,3,4,5,6,7,8,9}

level of verbosity. Integers provide even more debugging information

–resref-type TYPE

A resource can be referenced by its name or ID. In the unlikely case that a name collides with an ID, explicitly specify
‘name’ or ‘id’ to disambiguate. Constraints: value must be one of (‘auto’, ‘name’, ‘id’) [Default: ‘auto’]

Authors

reproman is developed by The ReproMan Team and Contributors <team@reproman.org>.

reproman-delete

Synopsis

reproman-delete [--version] [-h]
[-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}]
[--resref-type TYPE] [-y] [-f]
RESOURCE

Description

Delete a computation environment

Examples

$ reproman delete my-resource

22 Chapter 5. Commands and API

mailto:team@reproman.org

reproman Documentation, Release 0.0.1

Options

RESOURCE

Name or ID of the resource to operate on. To see available resources, run ‘reproman ls’. Constraints: value must be a
string

–version

show the program’s version and license information and exit

-h, –help, –help-np

show this help message and exit. –help-np forcefully disables the use of a pager for displaying the help message

-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}, –log-level {criti-
cal,error,warning,info,debug,1,2,3,4,5,6,7,8,9}

level of verbosity. Integers provide even more debugging information

–resref-type TYPE

A resource can be referenced by its name or ID. In the unlikely case that a name collides with an ID, explicitly specify
‘name’ or ‘id’ to disambiguate. Constraints: value must be one of (‘auto’, ‘name’, ‘id’) [Default: ‘auto’]

-y, –skip-confirmation

Delete resource without prompting user for confirmation. [Default: False]

-f, –force

Remove a resource from the local inventory regardless of connection errors. Use with caution!. [Default: False]

Authors

reproman is developed by The ReproMan Team and Contributors <team@reproman.org>.

reproman-start

Synopsis

reproman-start [--version] [-h]
[-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}]
[--resref-type TYPE]
RESOURCE

5.1. Command line reference 23

mailto:team@reproman.org

reproman Documentation, Release 0.0.1

Description

Start a computation environment

Examples

$ reproman start my-resource

Options

RESOURCE

Name or ID of the resource to operate on. To see available resources, run ‘reproman ls’. Constraints: value must be a
string

–version

show the program’s version and license information and exit

-h, –help, –help-np

show this help message and exit. –help-np forcefully disables the use of a pager for displaying the help message

-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}, –log-level {criti-
cal,error,warning,info,debug,1,2,3,4,5,6,7,8,9}

level of verbosity. Integers provide even more debugging information

–resref-type TYPE

A resource can be referenced by its name or ID. In the unlikely case that a name collides with an ID, explicitly specify
‘name’ or ‘id’ to disambiguate. Constraints: value must be one of (‘auto’, ‘name’, ‘id’) [Default: ‘auto’]

Authors

reproman is developed by The ReproMan Team and Contributors <team@reproman.org>.

reproman-stop

Synopsis

reproman-stop [--version] [-h]
[-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}]
[--resref-type TYPE]
RESOURCE

24 Chapter 5. Commands and API

mailto:team@reproman.org

reproman Documentation, Release 0.0.1

Description

Stop a computation environment

Examples

$ reproman stop my-resource

Options

RESOURCE

Name or ID of the resource to operate on. To see available resources, run ‘reproman ls’. Constraints: value must be a
string

–version

show the program’s version and license information and exit

-h, –help, –help-np

show this help message and exit. –help-np forcefully disables the use of a pager for displaying the help message

-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}, –log-level {criti-
cal,error,warning,info,debug,1,2,3,4,5,6,7,8,9}

level of verbosity. Integers provide even more debugging information

–resref-type TYPE

A resource can be referenced by its name or ID. In the unlikely case that a name collides with an ID, explicitly specify
‘name’ or ‘id’ to disambiguate. Constraints: value must be one of (‘auto’, ‘name’, ‘id’) [Default: ‘auto’]

Authors

reproman is developed by The ReproMan Team and Contributors <team@reproman.org>.

reproman-login

Synopsis

reproman-login [--version] [-h]
[-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}]
[--resref-type TYPE]
RESOURCE

5.1. Command line reference 25

mailto:team@reproman.org

reproman Documentation, Release 0.0.1

Description

Log into a computation environment

Examples

$ reproman login my-resource

Options

RESOURCE

Name or ID of the resource to operate on. To see available resources, run ‘reproman ls’. Constraints: value must be a
string

–version

show the program’s version and license information and exit

-h, –help, –help-np

show this help message and exit. –help-np forcefully disables the use of a pager for displaying the help message

-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}, –log-level {criti-
cal,error,warning,info,debug,1,2,3,4,5,6,7,8,9}

level of verbosity. Integers provide even more debugging information

–resref-type TYPE

A resource can be referenced by its name or ID. In the unlikely case that a name collides with an ID, explicitly specify
‘name’ or ‘id’ to disambiguate. Constraints: value must be one of (‘auto’, ‘name’, ‘id’) [Default: ‘auto’]

Authors

reproman is developed by The ReproMan Team and Contributors <team@reproman.org>.

5.1.3 Command execution

reproman-execute

Synopsis

26 Chapter 5. Commands and API

mailto:team@reproman.org

reproman Documentation, Release 0.0.1

reproman-execute [--version] [-h]
[-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}]
[-r RESOURCE] [--resref-type TYPE] [--internal] [--trace]
COMMAND [ARGS [ARGS ...]]

Description

Execute a command in a computation environment

Examples

$ reproman execute mkdir /home/blah/data

Options

COMMAND

name of the command to run. Constraints: value must be a string

ARGS

list of positional and keyword args to pass to the command. Constraints: value must be a string

–version

show the program’s version and license information and exit

-h, –help, –help-np

show this help message and exit. –help-np forcefully disables the use of a pager for displaying the help message

-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}, –log-level {criti-
cal,error,warning,info,debug,1,2,3,4,5,6,7,8,9}

level of verbosity. Integers provide even more debugging information

-r RESOURCE, –resource RESOURCE

Name or ID of the resource to operate on. To see available resources, run ‘reproman ls’. Constraints: value must be a
string [Default: None]

5.1. Command line reference 27

reproman Documentation, Release 0.0.1

–resref-type TYPE

A resource can be referenced by its name or ID. In the unlikely case that a name collides with an ID, explicitly specify
‘name’ or ‘id’ to disambiguate. Constraints: value must be one of (‘auto’, ‘name’, ‘id’) [Default: ‘auto’]

–internal

Instead of running a generic/any command, execute the internal ReproMan command available within sessions.
Known are: mkdir, isdir, put, get, chown, chmod. [Default: False]

–trace

if set, trace execution within the environment. [Default: False]

Authors

reproman is developed by The ReproMan Team and Contributors <team@reproman.org>.

reproman-run

Synopsis

reproman-run [--version] [-h]
[-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}]
[-m MESSAGE] [-r RESOURCE] [--resref-type TYPE]
[--list {submitters,orchestrators,parameters,}]
[--submitter NAME] [--orchestrator NAME] [--batch-spec PATH]
[--batch-parameter PATH] [--job-spec PATH]
[--job-parameter PARAM] [-i PATH] [-o PATH] [--follow [ACTION]]
...

Description

Run a command on the specified resource.

Two main options control how the job is executed: the orchestator and the submitter. The orchestrator that is selected
controls details like how the data is made available on the resource and how the results are fetched. The submitter
controls how the job is submitted on the resource (e.g., as a condor job). Use –list to see information on the available
orchestrators and submitters.

Unless –follow is specified, the job is started and detached. Use reproman jobs to list and fetch detached jobs.

Options

COMMAND

command for execution. [Default: None]

28 Chapter 5. Commands and API

mailto:team@reproman.org

reproman Documentation, Release 0.0.1

–version

show the program’s version and license information and exit

-h, –help, –help-np

show this help message and exit. –help-np forcefully disables the use of a pager for displaying the help message

-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}, –log-level {criti-
cal,error,warning,info,debug,1,2,3,4,5,6,7,8,9}

level of verbosity. Integers provide even more debugging information

-m MESSAGE, –message MESSAGE

Message to use when saving the run. The details depend on the orchestator, but in general this message will be used
in the commit message. [Default: None]

-r RESOURCE, –resource RESOURCE

Name or ID of the resource to operate on. To see available resources, run ‘reproman ls’. Constraints: value must be a
string [Default: None]

–resref-type TYPE

A resource can be referenced by its name or ID. In the unlikely case that a name collides with an ID, explicitly specify
‘name’ or ‘id’ to disambiguate. Constraints: value must be one of (‘auto’, ‘name’, ‘id’) [Default: ‘auto’]

–list {submitters,orchestrators,parameters,}

Show available submitters, orchestrators, or job parameters. If an empty string is given, show all. [Default: None]

–submitter NAME, –sub NAME

Name of submitter. The submitter controls how the command should be submitted on the resource (e.g., with CON-
DOR_SUBMIT). Use –list to see available submitters. Constraints: value must be one of (None, ‘pbs’, ‘condor’,
‘slurm’, ‘local’, ‘lsf’) [Default: None]

–orchestrator NAME, –orc NAME

Name of orchestrator. The orchestrator performs pre- and post-command steps like setting up the directory for com-
mand execution and storing the results. Use –list to see available orchestrators. Constraints: value must be one of
(None, ‘plain’, ‘datalad-pair’, ‘datalad-no-remote’, ‘datalad-pair-run’, ‘datalad- local-run’) [Default: None]

