

 Navigation

 	
 index

 	
 next |

 	Repoze 1.0 documentation

The Repoze Project

The Repoze project is a collection of technologies which bridges the
WSGI [http://www.python.org/dev/peps/pep-0333/] and
Zope [http://www.zope.org] worlds. The project’s goals:

	Make it possible for non-Zope Python developers to selectively
use Zope features in a WSGI environment.

	Help Zope developers integrate their applications into a WSGI
environment.

Contents:

	Overview of the Repoze Project
	Problems Addressed

	Solutions Provided

	Software Requirements and Limitations

	Technology Dependencies

	Licensing

	Resources

	Legacy Resources

	Contributing

	Current Repoze Components
	WSGI Middleware

	Libraries

	Obsolete Repoze Components
	WSGI Applications

	WSGI Middleware

	Libraries

	Buildout-related

	Miscellany

	Re-packaged Software

	History of the Repoze Project
	Early Developments

	Later Developments

	Hacking on Repoze Components
	Coding Standards

	Layout and Conventions

	Distributed Version Control Systems

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2010-2013, Agendaless Consulting, Inc. and Contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Repoze 1.0 documentation

Overview of the Repoze Project

Problems Addressed

Some of the things that Zope does are useful enough to be
applicable to non-Zope-based WSGI applications: transaction
management, virtual hosting, form marshalling, declarative access
control, etc. But currently it’s not easy for Python web
developers who aren’t fluent in Zope to make use of these
features, because they aren’t always decomposed into individually
reusable pieces.

At the same time, WSGI deployment of Python applications has
become a defacto standard in the wider Python world. At the time
of the project’s inception, it was reasonably difficult to serve up
Zope (particularly Zope 2) via a WSGI server.

Note

The current release line (2.13.x) of Zope2 has landed changes
originally made here to support WSGI natively.

Solutions Provided

The Repoze project provides components which reimplement core Zope features
as WSGI middleware (repoze.vhm, repoze.retry, repoze.tm2), and WSGI
applications (repoze.zope2, repoze.grok). The Repoze project also reuses
existing WSGI middleware (Paste) and servers where possible.

The bits of Repoze that reimplement core Zope features can be ignored or
used as necessary in non-Zope contexts.

Software Requirements and Limitations

	The packages in the repoze. namespace require
setuptools [https://bitbucket.org/pypa/setuptools/]
for installation.

	None of the repoze.* software has been tested under any version
of Windows. It has only been tested under UNIX variants (Linux
and Mac OS X at the time of this writing).

Technology Dependencies

Many Repoze components depend on Paste [http://www.pythonpaste.org],
as well as setuptools [https://bitbucket.org/pypa/setuptools/]
and the WSGI specification [http://www.python.org/dev/peps/pep-0333/].
Repoze reimplements and reuses some technologies originated within
Zope [http://www.zope.org/].

Licensing

The original bits that make up Repoze are released under a
BSD-style license [http://www.repoze.org/LICENSE.txt].

Some non-original parts of Repoze are licensed under the ZPL [http://www.zope.org/Resources/ZPL] (another BSD-style license).

Resources

	Github organization: https://github.com/repoze/

	Mailing lists: http://lists.repoze.org/

	Blog: http://blog.repoze.org/

	IRC channel: irc://irc.freenode.net/#repoze

Legacy Resources

	Subversion repository (via ViewCVS): http://www.repoze.org/viewcvs/

	Subversion repository (via http): http://svn.repoze.org/

Note

Currently-maintained packages have their repositories on Github under the
repoze organiztion [https://github.com/repoze/].

	(Old) Repoze bug tracker: http://bugs.repoze.org/.

Note

Currently-maintained packages have their issue trackers located with
their repositories on Github.

	Repoze Python package repositories: http://dist.repoze.org/

Note

The packages on dist.repoze.org were added to deal with some
no-longer-relevant issues on the PyPI [http://pypi.python.org/pypi]
index. They are no longer being updated.

Contributing

The preferred mechanism for contributons is via pull requests on the
project’s Github repository.

To obtain write access to any oft, you will be required to sign a
contributor’s agreement [http://repoze.org/contributing.html].

 Copyright 2010-2013, Agendaless Consulting, Inc. and Contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Repoze 1.0 documentation

Current Repoze Components

The Repoze project consists of of the following software components under
active maintenance.

