

repoze.who – WSGI Authentication Middleware

	Author

	Chris McDonough / Tres Seaver

	Version

	2.2

Overview

repoze.who is an identification and authentication framework
for arbitrary WSGI applications. It can be used as WSGI middleware,
or as an API from within a WSGI application.

repoze.who is inspired by Zope 2’s Pluggable Authentication
Service (PAS) (but repoze.who is not dependent on Zope in any
way; it is useful for any WSGI application). It provides no
facility for authorization (ensuring whether a user can or cannot
perform the operation implied by the request). This is considered
to be the domain of the WSGI application.

It attempts to reuse implementations from paste.auth for some
of its functionality.

Sections

	repoze.who Narrative Documentation
	Using repoze.who as WSGI Middleware

	Using repoze.who without WSGI Middleware

	Mixing Middleware and API Uses

	Configuring repoze.who

	repoze.who Use Cases
	Middleware-Only Use Cases

	API-Only Use Cases

	Hybrid Use Cases

	Using repoze.who Middleware
	Middleware Responsibilities

	Lifecycle of a Request

	Using the repoze.who Application Programming Interface (API)
	Using repoze.who without Middleware

	Mixed Use of repoze.who Middleware and API

	Writing a Custom Login View

	Interfaces

	Configuring repoze.who
	Configuration Points

	Configuring repoze.who via Python Code

	Configuring repoze.who via Config File

	About repoze.who Plugins
	Plugin Types

	Default Plugin Implementations

	Writing repoze.who Plugins

	Known Plugins for repoze.who
	Plugins shipped with repoze.who

	Deprecated plugins

	Third-party Plugins

Change History

	repoze.who Changelog
	2.4.2 (unreleased)

	2.4.1 (2022-02-01)

	2.4 (2020-06-03)

	2.3 (2016-05-31)

	2.2 (2013-05-17)

	2.1 (2013-03-20)

	2.1b1 (2012-11-05)

	2.0 (2011-09-28)

	2.0b1 (2011-05-24)

	2.0a4 (2011-02-02)

	2.0a3 (2010-09-30)

	2.0a2 (2010-03-25)

	2.0a1 (2010-02-24)

	1.0.18 (2009-11-05)

	1.0.17 (2009-11-05)

	1.0.16 (2009-11-04)

	1.0.15 (2009-06-25)

	1.0.14 (2009-06-17)

	1.0.13 (2009-04-24)

	1.0.12 (2009-04-19)

	1.0.11 (2009-04-10)

	1.0.10 (2009-01-23)

	1.0.9 (2008-12-18)

	1.0.8 (2008-12-13)

	1.0.7 (2008-08-28)

	1.0.6 (2008-08-28)

	1.0.5 (2008-08-23)

	1.0.4 (2008-08-22)

	1.0.3 (2008-08-16)

	1.0.2 (2008-06-16)

	1.0.1 (2008-05-24)

	1.0 (2008-05-04)

	0.9.1 (2008-04-27)

	0.9 (2008-04-01)

	0.8 (2008-03-27)

	0.7 (2008-03-26)

	0.6 (2008-03-20)

	0.5 (2008-03-09)

	0.4 (03-07-2008)

	0.3 (03-05-2008)

	0.2 (03-04-2008)

	0.1 (02-27-2008)

Support and Development

To report bugs, use the Repoze bug tracker [http://bugs.repoze.org].

If you’ve got questions that aren’t answered by this documentation,
contact the Repoze-dev maillist [http://lists.repoze.org/listinfo/repoze-dev] or join the #repoze
IRC channel.

Browse and check out tagged and trunk versions of repoze.who
via the Repoze github repository [https://github.com/repoze/repoze.who/]. To check out the trunk
via git, use this command:

git clone https://github.com:repoze/repoze.who.git

Or, if you are logged in:

git clone git@github.com:repoze/repoze.who.git

To find out how to become a contributor to repoze.who, please
see the contributor’s page [http://repoze.org/contributing.html].

Indices and tables

	Index

	Module Index

	Search Page

repoze.who Narrative Documentation

Using repoze.who as WSGI Middleware

repoze.who was originally developed for use as authentication
middleware in a WSGI pipeline, for use by applications which only
needed to obtain an “authenticated user” to enforce a given security
policy.

See Middleware Responsibilities for a description of this use case.

Using repoze.who without WSGI Middleware

Some applications might want to use a configured set of
repoze.who plugins to do identification and authentication for
a request, outside the context of using repoze.who middleware.
For example, a performance-sensitive application might wish to defer
the effort of identifying and authenticating a user until the point at
which authorization is required, knowing that some code paths will not
need to do the work.

See Using the repoze.who Application Programming Interface (API) for a description of this use case.

Mixing Middleware and API Uses

Some applications might use the repoze.who middleware for most
authentication purposes, but need to participate more directly in the
mechanics of identification and authorization for some portions of the
application. For example, consider a system which allows users to
sign up online for membership in a site: once the user completes
registration, such an application might wish to log the user in
transparently, and thus needs to interact with the configured
repoze.who middleware to generate response headers, ensuring
that the user’s next request is properly authenticated.

See Mixed Use of repoze.who Middleware and API for a description of this use case.

Configuring repoze.who

Developers and integrators can configure repoze.who using either
imperative Python code (see Configuring repoze.who via Python Code) or using an
INI-style declarative configuration file (see Configuring repoze.who via Config File).
In either case, the result of the configuration will be a
repoze.who.api:APIFactory instance, complete with a request
classifier, a challenge decider, and a set of plugins for each plugin
interface.

repoze.who Use Cases

How should an application interact with repoze.who? There are three
main scenarios:

Middleware-Only Use Cases

Examples of using the repoze.who middleware, without explicitly
using its API.

Simple: Bug Tracker with REMOTE_USER

This application expects the REMOTE_USER variable to be set by
the middleware for authenticated requests. It allows the middleware to
handle challenging the user when needed.

In protected views, such as those which allow creating or following up
to bug reports:

	Check environ['REMOTE_USER'] to get the authenticated user, and apply
any application-specific policy (who is allowed to edit).

	If the access check fails because the user is not yet authenticated,
return an 401 Unauthorized response.

	If the access check fails for authenticated users, return a
403 Forbidden response.

Note that the application here doesn’t depend on repoze.who at
all: it would work identically if run behind Apache’s mod_auth. The
Trac application works exactly this way.

The middleware can be configured to suit the policy required for the
site, e.g.:

	challenge / identify using HTTP basic authentication

	authorize via an .htaccces-style file.

More complex: Wiki with repoze.who.identity

This application use the repoze.who.identity variable set in the
WSGI environment by the middleware for authenticated requests. The application
still allows the middleware to handle challenging the user when needed.

The only difference from the previous example is that protected views,
such as those which allow adding or editing wiki pages, can use the extra
metadata stored inside environ['repoze.who.identity'] (a mapping) to
make authorization decisions: such metadata might include groups or roles
mapped by the middleware onto the user.

API-Only Use Cases

Examples of using the repoze.who API without its middleware.

Simple: Wiki with its own login and logout views.

This application uses the repoze.who API to compute the authenticated
user, as well as using its remember API to set headers for cookie-based
authentication.

In each view:

	Call api.authenticate to get the authenticated user.

	Show a login link for non-authenticated requests.

	Show a logout link for authenticated requests.

	Don’t show “protected” links for non-authenticated requests.

In protected views, such as those which allow adding or editing
wiki pages:

	Call api.authenticate to get the authenticated user; check
the metadata about the user (e.g., any appropriate roles or groups)
to verify access.

	If the access check fails because the user is not yet authenticated,
redirect to the login view, with a came_from value of the
current URL.

	If the access check fails for authenticated users, return a
403 Forbidden response.

In the login view:

	For GET requests, show the login form.

	For POST requests, validate the login and password from the form.
If successful, call api.remember, and append the returned headers to
your response, which may also contain, e.g., a Location header for
a redirect to the came_from URL. In this case, there will be
no authenticator plugin which knows about the login / password at all.

In the logout view:

	Call api.forget and append the headers to your response, which may
also contain, e.g., a Location header for a redirect to the
came_from URL after logging out.

More complex: multiple applications with “single sign-on”

In this scenario, authentication is “federated” across multiple applications,
which delegate to a central “login application.” This application verifies
credentials from the user, and then uses headers or other tokens to
communicate the verified identity to the delegating application.

In the login application:

	The SSO login application works just like the login view described above:
the difference is that the configured identifier plugins must emit
headers from remember which can be recognized by their counterparts
in the other apps.

In the non-login applications:

	Challenge plugins here must be configured to implement the specific
SSO protocol, e.g. redirect to the login app with information in the
query string (other protocols might differ).

	Identifer plugins must be able to “crack” / consume whatever tokens are
returned by the SSO login app.

	Authenticators will normally be no-ops (e.g., the auth_tkt plugin
used as an authenticator).

Hybrid Use Cases

Examples of using the repoze.who API in conjuntion with its middleware.

Most complex: integrate Trac and the wiki behind SSO

This example extends the previous one, but adds into the mix the
requirement that one or more of the non-login applications (e.g., Trac)
be used “off the shelf,” without modifying them. Such applications can
be plugged into the same SSO regime, with the addition of the
:mod:repoze.who middleware as an adapter to bridge the gap (e.g.,
to turn the SSO tokens into the REMOTE_USER required by Trac).

In this scenario, the middleware would be configured identically to the
API used in applications which do not need the middleware shim.

Using repoze.who Middleware

Middleware Responsibilities

repoze.who as middleware has one major function on ingress: it
conditionally places identification and authentication information
(including a REMOTE_USER value) into the WSGI environment and
allows the request to continue to a downstream WSGI application.

repoze.who as middleware has one major function on egress: it
examines the headers set by the downstream application, the WSGI
environment, or headers supplied by other plugins and conditionally
challenges for credentials.

Lifecycle of a Request

repoze.who performs duties both on middleware “ingress” and on
middleware “egress”. The following graphic outlines where it sits in the context
of the request and its response:

[image: _images/request-lifecycle.png]

Request (Ingress) Stages

[image: _images/ingress.png]
repoze.who performs the following operations in the following
order during middleware ingress:

	Environment Setup

The middleware adds a number of keys to the WSGI environment:

	repoze.who.plugins

	A reference to the configured plugin set.

	repoze.who.logger

	A reference to the logger configured into the middleware.

	repoze.who.application

	A refererence to the “right-hand” application. The plugins
consulted during request classification / identification /
authentication may replace this application with another
WSGI application, which will be used for the remainder of the
current request.

	Request Classification

The middleware hands the WSGI environment to the configured classifier
plugin, which is responsible for classifying the request into a single
“type”. This plugin must return a single string value classifying the
request, e.g., “browser”, “xml-rpc”, “webdav”, etc.

This classification may serve to filter out plugins consulted later in
the request. For instance, a plugin which issued a challenge as an
HTML form would be inappropriate for use in requests from an XML-RPC
or WebDAV client.

