

    
      
          
            
  
Welcome to RepoBee’s documentation!

If you are new to RepoBee, the Introduction and RepoBee User Guide
sections are must-reads. Developers looking to work on RepoBee, or fork it, are
probably most interested in the Module Index. Developers looking to create
plugins should head over to the documentation for repobee-plug [https://repobee-plug.readthedocs.io/en/stable].

If you use the RepoBee User Guide in any way and feel like skipping
Getting started (the show-config, verify-settings and setup commands), make sure to read Configure RepoBee for the target organization (show-config and verify-settings) anyway!  The
rest of the guide assumes a configuration as described there.


Important

Please open an issue over on the issue tracker [https://github.com/repobee/repobee/issues/new] if you find documentation
bugs, have trouble understanding something or think something is missing.
Especially when it comes to the userguide, which is intended to be as
intuitive as possible, please do provide feedback if you get stuck.




Contents:


	Introduction
	Philosophy and goals

	Key concepts

	Conventions

	Usage with different platforms (GitHub, GitHub Enterprise and GitLab)





	Install
	Requirements

	Check your Python version

	Option 1: Install from PyPi with pip

	Option 2: Clone the repo and the install with pip





	RepoBee User Guide
	Getting started (the show-config, verify-settings and setup commands)

	Updating student repositories (the update command)

	Opening and Closing issues (the open-issues and close-issues commands)

	Cloning Repos in Bulk (the clone command)

	Peer review (assign-reviews, check-reviews and end-reviews commands)

	Plugins for RepoBee

	Migrate repositories into the target (or master) organization (migrate command)

	Group assignments

	RepoBee and GitLab





	Configuration
	OAUTH token

	Configuration file





	CLI documentation

	RepoBee Module Reference
	command

	cli

	config

	exception

	git

	tuples

	util

	Core plugins

	Extension plugins












Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  
Introduction

RepoBee is an opinionated tool for managing anything from a handful to
thousands of Git repositories on the GitHub and GitLab platforms. There were two
primary reasons for RepoBee’s inception. First, the old teachers_pet [https://github.com/education/teachers_pet] tool that
we used previously lacked some functionality that we needed and had been
archived in favor of the new GitHub Classroom [https://classroom.github.com/]. Second, GitHub Classroom [https://classroom.github.com/]
did not support GitHub Enterprise at the time (and as of this writing, still
does not, although efforts have been made to that end [https://github.com/education/classroom/pull/1163]). RepoBee is heavily
inspired by teachers_pet [https://github.com/education/teachers_pet], as we enjoyed the overall workflow, but improves on
the user experience.


Philosophy and goals

When RepoBee was first created, it’s goals were simple: facilitate creation and
management of student repositories for courses at KTH, using GitHub Enterprise.
Since then, the scope of the project has grown to incorporate many new features,
including support for the GitLab platform. For new users of Git/GitHub/GitLab in
education, RepoBee provides both a tool to make it happen, and an opinionated
workflow to ease the transition. For the more experienced user, the plugin system
can be used to extend or modify the behavior of RepoBee. While creating a plugin
requires some rudimentary skills with Python programming, installing a plugin
created by someone else is no harder than installing RepoBee itself. The plugin
system enables RepoBee to both be easy to get up and running without any
required customization, while still allowing for a degree of customization to
those that want it. See Plugins for RepoBee for details.

Another key goal is to keep RepoBee simple to use and simple to maintain.
RepoBee requires a minimal amount of static data to operate (such as a list of
students, a URL to the platform instance and an access token to said platform),
which can all be provided in configuration files or on the command line, but it
does not require any kind of backing database to keep track of repositories.
That is because RepoBee itself does not keep track of anything, except possibly
for the aforementioned static data if one chooses to keep it in configuration
files. All of the complex state state is more or less implicitly stored on
the hosting platform, and RepoBee locates student repositories based on strict
naming conventions that are adhered to by all of its commands. This allows
RepoBee to be simple to set up and use on multiple machines, which is crucial in
a course where multiple teachers and TAs are managing the student repositories.
RepoBee is very intentionally designed not to be a service, but an on-demand
tool that is only in use when explicitly being used. This means that nothing
needs to be installed server-side for RepoBee to function, which also happens to
be key to supporting multiple hosting platforms. For an experienced user,
installing RepoBee and setting everything up for a new course can literally take
minutes. For the novice, the RepoBee User Guide will hopefully prove sufficient to
get started within the hour.