WSGI Middleware

	repoze.who

Identification and authentication framework for arbitrary WSGI applications.
Can be used as WSGI middleware, or as a library within application code.
It is inspired by Zope 2’s Pluggable Authentication Service
(PAS) but it is not dependent on Zope in any way.

Docs: http://repozewho.rtfd.org/

Github: https://github.com/repoze/repoze.who

	repoze.tm2

WSGI middleware that implements a transaction policy. It uses the
transaction [https://pypi.python.org/pypi/transaction] module
to commit or abort (if there is an exception) a transaction
after each WSGI request.

Applications may register callbacks with repoze.tm2 (e.g.,
to close a connection, mainly). This behavior used to be
hardcoded in Zope’s publisher. repoze.tm2 is useful in any
web application that requires transactions.

Docs: http://repozetm2.rtfd.org/

Github: https://github.com/repoze/repoze.tm2

	repoze.retry

WSGI middleware that retries a WSGI request some configurable number
of times if any child application raises a “retriable” exceptin
(e.g., ZODB’s ConflictError, or the equivalent PostgreSql
“repeatable read” error). This behavior used to be hardcoded in
Zope’s publisher.

Docs: http://repozeretry.rtfd.org/

Github: https://github.com/repoze/repoze.retry

	repoze.profile

WSGI middleware component which aggregates Python profiling data across
all requests to a WSGI application. It provides an optional HTML UI for
viewing profiling data.

Github: https://github.com/repoze/repoze.profile

	repoze.debug

Middleware which can help with in-production forensic debugging.

Github: https://github.com/repoze/repoze.debug

	repoze.zodbconn

Library which manages ZODB databases and WSGI middleware which
makes a ZODB connection available to downstream applications.

Github: https://github.com/repoze/repoze.zodbconn

	repoze.vhm

WSGI middleware which normalizes specially-mangled URLs (or individual
header values) into ordinary paths, with the additional information
stored in the environment for use in generating dynamic URLs. It is an
analogue / replacement for the Zope2 Virtual Host Monster.

Github: https://github.com/repoze/repoze.vhm

	repoze.errorlog

WSGI middleware filter which intercepts exceptions and writes them to
a Python logging module channel (or the wsgi.errors filehandle,
if no channel is configured). It also provides an optional HTML UI
for browsing limited exception history.

Github: https://github.com/repoze/repoze.errorlog

Libraries

	repoze.evolution

Allows a developer to keep persistent data structures (data in a
relational database, on the filesystem, in a persistent object store,
etc.) in sync with changes made to software. It provides a framework
for developers to create and use a package full of monotonically named
“evolve” scripts which modify the data; each script brings the data up
to some standard of a software version.

Github: https://github.com/repoze/repoze.evolution

	repoze.catalog

An indexing and searching system based on zope.index.

Github: https://github.com/repoze/repoze.catalog

	repoze.session

A sessioning system (server side state for web applications)
based on ZODB.

Github: https://github.com/repoze/repoze.session

	repoze.formapi

A form library which integrates with HTML forms instead of abstracting
them away. It provides a small framework to take you through the entire
process of rendering a form, provide default values, validate
and execute form actions.

Github: https://github.com/repoze/repoze.formapi

	repoze.bitblt

WSGI middleware component which
automatically scales images according to the width and height
property in an HTML img tag.

Github: https://github.com/repoze/repoze.bitblt

	repoze.squeeze

This package provides a WSGI middleware component which
“squeezes” HTML documents by merging browser resources
(javascript and stylesheets).

Github: https://github.com/repoze/repoze.squeeze

Obsolete Repoze Components

These components are no longer actively maintained: in most cases,
they have been obsoleted by newer software.

WSGI Applications

	repoze.bfg

repoze.bfg is a WSGI web framework inspired by Zope, Pylons,
and Django. It uses Zope libraries to do much of its work.

Obsoleted by Pyramid (see http://trypyramid.com/).