5.1. Command line reference 29

reproman Documentation, Release 0.0.1

–batch-spec PATH, –bs PATH

YAML file that defines a series of records with parameters for commands. A command will be constructed for each
record, with record values available in the command as well as the inputs and outputs as {P[KEY]}. See –batch-
parameter for an alternative method for simple combinations. [Default: None]

–batch-parameter PATH, –bp PATH

Define batch parameters with ‘KEY=val1,val2,. . . ’. Different keys can be specified by giving multiple values, in which
case the product of the values are taken. For example, ‘subj=mei,satsuki’ and ‘day=1,2’ would expand to four records,
pairing each subj with each day. Values can be a glob pattern to match against the current working directory. See
–batch-spec for specifying more complex records. This option can be given more than once. [Default: None]

–job-spec PATH, –js PATH

YAML files that define job parameters. Multiple paths can be given. If a parameter is defined in multiple specs, the
value from the last path that defines it is used. Use –list to see available parameters for the built-in templates. This
option can be given more than once. [Default: None]

–job-parameter PARAM, –jp PARAM

A job parameter in the form KEY=VALUE. If the same parameter is defined via a job spec, the value given here takes
precedence. The values are available as fields in the templates used to generate both the run script and submission
script. Use –list to see available parameters for the built-in templates. This option can be given more than once.
[Default: None]

-i PATH, –input PATH

An input path to the command. How input paths are used depends on the orchestrator, but, at the very least, the
orchestrator should try to make these paths available on the resource. This option can be given more than once.
[Default: None]

-o PATH, –output PATH

An output path to the command. How output paths are handled depends on the orchestrator. This option can be given
more than once. [Default: None]

–follow [ACTION]

Continue to follow the submitted command instead of submitting it and detaching. Constraints: value must be one of
(False, True, ‘stop’, ‘stop-if-success’, ‘delete’, ‘delete-if-success’) [Default: False]

Authors

reproman is developed by The ReproMan Team and Contributors <team@reproman.org>.

30 Chapter 5. Commands and API

mailto:team@reproman.org

reproman Documentation, Release 0.0.1

reproman-jobs

Synopsis

reproman-jobs [--version] [-h]
[-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}]
[-a ACTION] [--all] [-s]
[JOB [JOB ...]]

Description

View and manage reproman run jobs.

The possible actions are

• list: Display a oneline list of all registered jobs

• show: Display more information for each job over multiple lines

• delete: Unregister a job locally

• fetch: Fetch a completed job

• auto: If jobs are specified (via JOB or –all), behave like ‘fetch’. Otherwise, behave like ‘list’.

Options

JOB

A full job ID or a unique substring.

–version

show the program’s version and license information and exit

-h, –help, –help-np

show this help message and exit. –help-np forcefully disables the use of a pager for displaying the help message

-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}, –log-level {criti-
cal,error,warning,info,debug,1,2,3,4,5,6,7,8,9}

level of verbosity. Integers provide even more debugging information

-a ACTION, –action ACTION

Operation to perform on the job(s). Constraints: value must be one of (‘auto’, ‘list’, ‘show’, ‘delete’, ‘fetch’) [Default:
‘auto’]

5.1. Command line reference 31

reproman Documentation, Release 0.0.1

–all

Operate on all jobs. [Default: False]

-s, –status

Query the resource for status information when listing or showing jobs. [Default: False]

Authors

reproman is developed by The ReproMan Team and Contributors <team@reproman.org>.

5.1.4 Miscellaneous commands

reproman-backend-parameters

Synopsis

reproman-backend-parameters [--version] [-h]
[-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}]
[BACKEND [BACKEND ...]]

Description

Display available backend parameters.

Options

BACKEND

Restrict output to this backend. Constraints: value must be a string [Default: None]

–version

show the program’s version and license information and exit

-h, –help, –help-np

show this help message and exit. –help-np forcefully disables the use of a pager for displaying the help message

-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}, –log-level {criti-
cal,error,warning,info,debug,1,2,3,4,5,6,7,8,9}

level of verbosity. Integers provide even more debugging information

32 Chapter 5. Commands and API

mailto:team@reproman.org

reproman Documentation, Release 0.0.1

Authors

reproman is developed by The ReproMan Team and Contributors <team@reproman.org>.

reproman-diff

Synopsis

reproman-diff [--version] [-h]
[-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}]
[--satisfies]
prov1 prov2

Description

Report if a specification satisfies the requirements in another specification

Examples

$ reproman diff environment1.yml environment2.yml

Options

prov1

ReproMan provenance file. Constraints: value must be a string

prov2

ReproMan provenance file. Constraints: value must be a string

–version

show the program’s version and license information and exit

-h, –help, –help-np

show this help message and exit. –help-np forcefully disables the use of a pager for displaying the help message

-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}, –log-level {criti-
cal,error,warning,info,debug,1,2,3,4,5,6,7,8,9}

level of verbosity. Integers provide even more debugging information

5.1. Command line reference 33

mailto:team@reproman.org

reproman Documentation, Release 0.0.1

–satisfies, -s

Make sure the first environment satisfies the needs of the second environment.

Authors

reproman is developed by The ReproMan Team and Contributors <team@reproman.org>.

reproman-retrace

Synopsis

reproman-retrace [--version] [-h]
[-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}]
[--spec SPEC] [-o output_file] [-r RESOURCE]
[--resref-type TYPE]
[PATH [PATH ...]]

Description

Gather detailed package information from paths or a ReproZip trace file.

Examples

$ reproman retrace –spec reprozip_run.yml > reproman_config.yml

Options

PATH

path(s) to be traced. If spec is provided, would trace them after tracing the spec. Constraints: value must be a string
[Default: None]

–version

show the program’s version and license information and exit

-h, –help, –help-np

show this help message and exit. –help-np forcefully disables the use of a pager for displaying the help message

-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}, –log-level {criti-
cal,error,warning,info,debug,1,2,3,4,5,6,7,8,9}

level of verbosity. Integers provide even more debugging information

34 Chapter 5. Commands and API

mailto:team@reproman.org

reproman Documentation, Release 0.0.1

–spec SPEC

ReproZip YML file to be analyzed. Constraints: value must be a string [Default: None]

-o output_file, –output-file output_file

Output file. If not specified - printed to stdout. Constraints: value must be a string [Default: None]

-r RESOURCE, –resource RESOURCE

Name or ID of the resource to operate on. To see available resources, run ‘reproman ls’. Constraints: value must be a
string [Default: None]

–resref-type TYPE

A resource can be referenced by its name or ID. In the unlikely case that a name collides with an ID, explicitly specify
‘name’ or ‘id’ to disambiguate. Constraints: value must be one of (‘auto’, ‘name’, ‘id’) [Default: ‘auto’]

Authors

reproman is developed by The ReproMan Team and Contributors <team@reproman.org>.

reproman-test

Synopsis

reproman-test [--version] [-h]
[-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}]

Description

Run internal ReproMan (unit)tests.

This can be used to verify correct operation on the system

Options

–version

show the program’s version and license information and exit

-h, –help, –help-np

show this help message and exit. –help-np forcefully disables the use of a pager for displaying the help message

5.1. Command line reference 35

mailto:team@reproman.org

reproman Documentation, Release 0.0.1

-l {critical,error,warning,info,debug,1,2,3,4,5,6,7,8,9}, –log-level {criti-
cal,error,warning,info,debug,1,2,3,4,5,6,7,8,9}

level of verbosity. Integers provide even more debugging information

Authors

reproman is developed by The ReproMan Team and Contributors <team@reproman.org>.

5.2 Python module reference

This module reference extends the manual with a comprehensive overview of the available functionality built into
reproman. Each module in the package is documented by a general summary of its purpose and the list of classes and
functions it provides.

5.2.1 High-level user interface

api Python ReproMan API exposing user-oriented com-
mands (also available via CLI)

api

Python ReproMan API exposing user-oriented commands (also available via CLI)

backend_parameters

reproman.api.backend_parameters(backends=None)
Display available backend parameters.

create

reproman.api.create(name, resource_type, backend_parameters)
Create a computation environment

Parameters

• name (str) – Name of the resource to create. Constraints: value must be a string.

• resource_type (str) – Resource type to create. Constraints: value must be a string.

• backend_parameters – One or more backend parameters in the form KEY=VALUE.
Use the command reproman backend-parameters to see the list of available backend param-
eters.

delete

reproman.api.delete(resref, resref_type=’auto’, skip_confirmation=False, force=False)
Delete a computation environment

36 Chapter 5. Commands and API

mailto:team@reproman.org
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

reproman Documentation, Release 0.0.1

Examples

$ reproman delete my-resource

Parameters

• resref (str or None) – Name or ID of the resource to operate on. To see available
resources, run ‘reproman ls’. Constraints: value must be a string, or value must be None.

• resref_type ({auto, name, id}, optional) – A resource can be referenced
by its name or ID. In the unlikely case that a name collides with an ID, explicitly specify
‘name’ or ‘id’ to disambiguate. Constraints: value must be one of (‘auto’, ‘name’, ‘id’).
[Default: ‘auto’]

• skip_confirmation (bool, optional) – Delete resource without prompting user
for confirmation. [Default: False]

• force (bool, optional) – Remove a resource from the local inventory regardless of
connection errors. Use with caution!. [Default: False]

diff

reproman.api.diff(prov1, prov2, satisfies)
Report if a specification satisfies the requirements in another specification

Examples

$ reproman diff environment1.yml environment2.yml

Parameters

• prov1 (str) – ReproMan provenance file. Constraints: value must be a string.