	Identification

Each plugin configured as an identifier for a particular class of
request is called to extract identity data (“credentials”) from the
WSGI environment.

For example, a basic auth identifier might use
the HTTP_AUTHORIZATION header to find login and password
information. Each configured identifier plugin is consulted in turn,
and any non-None identities returned are collected into a list to be
authenticated.

Identifiers are also responsible for providing header information used
to set and remove authentication information in the response during
egress (to “remember” or “forget” the currently-authenticated user).

	Authentication

The middlware consults each plugin configured as an authenticators for
a particular class of request, to compare credentials extracted by the
identification plugins to a given policy, or set of valid credentials.

For example, an htpasswd authenticator might look in a file for a user
record matching any of the extracted credentials. If it finds one, and
if the password listed in the record matches the password in the
identity, the userid of the user would be returned (which would
be the same as the login name). Successfully-authenticated identities are
“weighted”, with the highest weight identity governing the remainder of
the request.

	Metadata Assignment

After identifying and authenticating a user, repoze.who consults
plugins configured as metadata providers, which may augment the
authenticated identity with arbitrary metadata.

For example, a metadata provider plugin might add the user’s first,
middle and last names to the identity. A more specialized metadata
provider might augment the identity with a list of role or group names
assigned to the user.

Response (Egress) Stages

repoze.who performs the following operations in the following
order during middleware egress:

	Challenge Decision

The middleare examines the WSGI environment and the status and headers
returned by the downstream application to determine whether a
challenge is required. Typically, only the status is used: if it
starts with 401, a challenge is required, and the challenge
decider returns True.

This behavior can be replaced by configuring a different
challenge_decider plugin for the middleware.

If a challenge is required, the challenge decider returns True; otherwise,
it returns False.

	Credentials reset, AKA “forgetting”

If the challenge decider returns True, the middleware first delegates
to the identifier plugin which provided the currently-authenticated
identity to “forget” the identity, by adding response headers (e.g., to
expire a cookie).

	Challenge

The plugin then consults each of the plugins configured as
challengers for the current request classification: the first plugin
which returns a non-None WSGI application will be used to perform a
challenge.

Challenger plugins may use application-returned headers, the WSGI
environment, and other items to determine what sort of operation
should be performed to actuate the challenge.

	Remember

The identifier plugin that the “best” set of credentials came from
(if any) will be consulted to “remember” these credentials if the
challenge decider returns False.

Using the repoze.who Application Programming Interface (API)

Using repoze.who without Middleware

An application which does not use the repoze.who middleware needs
to perform two separate tasks to use repoze.who machinery:

	At application startup, it must create an repoze.who.api:APIFactory
instance, populating it with a request classifier, a challenge decider,
and a set of plugins. It can do this process imperatively
(see Configuring repoze.who via Python Code), or using a declarative
configuration file (see Configuring repoze.who via Config File). For the latter
case, there is a convenience function,
repoze.who.config.make_api_factory_with_config():

myapp/run.py
from repoze.who.config import make_api_factory_with_config
who_api_factory = None
def startup(global_conf):
 global who_api_factory
 who_api_factory = make_api_factory_with_config(global_conf,
 '/path/to/who.config')

	When it needs to use the API, it must call the APIFactory, passing
the WSGI environment to it. The APIFactory returns an object
implementing the repoze.who.interfaces:IRepozeWhoAPI interface.

myapp/views.py
from myapp.run import who_api_factory
def my_view(context, request):
 who_api = who_api_factory(request.environ)

	Calling the APIFactory multiple times within the same request is
allowed, and should be very cheap (the API object is cached in the
request environment).

Mixed Use of repoze.who Middleware and API

An application which uses the repoze.who middleware may still need
to interact directly with the IRepozeWhoAPI object for some purposes.
In such cases, it should call repoze.who.api:get_api(), passing
the WSGI environment.

from repoze.who.api import get_api
def my_view(context, request):
 who_api = get_api(request.environ)

Alternately, the application might configure the APIFactory at startup,
as above, and then use it to find the API object, or create it if it was
not already created for the current request (e.g. perhaps by the middleware):

def my_view(context, request):
 who_api = context.who_api_factory(request.environ)

Writing a Custom Login View

repoze.who.api.API provides a helper method to assist developers
who want to control the details of the login view. The following
BFG example illustrates how this API might be used:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	 def login_view(context, request):
 message = ''

 who_api = get_api(request.environ)
 if 'form.login' in request.POST:
 creds = {}
 creds['login'] = request.POST['login']
 creds['password'] = request.POST['password']
 authenticated, headers = who_api.login(creds)
 if authenticated:
 return HTTPFound(location='/', headers=headers)

 message = 'Invalid login.'
 else:
 # Forcefully forget any existing credentials.
 _, headers = who_api.login({})

 request.response_headerlist = headers
 if 'REMOTE_USER' in request.environ:
 del request.environ['REMOTE_USER']

 return {'message': message}

This application is written as a “hybrid”: the repoze.who middleware
injects the API object into the WSGI enviornment on each request.

	In line 4, this application extracts the API object from the environ
using repoze.who.api:get_api().

	Lines 6 - 8 fabricate a set of credentials, based on the values the
user entered in the form.

	In line 9, the application asks the API to authenticate those credentials,
returning an identity and a set of respones headers.

	Lines 10 and 11 handle the case of successful authentication: in this
case, the application redirects to the site root, setting the headers
returned by the API object, which will “remember” the user across requests.

	Line 13 is reached on failed login. In this case, the headers returned
in line 9 will be “forget” headers, clearing any existing cookies or other
tokens.

	Lines 14 - 16 perform a “fake” login, in order to get the “forget” headers.

	Line 18 sets the “forget” headers to clear any authenticated user for
subsequent requests.

	Lines 19 - 20 clear any authenticated user for the current request.

	Line 22 returns any message about a failed login to the rendering template.

Interfaces

	
interface repoze.who.interfaces.IAPIFactory

	
	
__call__(environ)

	environ -> IRepozeWhoAPI

	
interface repoze.who.interfaces.IAPI

	Facade for stateful invocation of underlying plugins.

	
authenticate()

	-> {identity}

o Return an authenticated identity mapping, extracted from the
request environment.

o If no identity can be authenticated, return None.

o Identity will include at least a ‘repoze.who.userid’ key,
as well as any keys added by metadata plugins.

	
challenge(status='403 Forbidden', app_headers=())

	-> wsgi application

o Return a WSGI application which represents a “challenge”
(request for credentials) in response to the current request.

	
remember(identity=None)

	-> [headers]

O Return a sequence of response headers which suffice to remember
the given identity.

o If ‘identity’ is not passed, use the identity in the environment.

	
forget(identity=None)

	-> [headers]

O Return a sequence of response headers which suffice to destroy
any credentials used to establish an identity.

o If ‘identity’ is not passed, use the identity in the environment.

	
login(credentials, identifier_name=None)

	-> (identity, headers)

o This is an API for browser-based application login forms.

	o If ‘identifier_name’ is passed, use it to look up the identifier;

	othewise, use the first configured identifier.

	o Attempt to authenticate ‘credentials’ as though the identifier

	had extracted them.

	o On success, ‘identity’ will be authenticated mapping, and ‘headers’

	will be “remember” headers.

	o On failure, ‘identity’ will be None, and response_headers will be

	“forget” headers.

	
logout(identifier_name=None)

	-> (headers)

o This is an API for browser-based application logout.

	o If ‘identifier_name’ is passed, use it to look up the identifier;

	othewise, use the first configured identifier.

o Returned headers will be “forget” headers.

	
interface repoze.who.interfaces.IPlugin

	

	
interface repoze.who.interfaces.IRequestClassifier

	Extends: repoze.who.interfaces.IPlugin

On ingress: classify a request.

	
__call__(environ)

	environ -> request classifier string

This interface is responsible for returning a string
value representing a request classification.

o ‘environ’ is the WSGI environment.

	
interface repoze.who.interfaces.IChallengeDecider

	Extends: repoze.who.interfaces.IPlugin

On egress: decide whether a challenge needs to be presented
to the user.

	
__call__(environ, status, headers)

	args -> True | False

o ‘environ’ is the WSGI environment.

	o ‘status’ is the HTTP status as returned by the downstream

	WSGI application.

	o ‘headers’ are the headers returned by the downstream WSGI

	application.

This interface is responsible for returning True if
a challenge needs to be presented to the user, False otherwise.

	
interface repoze.who.interfaces.IIdentifier

	Extends: repoze.who.interfaces.IPlugin

On ingress: Extract credentials from the WSGI environment and
turn them into an identity.

On egress (remember): Conditionally set information in the response headers
allowing the remote system to remember this identity.

On egress (forget): Conditionally set information in the response
headers allowing the remote system to forget this identity (during
a challenge).

	
identify(environ)

	On ingress:

	environ -> { k1v1

	, …
, kN : vN
} | None

o ‘environ’ is the WSGI environment.

	o If credentials are found, the returned identity mapping will

	contain an arbitrary set of key/value pairs. If the
identity is based on a login and password, the environment
is recommended to contain at least ‘login’ and ‘password’
keys as this provides compatibility between the plugin and
existing authenticator plugins. If the identity can be
‘preauthenticated’ (e.g. if the userid is embedded in the
identity, such as when we’re using ticket-based
authentication), the plugin should set the userid in the
special ‘repoze.who.userid’ key; no authenticators will be
asked to authenticate the identity thereafer.

	o Return None to indicate that the plugin found no appropriate

	credentials.

	o Only IIdentifier plugins which match one of the the current

	request’s classifications will be asked to perform
identification.

	o An identifier plugin is permitted to add a key to the

	environment named ‘repoze.who.application’, which should be
an arbitrary WSGI application. If an identifier plugin does
so, this application is used instead of the downstream
application set up within the middleware. This feature is
useful for identifier plugins which need to perform
redirection to obtain credentials. If two identifier
plugins add a ‘repoze.who.application’ WSGI application to
the environment, the last one consulted will”win”.

	
remember(environ, identity)

	On egress (no challenge required):

args -> [(header-name, header-value), …] | None

Return a list of headers suitable for allowing the requesting
system to remember the identification information (e.g. a
Set-Cookie header). Return None if no headers need to be set.
These headers will be appended to any headers returned by the
downstream application.

	
forget(environ, identity)

	On egress (challenge required):

args -> [(header-name, header-value), …] | None

Return a list of headers suitable for allowing the requesting
system to forget the identification information (e.g. a
Set-Cookie header with an expires date in the past). Return
None if no headers need to be set. These headers will be
included in the response provided by the challenge app.

	
interface repoze.who.interfaces.IAuthenticator

	Extends: repoze.who.interfaces.IPlugin

On ingress: validate the identity and return a user id or None.

	
authenticate(environ, identity)

	identity -> ‘userid’ | None

o ‘environ’ is the WSGI environment.

	o ‘identity’ will be a dictionary (with arbitrary keys and

	values).

	o The IAuthenticator should return a single user id (optimally

	a string) if the identity can be authenticated. If the
identify cannot be authenticated, the IAuthenticator should
return None.