Key concepts

Some terms occur frequently in RepoBee and are best defined up front.
Some of the descriptions may not click entirely before reading the
RepoBee User Guide section, so quickly browsing through these definitions and
re-visiting them when needed is probably the best course of action. As GitHub is
the default platform, these concepts are based on and often refer to
GitHub-specific terms. For a mapping to GitLab terms and concepts, please see
the RepoBee and GitLab section.


	Platform: Or hosting platform, refers to services such as GitHub and
GitLab.


	Platform instance: A specific instance of a hosting platform. For example,
https://github.com is one instance, and an arbitrary GitLab Enterprise
installation is another.


	Target organization: The GitHub Organization [https://help.github.com/articles/about-organizations/] related to the current course
round.


	Master repository: Or master repo, is a template repository upon which
student repositories are based.


	Master organization: The master organization is an optional organization to
keep master repos in. The idea is to be able to have the master repos in this
organization to avoid having to migrate them to the target organization for
each course round. It is highly recommended to use a master organization if
master repos are being worked on across course rounds.


	Student repository: Or student repo, refers to a copy of a master repo
for some specific student or group of students.







Conventions

The following conventions are fundamental to working with RepoBee.


	For each course and course round, use one target organization.


	Any user of RepoBee has unrestricted access to the target organization
(i.e. is an owner). If the user has limited access, some features may work,
while others may not.


	Master repos should be available as private repos in one of three places:
- The master organization (recommended if the master repos are being
maintained and improved across course rounds).
- The target organization. If you are doing a trial run or for some reason
can’t have multiple organizations, this may be a good option.
- Locally in the current working directory. If your master repos are trivial
(e.g. empty), this may be a good option.


	Student repositories are copies of the default branches of the master
repositories (i.e. --single-branch cloning is used by default). That is,
until students make modifications.


	Student repositories are named <username>-<master_repo_name> to guarantee
unique repo names.
- Student repositories belonging to groups of students are named
<username-1>-<username-2>-…-<master-repo-name>.


	Each student is assigned to a team with the same name as the student’s
username (or a concatenation of usernames for groups). It is the team that is
granted access to the repositories, not the student’s actual user.


	Student teams have push access to the repositories, but not
administrative access (i.e. students can’t delete their own repos).





Note

RepoBee has no way of enforcing these conventions, other than itself strictly
adhering to them. For example, there are no countermeasures against someone
manually changing the names of student repositories or their URLs, and as
there are endless variations of things that can be manually changed, there
are no safety checks against such things either. If you have a need to
manually change something, do keep in mind that straying from RepoBee’s
conventions may cause it to act unexpectedly.






Usage with different platforms (GitHub, GitHub Enterprise and GitLab)

RepoBee was originally designed for use with GitHub Enterprise, but also works
well with the public cloud service at https://github.com. Usage of RepoBee
should be identical, but there are two differences between the two that one
should be aware of.


Note

As of v1.6.0, GitLab is supported by most features. Please see RepoBee and GitLab
for more information on which commands work, and how to use RepoBee with
GitLab.




The Organization must have support for private repositories

Private repositories are key to keep students from being able to see each
others’ work, and thereby avoid a few avenues for plagiarism.


	Enterprise: All Organizations on Enterprise support private repositories.


	github.com: You need a paid Organization (confusingly called a Team,
but unrelated to the Teams inside an Organization). Educators and
researchers can get such Organization accounts for free,
see how to get the discount here [https://help.github.com/en/articles/applying-for-an-educator-or-researcher-discount].


	GitLab: All GitLab groups (self-hosted and on https://gitlab.com) support
private repositories.







Students are added to the target Organization slightly differently

During setup, students are added to their respective Teams. Precisely how this
happens differs slightly.


	Enterprise: Students are automatically added to their Teams in the Organization.


	github.com: Students are invited to the Organization and added to their Teams upon accepting.


	GitLab: Students are automatically added, both on self-hosted and https://gitlab.com.