• prov2 (str) – ReproMan provenance file. Constraints: value must be a string.

• satisfies (bool) – Make sure the first environment satisfies the needs of the second
environment.

execute

reproman.api.execute(command, args, resref=None, resref_type=’auto’, internal=False,
trace=False)

Execute a command in a computation environment

Examples

$ reproman execute mkdir /home/blah/data

Parameters

• command (str) – name of the command to run. Constraints: value must be a string.

• args (str) – list of positional and keyword args to pass to the command. Constraints: list
expected, each value must be a string.

5.2. Python module reference 37

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

reproman Documentation, Release 0.0.1

• resref (str or None, optional) – Name or ID of the resource to operate on. To
see available resources, run ‘reproman ls’. Constraints: value must be a string, or value must
be None. [Default: None]

• resref_type ({auto, name, id}, optional) – A resource can be referenced
by its name or ID. In the unlikely case that a name collides with an ID, explicitly specify
‘name’ or ‘id’ to disambiguate. Constraints: value must be one of (‘auto’, ‘name’, ‘id’).
[Default: ‘auto’]

• internal (bool, optional) – Instead of running a generic/any command, execute
the internal ReproMan command available within sessions. Known are: mkdir, isdir, put,
get, chown, chmod. [Default: False]

• trace (bool, optional) – if set, trace execution within the environment. [Default:
False]

install

reproman.api.install(resref, spec, resref_type=’auto’)
Install packages according to the provided specification(s)

Examples

$ reproman install docker recipe_for_failure.yml

Parameters

• resref (str or None) – Name or ID of the resource to operate on. To see available
resources, run ‘reproman ls’. Constraints: value must be a string, or value must be None.

• spec (str) – file with specifications (in supported formats) of packages used in executed
environment. Constraints: list expected, each value must be a string.

• resref_type ({auto, name, id}, optional) – A resource can be referenced
by its name or ID. In the unlikely case that a name collides with an ID, explicitly specify
‘name’ or ‘id’ to disambiguate. Constraints: value must be one of (‘auto’, ‘name’, ‘id’).
[Default: ‘auto’]

jobs

reproman.api.jobs(queries, action=’auto’, all_=False, status=False)
View and manage reproman run jobs.

The possible actions are

• list: Display a oneline list of all registered jobs

• show: Display more information for each job over multiple lines

• delete: Unregister a job locally

• fetch: Fetch a completed job

• auto: If jobs are specified (via JOB or –all), behave like ‘fetch’. Otherwise, behave like ‘list’.

Parameters

• queries – A full job ID or a unique substring.

38 Chapter 5. Commands and API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

reproman Documentation, Release 0.0.1

• action ({auto, list, show, delete, fetch}, optional) – Operation to
perform on the job(s). Constraints: value must be one of (‘auto’, ‘list’, ‘show’, ‘delete’,
‘fetch’). [Default: ‘auto’]

• all (bool, optional) – Operate on all jobs. [Default: False]

• status (bool, optional) – Query the resource for status information when listing or
showing jobs. [Default: False]

login

reproman.api.login(resref, resref_type=’auto’)
Log into a computation environment

Examples

$ reproman login my-resource

Parameters

• resref (str or None) – Name or ID of the resource to operate on. To see available
resources, run ‘reproman ls’. Constraints: value must be a string, or value must be None.

• resref_type ({auto, name, id}, optional) – A resource can be referenced
by its name or ID. In the unlikely case that a name collides with an ID, explicitly specify
‘name’ or ‘id’ to disambiguate. Constraints: value must be one of (‘auto’, ‘name’, ‘id’).
[Default: ‘auto’]

ls

reproman.api.ls(resrefs=None, resref_type=’auto’, verbose=False, refresh=False)
List known computation resources, images and environments

Examples

$ reproman ls

Parameters

• resrefs – Restrict the output to this resource name or ID. [Default: None]

• resref_type ({auto, name, id}, optional) – A resource can be referenced
by its name or ID. In the unlikely case that a name collides with an ID, explicitly specify
‘name’ or ‘id’ to disambiguate. Constraints: value must be one of (‘auto’, ‘name’, ‘id’).
[Default: ‘auto’]

• verbose (bool, optional) – provide more verbose listing. [Default: False]

• refresh (bool, optional) – Refresh the status of the resources listed. [Default:
False]

retrace

reproman.api.retrace(path=None, spec=None, output_file=None, resref=None, resref_type=’auto’)
Gather detailed package information from paths or a ReproZip trace file.

5.2. Python module reference 39

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

reproman Documentation, Release 0.0.1

Examples

$ reproman retrace –spec reprozip_run.yml > reproman_config.yml

Parameters

• path (str or None, optional) – path(s) to be traced. If spec is provided, would
trace them after tracing the spec. Constraints: list expected, each value must be a string, or
value must be None. [Default: None]

• spec (str or None, optional) – ReproZip YML file to be analyzed. Constraints:
value must be a string, or value must be None. [Default: None]

• output_file (str or None, optional) – Output file. If not specified - printed to
stdout. Constraints: value must be a string, or value must be None. [Default: None]

• resref (str or None, optional) – Name or ID of the resource to operate on. To
see available resources, run ‘reproman ls’.Note: As a special case, a session instance can be
passed as the value for resref. . Constraints: value must be a string, or value must be None.
[Default: None]

• resref_type ({auto, name, id}, optional) – A resource can be referenced
by its name or ID. In the unlikely case that a name collides with an ID, explicitly specify
‘name’ or ‘id’ to disambiguate. Constraints: value must be one of (‘auto’, ‘name’, ‘id’).
[Default: ‘auto’]

run

reproman.api.run(command=None, message=None, resref=None, resref_type=’auto’, list_=None, sub-
mitter=None, orchestrator=None, batch_spec=None, batch_parameters=None,
job_specs=None, job_parameters=None, inputs=None, outputs=None, fol-
low=False)

Run a command on the specified resource.

Two main options control how the job is executed: the orchestator and the submitter. The orchestrator that is
selected controls details like how the data is made available on the resource and how the results are fetched. The
submitter controls how the job is submitted on the resource (e.g., as a condor job). Use –list to see information
on the available orchestrators and submitters.

Unless –follow is specified, the job is started and detached. Use reproman jobs to list and fetch detached jobs.

Parameters

• command – command for execution. [Default: None]

• message – Message to use when saving the run. The details depend on the orchestator, but
in general this message will be used in the commit message. [Default: None]

• resref (str or None, optional) – Name or ID of the resource to operate on. To
see available resources, run ‘reproman ls’. Constraints: value must be a string, or value must
be None. [Default: None]

• resref_type ({auto, name, id}, optional) – A resource can be referenced
by its name or ID. In the unlikely case that a name collides with an ID, explicitly specify
‘name’ or ‘id’ to disambiguate. Constraints: value must be one of (‘auto’, ‘name’, ‘id’).
[Default: ‘auto’]

• list – Show available submitters, orchestrators, or job parameters. If an empty string is
given, show all. [Default: None]

40 Chapter 5. Commands and API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

reproman Documentation, Release 0.0.1

• submitter ({None, pbs, condor, slurm, local, lsf}, optional) –
Name of submitter. The submitter controls how the command should be submitted on the
resource (e.g., with condor_submit). Constraints: value must be one of (None, ‘pbs’, ‘con-
dor’, ‘slurm’, ‘local’, ‘lsf’). [Default: None]

• orchestrator ({None, plain, datalad-pair, datalad-no-remote,
datalad-pair-run, datalad-local-run}, optional) – Name of orches-
trator. The orchestrator performs pre- and post- command steps like setting up the
directory for command execution and storing the results. Constraints: value must be one of
(None, ‘plain’, ‘datalad-pair’, ‘datalad-no-remote’, ‘datalad-pair-run’, ‘datalad-local-run’).
[Default: None]

• batch_spec – YAML file that defines a series of records with parameters for commands.
A command will be constructed for each record, with record values available in the com-
mand as well as the inputs and outputs as {p[KEY]}. See batch_parameters for an alternative
method for simple combinations. [Default: None]

• batch_parameters – Define batch parameters with ‘KEY=val1,val2,. . . ’. Different
keys can be specified by giving multiple values, in which case the product of the values are
taken. For example, ‘subj=mei,satsuki’ and ‘day=1,2’ would expand to four records, pairing
each subj with each day. Values can be a glob pattern to match against the current working
directory. See batch_spec for specifying more complex records. . [Default: None]

• job_specs – YAML files that define job parameters. Multiple paths can be given. If a
parameter is defined in multiple specs, the value from the last path that defines it is used. .
[Default: None]

• job_parameters – A job parameter in the form KEY=VALUE. If the same parameter
is defined via a job spec, the value given here takes precedence. The values are available as
fields in the templates used to generate both the run script and submission script. . [Default:
None]

• inputs – An input path to the command. How input paths are used depends on the orches-
trator, but, at the very least, the orchestrator should try to make these paths available on the
resource. . [Default: None]

• outputs – An output path to the command. How output paths are handled depends on the
orchestrator. . [Default: None]

• follow ({False, True, stop, stop-if-success, delete,
delete-if-success}, optional) – Continue to follow the submitted com-
mand instead of submitting it and detaching. Constraints: value must be one of (False,
True, ‘stop’, ‘stop-if-success’, ‘delete’, ‘delete-if-success’). [Default: False]

start

reproman.api.start(resref, resref_type=’auto’)
Start a computation environment

Examples

$ reproman start my-resource

Parameters

• resref (str or None) – Name or ID of the resource to operate on. To see available
resources, run ‘reproman ls’. Constraints: value must be a string, or value must be None.