Each instance of a registered IAuthenticator plugin that
matches the request classifier will be called N times during a
single request, where N is the number of identities found by
any IIdentifierPlugin instances.

An authenticator must not raise an exception if it is provided
an identity dictionary that it does not understand (e.g. if it
presumes that ‘login’ and ‘password’ are keys in the
dictionary, it should check for the existence of these keys
before attempting to do anything; if they don’t exist, it
should return None).

An authenticator is permitted to add extra keys to the ‘identity’
dictionary (e.g., to save metadata from a database query, rather
than requiring a separate query from an IMetadataProvider plugin).

	
interface repoze.who.interfaces.IChallenger

	Extends: repoze.who.interfaces.IPlugin

On egress: Conditionally initiate a challenge to the user to
provide credentials.

Only challenge plugins which match one of the the current
response’s classifications will be asked to perform a
challenge.

	
challenge(environ, status, app_headers, forget_headers)

	args -> WSGI application or None

o ‘environ’ is the WSGI environment.

	o ‘status’ is the status written into start_response by the

	downstream application.

	o ‘app_headers’ is the headers list written into start_response by the

	downstream application.

	o ‘forget_headers’ is a list of headers which must be passed

	back in the response in order to perform credentials reset
(logout). These come from the ‘forget’ method of
IIdentifier plugin used to do the request’s identification.

Examine the values passed in and return a WSGI application
(a callable which accepts environ and start_response as its
two positional arguments, ala PEP 333) which causes a
challenge to be performed. Return None to forego performing a
challenge.

	
interface repoze.who.interfaces.IMetadataProvider

	Extends: repoze.who.interfaces.IPlugin

On ingress: When an identity is authenticated, metadata
providers may scribble on the identity dictionary arbitrarily.
Return values from metadata providers are ignored.

	
add_metadata(environ, identity)

	Add metadata to the identity (which is a dictionary). One
value is always guaranteed to be in the dictionary when
add_metadata is called: ‘repoze.who.userid’, representing the
user id of the identity. Availability and composition of
other keys will depend on the identifier plugin which created
the identity.

Configuring repoze.who

Configuration Points

Classifiers

repoze.who “classifies” the request on middleware ingress.
Request classification happens before identification and
authentication. A request from a browser might be classified a
different way than a request from an XML-RPC client.
repoze.who uses request classifiers to decide which other
components to consult during subsequent identification,
authentication, and challenge steps. Plugins are free to advertise
themselves as willing to participate in identification and
authorization for a request based on this classification. The request
classification system is pluggable. repoze.who provides a
default classifier that you may use.

You may extend the classification system by making repoze.who aware
of a different request classifier implementation.

Challenge Deciders

repoze.who uses a “challenge decider” to decide whether the
response returned from a downstream application requires a challenge
plugin to fire. When using the default challenge decider, only the
status is used (if it starts with 401, a challenge is required).

repoze.who also provides an alternate challenge decider,
repoze.who.classifiers.passthrough_challenge_decider, which avoids
challenging 401 responses which have been “pre-challenged” by the
application.

You may supply a different challenge decider as necessary.

Plugins

repoze.who has core functionality designed around the concept
of plugins. Plugins are instances that are willing to perform one or
more identification- and/or authentication-related duties. Each
plugin can be configured arbitrarily.

repoze.who consults the set of configured plugins when it
intercepts a WSGI request, and gives some subset of them a chance to
influence what repoze.who does for the current request.

Note

As of repoze.who 1.0.7, the repoze.who.plugins
package is a namespace package, intended to make it possible for
people to ship eggs which are who plugins as,
e.g. repoze.who.plugins.mycoolplugin.

Configuring repoze.who via Python Code

	
class repoze.who.middleware.PluggableAuthenticationMiddleware(app, identifiers, challengers, authenticators, mdproviders, classifier, challenge_decider[, log_stream=None[, log_level=logging.INFO[, remote_user_key='REMOTE_USER']]])

	The primary method of configuring the repoze.who middleware is
to use straight Python code, meant to be consumed by frameworks
which construct and compose middleware pipelines without using a
configuration file.

In the middleware constructor: app is the “next” application in
the WSGI pipeline. identifiers is a sequence of IIdentifier
plugins, challengers is a sequence of IChallenger plugins,
mdproviders is a sequence of IMetadataProvider plugins. Any
of these can be specified as the empty sequence. classifier is a
request classifier callable, challenge_decider is a challenge
decision callable. log_stream is a stream object (an object with
a write method) or a logging.Logger object, log_level is
a numeric value that maps to the logging module’s notion of log
levels, remote_user_key is the key in which the REMOTE_USER
(userid) value should be placed in the WSGI environment for
consumption by downstream applications.

An example configuration which uses the default plugins follows:

from repoze.who.middleware import PluggableAuthenticationMiddleware
from repoze.who.interfaces import IIdentifier
from repoze.who.interfaces import IChallenger
from repoze.who.plugins.basicauth import BasicAuthPlugin
from repoze.who.plugins.auth_tkt import AuthTktCookiePlugin
from repoze.who.plugins.redirector import RedirectorPlugin
from repoze.who.plugins.htpasswd import HTPasswdPlugin

io = StringIO()
salt = 'aa'
for name, password in [('admin', 'admin'), ('chris', 'chris')]:
 io.write('%s:%s\n' % (name, password))
io.seek(0)
def cleartext_check(password, hashed):
 return password == hashed
htpasswd = HTPasswdPlugin(io, cleartext_check)
basicauth = BasicAuthPlugin('repoze.who')
auth_tkt = AuthTktCookiePlugin('secret', 'auth_tkt', digest_algo="sha512")
redirector = RedirectorPlugin('/login.html')
redirector.classifications = {IChallenger:['browser'],} # only for browser
identifiers = [('auth_tkt', auth_tkt),
 ('basicauth', basicauth)]
authenticators = [('auth_tkt', auth_tkt),
 ('htpasswd', htpasswd)]
challengers = [('redirector', redirector),
 ('basicauth', basicauth)]
mdproviders = []

from repoze.who.classifiers import default_request_classifier
from repoze.who.classifiers import default_challenge_decider
log_stream = None
import os
if os.environ.get('WHO_LOG'):
 log_stream = sys.stdout

middleware = PluggableAuthenticationMiddleware(
 app,
 identifiers,
 authenticators,
 challengers,
 mdproviders,
 default_request_classifier,
 default_challenge_decider,
 log_stream = log_stream,
 log_level = logging.DEBUG
)

The above example configures the repoze.who middleware with:

	Two IIdentifier plugins (auth_tkt cookie, and a
basic auth plugin). In this setup, when “identification” needs to
be performed, the auth_tkt plugin will be checked first, then
the basic auth plugin. The application is responsible for handling
login via a form: this view would use the API (via :method:`remember`)
to generate apprpriate response headers.

	Two IAuthenticator plugins: the auth_tkt plugin and an htpasswd plugin.
The auth_tkt plugin performs both IIdentifier and IAuthenticator
functions. The htpasswd plugin is configured with two valid username /
password combinations: chris/chris, and admin/admin. When an username
and password is found via any identifier, it will be checked against this
authenticator.

	Two IChallenger plugins: the redirector plugin, then the basic auth
plugin. The redirector auth will fire if the request is a browser
request, otherwise the basic auth plugin will fire.

The rest of the middleware configuration is for values like logging
and the classifier and decider implementations. These use the “stock”
implementations.

Note

The app referred to in the example is the “downstream”
WSGI application that who is wrapping.

Configuring repoze.who via Config File

repoze.who may be configured using a ConfigParser-style .INI
file. The configuration file has five main types of sections: plugin
sections, a general section, an identifiers section, an authenticators
section, and a challengers section. Each “plugin” section defines a
configuration for a particular plugin. The identifiers,
authenticators, and challengers sections refer to these plugins to
form a site configuration. The general section is general middleware
configuration.

To configure repoze.who in Python, using an .INI file, call
the make_middleware_with_config entry point, passing the right-hand
application, the global configuration dictionary, and the path to the
config file. The global configuration dictionary is a dictonary passed
by PasteDeploy. The only key ‘make_middleware_with_config’ needs is
‘here’ pointing to the config file directory. For debugging people
might find it useful to enable logging by adding the log_file argument,
e.g. log_file=”repoze_who.log”

from repoze.who.config import make_middleware_with_config
global_conf = {"here": "."} # if this is not defined elsewhere
who = make_middleware_with_config(app, global_conf, 'who.ini')

repoze.who’s configuration file can be pointed to within a PasteDeploy
configuration file

[filter:who]
use = egg:repoze.who#config
config_file = %(here)s/who.ini
log_file = stdout
log_level = debug

Below is an example of a configuration file (what config_file
might point at above) that might be used to configure the
repoze.who middleware. A set of plugins are defined, and they
are referred to by following non-plugin sections.

In the below configuration, five plugins are defined. The form, and
basicauth plugins are nominated to act as challenger plugins. The
form, cookie, and basicauth plugins are nominated to act as
identification plugins. The htpasswd and sqlusers plugins are
nominated to act as authenticator plugins.

[plugin:redirector]
identificaion and challenge
use = repoze.who.plugins.redirector:make_plugin
login_url = /login.html

[plugin:auth_tkt]
identification and authentication
use = repoze.who.plugins.auth_tkt:make_plugin
secret = s33kr1t
cookie_name = oatmeal
secure = False
include_ip = False
digest_algo = sha512

[plugin:basicauth]
identification and challenge
use = repoze.who.plugins.basicauth:make_plugin
realm = 'sample'

[plugin:htpasswd]
authentication
use = repoze.who.plugins.htpasswd:make_plugin
filename = %(here)s/passwd
check_fn = repoze.who.plugins.htpasswd:crypt_check

[plugin:sqlusers]
authentication
use = repoze.who.plugins.sql:make_authenticator_plugin
Note the double %%: we have to escape it from the config parser in
order to preserve it as a template for the psycopg2, whose 'paramstyle'
is 'pyformat'.
query = SELECT userid, password FROM users where login = %%(login)s
conn_factory = repoze.who.plugins.sql:make_psycopg_conn_factory
compare_fn = repoze.who.plugins.sql:default_password_compare

[plugin:sqlproperties]
name = properties
use = repoze.who.plugins.sql:make_metadata_plugin
Note the double %%: we have to escape it from the config parser in
order to preserve it as a template for the psycopg2, whose 'paramstyle'
is 'pyformat'.
query = SELECT firstname, lastname FROM users where userid = %%(__userid)s
filter = my.package:filter_propmd
conn_factory = repoze.who.plugins.sql:make_psycopg_conn_factory

[general]
request_classifier = repoze.who.classifiers:default_request_classifier
challenge_decider = repoze.who.classifiers:default_challenge_decider
remote_user_key = REMOTE_USER

[identifiers]
plugin_name;classifier_name:.. or just plugin_name (good for any)
plugins =
 auth_tkt
 basicauth

[authenticators]
plugin_name;classifier_name.. or just plugin_name (good for any)
plugins =
 auth_tkt
 htpasswd
 sqlusers

[challengers]
plugin_name;classifier_name:.. or just plugin_name (good for any)
plugins =
 redirector;browser
 basicauth

[mdproviders]
plugins =
 sqlproperties

The basicauth section configures a plugin that does identification and
challenge for basic auth credentials. The redirector section configures a
plugin that does challenges. The auth_tkt section configures a plugin that
does identification for cookie auth credentials, as well as authenticating
them. The htpasswd plugin obtains its user info from a file. The sqlusers
plugin obtains its user info from a Postgres database.