          

      

      

    

  

    
      
          
            
  
Install


Requirements

RepoBee requires Python 3.5+ and a somewhat up-to-date version of git.
Officially supported operating systems are Ubuntu 17.04+ and macOS, but
RepoBee should run fine on any Linux distribution and also on WSL [https://docs.microsoft.com/en-us/windows/wsl/install-win10] on
Windows 10. Please report any issues with operating systems and/or git
versions on the issue tracker [https://github.com/repobee/repobee/issues].




Check your Python version

For RepoBee to run, you need to have Python 3.5 or later. On many
operating systems, python is an alias for Python 2.7, and python3 is an
alias for the latest version of Python 3 that is installed. For this install
guide, python3 is assumed to be a Python version 3.5 or higher. You can
check the version yourself with:

$ python3 --version
# or
$ python --version








Option 1: Install from PyPi with pip

The latest release of RepoBee is on PyPi, and can thus be installed as usual with pip.
I strongly discourage system-wide pip installs (e.g. sudo pip install <package>), as this
may land you with incompatible packages in a very short amount of time. A per-user install
can be done like this:


	Execute python3 -m pip install --user --upgrade repobee to install the package.


	
	Run repobee -h to verify that you can find the script.

	
	If that doesn’t work, the repobee script can’t be found on your PATH
variable. Try python3 -m repobee -h to run the main module of RepoBee
(which is all the repobee script does anyway).












This same install command should also be good for upgrading RepoBee to a new
version.


Important

Of course, if python corresponds to Python 3 on your system, use that
instead of python3 in the command shown above.




Important

A --user install will perform a local install for the current user. Any
scripts will be installed in a user-local bin directory. If this directory
is not on your path (which it often is not by default), you will not be
able to run the repobee script (however, python -m repobee
should still work). pip should issue a warning about this, including the
path to the local bin directory. To resolve the problem, add the local bin
directory to your $PATH variable. When installing, pip will usually complain
that the bin directory is not on the $PATH variable and point out where the
directory is located.






Option 2: Clone the repo and the install with pip

If you want the dev version, you will need to clone the repo, as only release versions are uploaded
to PyPi. Unless you are planning to work on this yourself, I suggest going with the release version.


	
	Clone the repo with git:

	
	git clone https://github.com/repobee/repobee










	cd into the project root directory with cd repobee.


	
	Install locally with pip.

	
	python3 -m pip install --user --upgrade ., this will create a local
install for the current user.


	Or just pip install . if you use virtualenv.


	For development, use pip install -e .[TEST] in a virtualenv.


















          

      

      

    

  

    
      
          
            
  
RepoBee User Guide


Contents:


	Getting started (the show-config, verify-settings and setup commands)
	Create an organization

	Configure RepoBee for the target organization (show-config and verify-settings)

	Verify settings

	Set up master repos

	Set up student sepositories





	Updating student repositories (the update command)
	Scenario 1: Repos are unchanged

	Scenario 2: At least 1 repo altered





	Opening and Closing issues (the open-issues and close-issues commands)
	Opening Issues

	Closing Issues

	Listing Issues





	Cloning Repos in Bulk (the clone command)

	Peer review (assign-reviews, check-reviews and end-reviews commands)
	Getting started with peer reviews using assign-reviews

	Checking review progress with check-reviews

	Cleaning up with end-reviews

	Messing up and getting back on track

	Selecting peer review allocation algorithm





	Plugins for RepoBee
	Using Existing Plugins

	Built-in API plugins

	Built-in subcommand plugins

	Built-in plugins for repobee assign-reviews

	Built-in Plugins for repobee clone

	External Plugins





	Migrate repositories into the target (or master) organization (migrate command)

	Group assignments

	RepoBee and GitLab
	Roadmap

	GitLab terminology

	How to use RepoBee with GitLab













          

      

      

    

  

    
      
          
            
  
Getting started (the show-config, verify-settings and setup commands)


Important

This guide assumes that the user has access to a bash shell, or is
tech-savvy enough to translate the instructions into some other shell
environment.




Important

Whenever you see specific mentions of GitHub, refer to the RepoBee and GitLab
section for how this translates to use with GitLab.



The basic workflow of RepoBee is best described by example. In this section,
I will walk you through how to set up a target organization with master and
student repositories by showing every single step I would perform myself. The
basic workflow can be summarized in the following steps:


	Create an organization (the target organization).