5.2. Python module reference 41

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

reproman Documentation, Release 0.0.1

• resref_type ({auto, name, id}, optional) – A resource can be referenced
by its name or ID. In the unlikely case that a name collides with an ID, explicitly specify
‘name’ or ‘id’ to disambiguate. Constraints: value must be one of (‘auto’, ‘name’, ‘id’).
[Default: ‘auto’]

stop

reproman.api.stop(resref, resref_type=’auto’)
Stop a computation environment

Examples

$ reproman stop my-resource

Parameters

• resref (str or None) – Name or ID of the resource to operate on. To see available
resources, run ‘reproman ls’. Constraints: value must be a string, or value must be None.

• resref_type ({auto, name, id}, optional) – A resource can be referenced
by its name or ID. In the unlikely case that a name collides with an ID, explicitly specify
‘name’ or ‘id’ to disambiguate. Constraints: value must be one of (‘auto’, ‘name’, ‘id’).
[Default: ‘auto’]

test

reproman.api.test()
Run internal ReproMan (unit)tests.

This can be used to verify correct operation on the system

5.2.2 Plumbing

cmd Wrapper for command and function calls, allowing for
dry runs and output handling

consts reproman constants
log
utils
version Defines version to be imported in the module and ob-

tained from setup.py
support.configparserinc

reproman.cmd

Wrapper for command and function calls, allowing for dry runs and output handling

class reproman.cmd.GitRunner(cwd=None, env=None, protocol=None)
Bases: reproman.cmd.Runner

Runner to be used to run git and git annex commands

Overloads the runner class to check & update GIT_DIR and GIT_WORK_TREE environment variables set to
the absolute path if is defined and is relative path

42 Chapter 5. Commands and API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

reproman Documentation, Release 0.0.1

static get_git_environ_adjusted(env=None)
Replaces GIT_DIR and GIT_WORK_TREE with absolute paths if relative path and defined

run(cmd, env=None, *args, **kwargs)
Runs the command cmd using shell.

In case of dry-mode cmd is just added to commands and it is actually executed otherwise. Allows for
separately logging stdout and stderr or streaming it to system’s stdout or stderr respectively.

Note: Using a string as cmd and shell=True allows for piping, multiple commands, etc., but that im-
plies shlex.split() is not used. This is considered to be a security hazard. So be careful with input.

Parameters

• cmd (str, list) – String (or list) defining the command call. No shell is used if cmd
is specified as a list

• log_stdout (bool, optional) – If True, stdout is logged. Goes to sys.stdout oth-
erwise.

• log_stderr (bool, optional) – If True, stderr is logged. Goes to sys.stderr oth-
erwise.

• log_online (bool, optional) – Either to log as output comes in. Setting to True
is preferable for running user-invoked actions to provide timely output

• expect_stderr (bool, optional) – Normally, having stderr output is a signal of
a problem and thus it gets logged at ERROR level. But some utilities, e.g. wget, use stderr
for their progress output. Whenever such output is expected, set it to True and output will
be logged at DEBUG level unless exit status is non-0 (in non-online mode only, in online
– would log at DEBUG)

• expect_fail (bool, optional) – Normally, if command exits with non-0 status,
it is considered an ERROR and logged accordingly. But if the call intended for checking
routine, such alarming message should not be logged as ERROR, thus it will be logged at
DEBUG level.

• cwd (string, optional) – Directory under which run the command (passed to
Popen)

• env (string, optional) – Custom environment to pass

• shell (bool, optional) – Run command in a shell. If not specified, then it runs in
a shell only if command is specified as a string (not a list)

Returns

Return type (stdout, stderr)

Raises CommandError – if command’s exitcode wasn’t 0 or None. exitcode is passed to
CommandError’s code-field. Command’s stdout and stderr are stored in CommandError’s
stdout and stderr fields respectively.

class reproman.cmd.Runner(cwd=None, env=None, protocol=None)
Bases: object

Provides a wrapper for calling functions and commands.

An object of this class provides a methods that calls shell commands or python functions, allowing for proto-
colling the calls and output handling.

Outputs (stdout and stderr) can be either logged or streamed to system’s stdout/stderr during execution. This can
be enabled or disabled for both of them independently. Additionally, a protocol object can be a used with the

5.2. Python module reference 43

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#object

reproman Documentation, Release 0.0.1

Runner. Such a protocol has to implement reproman.support.protocol.ProtocolInterface, is able to record calls
and allows for dry runs.

call(f, *args, **kwargs)
Helper to unify collection of logging all “dry” actions.

Calls f if Runner-object is not in dry-mode. Adds f along with its arguments to commands otherwise.

f : callable

*args, **kwargs: Callable arguments

commands

cwd

dry

env

log(msg, level=10)
log helper

Logs at DEBUG-level by default and adds “Protocol:”-prefix in order to log the used protocol.

protocol

run(cmd, log_stdout=True, log_stderr=True, log_online=False, expect_stderr=False, ex-
pect_fail=False, cwd=None, env=None, shell=None)
Runs the command cmd using shell.

In case of dry-mode cmd is just added to commands and it is actually executed otherwise. Allows for
separately logging stdout and stderr or streaming it to system’s stdout or stderr respectively.

Note: Using a string as cmd and shell=True allows for piping, multiple commands, etc., but that im-
plies shlex.split() is not used. This is considered to be a security hazard. So be careful with input.

Parameters

• cmd (str, list) – String (or list) defining the command call. No shell is used if cmd
is specified as a list

• log_stdout (bool, optional) – If True, stdout is logged. Goes to sys.stdout oth-
erwise.

• log_stderr (bool, optional) – If True, stderr is logged. Goes to sys.stderr oth-
erwise.

• log_online (bool, optional) – Either to log as output comes in. Setting to True
is preferable for running user-invoked actions to provide timely output

• expect_stderr (bool, optional) – Normally, having stderr output is a signal of
a problem and thus it gets logged at ERROR level. But some utilities, e.g. wget, use stderr
for their progress output. Whenever such output is expected, set it to True and output will
be logged at DEBUG level unless exit status is non-0 (in non-online mode only, in online
– would log at DEBUG)

• expect_fail (bool, optional) – Normally, if command exits with non-0 status,
it is considered an ERROR and logged accordingly. But if the call intended for checking
routine, such alarming message should not be logged as ERROR, thus it will be logged at
DEBUG level.

• cwd (string, optional) – Directory under which run the command (passed to
Popen)

44 Chapter 5. Commands and API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

reproman Documentation, Release 0.0.1

• env (string, optional) – Custom environment to pass

• shell (bool, optional) – Run command in a shell. If not specified, then it runs in
a shell only if command is specified as a string (not a list)

Returns

Return type (stdout, stderr)

Raises CommandError – if command’s exitcode wasn’t 0 or None. exitcode is passed to
CommandError’s code-field. Command’s stdout and stderr are stored in CommandError’s
stdout and stderr fields respectively.

reproman.cmd.get_runner(*args, **kwargs)

reproman.cmd.link_file_load(src, dst, dry_run=False)
Just a little helper to hardlink files’s load

reproman.consts

reproman constants

reproman.log

class reproman.log.ColorFormatter(use_color=None, log_name=False, log_pid=False)
Bases: logging.Formatter

BLACK = 0

BLUE = 4

BOLD_SEQ = '\x1b[1m'

COLORS = {'CRITICAL': 3, 'DEBUG': 4, 'ERROR': 1, 'INFO': 7, 'WARNING': 3}

COLOR_SEQ = '\x1b[1;%dm'

CYAN = 6

GREEN = 2

MAGENTA = 5

RED = 1

RESET_SEQ = '\x1b[0m'

WHITE = 7

YELLOW = 3

format(record)
Format the specified record as text.

The record’s attribute dictionary is used as the operand to a string formatting operation which yields the
returned string. Before formatting the dictionary, a couple of preparatory steps are carried out. The mes-
sage attribute of the record is computed using LogRecord.getMessage(). If the formatting string uses the
time (as determined by a call to usesTime(), formatTime() is called to format the event time. If there is
exception information, it is formatted using formatException() and appended to the message.

formatter_msg(fmt, use_color=False)

5.2. Python module reference 45

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/logging.html#logging.Formatter

reproman Documentation, Release 0.0.1

reproman.utils

class reproman.utils.HashableDict
Bases: dict

Dict that can be used as keys

class reproman.utils.PathRoot(predicate)
Bases: object

Find the root of paths based on a predicate function.

The path -> root mapping is cached across calls.

Parameters predicate (callable) – A callable that will be passed a path and should return
true if that path should be considered a root.

class reproman.utils.SemanticVersion(major, minor, patch, tag)
Bases: tuple

major
Alias for field number 0

minor
Alias for field number 1

patch
Alias for field number 2

tag
Alias for field number 3

reproman.utils.any_re_search(regexes, value)
Return if any of regexes (list or str) searches succesfully for value

reproman.utils.assure_bytes(s, encoding=’utf-8’)
Convert/encode unicode to bytes if of ‘str’

Parameters encoding (str, optional) – Encoding to use. “utf-8” is the default

reproman.utils.assure_dict_from_str(s, **kwargs)
Given a multiline string with key=value items convert it to a dictionary

Parameters

• s (str or dict) –

• None if input s is empty (Returns) –

reproman.utils.assure_dir(*args)
Make sure directory exists.