Website: http://bfg.repoze.org/

	repoze.obob

A stripped-down object publisher that acts as a WSGI application.
It is responsible for:

	o selecting the “root” object of the graph for a given request

	/ URL;

	o traversing from that root object along the “edges” defined

	by the URL path elements to find the “published object”;

o invoking the published object to obtain the body;

	o mapping response headers and body, along with the result

	from calling the published object, into appropriate WSGI
output;

	o serializing / encoding the response based on the type of the

	request (e.g., JSON / XML-RPC).

repoze.obob is currently more of a “publisher driver” than a
publisher. Most of the actual work is done by “bob” modules
which obob drives (repoze.zope2 is a “bob”).

repoze.obob is used by repoze.zope2, but is otherwise not
being actively developed at this point.

Obsoleted by Pyramid (see http://trypyramid.com/).

SVN: http://svn.repoze.org/repoze.obob/trunk/

	repoze.zope2

A “bob” helper module that implements an analogue of the Zope 2
ZPublisher, with some major simplifications and cleanups. Its core
mission is to allow publishing existing Zope2 applications in a
WSGI environment that externalizes some of the features of “classic”
Zope2 into middleware.

repoze.zope2 is capable of publishing all known Zope
applications, including applications which rely on WebDAV and
XML-RPC, as well as all known Plone applications.

Obsoleted by Zope 2.13.x release [https://pypi.python.org/pypi/Zope2]

SVN: http://svn.repoze.org/repoze.zope2/trunk/

	repoze.plone

A meta-egg which depends on all Plone component eggs as well as
repoze.zope2.

Obsoleted by Plone4 release [https://plone.org/products/plone]

SVN: http://svn.repoze.org/repoze.plone/trunk

	repoze.grok

A “bob” helper module that implements an analogue of the Zope 3
publication machinery in order to serve up Grok applications.

Abandoned.

SVN: http://svn.repoze.org/repoze.grok/trunk/

	repoze.mmwsgi

WSGI wrapper that allows Mailman to be run simply under a WSGI server.

Abandoned.

SVN: http://svn.repoze.org/repoze.mmwsgi/trunk/

	repoze.kiss

A “bob” module which publishes content (files, images, templates) from the
filesystem, using the repoze.zope2 helper.

Runs the http://www.repoze.org/ website.

SVN: http://svn.repoze.org/repoze.kiss/trunk/

WSGI Middleware

	repoze.what

An authorization framework for WSGI applications, based on repoze.who.

Abandoned (after moving to Github).

Github: https://github.com/repoze/repoze.what

	repoze.browserid

repoze.browserid is WSGI middleware loosely based on the
Zope 2 concept of “browser ids”, which are cookies which
represent a browser, for use by sessioning libraries.

Abandoned (after moving to Github).

Github: https://github.com/repoze/repoze.browserid

	repoze.tempita

repoze.tempita is WSGI middleware egress filter which
conditionally causes the body returned by the application
to be run through the Tempita [http://pythonpaste.org/tempita/]
templating engine, using replacement values defined within the
repoze.tempita Paste middleware configuration. Abandoned.

SVN: http://svn.repoze.org/repoze.tempita/trunk/

	repoze.decsec

Declarative ACL-based security via middleware for WSGI applications.

Not widely used.

SVN: http://svn.repoze.org/repoze.decsec/trunk/

Libraries

	repoze.monty

A library that, given a WSGI environment dictionary (and a wsgi.input
file pointer if the request is a POST request), will return a dictionary
containing “converted” form/query string elements. The form and query
string elements contained in the request are converted into
simple Python types when the form element names are decorated
with special suffixes.

SVN: http://svn.repoze.org/repoze.monty/trunk/

	repoze.urispace

A library implementig the URISpace 1.0 spec, as proposed
to the W3C by Akamai. Its aim is to provide an implementation
of that language as a vehicle for asserting declarative metadata
about a resource based on pattern matching against its URI.

SVN: http://svn.repoze.org/repoze.urispace/trunk/

Docs: http://docs.repoze.org/urispace/

Buildout-related

The following are zc.buildout (see http://www.buildout.org) recipes and
configuration files:

	Buildouts for repoze.bfg: http://svn.repoze.org/buildouts/repoze.bfg/

	Buildouts for repoze.zope2: http://svn.repoze.org/buildouts/repoze.zope2/

	Buildouts for repoze.plone http://svn.repoze.org/buildouts/repoze.plone/

	repoze.recipe.egg

A fork of the zc.recipe.egg zc.builout` recipe. (see
http://pypi.python.org/pypi/zc.recipe.egg). It does exactly what
zc.recipe.egg does, except it also automatically installs scripts
from dependent eggs. This software is deprecated.