	Configure RepoBee for the target organization.


	Verify settings.


	Set up the master repos.


	Set up the student repos.




This should leave you with enough knowledge to use the rudimentary features of
RepoBee. There is much more to RepoBee, such as opening/closing issues,
updating student repos and cloning repos in batches. This is covered in later
sections, but you don’t necessarily need to go through the entire guide in one
go. Now, let’s delve into the above steps in greater detail.


Create an organization

This is an absolutely necessary pre-requisite for using RepoBee.
Create an organization with an appropriate name on the platform instance you
intend to use. You can find the New organization button by going to
Settings -> Organization. I will call my target organization
repobee-demo, so whenever you see that, substitute in the name of your
target organization.


Important

At KTH, we most often do not want our students to be able to see each
others’ repos. By default, however, members have read access to all
repos. To change this, go to the organization dashboard and find your way
to Settings -> Member privileges. There should be a drop-down called
something along the lines of “Base permissions” or “Default repository
settings”, which you will want to set to None. The placement and name
of this drop-down has changed places twice since the first iteration of
this documentation, so it may not be an exact match, but you should find it
somewhere around there.






Configure RepoBee for the target organization (show-config and verify-settings)

For the tool to work at all, it needs to be provided with an OAUTH2 token to
whichever platform instance you intend to use. See the GitHub OAUTH docs [https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/] for
how to create a token. The token should have the repo and admin:org
scopes. While you can set this token in an environment variable (see
Configuration), it’s more convenient to just put it in the configuration
file, as you will put other default values in there. The config-wizard command
starts a configuration wizard that prompts you for default values for the
available settings. The defaults that are set in the configuration file
are just defaults, and can always be overridden on the command line. For the
rest of this guide, I will assume that the config file has defaults for at
least the following:


config.cnf

[DEFAULTS]
base_url = https://some-enterprise-host/api/v3
user = slarse
org_name = repobee-demo
master_org_name = master-repos
token = SUPER_SECRET_TOKEN







Now, run repobee config-wizard and enter your own values for the options
shown above. To skip an option, simply press ENTER without first typing in a
value. Here are some pointers regarding the different values:


	
	Enter the correct url for your platform instance. There are two options:

	
	If you are working with GitHub Enterprise, simply replace
some-enterprise-host with the appropriate hostname.


	If you are working with github.com, replace the whole url
with https://api.github.com.










	Replace slarse with your GitHub username.


	Replace repobee-demo with whatever you named your target organization.


	Replace SUPER_SECRET_TOKEN with your OAUTH token.


	
	Replace master_org_name with the name of the organization with your master repos.

	
	It you keep the master repos in the target organization or locally, skip
this option.










	
	If you are using GitLab:

	
	The base_url should be to the host, not to the API endpoint. I.e. if
you are using https://gitlab.com, then the base_url option should
simply read https://gitlab.com.


	Enter gitlab for the plugins option.












That’s it for configuration. The show-config command can be used to check
that you got everything correctly.

$ repobee show-config
[INFO] Found valid config file at /home/slarse/.config/repobee/config.cnf
[INFO]
----------------BEGIN CONFIG FILE-----------------
[DEFAULTS]
base_url = https://some-enterprise-host/api/v3
user = slarse
org_name = repobee-demo
master_org_name = master-repos
token = SUPER_SECRET_TOKEN
-----------------END CONFIG FILE------------------





If you ever want to re-configure some of the options, simply run the
config-wizard command again.




Verify settings


Important

verify-settings is not yet supported by the gitlab plugin.



Now that everything is set up, it’s time to verify all of the settings. Given
that you have a configuration file that looks something like the one above,
you can simply run the verify-settings command without any options.

$ repobee verify-settings
[INFO] Verifying settings ...
[INFO] Trying to fetch user information ...
[INFO] SUCCESS: found user slarse, user exists and base url looks okay
[INFO] Verifying oauth scopes ...
[INFO] SUCCESS: oauth scopes look okay
[INFO] Trying to fetch organization ...
[INFO] SUCCESS: found organization test-tools
[INFO] Verifying that user slarse is an owner of organization repobee-demo
[INFO] SUCCESS: user slarse is an owner of organization repobee-demo
[INFO] Trying to fetch organization master-repos ...
[INFO] SUCCESS: found organization master-repos
[INFO] Verifying that user slarse is an owner of organization master-repos
[INFO] SUCCESS: user slarse is an owner of organization master-repos
[INFO] GREAT SUCCESS: All settings check out!