The identifiers section provides an ordered list of plugins that are
willing to provide identification capability. These will be consulted
in the defined order. The tokens on each line of the plugins= key
are in the form “plugin_name;requestclassifier_name:…” (or just
“plugin_name” if the plugin can be consulted regardless of the
classification of the request). The configuration above indicates
that the system will look for credentials using the auth_tkt cookie
identifier (unconditionally), then the basic auth plugin
(unconditionally).

The authenticators section provides an ordered list of plugins that
provide authenticator capability. These will be consulted in the
defined order, so the system will look for users in the file, then in
the sql database when attempting to validate credentials. No
classification prefixes are given to restrict which of the two plugins
are used, so both plugins are consulted regardless of the
classification of the request. Each authenticator is called with each
set of identities found by the identifier plugins. The first identity
that can be authenticated is used to set REMOTE_USER.

The mdproviders section provides an ordered list of plugins that
provide metadata provider capability. These will be consulted in the
defined order. Each will have a chance (on ingress) to provide add
metadata to the authenticated identity. Our example mdproviders
section shows one plugin configured: “sqlproperties”. The
sqlproperties plugin will add information related to user properties
(e.g. first name and last name) to the identity dictionary.

The challengers section provides an ordered list of plugins that
provide challenger capability. These will be consulted in the defined
order, so the system will consult the cookie auth plugin first, then
the basic auth plugin. Each will have a chance to initiate a
challenge. The above configuration indicates that the redirector challenger
will fire if it’s a browser request, and the basic auth challenger
will fire if it’s not (fallback).

About repoze.who Plugins

Plugin Types

Identifier Plugins

You can register a plugin as willing to act as an “identifier”. An
identifier examines the WSGI environment and attempts to extract
credentials from the environment. These credentials are used by
authenticator plugins to perform authentication.

Authenticator Plugins

You may register a plugin as willing to act as an “authenticator”.
Authenticator plugins are responsible for resolving a set of
credentials provided by an identifier plugin into a user id.
Typically, authenticator plugins will perform a lookup into a database
or some other persistent store, check the provided credentials against
the stored data, and return a user id if the credentials can be
validated.

The user id provided by an authenticator is eventually passed to
downstream WSGI applications in the “REMOTE_USER’ environment
variable. Additionally, the “identity” of the user (as provided by
the identifier from whence the identity came) is passed along to
downstream application in the repoze.who.identity environment
variable.

Metadata Provider Plugins

You may register a plugin as willing to act as a “metadata provider”
(aka mdprovider). Metadata provider plugins are responsible for
adding arbitrary information to the identity dictionary for
consumption by downstream applications. For instance, a metadata
provider plugin may add “group” information to the the identity.

Challenger Plugins

You may register a plugin as willing to act as a “challenger”.
Challenger plugins are responsible for initiating a challenge to the
requesting user. Challenger plugins are invoked by repoze.who when it
decides a challenge is necessary. A challenge might consist of
displaying a form or presenting the user with a basic or digest
authentication dialog.

Default Plugin Implementations

repoze.who ships with a variety of default plugins that do
authentication, identification, challenge and metadata provision.

	
class repoze.who.plugins.auth_tkt.AuthTktCookiePlugin(secret[, cookie_name='auth_tkt'[, secure=False[, include_ip=False]]])

	An AuthTktCookiePlugin is an IIdentifier and IAuthenticator
plugin which remembers its identity state in a client-side cookie.
This plugin uses the paste.auth.auth_tkt”auth ticket” protocol and
is compatible with Apache’s mod_auth_tkt.
It should be instantiated passing a secret, which is used to encrypt the
cookie on the client side and decrypt the cookie on the server side.
The cookie name used to store the cookie value can be specified
using the cookie_name parameter. If secure is False, the cookie
will be sent across any HTTP or HTTPS connection; if it is True, the
cookie will be sent only across an HTTPS connection. If
include_ip is True, the REMOTE_ADDR of the WSGI environment
will be placed in the cookie.

Normally, using the plugin as an identifier requires also using it as
an authenticator.

Note

Using the include_ip setting for public-facing applications may
cause problems for some users. One study [http://westpoint.ltd.uk/advisories/Paul_Johnston_GSEC.pdf] reports
that as many as 3% of users change their IP addresses legitimately
during a session.

Note

Plugin supports remembering user data in the cookie by saving user dict into identity['userdata']
parameter of remember method. They are sent unencrypted and protected by checksum.
Data will then be returned every time by identify. This dict must be compatible with
urllib.urlencode function (urllib.urlparse.urlencode in python 3).
Saving keys/values with unicode characters is supported only under python 3.

Note

Plugin supports multiple digest algorithms. It defaults to md5 to match
the default for mod_auth_tkt and paste.auth.auth_tkt. However md5 is not
recommended as there are viable attacks against the hash. Any algorithm
from the hashlib library can be specified, currently only sha256 and sha512
are supported by mod_auth_tkt.

	
class repoze.who.plugins.basicauth.BasicAuthPlugin(realm)

	A BasicAuthPlugin plugin is both an IIdentifier and
IChallenger plugin that implements the Basic Access
Authentication scheme described in RFC 2617 [https://tools.ietf.org/html/rfc2617.html]. It looks for
credentials within the HTTP-Authorization header sent by
browsers. It challenges by sending an WWW-Authenticate header
to the browser. The single argument realm indicates the basic
auth realm that should be sent in the WWW-Authenticate header.

	
class repoze.who.plugins.htpasswd.HTPasswdPlugin(filename, check)

	A HTPasswdPlugin is an IAuthenticator implementation
which compares identity information against an Apache-style htpasswd
file. The filename argument should be an absolute path to the
htpasswd file’ the check argument is a callable which takes two
arguments: “password” and “hashed”, where the “password” argument is
the unencrypted password provided by the identifier plugin, and the
hashed value is the value stored in the htpasswd file. If the
hashed value of the password matches the hash, this callable should
return True. A default implementation named crypt_check is
available for use as a check function (on UNIX) as
repoze.who.plugins.htpasswd:crypt_check; it assumes the values
in the htpasswd file are encrypted with the UNIX crypt function.

	
class repoze.who.plugins.redirector.RedirectorPlugin(login_url, came_from_param, reason_param, reason_header)

	A RedirectorPlugin is an IChallenger plugin.
It redirects to a configured login URL at egress if a challenge is
required .
login_url is the URL that should be redirected to when a
challenge is required. came_from_param is the name of an optional
query string parameter: if configured, the plugin provides the current
request URL in the redirected URL’s query string, using the supplied
parameter name. reason_param is the name of an optional
query string parameter: if configured, and the application supplies
a header matching reason_header (defaulting to
X-Authorization-Failure-Reason), the plugin includes that reason in
the query string of the redirected URL, using the supplied parameter name.
reason_header is an optional parameter overriding the default response
header name (X-Authorization-Failure-Reason) which
the plugin checks to find the application-supplied reason for the challenge.
reason_header cannot be set unless reason_param is also set.

	
class repoze.who.plugins.sql.SQLAuthenticatorPlugin(query, conn_factory, compare_fn)

	A SQLAuthenticatorPlugin is an IAuthenticator
implementation which compares login-password identity information
against data in an arbitrary SQL database. The query argument
should be a SQL query that returns two columns in a single row
considered to be the user id and the password respectively. The SQL
query should contain Python-DBAPI style substitution values for
%(login), e.g. SELECT user_id, password FROM users WHERE login
= %(login). The conn_factory argument should be a callable that
returns a DBAPI database connection. The compare_fn argument
should be a callable that accepts two arguments: cleartext and
stored_password_hash. It should compare the hashed version of
cleartext and return True if it matches the stored password hash,
otherwise it should return False. A comparison function named
default_password_compare exists in the
repoze.who.plugins.sql module demonstrating this. The
SQLAuthenticatorPlugin’s authenticate method will
return the user id of the user unchanged to repoze.who.

	
class repoze.who.plugins.sql.SQLMetadataProviderPlugin(name, query, conn_factory, filter)

	A SQLMetatadaProviderPlugin is an IMetadataProvider
implementation which adds arbitrary metadata to the identity on
ingress using data from an arbitrary SQL database. The name
argument should be a string. It will be used as a key in the
identity dictionary. The query argument should be a SQL query
that returns arbitrary data from the database in a form that accepts
Python-binding style DBAPI arguments. It should expect that a
__userid value will exist in the dictionary that is bound. The
SQL query should contain Python-DBAPI style substitution values for
(at least) %(__userid), e.g. SELECT group FROM groups WHERE
user_id = %(__userid). The conn_factory argument should be a
callable that returns a DBAPI database connection. The filter
argument should be a callable that accepts the result of the DBAPI
fetchall based on the SQL query. It should massage the data
into something that will be set in the environment under the name
key.

Writing repoze.who Plugins

repoze.who can be extended arbitrarily through the creation of
plugins. Plugins are of one of four types: identifier plugins,
authenticator plugins, metadata provider plugins, and challenge
plugins.

Writing An Identifier Plugin

An identifier plugin (aka an IIdentifier plugin) must do three
things: extract credentials from the request and turn them into an
“identity”, “remember” credentials, and “forget” credentials.