Joins the list of arguments to an os-specific path to the desired directory and creates it, if it not exists yet.

reproman.utils.assure_list(s)
Given not a list, would place it into a list. If None - empty list is returned

Parameters s (list or anything) –

reproman.utils.assure_list_from_str(s, sep=’\n’)
Given a multiline string convert it to a list of return None if empty

Parameters s (str or list) –

reproman.utils.assure_tuple_or_list(obj)
Given an object, wrap into a tuple if not list or tuple

46 Chapter 5. Commands and API

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

reproman Documentation, Release 0.0.1

reproman.utils.assure_unicode(s, encoding=None, confidence=None)
Convert/decode to str if of ‘bytes’

Parameters

• encoding (str, optional) – Encoding to use. If None, “utf-8” is tried, and then if
not a valid UTF-8, encoding will be guessed

• confidence (float, optional) – A value between 0 and 1, so if guessing of encod-
ing is of lower than specified confidence, ValueError is raised

reproman.utils.attrib(*args, **kwargs)
Extend the attr.ib to include our metadata elements.

ATM we support additional keyword args which are then stored within metadata: - doc for documentation to
describe the attribute (e.g. in –help)

Also, when the default argument of attr.ib is unspecified, set it to None.

reproman.utils.auto_repr(cls)
Decorator for a class to assign it an automagic quick and dirty __repr__

It uses public class attributes to prepare repr of a class

Original idea: http://stackoverflow.com/a/27799004/1265472

reproman.utils.cached_property(prop)
Cache a property’s return value.

This avoids using lru_cache, which is more complicated than needed for simple properties and isn’t available in
Python 2’s stdlib.

Use this only if the property’s return value is constant over the life of the object. This isn’t appropriate for a
property with a setter or a property whose getter value may change based some outside state.

This should be positioned below the @property declaration.

class reproman.utils.chpwd(path, mkdir=False, logsuffix=”)
Bases: object

Wrapper around os.chdir which also adjusts environ[‘PWD’]

The reason is that otherwise PWD is simply inherited from the shell and we have no ability to assess directory
path without dereferencing symlinks.

If used as a context manager it allows to temporarily change directory to the given path

reproman.utils.cmd_err_filter(err_string)
Creates a filter for CommandErrors that match a specific error string

Parameters err_string (basestring) – The error string we want to match

Returns

Return type func object -> boolean

reproman.utils.command_as_string(command)
Convert command to the string representation.

Parameters command (list or str) – If it is a list, convert it to a string, quoting each element
as needed. If it is a string, it is returned as is.

reproman.utils.encode_filename(filename)
Encode unicode filename

5.2. Python module reference 47

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
http://stackoverflow.com/a/27799004/1265472
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

reproman Documentation, Release 0.0.1

reproman.utils.escape_filename(filename)
Surround filename in “” and escape ” in the filename

reproman.utils.execute_command_batch(session, command, args, exception_filter=None)
Generator that executes session.execute_command, with batches of args

We want to call commands like “apt-cache policy” on a large number of packages, but risk creating command-
lines that are too long. This function is a generator that will call execute_command but with batches of arguments
(to stay within the command-line length limit) and yield the results.

Parameters

• session – Session object that implements the execute_command() member

• command (sequence) – The command that we wish to execute

• args (sequence) – The long list of additional arguments we wish to pass to the command

• exception_filter (func x -> bool) – A filter of exception types that the calling
code will gracefully handle

Returns stdout of the command, stderr of the command, and an exception that is in the list of
expected exceptions

Return type (out, err, exception)

reproman.utils.expandpath(path, force_absolute=True)
Expand all variables and user handles in a path.

By default return an absolute path

reproman.utils.file_basename(name, return_ext=False)
Strips up to 2 extensions of length up to 4 characters and starting with alpha not a digit, so we could get rid of
.tar.gz etc

reproman.utils.find_files(regex, topdir=’.’, exclude=None, exclude_vcs=True, ex-
clude_reproman=False, dirs=False)

Generator to find files matching regex

Parameters

• regex (basestring) –

• exclude (basestring, optional) – Matches to exclude

• exclude_vcs – If True, excludes commonly known VCS subdirectories. If string, used
as regex to exclude those files (regex: ‘/.(?:git|gitattributes|svn|bzr|hg)(?:/|$)’)

• exclude_reproman – If True, excludes files known to be reproman meta-data files (e.g.
under .reproman/ subdirectory) (regex: ‘/.(?:reproman)(?:/|$)’)

• topdir (basestring, optional) – Directory where to search

• dirs (bool, optional) – Either to match directories as well as files

reproman.utils.generate_unique_name(pattern, nameset)
Create a unique numbered name from a pattern and a set

Parameters

• pattern (basestring) – The pattern for the name (to be used with %) that includes
one %d location

• nameset (collection) – Collection (set or list) of existing names. If the generated
name is used, then add the name to the nameset.

Returns The generated unique name

48 Chapter 5. Commands and API

https://docs.python.org/3/library/functions.html#bool

reproman Documentation, Release 0.0.1

Return type str

reproman.utils.get_cmd_batch_len(arg_list, cmd_len)
Estimate the maximum batch length for a given argument list

To make sure we don’t call shell commands with too many arguments this function looks at an argument list and
the command length without any arguments, and estimates the number of arguments we want to batch together
at one time.

Parameters

• arg_list (list) – The list to process in the command

• cmd_len (number) – The length of the command without arguments

Returns The maximum number in a single batch

Return type number

reproman.utils.get_func_kwargs_doc(func)
Provides args for a function

Parameters func (str) – name of the function from which args are being requested

Returns of the args that a function takes in

Return type list

reproman.utils.get_tempfile_kwargs(tkwargs={}, prefix=”, wrapped=None)
Updates kwargs to be passed to tempfile. calls depending on env vars

reproman.utils.getargspec(func)
Backward-compatibility wrapper for inspect.getargspec.

reproman.utils.getpwd()
Try to return a CWD without dereferencing possible symlinks

If no PWD found in the env, output of getcwd() is returned

reproman.utils.instantiate_attr_object(item_type, items)
Instantiate item_type given items (for a list or dict)

Provides a more informative exception message in case if some arguments are incorrect

reproman.utils.is_binarystring(s)
Return true if an object is a binary string (not unicode)

reproman.utils.is_explicit_path(path)
Return whether a path explicitly points to a location

Any absolute path, or relative path starting with either ‘../’ or ‘./’ is assumed to indicate a location on the
filesystem. Any other path format is not considered explicit.

reproman.utils.is_interactive()
Return True if all in/outs are tty

reproman.utils.is_subpath(path, directory)
Test whether path is below (or is itself) directory.

Symbolic links are not resolved before the check.

reproman.utils.is_unicode(s)
Return true if an object is unicode

reproman.utils.items_to_dict(l, attrs=’name’, ordered=False)
Given a list of attr instances, return a dict using specified attrs as keys

5.2. Python module reference 49

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

reproman Documentation, Release 0.0.1

Parameters

• attrs (str or list of str) – Which attributes of the items to use to group

• ordered (bool, optional) – Either to return an ordered dictionary following the
original order of items in the list

Raises ValueError – If there is a conflict - multiple items with the same attrs used for key

Returns

Return type dict or collections.OrderedDict

reproman.utils.join_sequence_of_dicts(seq)
Joins a sequence of dicts into a single dict

Parameters seq (sequence) – Sequence of dicts to join

Returns

Return type dict

Raises RuntimeError if a duplicate key is encountered.

reproman.utils.knows_annex(path)
Returns whether at a given path there is information about an annex

It is just a thin wrapper around GitRepo.is_with_annex() classmethod which also checks for path to exist first.

This includes actually present annexes, but also uninitialized ones, or even the presence of a remote annex
branch.

reproman.utils.line_profile(func)
Q&D helper to line profile the function and spit out stats

reproman.utils.lmtime(filepath, mtime)
Set mtime for files, while not de-referencing symlinks.

To overcome absence of os.lutime

Works only on linux and OSX ATM

reproman.utils.make_tempfile(content=None, wrapped=None, **tkwargs)
Helper class to provide a temporary file name and remove it at the end (context manager)

Parameters

• mkdir (bool, optional (default: False)) – If True, temporary directory
created using tempfile.mkdtemp()

• content (str or bytes, optional) – Content to be stored in the file created

• wrapped (function, optional) – If set, function name used to prefix temporary file
name

• **tkwargs – All other arguments are passed into the call to tempfile.mk{,d}temp(), and
resultant temporary filename is passed as the first argument into the function t. If no ‘prefix’
argument is provided, it will be constructed using module and function names (‘.’ replaced
with ‘_’).

• change the used directory without providing keyword argument
'dir' set (To) –

• REPROMAN_TESTS_TEMPDIR. –

50 Chapter 5. Commands and API

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

reproman Documentation, Release 0.0.1

Examples

>>> from os.path import exists
>>> from reproman.utils import make_tempfile
>>> with make_tempfile() as fname:
... k = open(fname, 'w').write('silly test')
>>> assert not exists(fname) # was removed

>>> with make_tempfile(content="blah") as fname:
... assert open(fname).read() == "blah"

reproman.utils.md5sum(filename)

reproman.utils.merge_dicts(ds)
Convert an iterable of dictionaries.

In the case of key collisions, the last value wins.