If any of the checks fail, you should be provided with a semi-helpful error
message. When all checks pass and you get GREAT SUCCESS, move on to the next
section!




Set up master repos

How you do this will depend on where you want to have your master repos. I
recommend having a separate, persistent organization so that you can work on
repos across course rounds. If you already have a master organization with your
master repos set up somewhere, and master_org_name is specified in the
config, you’re good to go. If you need to migrate repos into the target
organization (e.g. if you keep master repos in the target organization), see
the Migrate repositories into the target (or master) organization (migrate command) section. For all commands but the migrate command, the
way you set this up does not matter as far as RepoBee commands go.


Note

Recall that there is nothing special about master repos, they are just your
templates for student repos. If you have an organization set up with template
repositories, then that is a viable master organization.






Set up student sepositories

Now that the master repos are set up, it’s time to create the student repos.
While student usernames can be specified on the command line, it’s often
convenient to have them written down in a file instead. Let’s pretend I have
three students with usernames slarse, glassey and glennol. I’ll
simply create a file called students.txt and type each username on a
separate line.


students.txt

 slarse
 glassey
 glennol








Note

Since v1.3.0: It is now possible to specify groups of students to get
access to the same repos by putting multiple usernames on the same line,
separated by spaces. For example, the following file will put slarse and
glassey in the same group.

slarse glassey
glennol





See Group assignments for details.



An absolute file path to this file can be added to the config file with the
students_file option (see Configuration file). Since I often manage different
sets of students, that’s seldom convenient for me, but if you always manage the
same set of students I recommend setting that option so you can omit it from the
command line arguments. Now, I want to create one student repo for each master
repo and student. The repo names will be on the form
<username>-<master-repo-name>, guaranteeing their uniqueness. Each student
will also be added to a team (which bears the same name as the student’s user),
and it is the team that is allowed access to the student’s repos, not the
student’s actual user. That all sounded fairly complex, but again, it’s as
simple as issuing a single command with RepoBee.

$ repobee setup --mn task-1 task-2 --sf students.txt
[INFO] Cloning into master repos ...
[INFO] Cloning into file:///home/slarse/tmp/task-1
[INFO] Cloning into file:///home/slarse/tmp/task-2
[INFO] Created team glennol
[INFO] Created team glassey
[INFO] Created team slarse
[INFO] Adding members glennol to team glennol
[WARNING] user glennol does not exist
[INFO] Adding members glassey to team glassey
[INFO] Adding members slarse to team slarse
[INFO] Creating student repos ...
[INFO] Created repobee-demo/glennol-task-1
[INFO] Created repobee-demo/glassey-task-1
[INFO] Created repobee-demo/slarse-task-1
[INFO] Created repobee-demo/glennol-task-2
[INFO] Created repobee-demo/glassey-task-2
[INFO] Created repobee-demo/slarse-task-2
[INFO] Pushing files to student repos ...
[INFO] Pushing, attempt 1/3
[INFO] Pushed files to https://some-enterprise-host/repobee-demo/glassey-task-2 master
[INFO] Pushed files to https://some-enterprise-host/repobee-demo/glassey-task-1 master
[INFO] Pushed files to https://some-enterprise-host/repobee-demo/slarse-task-1 master
[INFO] Pushed files to https://some-enterprise-host/repobee-demo/glennol-task-2 master
[INFO] Pushed files to https://some-enterprise-host/repobee-demo/glennol-task-1 master
[INFO] Pushed files to https://some-enterprise-host/repobee-demo/slarse-task-2 master






Note

If you have specified the students_file option in the config file, then
you don’t need to specify --sf students.txt on the command line. Remember
also that options specified on the command line always take precedence over
those in the configuration file, so you can override the default students
file if you wish by specifying --sf..