Here’s a simple cookie identification plugin that does these three
things

class InsecureCookiePlugin(object):

 def __init__(self, cookie_name):
 self.cookie_name = cookie_name

 def identify(self, environ):
 from paste.request import get_cookies
 cookies = get_cookies(environ)
 cookie = cookies.get(self.cookie_name)

 if cookie is None:
 return None

 import binascii
 try:
 auth = cookie.value.decode('base64')
 except binascii.Error: # can't decode
 return None

 try:
 login, password = auth.split(':', 1)
 return {'login':login, 'password':password}
 except ValueError: # not enough values to unpack
 return None

 def remember(self, environ, identity):
 cookie_value = '%(login)s:%(password)s' % identity
 cookie_value = cookie_value.encode('base64').rstrip()
 from paste.request import get_cookies
 cookies = get_cookies(environ)
 existing = cookies.get(self.cookie_name)
 value = getattr(existing, 'value', None)
 if value != cookie_value:
 # return a Set-Cookie header
 set_cookie = '%s=%s; Path=/;' % (self.cookie_name, cookie_value)
 return [('Set-Cookie', set_cookie)]

 def forget(self, environ, identity):
 # return a expires Set-Cookie header
 expired = ('%s=""; Path=/; Expires=Sun, 10-May-1971 11:59:00 GMT' %
 self.cookie_name)
 return [('Set-Cookie', expired)]

 def __repr__(self):
 return '<%s %s>' % (self.__class__.__name__, id(self))

.identify

The identify method of our InsecureCookiePlugin accepts a single
argument “environ”. This will be the WSGI environment dictionary.
Our plugin attempts to grub through the cookies sent by the client,
trying to find one that matches our cookie name. If it finds one that
matches, it attempts to decode it and turn it into a login and a
password, which it returns as values in a dictionary. This dictionary
is thereafter known as an “identity”. If it finds no credentials in
cookies, it returns None (which is not considered an identity).

More generally, the identify method of an IIdentifier plugin
is called once on WSGI request “ingress”, and it is expected to grub
arbitrarily through the WSGI environment looking for credential
information. In our above plugin, the credential information is
expected to be in a cookie but credential information could be in a
cookie, a form field, basic/digest auth information, a header, a WSGI
environment variable set by some upstream middleware or whatever else
someone might use to stash authentication information. If the plugin
finds credentials in the request, it’s expected to return an
“identity”: this must be a dictionary. The dictionary is not required
to have any particular keys or value composition, although it’s wise
if the identification plugin looks for both a login name and a
password information to return at least {‘login’:login_name,
‘password’:password}, as some authenticator plugins may depend on
presence of the names “login” and “password” (e.g. the htpasswd and
sql IAuthenticator plugins). If an IIdentifier plugin finds
no credentials, it is expected to return None.

.remember

If we’ve passed a REMOTE_USER to the WSGI application during ingress
(as a result of providing an identity that could be authenticated),
and the downstream application doesn’t kick back with an unauthorized
response, on egress we want the requesting client to “remember” the
identity we provided if there’s some way to do that and if he hasn’t
already, in order to ensure he will pass it back to us on subsequent
requests without requiring another login. The remember method of an
IIdentifier plugin is called for each non-unauthenticated
response. It is the responsibility of the IIdentifier plugin to
conditionally return HTTP headers that will cause the client to
remember the credentials implied by “identity”.

Our InsecureCookiePlugin implements the “remember” method by returning
headers which set a cookie if and only if one is not already set with
the same name and value in the WSGI environment. These headers will
be tacked on to the response headers provided by the downstream
application during the response.

When you write a remember method, most of the work involved is
determining whether or not you need to return headers. It’s typical
to see remember methods that compute an “old state” and a “new state”
and compare the two against each other in order to determine if
headers need to be returned. In our example InsecureCookiePlugin, the
“old state” is cookie_value and the “new state” is value.

.forget

	Eventually the WSGI application we’re serving will issue a “401

	Unauthorized” or another status signifying that the request could not
be authorized. repoze.who intercepts this status and calls
IIdentifier plugins asking them to “forget” the credentials
implied by the identity. It is the “forget” method’s job at this
point to return HTTP headers that will effectively clear any
credentials on the requesting client implied by the “identity”
argument.

Our InsecureCookiePlugin implements the “forget” method by returning
a header which resets the cookie that was set earlier by the remember
method to one that expires in the past (on my birthday, in fact).
This header will be tacked onto the response headers provided by the
downstream application.

Writing an Authenticator Plugin

An authenticator plugin (aka an IAuthenticator plugin) must do
only one thing (on “ingress”): accept an identity and check if the
identity is “good”. If the identity is good, it should return a “user
id”. This user id may or may not be the same as the “login” provided
by the user. An IAuthenticator plugin will be called for each
identity found during the identification phase (there may be multiple
identities for a single request, as there may be multiple
IIdentifier plugins active at any given time), so it may be called
multiple times in the same request.

Here’s a simple authenticator plugin that attempts to match an
identity against ones defined in an “htpasswd” file that does just
that:

class SimpleHTPasswdPlugin(object):

 def __init__(self, filename):
 self.filename = filename

 # IAuthenticatorPlugin
 def authenticate(self, environ, identity):
 try:
 login = identity['login']
 password = identity['password']
 except KeyError:
 return None

 f = open(self.filename, 'r')

 for line in f:
 try:
 username, hashed = line.rstrip().split(':', 1)
 except ValueError:
 continue
 if username == login:
 if crypt_check(password, hashed):
 return username
 return None

def crypt_check(password, hashed):
 from crypt import crypt
 salt = hashed[:2]
 return hashed == crypt(password, salt)

An IAuthenticator plugin implements one “interface” method:
“authentictate”. The formal specification for the arguments and
return values expected from these methods are available in the
interfaces.py file in repoze.who as the IAuthenticator
interface, but let’s examine this method here less formally.

.authenticate

The authenticate method accepts two arguments: the WSGI
environment and an identity. Our SimpleHTPasswdPlugin
authenticate implementation grabs the login and password out of
the identity and attempts to find the login in the htpasswd file. If
it finds it, it compares the crypted version of the password provided
by the user to the crypted version stored in the htpasswd file, and
finally, if they match, it returns the login. If they do not match,
it returns None.

Note

Our plugin’s authenticate method does not assume that the keys
login or password exist in the identity; although it
requires them to do “real work” it returns None if they are not
present instead of raising an exception. This is required by the
IAuthenticator interface specification.

Writing a Challenger Plugin

A challenger plugin (aka an IChallenger plugin) must do only one
thing on “egress”: return a WSGI application which performs a
“challenge”. A WSGI application is a callable that accepts an
“environ” and a “start_response” as its parameters; see “PEP 333” for
further definition of what a WSGI application is. A challenge asks
the user for credentials.

Here’s an example of a simple challenger plugin:

from paste.httpheaders import WWW_AUTHENTICATE
from paste.httpexceptions import HTTPUnauthorized

class BasicAuthChallengerPlugin(object):

 def __init__(self, realm):
 self.realm = realm

 # IChallenger
 def challenge(self, environ, status, app_headers, forget_headers):
 head = WWW_AUTHENTICATE.tuples('Basic realm="%s"' % self.realm)
 if head[0] not in forget_headers:
 head = head + forget_headers
 return HTTPUnauthorized(headers=head)

Note that the plugin implements a single “interface” method:
“challenge”. The formal specification for the arguments and return
values expected from this method is available in the “interfaces.py”
file in repoze.who as the IChallenger interface. This method
is called when repoze.who determines that the application has
returned an “unauthorized” response (e.g. a 401). Only one challenger
will be consulted during “egress” as necessary (the first one to
return a non-None response).

.challenge

The challenge method takes environ (the WSGI environment), ‘status’
(the status as set by the downstream application), the “app_headers”
(headers returned by the application), and the “forget_headers”
(headers returned by all participating IIdentifier plugins whom
were asked to “forget” this user).

Our BasicAuthChallengerPlugin takes advantage of the fact that the
HTTPUnauthorized exception imported from paste.httpexceptions can be
used as a WSGI application. It first makes sure that we don’t repeat
headers if an identification plugin has already set a
“WWW-Authenticate” header like ours, then it returns an instance of
HTTPUnauthorized, passing in merged headers. This will cause a basic
authentication dialog to be presented to the user.

Writing a Metadata Provider Plugin

A metadata provider plugin (aka an IMetadataProvider plugin) must
do only one thing (on “ingress”): “scribble” on the identity
dictionary provided to it when it is called. An IMetadataProvider
plugin will be called with the final “best” identity found during the
authentication phase, or not at all if no “best” identity could be
authenticated. Thus, each IMetadataProvider plugin will be called
exactly zero or one times during a request.

Here’s a simple metadata provider plugin that provides “property”
information from a dictionary:

_DATA = {
 'chris': {'first_name':'Chris', 'last_name':'McDonough'} ,
 'whit': {'first_name':'Whit', 'last_name':'Morriss'}
 }

class SimpleMetadataProvider(object):

 def add_metadata(self, environ, identity):
 userid = identity.get('repoze.who.userid')
 info = _DATA.get(userid)
 if info is not None:
 identity.update(info)

.add_metadata

Arbitrarily add information to the identity dict based in other data
in the environment or identity. Our plugin adds first_name and
last_name values to the identity if the userid matches chris
or whit.

Known Plugins for repoze.who

Plugins shipped with repoze.who

See Default Plugin Implementations.

Deprecated plugins

The repoze.who.deprecatedplugins distribution bundles the following
plugin implementations which were shipped with repoze.who prior
to version 2.0a3. These plugins are deprecated, and should only be used
while migrating an existing deployment to replacement versions.

	repoze.who.plugins.cookie.InsecureCookiePlugin

	An IIdentifier plugin which stores identification information in an
insecure form (the base64 value of the username and password separated by
a colon) in a client-side cookie. Please use the
AuthTktCookiePlugin instead.

repoze.who.plugins.form.FormPlugin

An IIdentifier and IChallenger plugin, which intercepts form POSTs
to gather identification at ingress and conditionally displays a login form
at egress if challenge is required.

Applications should supply their
own login form, and use repoze.who.api.API to authenticate
and remember users. To replace the challenger role, please use
repoze.who.plugins.redirector.RedirectorPlugin, configured with
the URL of your application’s login form.

repoze.who.plugins.form.RedirectingFormPlugin

An IIdentifier and IChallenger plugin, which intercepts form POSTs
to gather identification at ingress and conditionally redirects a login form
at egress if challenge is required.

Applications should supply their
own login form, and use repoze.who.api.API to authenticate
and remember users. To replace the challenger role, please use
repoze.who.plugins.redirector.RedirectorPlugin, configured with
the URL of your application’s login form.

Third-party Plugins

	repoze.who.plugins.zodb.ZODBPlugin

	This class implements the repoze.who.interfaces.IAuthenticator
and repoze.who.interfaces.IMetadataProvider plugin interfaces
using ZODB database lookups. See
http://pypi.python.org/pypi/repoze.whoplugins.zodb/

	repoze.who.plugins.ldap.LDAPAuthenticatorPlugin

	This class implements the repoze.who.interfaces.IAuthenticator
plugin interface using the python-ldap library to query an LDAP
database. See http://code.gustavonarea.net/repoze.who.plugins.ldap/

	repoze.who.plugins.ldap.LDAPAttributesPlugin

	This class implements the repoze.who.interfaces.IMetadataProvider
plugin interface using the python-ldap library to query an LDAP
database. See http://code.gustavonarea.net/repoze.who.plugins.ldap/

	repoze.who.plugins.friendlyform.FriendlyFormPlugin

	This class implements the repoze.who.interfaces.IIdentifier and
repoze.who.interfaces.IChallenger plugin interfaces. It is
similar to repoze.who.plugins.form.RedirectingFormPlugin,
bt with with additional features:

	Users are not challenged on logout, unless the referrer URL is a
private one (but that’s up to the application).