Parameters ds (iterable of dicts) –

Returns

Return type dict

reproman.utils.not_supported_on_windows(msg=None)
A little helper to be invoked to consistently fail whenever functionality is not supported (yet) on Windows

reproman.utils.only_with_values(d)
Given a dictionary, return the one only with entries which had non-null values

reproman.utils.optional_args(decorator)
allows a decorator to take optional positional and keyword arguments. Assumes that taking a single, callable,
positional argument means that it is decorating a function, i.e. something like this:

@my_decorator
def function(): pass

Calls decorator with decorator(f, *args, **kwargs)

reproman.utils.parse_kv_list(params)
Create a dict from a “key=value” list.

Parameters params (sequence of str or mapping) – For a sequence, each item should
have the form “<key>=<value”. If params is a mapping, it will be returned as is.

Returns

Return type A mapping from backend key to value.

Raises ValueError if item in params does not match expected “key=value” format.

reproman.utils.parse_semantic_version(version)
Split version into major, minor, patch, and tag components.

Parameters version (str) – A version string X.Y.Z. X, Y, and Z must be digits. Any remaining
text is treated as a tag (e.g., “-rc1”).

Returns

Return type A namedtuple with the form (major, minor, patch, tag)

reproman.utils.partition(items, predicate=<class ’bool’>)
Partition items by predicate.

5.2. Python module reference 51

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

reproman Documentation, Release 0.0.1

Parameters

• items (iterable) –

• predicate (callable) – A function that will be mapped over each element in items.
The elements will partitioned based on whether the return value is false or true.

Returns

• A tuple with two generators, the first for ‘false’ items and the second for

• ’true’ ones.

Notes

Taken from Peter Otten’s snippet posted at https://nedbatchelder.com/blog/201306/filter_a_list_into_two_parts.
html

reproman.utils.pycache_source(path)
Map a pycache path to the original path.

Parameters path (str) – A Python cache file.

Returns

• Path of cached Python file (str) or None if path doesn’t look like a

• cache file.

reproman.utils.rmtemp(f, *args, **kwargs)
Wrapper to centralize removing of temp files so we could keep them around

It will not remove the temporary file/directory if REPROMAN_TESTS_KEEPTEMP environment variable is
defined

reproman.utils.rmtree(path, chmod_files=’auto’, *args, **kwargs)
To remove git-annex .git it is needed to make all files and directories writable again first

Parameters

• chmod_files (string or bool, optional) – Either to make files writable also
before removal. Usually it is just a matter of directories to have write permissions. If ‘auto’
it would chmod files on windows by default

• *args –

• **kwargs – Passed into shutil.rmtree call

reproman.utils.rotree(path, ro=True, chmod_files=True)
To make tree read-only or writable

Parameters

• path (string) – Path to the tree/directory to chmod

• ro (bool, optional) – Either to make it R/O (default) or RW

• chmod_files (bool, optional) – Either to operate also on files (not just directories)

reproman.utils.safe_write(ostream, s, encoding=’utf-8’)
Safely write different string types to an output stream

reproman.utils.setup_exceptionhook(ipython=False)
Overloads default sys.excepthook with our exceptionhook handler.

52 Chapter 5. Commands and API

https://nedbatchelder.com/blog/201306/filter_a_list_into_two_parts.html
https://nedbatchelder.com/blog/201306/filter_a_list_into_two_parts.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

reproman Documentation, Release 0.0.1

If interactive, our exceptionhook handler will invoke pdb.post_mortem; if not interactive, then invokes default
handler.

reproman.utils.shortened_repr(value, l=30)

reproman.utils.sorted_files(dout)
Return a (sorted) list of files under dout

reproman.utils.swallow_logs(new_level=None)
Context manager to consume all logs.

reproman.utils.swallow_outputs()
Context manager to help consuming both stdout and stderr, and print()

stdout is available as cm.out and stderr as cm.err whenever cm is the yielded context manager. Internally uses
temporary files to guarantee absent side-effects of swallowing into StringIO which lacks .fileno.

print mocking is necessary for some uses where sys.stdout was already bound to original sys.stdout, thus mock-
ing it later had no effect. Overriding print function had desired effect

reproman.utils.to_binarystring(s, encoding=’utf-8’)
Converts any type string to binarystring

reproman.utils.to_unicode(s, encoding=’utf-8’)
Converts any type string to unicode

reproman.utils.unique(seq, key=None)
Given a sequence return a list only with unique elements while maintaining order

This is the fastest solution. See https://www.peterbe.com/plog/uniqifiers-benchmark and http://stackoverflow.
com/a/480227/1265472 for more information. Enhancement – added ability to compare for uniqueness using a
key function

Parameters

• seq – Sequence to analyze

• key (callable, optional) – Function to call on each element so we could decide not
on a full element, but on its member etc

reproman.utils.updated(d, update)
Return a copy of the input with the ‘update’

Primarily for updating dictionaries

reproman.utils.write_update(fname, content, encoding=None)
Write content to fname unless it already has matching content.

This is the same as simply writing the content, except no writing occurs if the content of the existing file matches,
the write or update is logged, and the leading directories of fname are created if needed.

Parameters

• fname (str) – Path to update.

• content (str) – Content to dump to path.

• encoding (str or None, optional) – Passed to open.

reproman.version

Defines version to be imported in the module and obtained from setup.py

5.2. Python module reference 53

https://www.peterbe.com/plog/uniqifiers-benchmark
http://stackoverflow.com/a/480227/1265472
http://stackoverflow.com/a/480227/1265472
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

reproman Documentation, Release 0.0.1

reproman.support.configparserinc

class reproman.support.configparserinc.SafeConfigParserWithIncludes(*args,
**kwargs)

Bases: configparser.ConfigParser

Class adds functionality to SafeConfigParser to handle included other configuration files (or may be urls, what-
ever in the future)

File should have section [includes] and only 2 options implemented are ‘files_before’ and ‘files_after’ where
files are listed 1 per line.

Example:

[INCLUDES]
before = 1.conf

3.conf

after = 1.conf

It is a simple implementation, so just basic care is taken about recursion. Includes preserve right order, ie new
files are inserted to the list of read configs before original, and their includes correspondingly so the list should
follow the leaves of the tree.

I wasn’t sure what would be the right way to implement generic (aka c++ template) so we could base at any
*configparser class. . . so I will leave it for the future

SECTION_NAME = 'INCLUDES'

static getIncludes(resource, seen=[])
Given 1 config resource returns list of included files (recursively) with the original one as well Simple
loops are taken care about

read(filenames)
Read and parse a filename or an iterable of filenames.

Files that cannot be opened are silently ignored; this is designed so that you can specify an iterable of
potential configuration file locations (e.g. current directory, user’s home directory, systemwide directory),
and all existing configuration files in the iterable will be read. A single filename may also be given.

Return list of successfully read files.

5.2.3 Configuration management

config Registry-like monster for now simply borrowed from
bigmess/pymvpa

reproman.config

Registry-like monster for now simply borrowed from bigmess/pymvpa

TODO: integration with cmdline etc

class reproman.config.ConfigManager(filenames=None, load_default=True)
Bases: reproman.support.configparserinc.SafeConfigParserWithIncludes, object

Central configuration registry for reproman.

The purpose of this class is to collect all configurable settings used by various parts of reproman. It is fairly

54 Chapter 5. Commands and API

https://docs.python.org/3/library/configparser.html#configparser.ConfigParser
https://docs.python.org/3/library/functions.html#object

reproman Documentation, Release 0.0.1

simple and does only little more than the standard Python ConfigParser. Like ConfigParser it is blind to the data
that it stores, i.e. no type checking is performed.

Configuration files (INI syntax) in multiple location are parsed when a class instance is created or whenever
Config.reload() is called later on. Files are read and parsed in the order described by LOCATIONS_DOC.

Moreover, the constructor takes an optional argument with a list of additional file names to parse afterwards.

In addition to configuration files, this class also looks for special environment variables to read settings from.
Names of such variables have to start with REPROMAN_ following by the an optional section name and the
variable name itself (‘_’ as delimiter). If no section name is provided, the variables will be associated with
section general. Some examples:

REPROMAN_VERBOSE=1

will become:

[general]
verbose = 1

However, REPROMAN_VERBOSE_OUTPUT=stdout becomes:

[verbose]
output = stdout

Any length of variable name as allowed, e.g. REPROMAN_SEC1_LONG_NAME=1 becomes:

[sec1]
long name = 1

Settings from custom configuration files (specified by the constructor argument) have the highest priority and
override settings found in any of the config files read from default locations (which are themselves read in
the order stated above – overwriting earlier configuration settings accordingly). Finally, the content of any
REPROMAN_* environment variables overrides any settings read from any file.

dirs = <appdirs.AppDirs object>

get(section, option, default=None, **kwargs)
Wrapper around SafeConfigParser.get() with a custom default value.

This method simply wraps the base class method, but adds a default keyword argument. The value of
default is returned whenever the config parser does not have the requested option and/or section.

get_as_dtype(section, option, dtype, default=None)
Convenience method to query options with a custom default and type

This method simply wraps the base class method, but adds a default keyword argument. The value of
default is returned whenever the config parser does not have the requested option and/or section.

In addition, the returned value is converted into the specified dtype.

getboolean(section, option, default=None)
Wrapper around SafeConfigParser.getboolean() with a custom default.

This method simply wraps the base class method, but adds a default keyword argument. The value of
default is returned whenever the config parser does not have the requested option and/or section.

getpath(*args, **kwargs)
Wrapper around get to do additional path treatments such as expanduser

See documentation for get

5.2. Python module reference 55

reproman Documentation, Release 0.0.1

reload(filenames=None)
Re-read settings from all configured locations.