Note that there was a [WARNING] message for the username glennol: the
user does not exist. At KTH, this is common, as many (sometimes most) first-time
students will not have created their GitHub accounts until sometime after the
course starts. These students will still have their repos created, but the users
need to be added to their teams at a later time (to do this, simply run the
setup command again for these students, once they have created accounts).
This is one reason why we use teams for access privileges: it’s easy to set
everything up even when the students have yet to create their accounts (given
that their usernames are pre-determined).

And that’s it for setting up the course, the organization is primed and the
students should have access to their repositories!







          

      

      

    

  

    
      
          
            
  
Updating student repositories (the update command)

Sometimes, we find ourselves in situations where it is necessary to push
updates to student repositories after they have been published. As long as
students have not started working on their repos, this is fairly simple:
just push the new files to all of the related student repos. However, if
students have started working on their repos, then we have a problem.
Let’s start out with the easy case where no students have worked on their
repos.


Scenario 1: Repos are unchanged

Let’s say that we’ve updated task-1, and that users slarse,
glassey and glennol should get the updates. Then, we simply run
update like this:

$ repobee update --mn task-1 -s slarse glennol glassey
[INFO] Cloning into master repos ...
[INFO] Cloning into https://some-enterprise-host/repobee-demo/task-1
[INFO] Pushing files to student repos ...
[INFO] Pushing, attempt 1/3
[INFO] Pushed files to https://some-enterprise-host/repobee-demo/slarse-task-1 master
[INFO] Pushed files to https://some-enterprise-host/repobee-demo/glennol-task-1 master
[INFO] Pushed files to https://some-enterprise-host/repobee-demo/glassey-task-1 master
[INFO] Done!





That’s all there is to it for this super simple case. But what if glassey had
started working on glassey-task-1?


Note

Here, -s slarse glennol glassey was used to directly specify student usernames on
the command line, instead of pointing to a students file with --sf
students.txt. All commands that require you to specify student usernames
can be used with either the -s|--students or the --sf|--students-file
options.






Scenario 2: At least 1 repo altered

Let’s assume now that glassey has started working on the repo. Since we do not
force pushes to the student repos, the push to glassey-task-1 will be
rejected. This is good, we don’t want to overwrite a student’s progress because
we messed up with the original repository. There are a number of things one
could do in this situation, but in RepoBee, we opted for a very simple
solution: open an issue in the student’s repo that explains the situation.


Important

If you don’t specify an issue to repobee update, rejected pushes will
simply be ignored.



So, let’s first create that issue. It should be a Markdown-formatted file, and
the first line in the file will be used as the title. Here’s an example
file called issue.md.


issue.md

This is a nice title

### Sorry, we messed up!
There are some grave issues with your repo, and since you've pushed to the
repo, you need to apply these patches yourself.

<EXPLAIN CHANGES>







Something like that. If the students have used git for a while, it may be
enough to include the ouptut from git diff, but for less experienced
students, plain text is more helpful. Now it’s just a matter of using
repobee update and including issue.md with the -i|--issue argument.

$ repobee update --mn task-1 -s slarse glennol glassey -i issue.md
[INFO] Cloning into master repos ...
[INFO] Cloning into https://some-enterprise-host/repobee-demo/task-1
[INFO] Pushing files to student repos ...
[INFO] Pushing, attempt 1/3
[INFO] Pushed files to https://some-enterprise-host/repobee-demo/slarse-task-1 master
[INFO] Pushed files to https://some-enterprise-host/repobee-demo/glennol-task-1 master
[ERROR] Failed to push to https://some-enterprise-host/repobee-demo/glassey-task-1
return code: 128
fatal: repository 'https://some-enterprise-host/repobee-demo/glassey-task-1/' not found
[WARNING] 1 pushes failed ...
[INFO] Pushing, attempt 2/3
[ERROR] Failed to push to https://some-enterprise-host/repobee-demo/glassey-task-1
return code: 128
fatal: repository 'https://some-enterprise-host/repobee-demo/glassey-task-1/' not found
[WARNING] 1 pushes failed ...
[INFO] Pushing, attempt 3/3
[ERROR] Failed to push to https://some-enterprise-host/repobee-demo/glassey-task-1
return code: 128
fatal: repository 'https://some-enterprise-host/repobee-demo/glassey-task-1/' not found
[WARNING] 1 pushes failed ...
[INFO] Opening issue in repos to which push failed
[INFO] Opened issue glassey-task-1/#1-'Nice title'
[INFO] Done!