	Developers may define post-login and/or post-logout pages.

	In the login URL, the amount of failed logins is available in the
environ. It’s also increased by one on every login try. This counter
will allow developers not using a post-login page to handle logins that
fail/succeed.

See http://code.gustavonarea.net/repoze.who-friendlyform/

	repoze.who.plugins.openid.identifiers.OpenIdIdentificationPlugin()

	This class implements the repoze.who.interfaces.IIdentifier,
repoze.who.interfaces.IAuthenticator, and
repoze.who.interfaces.IChallenger plugin interfaces using OpenId.
See http://quantumcore.org/docs/repoze.who.plugins.openid/

	repoze.who.plugins.openid.classifiers.openid_challenge_decider()

	This function provides the repoze.who.interfaces.IChallengeDecider
interface using OpenId. See
http://quantumcore.org/docs/repoze.who.plugins.openid/

	repoze.who.plugins.use_beaker.UseBeakerPlugin

	This packkage provids a repoze.who.interfaces.IIdentifier plugin
using beaker.session cache. See
http://pypi.python.org/pypi/repoze.who-use_beaker/

	repoze.who.plugins.cas.main_plugin.CASChallengePlugin

	This class implements the repoze.who.interfaces.IIdentifier
repoze.who.interfaces.IAuthenticator, and
repoze.who.interfaces.IChallenger plugin interfaces using CAS.
See http://pypi.python.org/pypi/repoze.who.plugins.cas

	repoze.who.plugins.cas.challenge_decider.my_challenge_decider

	This function provides the repoze.who.interfaces.IChallengeDecider
interface using CAS. See
http://pypi.python.org/pypi/repoze.who.plugins.cas/

	repoze.who.plugins.recaptcha.captcha.RecaptchaPlugin

	This class implements the repoze.who.interfaces.IAuthenticator
plugin interface, using the recaptch API.
See http://pypi.python.org/pypi/repoze.who.plugins.recaptcha/

	repoze.who.plugins.sa.SQLAlchemyUserChecker

	User existence checker for
repoze.who.plugins.auth_tkt.AuthTktCookiePlugin, based on
the SQLAlchemy ORM. See http://pypi.python.org/pypi/repoze.who.plugins.sa/

	repoze.who.plugins.sa.SQLAlchemyAuthenticatorPlugin

	This class implements the repoze.who.interfaces.IAuthenticator
plugin interface, using the the SQLAlchemy ORM.
See http://pypi.python.org/pypi/repoze.who.plugins.sa/

	repoze.who.plugins.sa.SQLAlchemyUserMDPlugin

	This class implements the repoze.who.interfaces.IMetadataProvider
plugin interface, using the the SQLAlchemy ORM.
See http://pypi.python.org/pypi/repoze.who.plugins.sa/

	repoze.who.plugins.formcookie.CookieRedirectingFormPlugin

	This class implements the repoze.who.interfaces.IIdentifier and
repoze.who.interfaces.IChallenger plugin interfaces, similar
to repoze.who.plugins.form.RedirectingFormPlugin. The
plugin tracks the came_from URL via a cookie, rather than the query
string. See http://pypi.python.org/pypi/repoze.who.plugins.formcookie/

repoze.who Changelog

2.4.2 (unreleased)

	TBD

2.4.1 (2022-02-01)

	Disallow separators in AuthTicket component values. Closes #37.

	Handle bytes / string correctly in ‘repoze.who.plugins.htpasswd.sha1_check’.
Closes #28.

	Switch to use pytest as the testrunner. Closes #34.

2.4 (2020-06-03)

	Add upport for Python 3.6, 3.7, and 3.8.

	Drop support for Python 3.3.

	Fix travis configuration.

	Add samesite option to AuthTktCookiePlugin constructor.
If this is passed, it should be a string, and it will be used
to compose the Set-Cookie header’s “SameSite” value, e.g.
if you pass samesite="Strict" into the constructor,
the cookie value for the auth tkt cooke will contain
SameSite=Strict.

2.3 (2016-05-31)

	Add support for Python 3.4, Python 3.5, and PyPy3.

	Drop support for Python 2.6 and 3.2.

	middleware: avoid passing extracted identity to remember
during egress (the app may have called api.forget()). See #21.

	_auth_tkt / plugins.auth_tkt: add support for any hash algorithm
supported by the hashlib module in Python’s standard library.
Fixes #22 via #23.

	plugins.auth_tkt: Fix storage of “userdata” to save dict. Fixes
#14 via #18.

	middleware: avoid UnboundLocalError when wrapped generater yields no
items. See: http://bugs.repoze.org/issue184

	Make cookie expiration date RFC-2616 compliant (independent of locale,
including ‘GMT’ zone). See #11.

2.2 (2013-05-17)

	Parse INI-file configuration using SafeConfigParser: allows
escaping the '%' so that e.g. a query template using for a DB-API
connection using pyformat preserves the template.

	Added support for Python 3.3, PyPy.

2.1 (2013-03-20)

	_compat module: tolerate missing CONTENT_TYPE key in the WSGI
environment. Thanks to Dag Hoidal for the patch.

	htpasswd plugin: add a sha1_check checker function (the crypt
module is not available on Windows). Thanks to Chandrashekar Jayaraman
for the patch.

	Documentation typo fixes from Carlos de la Guardia and Atsushi Odagiri.

2.1b1 (2012-11-05)

	Ported to Py3k using the “compatible subset” mode.
- Dropped support for Python < 2.6.x.
- Dropped dependency on Paste (forking some code from it).
- Added dependency on WebOb instead.
Thanks to Atsushi Odagiri (aodag) for the initial effort.

2.0 (2011-09-28)

	auth_tkt plugin: strip any port number from the ‘Domain’ of generated
cookies. http://bugs.repoze.org/issue66

	Further harden middleware, calling close() on the iterable even if
raising an exception for a missing challenger.
http://bugs.repoze.org/issue174

2.0b1 (2011-05-24)

	Enabled standard use of logging module’s configuration mechanism.
See http://docs.python.org/dev/howto/logging.html#configuring-logging-for-a-library
Thanks to jgoldsmith for the patch: http://bugs.repoze.org/issue178

	repoze.who.plugins.htpasswd: defend against timing-based attacks.

2.0a4 (2011-02-02)

	Ensure that the middleware calls close() (if it exists) on the
iterable returned from thw wrapped application, as required by PEP 333.
http://bugs.repoze.org/issue174

	Make make_api_factory_with_config tolerant of invalid filenames /
content for the config file: in such cases, the API factory will have
no configured plugins or policies: it will only be useful for retrieving
the API from an environment populated by middleware.

	Fix bug in repoze.who.api where the remember() or forget()
methods could return a None if the identifier plugin returned a None.

	Fix auth_tkt plugin to not hand over tokens as strings to paste. See
http://lists.repoze.org/pipermail/repoze-dev/2010-November/003680.html

	Fix auth_tkt plugin to add “secure” and “HttpOnly” to cookies when
configured with secure=True: these attributes prevent the browser from
sending cookies over insecure channels, which could be vulnerable to some
XSS attacks.

	Avoid propagating unicode ‘max_age’ value into cookie headers. See
https://bugs.launchpad.net/bugs/674123 .

	Added a single-file example BFG application demonstrating the use of
the new ‘login’ and ‘logout’ methods of the API object.

	Add login and logout methods to the repoze.who.api.API object,
as a convenience for application-driven login / logout code, which would
otherwise need to use private methods of the API, and reach down into
its plugins.

2.0a3 (2010-09-30)

	Deprecated the following plugins, moving their modules, tests, and docs
to a new project, repoze.who.deprecatedplugins:

	repoze.who.plugins.cookie.InsecureCookiePlugin

	repoze.who.plugins.form.FormPlugin

	repoze.who.plugins.form.RedirectingFormPlugin

	Made the repoze.who.plugins.cookie.InsecureCookiePlugin take a
charset argument, and use to to encode / decode login and password.
See http://bugs.repoze.org/issue155

	Updated repoze.who.restrict to return headers as a list, to keep
wsgiref from complaining.

	Helped default request classifier cope with xml submissions with an
explicit charset defined: http://bugs.repoze.org/issue145 (Lorenzo
M. Catucci)

	Corrected the handling of type and subtype when matching an XML post
to xmlpost in the default classifier, which, according to RFC
2045, must be matched case-insensitively:
http://bugs.repoze.org/issue145 (Lorenzo M. Catucci)

	Added repoze.who.config:make_api_factory_with_config, a convenience
method for applications which want to set up their own API Factory from
a configuration file.

	Fixed example call to repoze.who.config:make_middleware_with_config
(added missing global_config argument). See
http://bugs.repoze.org/issue114

2.0a2 (2010-03-25)

Bugs Fixed

	Fixed failure to pass substution values in log message string formatting
for repoze.who.api:API.challenge. Fix included adding tests for all
logging done by the API object. See http://bugs.repoze.org/issue122

Backward Incompatibilities

	Adjusted logging level for some lower-level details from info
to debug.

2.0a1 (2010-02-24)

Features

	Restored the ability to create the middleware using the old classifier
argument. That argument is now a deprecated-but-will-work-forever alias for
request_classifier.

	The auth_tkt plugin now implements the IAuthenticator interface,
and should normally be used both as an IIdentifier and an
IAuthenticator.

	Factored out the API of the middleware object to make it useful from
within the application. Applications using repoze.who` now fall into
one of three catgeories:

	“middleware-only” applications are configured with middleware, and
use either REMOTE_USER or repoze.who.identity from the environment
to determing the authenticated user.

	“bare metal” applications use no repoze.who middleware at all:
instead, they configure and an APIFactory object at startup, and
use it to create an API object when needed on a per-request basis.

	“hybrid” applications are configured with repoze.who middleware,
but use a new library function to fetch the API object from the
environ, e.g. to permit calling remember after a signup or successful
login.

Bugs Fixed

	Fix http://bugs.repoze.org/issue102: when no challengers existed,
logging would cause an exception.

	Remove ez_setup.py and dependency on it in setup.py (support
distribute).

Backward Incompatibilities

	The middleware used to allow identifier plugins to “pre-authenticate”
an identity. This feature is no longer supported: the auth_tkt
plugin, which used to use the feature, is now configured to work as
an authenticator plugin (as well as an identifier).

	The repoze.who.middleware:PluggableAuthenticationMiddleware class
no longer has the following (non-API) methods (now made API methods
of the repoze.who.api:API class):

	add_metadata

	authenticate

	challenge

	identify

	The following (non-API) functions moved from repoze.who.middleware to
repoze.who.api:

	make_registries

	match_classification

	verify

1.0.18 (2009-11-05)

	Issue #104: AuthTkt plugin was passing an invalid cookie value in
headers from forget, and was not setting the Max-Age and
Expires attributes of those cookies.