SVN: http://svn.repoze.org/repoze.recipe.egg/trunk

Miscellany

These components are (mostly) unsupported “convenience” things:

	repoze.django

A mechanism to run Django under a Paste server.

SVN: http://svn.repoze.org/repoze.django/trunk/

	repoze.trac

A mechanism to run Trac under a Paste server.

SVN: http://svn.repoze.org/repoze.trac/trunk/

	whoplugins

Contributed repoze.who plugins.

SVN: http://svn.repoze.org/whoplugins/

Re-packaged Software

	zopelib (no SVN)

zopelib is the entire set of Zope “software home”
Products-namespace packages packaged as a
setuptools-compatible package. The script that allows for
this is checked into Repoze’s CVS repository [http://tinyurl.com/3cfelw.]
That script is meant to be dropped into a checkout of a Zope “software home”
and run from there to repeatably package Zope 2 as an sdist or
bdist.

	cmflib (no SVN)

cmflib is the Zope CMF packaged as a setuptools-compatible
package. It includes all the Zope Products-namespace
packages that are present in the classic CMF distribution
(Products.CMFActionIcons, Products.CMFCalendar,
Products.CMFCore, Products.CMFDefault, Products.CMFTopic,
Products.CMFUid, Products.DCWorkflow) save for one: it has a
dependency on an independently release-managed distribution of
Products.GenericSetup. It was generated by using a
“setup.py”,
http://svn.zope.org/Sandbox/chrism/eggcmf/2.1.0/setup.py?view=markup
checked into a location which depends on
externals in Zope Corporation’s SVN repository [http://svn.zope.org/Sandbox/chrism/eggcmf/]

	plonelibs (no SVN)

plonelibs is a setuptools-compatible repackaging of the
packages that ship in Plone 3’s “lib/python” directory.

	ploneproducts (no SVN)

ploneproducts is a setuptools-compatible repackaging of the
Products-namespace packages that ship in Plone 3.

It depends on separately released-managed distributions of
Products.PluggableAuthService and Products.PluginRegistry.

	PIL (no SVN)

PIL is a repackaging of the
Python Imaging Library (see http://www.pythonware.com/products/pil/)
as a setuptools-compatible package.

Obsoleted by Pillow (https://pypi.python.org/pypi/Pillow).

 Copyright 2010-2013, Agendaless Consulting, Inc. and Contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Repoze 1.0 documentation

History of the Repoze Project

Early Developments

The Repoze project began in September, 2007, as a response to the perception
that the Zope community was stuck in a “ghetto”, isolated from the rest of
the Python web development world. The project had two main goals:

	Help make interesting features of the Zope development ecosystem
available and interesting to the wider Python web developer community.

	Make the cool new features offered by that community accessible to
Zope developers.

One primary focus for this early work was making the core Zope2 application
server usable inside the new de facto standards of eggs (for distributions
of Python projects) and WSGI (for connecting Python web servers interoperably
with Python web applications).

Part of that task involved mapping the features of Zope’s “publisher”
(the framework mapping URLs and request variables onto Python code) onto
the WSGI world. As a result of that work, important features of the
publisher machinery became usable outside of Zope as WSGI middleware:

	repoze.tm and repoze.tm2 made it possible to use Zope’s
model of transaction-per-request cleanly onto any web application which
uses the transaction package originally developed as part of
ZODB.

	repoze.retry made it possible to map the feature of the publisher
which retries requests which would otherwise fail due to conflicts in
an optimistic concurrency model, e.g. as raised by ZODB or Postgres.

While disentangling these features of the Zope publisher into components
which could be re-used outside of Zope, it became clear that there was a
smaller, more cohesive model for doing the real business of the publisher.
The initial implementation of such a generic package (see repoze.obob
in the repository) formed the basis for repoze.zope2, an almost-
compabible implementation of the Zope2 publisher as a well-behaved WSGI
application. This package delegates a number of the hard-wired features
of the Zope2 publisher (transaction and retry handling, virtual hosting,
etc.) to the equivalent Repoze middleware components.