Note that RepoBee tries to push 3 times before finally giving up and opening an
issue, as a failed push could be due to any number of reasons, such as
connection issues and misaligned planets.


Note

If you forget to specify the -i|--issue argument and get a rejection,
you may simply rerun update and add it. All updated repos will
simply be listed as up-to-date (which is a successful update!), and the
rejecting repos will still reject the push. However, be careful not to run
update with -i multiple times, as it will then open multiple issues.









          

      

      

    

  

    
      
          
            
  
Opening and Closing issues (the open-issues and close-issues commands)

Sometimes, the best way to handle an error in a repo is to simply notify
affected students about it. This is especially true if the due date for the
assignment is rapidly approaching, and most students have already started
modifying their repositories. There can also be cases where you want to make
general announcements, or communicate some other action item that’s best highly
related to the code that the students are writing. Therefore, RepoBee provides
the open-issues command, which can open issues in bulk. When the time is
right, issues can be closed with the close-issues command. Finally,
list-issues provides a way of quickly seeing what issues are open and closed
in student repositories.


Opening Issues

The open-issues command is very simple. Before we use it, however, we need
to write a Markdown-formatted issue. Just like with the update command, the
first line of the file is the title. Here is issue.md:


issue.md

An important announcement

### Dear students
I have this important announcement to make.

Regards,
_The Announcer_







Awesome, that’s an excellent issue. Let’s open it in the task-2 repo
for our dear students slarse, glennol and glassey, who are listed in the
students.txt file (see Set up student sepositories).

$ repobee open-issues --mn task-2 --sf students.txt -i issue.md
[INFO] Opened issue slarse-task-2/#1-'An important announcement'
[INFO] Opened issue glennol-task-2/#1-'An important announcement'
[INFO] Opened issue glassey-task-2/#1-'An important announcement'





From the output, we can read that in each of the repos, an issue with the title
An important announcement was opened as issue nr 1 (#1). The number
isn’t that important, it’s mostly good to note that the title was fetched
correctly. And that’s it! Neat, right?




Closing Issues

Now that the deadline has passed for task-2, we want to close the
issues opened in open. The close-issues command takes a regex that runs
against titles. All issues with matching titles are closed. While you can
make this really difficult, closing all issues with the title An important
announcement is simple: we provide the regex \AAn important announcement\Z.

$ repobee close-issues --mn task-2 --sf students.txt -r '\AAn important announcement\Z'
[INFO] Closed issue slarse-task-2/#1-'An important announcement'
[INFO] Closed issue glennol-task-2/#1-'An important announcement'
[INFO] Closed issue glassey-task-2/#1-'An important announcement'





And there we go, easy as pie!


Note

Enclosing a regex expression in \A and \Z means that it must match
from the start of the string to the end of the string. So, the regex used here
will match the title An important announcement, but it will not
match e.g.  An important anouncement and lunch or Hey An important
announcement. In other words, it matches exactly the title An important
announcement, and nothing else. Not even an extra space or linebreak is
allowed.






Listing Issues

It can often be interesting to check what issues exist in a set of repos,
especially so if you’re a teaching assistant who just doesn’t want to leave your
trusty terminal. This is where the list-issues command comes into play.
Typically, we are only interested in open issues, and can then use list
issues like so:

$ repobee list-issues --mn task-2 --sf students.txt
[INFO] slarse-task-2/#1:  Grading Criteria created 2018-09-12 18:20:56 by glassey
[INFO] glennol-task-2/#1:  Grading Criteria created 2018-09-12 18:20:56 by glassey
[INFO] glassey-task-2/#1:   Grading Criteria created 2018-09-12 18:20:56 by glassey





So, just grading critera issues posted by the user glassey. What happened to
the important announcements? Well, they are closed. If we want to se closed
issues, we must specifically say so with the --closed argument.

$ repobee list-issues --mn task-2 --sf students.txt --closed
[INFO] slarse-task-2/#2:  An important announcement created 2018-09-17 17:46:43 by slarse
[INFO] glennol-task-2/#2:  An important announcement created 2018-09-17 17:46:43 by slarse
[INFO] glassey-task-2/#2:   An important announcement created 2018-09-17 17:46:43 by slarse





Other interesting arguments include --all for both open and closed issues,
--show-body for showing the body of each issue, and --author <username>
for filtering by author. There’s not much more to it, see repobee list-issues
-h for complete and up-to-date information on usage!