1.0.17 (2009-11-05)

	Fixed the repoze.who.plugins.form.make_plugin factory’s formcallable
argument handling, to allow passing in a dotted name (e.g., from a config
file).

1.0.16 (2009-11-04)

	Exposed formcallable argument for repoze.who.plugins.form.FormPlugin
to the callers of the repoze.who.plugins.form.make_plugin factory.
Thanks to Roland Hedburg for the report.

	Fixed an issue that caused the following symptom when using the
ini configuration parser:

TypeError: _makePlugin() got multiple values for keyword argument 'name'

See http://bugs.repoze.org/issue92 for more details. Thanks to vaab
for the bug report and initial fix.

1.0.15 (2009-06-25)

	If the form post value max_age exists while in the identify
method is handling the login_handler_path, pass the max_age
value in the returned identity dictionary as max_age. See the
below bullet point for why.

	If the identity dict passed to the auth_tkt remember
method contains a max_age key with a string (or integer) value,
treat it as a cue to set the Max-Age and Expires headers in
the returned cookies. The cookie Max-Age is set to the value
and the Expires is computed from the current time.

1.0.14 (2009-06-17)

	Fix test breakage on Windows. See http://bugs.repoze.org/issue79 .

	Documented issue with using include_ip setting in the auth_tkt
plugin. See http://bugs.repoze.org/issue81 .

	Added ‘passthrough_challenge_decider’, which avoids re-challenging 401
responses which have been “pre-challenged” by the application.

	One-hundred percent unit test coverage.

	Add timeout and reissue_time arguments to the auth_tkt
identifier plugin, courtesty of Paul Johnston.

	Add a userid_checker argument to the auth_tkt identifier plugin,
courtesty of Gustavo Narea.

If userid_checker is provided, it must be a dotted Python name
that resolves to a function which accepts a userid and returns a
boolean True or False, indicating whether that user exists in a
database. This is a workaround. Due to a design bug in repoze.who,
the only way who can check for user existence is to use one or more
IAuthenticator plugin authenticate methods. If an
IAuthenticator’s authenticate method returns true, it means that
the user exists. However most IAuthenticator plugins expect both
a username and a password, and will return False unconditionally if
both aren’t supplied. This means that an authenticator can’t be
used to check if the user “only” exists. The identity provided by
an auth_tkt does not contain a password to check against. The
actual design bug in repoze.who is this: when a user presents
credentials from an auth_tkt, he is considered “preauthenticated”.
IAuthenticator.authenticate is just never called for a
“preauthenticated” identity, which works fine, but it means that the
user will be considered authenticated even if you deleted the user’s
record from whatever database you happen to be using. However, if
you use a userid_checker, you can ensure that a user exists for the
auth_tkt supplied userid. If the userid_checker returns False, the
auth_tkt credentials are considered “no good”.

1.0.13 (2009-04-24)

	Added a paragraph to IAuthenticator docstring, documenting that plugins
are allowed to add keys to the identity dictionary (e.g., to save a
second database query in an IMetadataProvider plugin).

	Patch supplied for issue #71 (http://bugs.repoze.org/issue71)
whereby a downstream app can return a generator, relying on an
upstream component to call start_response. We do this because the
challenge decider needs the status and headers to decide what to do.

1.0.12 (2009-04-19)

	auth_tkt plugin tried to append REMOTE_USER_TOKENS data to
existing tokens data returned by auth_tkt.parse_tkt; this was
incorrect; just overwrite.

	Extended auth_tkt plugin factory to allow passing secret in a separate
file from the main config file. See http://bugs.repoze.org/issue40 .

1.0.11 (2009-04-10)

	Fix auth_tkt plugin; cookie values are now quoted, making it possible
to put spaces and other whitespace, etc in usernames. (thanks to Michael
Pedersen).

	Fix corner case issue of an exception raised when attempting to log
when there are no identifiers or authenticators.

1.0.10 (2009-01-23)

	The RedirectingFormPlugin now passes along SetCookie headers set
into the response by the application within the NotFound response
(fixes TG2 “flash” issue).

1.0.9 (2008-12-18)

	The RedirectingFormPlugin now attempts to find a header named
X-Authentication-Failure-Reason among the response headers set
by the application when a challenge is issued. If a value for this
header exists (and is non-blank), the value is attached to the
redirect URL’s query string as the reason parameter (or a
user-settable key). This makes it possible for downstream
applications to issue a response that initiates a challenge with
this header and subsequently display the reason in the login form
rendered as a result of the challenge.

1.0.8 (2008-12-13)

	The PluggableAuthenticationMiddleware constructor accepts a
log_stream argument, which is typically a file. After this
release, it can also be a PEP 333 Logger instance; if it is a
PEP 333 Logger instance, this logger will be used as the
repoze.who logger (instead of one being constructed by the
middleware, as was previously always the case). When the
log_stream argument is a PEP 333 Logger object, the
log_level argument is ignored.

1.0.7 (2008-08-28)

	repoze.who and repoze.who.plugins were not added to the
namespace_packages list in setup.py, potentially making 1.0.6 a
brownbag release, given that making these packages namespace
packages was the only reason for its release.

1.0.6 (2008-08-28)

	Make repoze.who and repoze.who.plugins into namespace packages
mainly so we can allow plugin authors to distribute packages in the
repoze.who.plugins namespace.

1.0.5 (2008-08-23)

	Fix auth_tkt plugin to set the same cookies in its remember
method that it does in its forget method. Previously, logging
out and relogging back in to a site that used auth_tkt identifier
plugin was slightly dicey and would only work sometimes.

	The FormPlugin plugin has grown a redirect-on-unauthorized feature.
Any response from a downstream application that causes a challenge
and includes a Location header will cause a redirect to the value of
the Location header.

1.0.4 (2008-08-22)

	Added a key to the ‘[general]’ config section: remote_user_key.
If you use this key in the config file, it tells who to 1) not
perform any authentication if it exists in the environment during
ingress and 2) to set the key in the environment for the downstream
app to use as the REMOTE_USER variable. The default is
REMOTE_USER.

	Using unicode user ids in combination with the auth_tkt plugin would
cause problems under mod_wsgi.

	Allowed ‘cookie_path’ argument to InsecureCookiePlugin (and config
constructor). Thanks to Gustavo Narea.

1.0.3 (2008-08-16)

	A bug in the middleware’s authenticate method made it impossible
to authenticate a user with a userid that was null (e.g. 0, False),
which are valid identifiers. The only invalid userid is now None.

	Applied patch from Olaf Conradi which logs an error when an invalid
filename is passed to the HTPasswdPlugin.

1.0.2 (2008-06-16)

	Fix bug found by Chris Perkins: the auth_tkt plugin’s “remember”
method didn’t handle userids which are Python “long” instances
properly. Symptom: TypeError: cannot concatenate ‘str’ and ‘long’
objects in “paste.auth.auth_tkt”.

	Added predicate-based “restriction” middleware support
(repoze.who.restrict), allowing configuratio-driven authorization as
a WSGI filter. One example predicate, ‘authenticated_predicate’, is
supplied, which requires that the user be authenticated either via
‘REMOTE_USER’ or via ‘repoze.who.identity’. To use the filter to
restrict access:

 [filter:authenticated_only]
 use = egg:repoze.who#authenticated

or::

 [filter:some_predicate]
 use = egg:repoze.who#predicate
 predicate = my.module:some_predicate
 some_option = a value

1.0.1 (2008-05-24)

	Remove dependency-link to dist.repoze.org to prevent easy_install
from inserting that path into its search paths (the dependencies are
available from PyPI).

1.0 (2008-05-04)

	The plugin at plugins.form.FormPlugin didn’t redirect properly after
collecting identification information. Symptom: a downstream app
would receive a POST request with a blank body, which would
sometimes result in a Bad Request error.

	Fixed interface declarations of
‘classifiers.default_request_classifier’ and
‘classifiers.default_password_compare’.

	Added actual config-driven middleware factory,
‘config.make_middleware_with_config’

	Removed fossilized ‘who_conf’ argument from plugin factory functions.

	Added ConfigParser-based WhoConfig, implementing the spec outlined at
http://www.plope.com/static/misc/sphinxtest/intro.html#middleware-configuration-via-config-file,
with the following changes:

	
	“Bare” plugins (requiring no configuration options) may be specified

	as either egg entry points (e.g., ‘egg:distname#entry_point_name’) or
as dotted-path-with-colon (e.g., ‘dotted.name:object_id’).

	Therefore, the separator between a plugin and its classifier is now
a semicolon, rather than a colon. E.g.:

[plugins:id_plugin]
use = egg:another.package#identify_with_frobnatz
frobnatz = baz

[identifiers]
plugins =
 egg:my.egg#identify;browser
 dotted.name:identifier
 id_plugin

0.9.1 (2008-04-27)

	Fix auth_tkt plugin to be able to encode and decode integer user
ids.

0.9 (2008-04-01)

	Fix bug introduced in FormPlugin in 0.8 release (rememberer headers
not set).

	Add PATH_INFO to started and ended log info.

	Add a SQLMetadataProviderPlugin (in plugins/sql).

	Change constructor of SQLAuthenticatorPlugin: it now accepts only
“query”, “conn_factory”, and “compare_fn”. The old constructor
accepted a DSN, but some database systems don’t use DBAPI DSNs. The
new constructor accepts no DSN; the conn_factory is assumed to do
all the work to make a connection, including knowing the DSN if one
is required. The “conn_factory” should return something that, when
called with no arguments, returns a database connection.

	The “make_plugin” helper in plugins/sql has been renamed
“make_authenticator_plugin”. When called, this helper will return a
SQLAuthenticatorPlugin. A bit of helper logic in the
“make_authenticator_plugin” allows a connection factory to be
computed. The top-level callable referred to by conn_factory in
this helper should return a function that, when called with no
arguments, returns a datbase connection. The top-level callable
itself is called with “who_conf” (global who configuration) and any
number of non-top-level keyword arguments as they are passed into
the helper, to allow for a DSN or URL or whatever to be passed in.

	A “make_metatata_plugin” helper has been added to plugins/sql. When
called, this will make a SQLMetadataProviderPlugin. See the
implementation for details. It is similar to the
“make_authenticator_plugin” helper.

0.8 (2008-03-27)

	Add a RedirectingFormIdentifier plugin. This plugin is willing to
redirect to an external (or downstream application) login form to
perform identification. The external login form must post to the
“login_handler_path” of the plugin (optimally with a “came_from”
value to tell the plugin where to redirect the response to if the
authentication works properly). The “logout_handler_path” of this
plugin can be visited to perform a logout. The “came_from” value
also works there.

	Identifier plugins are now permitted to set a key in the environment
named ‘repoze.who.application’ on ingress (in ‘identify’). If an
identifier plugin does so, this application is used instead of the
“normal” downstream application. This feature was added to more
simply support the redirecting form identifier plugin.