Later Developments

Since its inception, the Repoze project has overstepped the bounds of
its original goals. Instead of acting strictly as a clearinghouse
which makes Zope technologies available to a larger Python community,
the Repoze community is now producing its own components. These
components may only be inspired by Zope technology, or may have no
analogue in the Zope world.

For example:

	Chris McDonough set out to re-implement the Zope publisher model as
a leaner, lighter weight web framework, now called BFG [http://bfg.repoze.org].

	Tres Seaver created Compoze [http://docs.repoze.org/compoze]
which provides various tools for working with Python “egg”
distributions and package indexes.

And so on.

See docs.repoze.org [http://docs.repoze.org] for documentation for
all the components produced so far by the Repoze project.

See svn.repoze.org [http://svn.repoze.org] for all the source code
produced by the Repoze project.

 Copyright 2010-2013, Agendaless Consulting, Inc. and Contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Repoze 1.0 documentation

Hacking on Repoze Components

Coding Standards

As a general rule, projects in the repoze repositories abide by the
following standards:

	PEP 8 coding style [http://www.python.org/dev/peps/pep-0008/]. In
particular, Python code should never exceed 80 columns.

	Project trunks should be kept in “ready-to-release” state: all unit
tests pass, changelogs are kept update, etc.

	100% test coverage before release, as reported by the nose
test runner with the coverage add-on:

	Tests should be runnable using the default setuptools test runner:

	Full documentation of features and APIs.

	Solid release management, including releases to PyPI corresponding to
“pristine” tags, detailed change logs, etc.

While some older projects may not be completely in line with this
culture, we are committed to moving them all closer with any change.
As a corollary: if you are suubmitting a patch to a project in this
repository, and you want expedite its acceptance, ensure that your patch
maintains or improves the target project’s conformance to these goals.

Layout and Conventions

Each project should consist of a single, top-level project folder in
Subverion, containing three conventional folders: trunk, where the
majority of development work occurs, tags, containing the “pristine”
tags made when releasing the project, and branches, containing both
“maintenance” branches where bug fixes to a released version might be
made, and “development” branches, for work which would otherwise de-
stabilize the trunk.

Because we are mostly working on Python code here, the trunk and folders
under the tags or branches folders are normally arranged as a
distutils [http://docs.python.org/library/distutils.html#module-distutils] project, e.g.:

<directory>
- setup.py
- README.txt
- CHANGES.txt
+ docs/
 - Makefile
 - conf.py
 - index.rst
 - api.rst
 + .static/
 + .build/
 + .templates/
+ package/
 - __init__.py
 + subpacakge/
 - __init__.py
 - module.py
 + tests/
 - __init__.py
 - test_module.py
 + templates/
 - template.pt

For an example of this layout, see http://svn.repoze.org/template/trunk/ .

Distributed Version Control Systems

Under Subversion, the version repository is kept on a central server:
each developer has a working subset checked out from that server onto
her own machine.

Using a distributed version control systems (DVCS), each developer clones
the entire repository onto her machine. Although it may take more space or
bandwidth, having this clone allows the developer a lot of flexibility and
freedom: she can hack, make commits, etc., to her local clone without
needing network access, or even permission to write back to the source server!

Note

Actively-supported Repoze projects are now hosted on Github under the
Repoze organization [https://github.com/organizations/repoze]

Using Specific VCS Tools with Repoze Projects

For the actively maintained components maintained on Github, use the
“normal” git / Github workflow, i.e.:

	Fork the repository.

	Hack on a clone of your fork in a branch.

	When ready, push your branch and submit a pull request.

We advise that you not hack on the master branch of your fork,
so that you can sync more easily as changes are pushed to the upstream
Repoze repository.

	Working with Subversion
	How-to: Get a read-only Subversion checkout

	How-to: Submit a patch from your Subversion checkout

	How-to: Get a writable Subversion checkout

	Working with Git against the Subversion Repository
	How-to: Branch with Git directly from Subversion

	How-to: Submit a patch from your Git branch

	How-to: Push your Git branch to a public server

	How-to: Request a Merge

 Copyright 2010-2013, Agendaless Consulting, Inc. and Contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Repoze 1.0 documentation

 	Hacking on Repoze Components

Working with Subversion

Warning

These instructions are only valid for Repoze components which have
not been migrated to Github.

