

Reproducible Documentation

Reference

Tracking Functions

These functions can be used to track specific aspect of the computation. The
tracking data will always include:

	details about the OS

	details about the CPU

	details about the Python (version, implementation)

	the command-line arguments (content of sys.argv)

	the list of installed packages (we recommend to use virtual environments to
avoid unnecessary packages here)

	the timestamp (of the import of the reproducible library)

	
reproducible.add_repo(path='.', allow_dirty=False, allow_untracked=False, diff=True)

	Add a version control repository to the tracking data. Only git is
supported at the moment.

Multiple repository can be tracked, each one will be identified by their
path. Adding a repository twice will result in duplication of tracking
data if the path strings are different.

	Parameters

	
	path – the path to the repository. If a repository is not
found there,

	allow_dirty – if False, will exit with an error if the git
repository is dirty or absent.

	allow_dirty – if False, will exit with an error if the git
repository is dirty or absent.

	diff – if True and uncommited changes are present in the
repository, the diff will be recorded in a
patchable form. Patch diffs of binary file can
grow to large sizes.

	Raises

	
	FileNotFoundError – if the path does not exist.

	RepositoryNotFound – if no repository was found.

	
reproducible.add_file(path, category, already=False)

	Compute and store the SHA256 hash of a file, as well as its modification
time (mtime).

	Parameters

	
	path – the path to the file.

	category – group label for the file, for instance ‘input’,
‘output’, ‘log’, etc. Beside allowing to organize
the files into categories, this is also important
for the already flag.

	already – if True, will not raise ValueError if the file was
already added with the same group label. In some
workflows, an input file is also an output file
later, and reproducible can track both state of
the file, as long as they are added under different
labels (presumably ‘input’ and ‘output’ in this
case). If False, the existing entry, if any, will be
overwritten.

	Raises

	ValueError – if already is False, raise ValueError if the file
was already added.

	
reproducible.add_data(key, data)

	Add user-provided data to the tracking data.

If you intend to export as json or yaml, the provided key and data must
be serializable in those formats.

	Parameters

	
	key – label for the data. It is recommended to use a string.

	data – user-provided data.

	
reproducible.function_args()

	Return a function’s arguments value from inside the function.

The function must be called from inside the function to return the
arguments from. The arguments’ value will be returned as a name -> value
dictionary. No difference is made between positional and provided-or-not
keyword arguments. Default values of non-provided keyword arguments are
included in the dictionary.

Note that this function does not add any information to the tracked
context data. Use add_data() with the return of this function to do
that.

	
reproducible.add_random_state()

	Record the current random state.

The random state is different from the seed used in a random.seed()
call. However, it can be used in the same way to produce reproducible
random sequences, using the random.setstate() method.

record_random_state should be called just after setting the seed, and
before any use of the random draw functions. Note that you can also
use the current time to set the seed using random.seed() without an
argument, and still record the random state right after.

Only the random state from the random module is recorded here, along
with a timestamp of the recording time. If you wish to record the
random state of external libraries such as numpy, you should use the
record_data() method, and provide either the seed used or the
result of the numpy.random.get_state().

Export Functions

All export function exists in two flavor. Those that export to the disk, and
those that return their output.

	
reproducible.export_json(path, update_timestamp=False)

	Export the tracked data as a JSON file

Will raise error if some of the data is not JSON serializable. This
method will return the SHA256 hexadecimal string of the saved file.

	Parameters

	
	path – Path to the file to save the JSON data to.
If the file exists, it will be overwritten.

	update_timestamp – The global timestamp of the tracked data, is
the time of the creation of the Context
instance, which happens at importing time,
if using the module-level functions.
If True, the timestamp will become the date of
the call to export_json.

	
reproducible.export_yaml(path=None, update_timestamp=False)

	Export the tracked data as a YAML file

Will raise error if some of the data is not YAML serializable. This
method will return the SHA256 hexadecimal string of the saved file.

	Parameters

	
	path – Path to the file to save the YAML data to.
If the file exists, it will be overwritten.

	update_timestamp – The global timestamp of the tracked data, is
the time of the creation of the Context
instance, which happens at importing time,
if using the module-level functions.
If True, the timestamp will become the date of
the call to export_yaml.

	Raises

	ImportError – if the yaml module cannot be imported.

	
reproducible.export_requirements(path, message=None, track_category=None)

	Export the list of installed package as a requirements.txt file.

	Parameters

	
	path – The filepath to save the file, e.g: path/to/reqs.txt
Note that no extension will be automatically included

	message – If not None, the message will be included after the
header and before the requirements.

	
reproducible.json(update_timestamp=False)

	Return the current tracking data, formated as JSON, as a string.

	Parameters

	update_timestamp – if True, update the timestamp of the tracked
data. Default False.

	
reproducible.yaml(update_timestamp=False)

	Return the current tracking data, formated as YAML, as a string.

	Parameters

	update_timestamp – if True, update the timestamp of the tracked
data. Default False.

	
reproducible.requirements()

	Return a list of the installed packages.

Note that if a package has been installed, changed or removed since
the creation of the Context instance—or the import of reproducible
when using module-level functions—this call will update the packages
field in the tracked data.

The result is a list of strings, gathered from the results of
pip freeze.

Git Repository Functions

The reproducible.git_info() and reproducible.git_dirty() can
be used to access the state of the git repository directly.

	
reproducible.git_info(path, diff=True)

	Retrieve data from the git repository.

This method can be used as a stand-alone, to access the git information
directly. To add the git information to the tracked data, the add_repo
method should be used.

	Parameters

	diff – if True and uncommited changes are present in the
repository, the diff will be recorded in a
patchable form.

	Raises

	
	FileNotFoundError – if the path does not exist.

	RepositoryNotFound – if no repository was found.

	
reproducible.git_dirty(path, allow_untracked=False)

	Return True if the repository is dirty.

A repository is dirty if it has uncommitted changes or untracked files.
This method can be used as a stand-alone, to access the git information
directly. To add the git information to the tracked data, the add_repo
method should be used.

	Parameters

	allow_untracked – if False, any untracked file makes the
repository dirty. Else, only uncommited
changes to tracked files are considered.

	Raises

	
	FileNotFoundError – if the path does not exist.

	RepositoryNotFound – if no repository was found.

Deprecated Functions

Those function are likely to get removed in one of the next release.

	
reproducible.save_json(*args, **kwargs)

	

	
reproducible.save_yaml(*args, **kwargs)

	

Index

 A
 | E
 | F
 | G
 | J
 | R
 | S
 | Y

A

 	
 	add_data() (in module reproducible)

 	add_file() (in module reproducible)

 	
 	add_random_state() (in module reproducible)

 	add_repo() (in module reproducible)

E

 	
 	export_json() (in module reproducible)

 	
 	export_requirements() (in module reproducible)

 	export_yaml() (in module reproducible)

F

 	
 	function_args() (in module reproducible)

G

 	
 	git_dirty() (in module reproducible)

 	
 	git_info() (in module reproducible)

J

 	
 	json() (in module reproducible)

R

 	
 	requirements() (in module reproducible)

S

 	
 	save_json() (in module reproducible)

 	
 	save_yaml() (in module reproducible)

Y

 	
 	yaml() (in module reproducible)

 nav.xhtml

 Table of Contents

 		
 Reproducible Documentation

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