0.7 (2008-03-26)

	Change the IMetadataProvider interface: this interface used to have
a “metadata” method which returned a dictionary. This method is not
part of that API anymore. It’s been replaced with an “add_metadata”
method which has the signature:

 def add_metadata(environ, identity):
 """
 Add metadata to the identity (which is a dictionary)
 """

The return value is ignored. IMetadataProvider plugins are now
assumed to be responsible for 'scribbling' directly on the identity
that is passed in (it's a dictionary). The user id can always be
retrieved from the identity via identity['repoze.who.userid'] for
metadata plugins that rely on that value.

0.6 (2008-03-20)

	Renaming: repoze.pam is now repoze.who

	Bump ez_setup.py version.

	Add IMetadataProvider plugin type. Chris says ‘Whit rules’.

0.5 (2008-03-09)

	Allow “remote user key” (default: REMOTE_USER) to be overridden
(pass in remote_user_key to middleware constructor).

	Allow form plugin to override the default form.

	API change: IIdentifiers are no longer required to put both ‘login’
and ‘password’ in a returned identity dictionary. Instead, an
IIdentifier can place arbitrary key/value pairs in the identity
dictionary (or return an empty dictionary).

	API return value change: the “failure” identity which IIdentifiers
return is now None rather than an empty dictionary.

	The IAuthenticator interface now specifies that IAuthenticators must
not raise an exception when evaluating an identity that does not
have “expected” key/value pairs (e.g. when an IAuthenticator that
expects login and password inspects an identity returned by an
IP-based auth system which only puts the IP address in the
identity); instead they fail gracefully by returning None.

	Add (cookie) “auth_tkt” identification plugin.

	Stamp identity dictionaries with a userid by placing a key named
‘repoze.pam.userid’ into the identity for each authenticated
identity.

	If an IIdentifier plugin inserts a ‘repoze.pam.userid’ key into the
identity dictionary, consider this identity “preauthenticated”. No
authenticator plugins will be asked to authenticate this identity.
This is designed for things like the recently added auth_tkt plugin,
which embeds the user id into the ticket. This effectively alllows
an IIdentifier plugin to become an IAuthenticator plugin when
breaking apart the responsibility into two separate plugins is
“make-work”. Preauthenticated identities will be selected first
when deciding which identity to use for any given request.

	Insert a ‘repoze.pam.identity’ key into the WSGI environment on
ingress if an identity is found. Its value will be the identity
dictionary related to the identity selected by repoze.pam on
ingress. Downstream consumers are allowed to mutate this
dictionary; this value is passed to “remember” and “forget”, so its
main use is to do a “credentials reset”; e.g. a user has changed his
username or password within the application, but we don’t want to
force him to log in again after he does so.

0.4 (03-07-2008)

	Allow plugins to specify a classifiers list per interface (instead
of a single classifiers list per plugin).

0.3 (03-05-2008)

	Make SQLAuthenticatorPlugin’s default_password_compare use hexdigest
sha instead of base64’ed binary sha for simpler conversion.

0.2 (03-04-2008)

	Added SQLAuthenticatorPlugin (see plugins/sql.py).

0.1 (02-27-2008)

	Initial release (no configuration file support yet).

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 repoze	

 	
 	
 repoze.who	
 WSGI authentication middleware

 	
 	
 repoze.who.interfaces	

 	
 	
 repoze.who.middleware	

 	
 	
 repoze.who.plugins.auth_tkt	

 	
 	
 repoze.who.plugins.basicauth	

 	
 	
 repoze.who.plugins.htpasswd	

 	
 	
 repoze.who.plugins.redirector	

 	
 	
 repoze.who.plugins.sql	

Index

 _
 | A
 | B
 | C
 | F
 | H
 | I
 | L
 | P
 | R
 | S

_

 	
 	__call__() (repoze.who.interfaces.IAPIFactory method)

 	(repoze.who.interfaces.IChallengeDecider method)

 	(repoze.who.interfaces.IRequestClassifier method)

A

 	
 	add_metadata() (repoze.who.interfaces.IMetadataProvider method)

 	authenticate() (repoze.who.interfaces.IAPI method)

 	(repoze.who.interfaces.IAuthenticator method)

 	
 	AuthTktCookiePlugin (class in repoze.who.plugins.auth_tkt)

B

 	
 	BasicAuthPlugin (class in repoze.who.plugins.basicauth)

C

 	
 	challenge() (repoze.who.interfaces.IAPI method)

 	(repoze.who.interfaces.IChallenger method)

F

 	
 	forget() (repoze.who.interfaces.IAPI method)

 	(repoze.who.interfaces.IIdentifier method)

H

 	
 	HTPasswdPlugin (class in repoze.who.plugins.htpasswd)

I

 	
 	IAPI (interface in repoze.who.interfaces)

 	IAPIFactory (interface in repoze.who.interfaces)

 	IAuthenticator (interface in repoze.who.interfaces)

 	IChallengeDecider (interface in repoze.who.interfaces)

 	IChallenger (interface in repoze.who.interfaces)

 	
 	identify() (repoze.who.interfaces.IIdentifier method)

 	IIdentifier (interface in repoze.who.interfaces)

 	IMetadataProvider (interface in repoze.who.interfaces)

 	IPlugin (interface in repoze.who.interfaces)

 	IRequestClassifier (interface in repoze.who.interfaces)

L

 	
 	login() (repoze.who.interfaces.IAPI method)

 	
 	logout() (repoze.who.interfaces.IAPI method)

P

 	
 	PluggableAuthenticationMiddleware (class in repoze.who.middleware)

R

 	
 	RedirectorPlugin (class in repoze.who.plugins.redirector)

 	remember() (repoze.who.interfaces.IAPI method)

 	(repoze.who.interfaces.IIdentifier method)

 	repoze.who (module)

 	repoze.who.interfaces (module)

 	repoze.who.middleware (module)

 	
 	repoze.who.plugins.auth_tkt (module)

 	repoze.who.plugins.basicauth (module)

 	repoze.who.plugins.htpasswd (module)

 	repoze.who.plugins.redirector (module)

 	repoze.who.plugins.sql (module)

 	
 RFC

 	RFC 2617

S

 	
 	SQLAuthenticatorPlugin (class in repoze.who.plugins.sql)

 	
 	SQLMetadataProviderPlugin (class in repoze.who.plugins.sql)

 _static/ajax-loader.gif

_images/ingress.png
repoze.who on ingress

Yes ‘
No

Yes

_images/request-lifecycle.png
HTTP Server Python's WSGI

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 repoze.who – WSGI Authentication Middleware

 		
 repoze.who Narrative Documentation

 		
 Using repoze.who as WSGI Middleware

 		
 Using repoze.who without WSGI Middleware

 		
 Mixing Middleware and API Uses

 		
 Configuring repoze.who

 		
 repoze.who Use Cases

 		
 Middleware-Only Use Cases

 		
 Simple: Bug Tracker with REMOTE_USER

 		
 More complex: Wiki with repoze.who.identity

 		
 API-Only Use Cases

 		
 Simple: Wiki with its own login and logout views.

 		
 More complex: multiple applications with “single sign-on”

 		
 Hybrid Use Cases

 		
 Most complex: integrate Trac and the wiki behind SSO

 		
 Using repoze.who Middleware

 		
 Middleware Responsibilities

 		
 Lifecycle of a Request

 		
 Request (Ingress) Stages

 		
 Response (Egress) Stages

 		
 Using the repoze.who Application Programming Interface (API)

 		
 Using repoze.who without Middleware

 		
 Mixed Use of repoze.who Middleware and API

 		
 Writing a Custom Login View

 		
 Interfaces

 		
 Configuring repoze.who

 		
 Configuration Points

 		
 Classifiers

 		
 Challenge Deciders

 		
 Plugins

 		
 Configuring repoze.who via Python Code

 		
 Configuring repoze.who via Config File

 		
 About repoze.who Plugins

 		
 Plugin Types

 		
 Identifier Plugins

 		
 Authenticator Plugins

 		
 Metadata Provider Plugins

 		
 Challenger Plugins

 		
 Default Plugin Implementations

 		
 Writing repoze.who Plugins

 		
 Writing An Identifier Plugin

 		
 Writing an Authenticator Plugin

 		
 Writing a Challenger Plugin

 		
 Writing a Metadata Provider Plugin

 		
 Known Plugins for repoze.who

 		
 Plugins shipped with repoze.who

 		
 Deprecated plugins

 		
 Third-party Plugins

 		
 repoze.who Changelog

 		
 2.4.2 (unreleased)

 		
 2.4.1 (2022-02-01)

 		
 2.4 (2020-06-03)

 		
 2.3 (2016-05-31)

 		
 2.2 (2013-05-17)

 		
 2.1 (2013-03-20)

 		
 2.1b1 (2012-11-05)

 		
 2.0 (2011-09-28)

 		
 2.0b1 (2011-05-24)

 		
 2.0a4 (2011-02-02)

 		
 2.0a3 (2010-09-30)

 		
 2.0a2 (2010-03-25)

 		
 Bugs Fixed

 		
 Backward Incompatibilities

 		
 2.0a1 (2010-02-24)

 		
 Features

 		
 Bugs Fixed

 		
 Backward Incompatibilities

 		
 1.0.18 (2009-11-05)

 		
 1.0.17 (2009-11-05)

 		
 1.0.16 (2009-11-04)

 		
 1.0.15 (2009-06-25)

 		
 1.0.14 (2009-06-17)

 		
 1.0.13 (2009-04-24)

 		
 1.0.12 (2009-04-19)

 		
 1.0.11 (2009-04-10)

 		
 1.0.10 (2009-01-23)

 		
 1.0.9 (2008-12-18)

 		
 1.0.8 (2008-12-13)

 		
 1.0.7 (2008-08-28)

 		
 1.0.6 (2008-08-28)

 		
 1.0.5 (2008-08-23)

 		
 1.0.4 (2008-08-22)

 		
 1.0.3 (2008-08-16)

 		
 1.0.2 (2008-06-16)

 		
 1.0.1 (2008-05-24)

 		
 1.0 (2008-05-04)

 		
 0.9.1 (2008-04-27)

 		
 0.9 (2008-04-01)

 		
 0.8 (2008-03-27)

 		
 0.7 (2008-03-26)

 		
 0.6 (2008-03-20)

 		
 0.5 (2008-03-09)

 		
 0.4 (03-07-2008)

 		
 0.3 (03-05-2008)

 		
 0.2 (03-04-2008)

 		
 0.1 (02-27-2008)

_static/minus.png

_static/plus.png

_static/ingress.png
repoze.who on ingress

Yes ‘
No

Yes

_static/logo_hi.gif
Repoze

_static/request-lifecycle.png
HTTP Server Python's WSGI

_static/up-pressed.png

_static/up.png