How-to: Get a read-only Subversion checkout

Anonymous, read-only Subversion checkouts can be made over HTTP:

$ svn co http://svn.repoze.org/repoze.who/trunk who-trunk

You should then be able to work inside who-trunk, fixing a bug or
adding a feature. You can use Subversion commands as normal, e.g.:

$ cd who-trunk/
$ svn info
Path: .
URL: http://svn.repoze.org/repoze.who/trunk
Repository Root: http://svn.repoze.org
Repository UUID: 8f1d8bf8-68d2-4fbe-a113-2afb08c80ed9
Revision: 8672
Node Kind: directory
Schedule: normal
Last Changed Author: Tres Seaver <tseaver@palladion.com>
Last Changed Rev: 8673
Last Changed Date: 2010-03-26 16:21:39 -0400 (Fri, 26 Mar 2010)

Let’s say you wanted ot add a bit of explanation to the README.txt
file:

$ vi README.txt
...

Subversion knows about the changes you made:

$ svn stat
M README.txt
$ svn diff
Index: README.txt
===
--- README.txt (revision 8276)
+++ README.txt (working copy)
@@ -8,6 +8,8 @@
 for arbitrary WSGI applications. ``repoze.who`` can be configured
 either as WSGI middleware or as an API for use by an application.

+Blah, blah
+
 ``repoze.who`` is inspired by Zope 2's Pluggable Authentication
 Service (PAS) (but ``repoze.who`` is not dependent on Zope in any
 way; it is useful for any WSGI application). It provides no facility

You can keep your checkout updated with ongoing changes, too:

$ svn up
U docs/api.rst
U docs/conf.py
Updated to revision 8673.

and you may have to deal with changes which conflict with those you
have made.

However, because you are working in an anonymous, read-only checkout, you
cannot commit your changes back to the repository.

$ svn commit -m "R00l da world."
svn: Commit failed (details follow):
svn: Can't create directory '/home/repoze/svn/db/transactions/8675-1.txn': \
 Permission denied

Oops, is all your hard work in vain?

How-to: Submit a patch from your Subversion checkout

Once you have fixed the bug or added the feature in your checkout, double-
check that you have touched all the bases (see Coding Standards
and Layout and Conventions). All is well, the tests pass, you added
documentation for your cool new feature, so it is time to submit the patch.

First, don’t try to cut and paste the output from svn diff into an
e-mail message or a web-browser textarea: such operations usually end up
mangling the line endings or other bits of the diff, and make it impossible
to apply cleanly. The maintainer who has to do reconstructive surgery on
such a victim may just give up and ignore the patch.

Avoiding the cut-and-paste train wreck is straightforward: just create
the patch as a file:

$ svn diff > /tmp/repoze.who-my_cool_feature.patch

And then send or upload that file as an attachment: mailers and web-browsers
are nearly as good at leaving attachments alone as they are at destroying
sensitive inline text!

For repoze projects, the default place to submit patches is to the
repoze tracker [http://bugs.repoze.org/]. You will need to register for
an account, but you should then be able to create a new issue and upload
your patch file to it. Good titles, descriptions, and tags on the issue
should help it get the attention of the right maintainer for the project:
if you don’t hear back fairly quickly, try asking on the repoze IRC
channel, or follow up to the repoze-dev
mailing list.

How-to: Get a writable Subversion checkout

The Repoze project grants write access to the Subversion repository to
developers who are active with the project. To obtain write access to the
Repoze subversion repository, you must sign a contributor’s agreement.
This agreement is available in two varieties:

	Form for electronic signature [http://repoze.org/signable.txt]
Instructions for signing and remitting are included in the agreement.

	Form for physical signature [http://repoze.org/contributor.pdf]
A physically signed agreement should be mailed to the address below or
faxed to (United States) 540 479 1706

Agendaless Consulting, Inc
20 Pawnee Drive
Fredericksburg, VA 22401
U.S.A.

Once you have submitted the form, a core developer will respond in e-mail
requesting your SSH public key. Once that key is uploaded, you can make
a writable checkout from Subversion:

$ svn co svn+ssh://repoze@svn.repoze.org/svn/repoze.who/trunk who-trunk

and then commit your changes back directly:

$ svn commit -m "Add new feature."