5.2.4 Test infrastructure

tests.utils Miscellaneous utilities to assist with testing

reproman.tests.utils

Miscellaneous utilities to assist with testing

class reproman.tests.utils.SilentHTTPHandler(*args, **kwargs)
Bases: http.server.SimpleHTTPRequestHandler

A little adapter to silence the handler

log_message(format, *args)
Log an arbitrary message.

This is used by all other logging functions. Override it if you have specific logging wishes.

The first argument, FORMAT, is a format string for the message to be logged. If the format string con-
tains any % escapes requiring parameters, they should be specified as subsequent arguments (it’s just like
printf!).

The client ip and current date/time are prefixed to every message.

reproman.tests.utils.assert_cwd_unchanged(func, ok_to_chdir=False)
Decorator to test whether the current working directory remains unchanged

Parameters ok_to_chdir (bool, optional) – If True, allow to chdir, so this decorator
would not then raise exception if chdir’ed but only return to original directory

reproman.tests.utils.assert_equal(a, b, msg=None)

reproman.tests.utils.assert_false(x, msg=None)

reproman.tests.utils.assert_greater(a, b, msg=None)

reproman.tests.utils.assert_greater_equal(a, b, msg=None)

reproman.tests.utils.assert_in(x, collection, msg=None)

reproman.tests.utils.assert_in_in(substr, lst)
Verify that a substring is in an element of a list

reproman.tests.utils.assert_is(a, b, msg=None)

reproman.tests.utils.assert_is_instance(a, b, msg=None)

reproman.tests.utils.assert_is_subset_recur(a, b, subset_types=[])
Asserts that ‘a’ is a subset of ‘b’ (recursive on dicts and lists)

Parameters

• a (dict or list) – The desired subset collection (items that must be in b)

• b (dict or list) – The superset collection

• subset_types (list) – List of classes (from list, dict) that allow subsets. Otherwise
we use strict matching.

reproman.tests.utils.assert_not_equal(a, b, msg=None)

56 Chapter 5. Commands and API

https://docs.python.org/3/library/http.server.html#http.server.SimpleHTTPRequestHandler
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

reproman Documentation, Release 0.0.1

reproman.tests.utils.assert_not_in(x, collection, msg=None)

reproman.tests.utils.assert_re_in(regex, c, flags=0)
Assert that container (list, str, etc) contains entry matching the regex

reproman.tests.utils.assert_true(x, msg=None)

reproman.tests.utils.create_pymodule(directory)
Create a skeleton Python module in directory.

Parameters directory (str) – Path to a non-existing directory.

reproman.tests.utils.create_tree(path, tree, archives_leading_dir=True)
Given a list of tuples (name, load) create such a tree

if load is a tuple itself – that would create either a subtree or an archive with that content and place it into the
tree if name ends with .tar.gz

reproman.tests.utils.eq_(a, b, msg=None)

reproman.tests.utils.get_most_obscure_supported_name(tdir)
Return the most obscure filename that the filesystem would support under TEMPDIR

TODO: we might want to use it as a function where we would provide tdir

reproman.tests.utils.in_(x, collection, msg=None)

reproman.tests.utils.neq_(a, b, msg=None)

reproman.tests.utils.nok_(x, msg=None)

reproman.tests.utils.nok_startswith(s, prefix)

reproman.tests.utils.ok_(x, msg=None)

reproman.tests.utils.ok_broken_symlink(path)

reproman.tests.utils.ok_endswith(s, suffix)

reproman.tests.utils.ok_file_has_content(path, content)
Verify that file exists and has expected content

reproman.tests.utils.ok_generator(gen)

reproman.tests.utils.ok_good_symlink(path)

reproman.tests.utils.ok_startswith(s, prefix)

reproman.tests.utils.ok_symlink(path)
Checks whether path is either a working or broken symlink

reproman.tests.utils.run_under_dir(func, newdir=’.’)
Decorator to run tests under another directory

It is somewhat ugly since we can’t really chdir back to a directory which had a symlink in its path. So using this
decorator has potential to move entire testing run under the dereferenced directory name – sideeffect.

The only way would be to instruct testing framework (i.e. nose in our case ATM) to run a test by creating a new
process with a new cwd

reproman.tests.utils.serve_path_via_http(tfunc, *targs)
Decorator which serves content of a directory via http url

reproman.tests.utils.with_tempfile(t, **tkwargs)
Decorator function to provide a temporary file name and remove it at the end

Parameters

5.2. Python module reference 57

https://docs.python.org/3/library/stdtypes.html#str

reproman Documentation, Release 0.0.1

• change the used directory without providing keyword argument
'dir' set (To) –

• REPROMAN_TESTS_TEMPDIR. –

• mkdir (bool, optional (default: False)) – If True, temporary directory
created using tempfile.mkdtemp()

• content (str or bytes, optional) – Content to be stored in the file created

• wrapped (function, optional) – If set, function name used to prefix temporary file
name

• **tkwargs – All other arguments are passed into the call to tempfile.mk{,d}temp(), and
resultant temporary filename is passed as the first argument into the function t. If no ‘prefix’
argument is provided, it will be constructed using module and function names (‘.’ replaced
with ‘_’).

Examples

@with_tempfile
def test_write(tfile):

open(tfile, 'w').write('silly test')

reproman.tests.utils.with_testsui(t, responses=None)
Switch main UI to be ‘tests’ UI and possibly provide answers to be used

reproman.tests.utils.with_tree(t, tree=None, archives_leading_dir=True, delete=True, **tk-
wargs)

reproman.tests.utils.without_http_proxy(tfunc)
Decorator to remove http*_proxy env variables for the duration of the test

5.2.5 Command line interface infrastructure

cmdline.main
cmdline.helpers
cmdline.common_args

reproman.cmdline.main

reproman.cmdline.main.main(args=None)

reproman.cmdline.main.setup_parser(formatter_class=<class ’arg-
parse.RawDescriptionHelpFormatter’>, re-
turn_subparsers=False)

reproman.cmdline.helpers

class reproman.cmdline.helpers.HelpAction(option_strings, dest, nargs=None, const=None,
default=None, type=None, choices=None, re-
quired=False, help=None, metavar=None)

Bases: argparse.Action

58 Chapter 5. Commands and API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/argparse.html#argparse.Action

reproman Documentation, Release 0.0.1

class reproman.cmdline.helpers.LogLevelAction(option_strings, dest, nargs=None,
const=None, default=None, type=None,
choices=None, required=False,
help=None, metavar=None)

Bases: argparse.Action

class reproman.cmdline.helpers.PBSAction(option_strings, dest, nargs=None, const=None,
default=None, type=None, choices=None, re-
quired=False, help=None, metavar=None)

Bases: argparse.Action

Action to schedule actual command execution via PBS (e.g. Condor)

class reproman.cmdline.helpers.RegexpType
Bases: object

Factory for creating regular expression types for argparse

DEPRECATED AFAIK – now things are in the config file, but we might provide a mode where we operate
solely from cmdline

reproman.cmdline.helpers.get_repo_instance(path=’.’, class_=None)
Returns an instance of appropriate reproman repository for path. Check whether a certain path is inside a known
type of repository and returns an instance representing it. May also check for a certain type instead of detecting
the type of repository.

Parameters

• path (str) – path to check; default: current working directory

• class (class) – if given, check whether path is inside a repository, that can be repre-
sented as an instance of the passed class.

Raises RuntimeError, in case cwd is not inside a known repository.

reproman.cmdline.helpers.parser_add_common_args(parser, pos=None, opt=None,
**kwargs)

reproman.cmdline.helpers.parser_add_common_opt(parser, opt, names=None, **kwargs)

reproman.cmdline.helpers.run_via_pbs(args, pbs)

reproman.cmdline.helpers.strip_arg_from_argv(args, value, opt_names)
Strip an originally listed option (with its value) from the list cmdline args

reproman.cmdline.common_args

5.2. Python module reference 59

https://docs.python.org/3/library/argparse.html#argparse.Action
https://docs.python.org/3/library/argparse.html#argparse.Action
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

reproman Documentation, Release 0.0.1

60 Chapter 5. Commands and API

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

61

reproman Documentation, Release 0.0.1

62 Chapter 6. Indices and tables

Python Module Index

r
reproman.api, 36
reproman.cmd, 42
reproman.cmdline.common_args, 59
reproman.cmdline.helpers, 58
reproman.cmdline.main, 58
reproman.config, 54
reproman.consts, 45
reproman.log, 45
reproman.support.configparserinc, 54
reproman.tests.utils, 56
reproman.utils, 46
reproman.version, 53

63

reproman Documentation, Release 0.0.1

64 Python Module Index

Index

A
any_re_search() (in module reproman.utils), 46
assert_cwd_unchanged() (in module repro-

man.tests.utils), 56
assert_equal() (in module reproman.tests.utils), 56
assert_false() (in module reproman.tests.utils), 56
assert_greater() (in module reproman.tests.utils),