 Copyright 2010-2013, Agendaless Consulting, Inc. and Contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	Repoze 1.0 documentation

 	Hacking on Repoze Components

Working with Git against the Subversion Repository

Warning

These instructions are only valid for Repoze components which have
not been migrated to Github.

How-to: Branch with Git directly from Subversion

Git ships with a git svn subcommand [http://www.kernel.org/pub/software/scm/git/docs/git-svn.html] which
allows a developer to interoperate with a project whose main repository
is in Subversion. Using this plugin, you can clone the branch from its
native HTTP URL:

$ cd ~/repoze
$ git svn --stdlayout clone svn+http://svn.repoze.org/repoze.who

You may check out any subdirectory of the Repoze SVN repository that
has the typical SVN “branches”, “tags” and “trunk” layout. The
branches, tags, and trunk will be imported into the resulting local Git
repository in a sensible manner.

Inside the checkout, you can commit as usual using git, but you
won’t be able to git svn dcommit the code back to Subversion unless
you use an svn+ssh checkout URL (see How-to: Get a writable Subversion checkout).

How-to: Submit a patch from your Git branch

From your Git branch, you can use git format-patch to create a series
of patch files, and then submit them via e-mail or the issue tracker,
just as in How-to: Submit a patch from your Subversion checkout.

$ git format-patch origin -CM --subject="Cool feature" \
 --to=repoze-dev@lists.repoze.org --from=your.email@example.com

Git has another built-in plugin, git send-email , which you can use to
automate submitting the patch files via e-mail:

$ git send-email origin -CM --subject="Cool feature" \
 --to=repoze-dev@lists.repoze.org --from=your.email@example.com \
 --smtp-server=locahost --smtp-server-port=25

Please see the git-send-email documentation [http://www.kernel.org/pub/software/scm/git/docs/git-send-email.html]
for directions on how to configure your mail transport properly.

How-to: Push your Git branch to a public server

As an alternative to uploading a patch from your Git branch (or
e-mailing it), you can also publish your branch to a server where it
can be cloned over HTTP for others to use, as well as for review and
merging by the package maintainer.

Let’s ssume that you have been hacking on repoze.who, and want to
publish your ‘saml-2.0’ feature branch in hopes of landing it in the next
release. Let’s also assume that you have an account on
GitHub [http://github.com/], and want to publish your branch there.
First, create the new empty repository on Github’s New Repository
page [http://github.com/repositories/new/]. Give the repository the name
repoze.who-saml_2.0, add a description, and hit submit.

Then, from your terminal, push your branch to the new repository:

$ git remote add github git@github.com:<userid>/repoze.who-saml_2.0.git
$ git push github master

Replace <userid> with your Github account ID.

Pushing to other services

According to Wikipedia’s Git article [http://en.wikipedia.org/wiki/Git_(software)],
a number of other code-hosting services support Git branches. You should
be able to publish your branch to any of them in a similar way.

Pushing to your own server

You should be able to pubish your branch on any public webserver where you
have space available, using the SSH protocol. E.g., assume that you have
an account on example.com, where the contents of your home directory’s
htdocs directory are published under your userid:

$ git clone --bare /path/to/repoze.who-saml_2.0 repoze.who-saml_2.0.git
$ cd repoze.who-saml_2.0.git
$ touch git-daemon-export-ok
$ git --bare update-server-info
$ mv hooks/post-update.example hooks/post-update
$ cd ..
$ rsync -avz repoze.who-saml_2.0.git \
 example.com:/home/<youraccount>/htdocs/

You can then use http://example.com/~youraccount/repoze.who-saml_2.0.git
to make the branch available to others.

How-to: Request a Merge

After pushing your branch, you can include its URL in an e-mail you send
to the maintainer, requesting a merge of your branch, or in a comment or
description of an issue in the tracker.

 Copyright 2010-2013, Agendaless Consulting, Inc. and Contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Repoze 1.0 documentation

Index

 Copyright 2010-2013, Agendaless Consulting, Inc. and Contributors.
 Created using Sphinx 1.2.2.

 _static/minus.png

_static/comment.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment-bright.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		Repoze 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010-2013, Agendaless Consulting, Inc. and Contributors.
 Created using Sphinx 1.2.2.

_static/down.png