56
assert_greater_equal() (in module repro-

man.tests.utils), 56
assert_in() (in module reproman.tests.utils), 56
assert_in_in() (in module reproman.tests.utils), 56
assert_is() (in module reproman.tests.utils), 56
assert_is_instance() (in module repro-

man.tests.utils), 56
assert_is_subset_recur() (in module repro-

man.tests.utils), 56
assert_not_equal() (in module repro-

man.tests.utils), 56
assert_not_in() (in module reproman.tests.utils),

56
assert_re_in() (in module reproman.tests.utils), 57
assert_true() (in module reproman.tests.utils), 57
assure_bytes() (in module reproman.utils), 46
assure_dict_from_str() (in module repro-

man.utils), 46
assure_dir() (in module reproman.utils), 46
assure_list() (in module reproman.utils), 46
assure_list_from_str() (in module repro-

man.utils), 46
assure_tuple_or_list() (in module repro-

man.utils), 46
assure_unicode() (in module reproman.utils), 46
attrib() (in module reproman.utils), 47
auto_repr() (in module reproman.utils), 47

B
backend_parameters() (in module reproman.api),

36

BLACK (reproman.log.ColorFormatter attribute), 45
BLUE (reproman.log.ColorFormatter attribute), 45
BOLD_SEQ (reproman.log.ColorFormatter attribute), 45

C
cached_property() (in module reproman.utils), 47
call() (reproman.cmd.Runner method), 44
chpwd (class in reproman.utils), 47
cloud instance, 4
cmd_err_filter() (in module reproman.utils), 47
COLOR_SEQ (reproman.log.ColorFormatter attribute),

45
ColorFormatter (class in reproman.log), 45
COLORS (reproman.log.ColorFormatter attribute), 45
command_as_string() (in module reproman.utils),

47
commands (reproman.cmd.Runner attribute), 44
ConfigManager (class in reproman.config), 54
container, 4
create() (in module reproman.api), 36
create_pymodule() (in module repro-

man.tests.utils), 57
create_tree() (in module reproman.tests.utils), 57
cwd (reproman.cmd.Runner attribute), 44
CYAN (reproman.log.ColorFormatter attribute), 45

D
delete() (in module reproman.api), 36
diff() (in module reproman.api), 37
dirs (reproman.config.ConfigManager attribute), 55
dry (reproman.cmd.Runner attribute), 44

E
encode_filename() (in module reproman.utils), 47
env (reproman.cmd.Runner attribute), 44
environment, 4
eq_() (in module reproman.tests.utils), 57
escape_filename() (in module reproman.utils), 47
execute() (in module reproman.api), 37

65

reproman Documentation, Release 0.0.1

execute_command_batch() (in module repro-
man.utils), 48

expandpath() (in module reproman.utils), 48

F
file_basename() (in module reproman.utils), 48
find_files() (in module reproman.utils), 48
format() (reproman.log.ColorFormatter method), 45
formatter_msg() (reproman.log.ColorFormatter

method), 45

G
generate_unique_name() (in module repro-

man.utils), 48
get() (reproman.config.ConfigManager method), 55
get_as_dtype() (reproman.config.ConfigManager

method), 55
get_cmd_batch_len() (in module reproman.utils),

49
get_func_kwargs_doc() (in module repro-

man.utils), 49
get_git_environ_adjusted() (repro-

man.cmd.GitRunner static method), 42
get_most_obscure_supported_name() (in

module reproman.tests.utils), 57
get_repo_instance() (in module repro-

man.cmdline.helpers), 59
get_runner() (in module reproman.cmd), 45
get_tempfile_kwargs() (in module repro-

man.utils), 49
getargspec() (in module reproman.utils), 49
getboolean() (reproman.config.ConfigManager

method), 55
getIncludes() (repro-

man.support.configparserinc.SafeConfigParserWithIncludes
static method), 54

getpath() (reproman.config.ConfigManager method),
55

getpwd() (in module reproman.utils), 49
GitRunner (class in reproman.cmd), 42
GREEN (reproman.log.ColorFormatter attribute), 45

H
HashableDict (class in reproman.utils), 46
HelpAction (class in reproman.cmdline.helpers), 58

I
in_() (in module reproman.tests.utils), 57
install() (in module reproman.api), 38
instantiate_attr_object() (in module repro-

man.utils), 49
is_binarystring() (in module reproman.utils), 49
is_explicit_path() (in module reproman.utils),

49

is_interactive() (in module reproman.utils), 49
is_subpath() (in module reproman.utils), 49
is_unicode() (in module reproman.utils), 49
items_to_dict() (in module reproman.utils), 49

J
jobs() (in module reproman.api), 38
join_sequence_of_dicts() (in module repro-

man.utils), 50

K
knows_annex() (in module reproman.utils), 50

L
line_profile() (in module reproman.utils), 50
link_file_load() (in module reproman.cmd), 45
lmtime() (in module reproman.utils), 50
log() (reproman.cmd.Runner method), 44
log_message() (repro-

man.tests.utils.SilentHTTPHandler method),
56

login() (in module reproman.api), 39
LogLevelAction (class in repro-

man.cmdline.helpers), 58
ls() (in module reproman.api), 39

M
MAGENTA (reproman.log.ColorFormatter attribute), 45
main() (in module reproman.cmdline.main), 58
major (reproman.utils.SemanticVersion attribute), 46
make_tempfile() (in module reproman.utils), 50
md5sum() (in module reproman.utils), 51
merge_dicts() (in module reproman.utils), 51
minor (reproman.utils.SemanticVersion attribute), 46

N
neq_() (in module reproman.tests.utils), 57
nok_() (in module reproman.tests.utils), 57
nok_startswith() (in module reproman.tests.utils),

57
not_supported_on_windows() (in module repro-

man.utils), 51

O
ok_() (in module reproman.tests.utils), 57
ok_broken_symlink() (in module repro-

man.tests.utils), 57
ok_endswith() (in module reproman.tests.utils), 57
ok_file_has_content() (in module repro-

man.tests.utils), 57
ok_generator() (in module reproman.tests.utils), 57
ok_good_symlink() (in module repro-

man.tests.utils), 57

66 Index

reproman Documentation, Release 0.0.1

ok_startswith() (in module reproman.tests.utils),
57

ok_symlink() (in module reproman.tests.utils), 57
only_with_values() (in module reproman.utils),

51
optional_args() (in module reproman.utils), 51

P
package, 4
parse_kv_list() (in module reproman.utils), 51
parse_semantic_version() (in module repro-

man.utils), 51
parser_add_common_args() (in module repro-

man.cmdline.helpers), 59
parser_add_common_opt() (in module repro-

man.cmdline.helpers), 59
partition() (in module reproman.utils), 51
patch (reproman.utils.SemanticVersion attribute), 46
PathRoot (class in reproman.utils), 46
PBSAction (class in reproman.cmdline.helpers), 59
protocol (reproman.cmd.Runner attribute), 44
pycache_source() (in module reproman.utils), 52

R
read() (reproman.support.configparserinc.SafeConfigParserWithIncludes

method), 54
RED (reproman.log.ColorFormatter attribute), 45
RegexpType (class in reproman.cmdline.helpers), 59
reload() (reproman.config.ConfigManager method),

55
reproman.api (module), 36
reproman.cmd (module), 42
reproman.cmdline.common_args (module), 59
reproman.cmdline.helpers (module), 58
reproman.cmdline.main (module), 58
reproman.config (module), 54
reproman.consts (module), 45
reproman.log (module), 45
reproman.support.configparserinc (mod-

ule), 54
reproman.tests.utils (module), 56
reproman.utils (module), 46
reproman.version (module), 53
RESET_SEQ (reproman.log.ColorFormatter attribute),

45
retrace() (in module reproman.api), 39
rmtemp() (in module reproman.utils), 52
rmtree() (in module reproman.utils), 52
rotree() (in module reproman.utils), 52
run() (in module reproman.api), 40
run() (reproman.cmd.GitRunner method), 43
run() (reproman.cmd.Runner method), 44
run_under_dir() (in module reproman.tests.utils),

57

run_via_pbs() (in module repro-
man.cmdline.helpers), 59

Runner (class in reproman.cmd), 43

S
safe_write() (in module reproman.utils), 52
SafeConfigParserWithIncludes (class in repro-

man.support.configparserinc), 54
SECTION_NAME (repro-

man.support.configparserinc.SafeConfigParserWithIncludes
attribute), 54

SemanticVersion (class in reproman.utils), 46
serve_path_via_http() (in module repro-

man.tests.utils), 57
setup_exceptionhook() (in module repro-

man.utils), 52
setup_parser() (in module repro-

man.cmdline.main), 58
shortened_repr() (in module reproman.utils), 53
SilentHTTPHandler (class in reproman.tests.utils),

56
sorted_files() (in module reproman.utils), 53
start() (in module reproman.api), 41
stop() (in module reproman.api), 42
strip_arg_from_argv() (in module repro-

man.cmdline.helpers), 59
swallow_logs() (in module reproman.utils), 53
swallow_outputs() (in module reproman.utils), 53

T
tag (reproman.utils.SemanticVersion attribute), 46
test() (in module reproman.api), 42
to_binarystring() (in module reproman.utils), 53
to_unicode() (in module reproman.utils), 53

U
unique() (in module reproman.utils), 53
updated() (in module reproman.utils), 53

V
virtual machine, 4

W
WHITE (reproman.log.ColorFormatter attribute), 45
with_tempfile() (in module reproman.tests.utils),

57
with_testsui() (in module reproman.tests.utils), 58
with_tree() (in module reproman.tests.utils), 58
without_http_proxy() (in module repro-

man.tests.utils), 58
write_update() (in module reproman.utils), 53

Y
YELLOW (reproman.log.ColorFormatter attribute), 45

Index 67

	Acknowledgments
	Concepts and technologies
	Managing resources
	Executing commands on resources
	Commands and API
	Indices and tables
	Python Module Index
	Index