          

      

      

    

  

    
      
          
            
  
Cloning Repos in Bulk (the clone command)

It can at times be beneficial to be able to clone a bunch of student repos
at the same time. It could for example be prudent to do this slightly after
a deadline, as timestamps in a git commit can easily be altered (and are
therefore not particularly trustworthy). Whatever your reason may be, it’s
very simple using the clone command. Again, assume that we have the
students.txt file from Set up student sepositories, and that we want to clone all student
repos based on task-1 and task-2.

$ repobee clone --mn task-1 task-2 --sf students.txt
[INFO] cloning into student repos ...
[INFO] Cloned into https://some-enterprise-host/repobee-demo/slarse-task-1
[INFO] Cloned into https://some-enterprise-host/repobee-demo/glassey-task-1
[INFO] Cloned into https://some-enterprise-host/repobee-demo/glassey-task-2
[INFO] Cloned into https://some-enterprise-host/repobee-demo/glennol-task-1
[INFO] Cloned into https://some-enterprise-host/repobee-demo/slarse-task-2
[INFO] Cloned into https://some-enterprise-host/repobee-demo/glennol-task-2





Splendid! That’s really all there is to the basic functionality, the repos
should now be in your current working directory. There is also a possibility to
run automated tasks on cloned repos, such as running test suites or linters. If
you’re not satisfied with the tasks on offer, you can define your own. Read more
about it in the Plugins for RepoBee section.


Note

For security reasons [https://github.blog/2012-09-21-easier-builds-and-deployments-using-buit-over-https-and-oauth/],
RepoBee doesn’t actually use git clone to clone repositories. Instead,
RepoBee clones by initializing the repository and running git pull. The
practical implication is that you can’t simply enter a repository that’s
been cloned with RepoBee and run git pull to fetch updates. You will
have to run repobee clone again in a different directory to fetch any
updates students have made, alternatively simply delete to particular
repositories you want to clone again and then run repobee clone.







          

      

      

    

  

    
      
          
            
  
Peer review (assign-reviews, check-reviews and end-reviews commands)

Peer reviewing is an important part of a programming curriculum, so of course
RepoBee facilitates this! The relevant commands are assign-reviews and
end-reviews.  Like much of the other functionality in RepoBee, the peer
review functionality is built around indirect access through teams with limited
access privileges. In short, every student repo up for review gets an
associated peer review team generated, which has pull access to the repo.
Each student then gets added to 0 < N < num_students peer review teams, and
are to open a peer review issue in the associated repos. This is at least the
the default. See Selecting peer review allocation algorithm for other available review
allocation schemes.


Important

Peer review functionality has yet to be implemented for:


	The gitlab plugin.


	Student groups.




Both of these are planned features, but have no current ETA.




Getting started with peer reviews using assign-reviews

The bulk of the work is performed by assign-reviews. Most of its arguments
it has in common with the other commands of RepoBee. The only non-standard
arguments are --issue and --num-reviews, the former of which we’ve
actually already seen in the open-issues command (see Opening Issues). I will
assume that both --base-url and --org-name are already configured in
the configuration file (if you don’t know what this mean, have a look at
Configuration file). Thus, the only things we must specify are
--students/--students-file and --num-reviews (--issue is optional,
more on that later). Let’s make a minimal call with the assign-reviews
command, and then inspect the log output to figure out what happened. Recall
that students.txt lists our three favorite students slarse, glassey and glennol (see
Set up student sepositories).

$ repobee assign-reviews --mn task-1 --sf students.txt --num-reviews 2
# step 1
[INFO] Created team slarse-task-1-review
[INFO] Created team glennol-task-1-review
[INFO] Created team glassey-task-1-review
# step 2
[INFO] Adding members glennol, glassey to team slarse-task-1-review
[INFO] Adding members glassey, slarse to team glennol-task-1-review
[INFO] Adding members slarse, glennol to team glassey-task-1-review
# steps 3 and 4, interleaved
[INFO] Opened issue glennol-task-1/#1-'Peer review'
[INFO] Adding team glennol-task-1-review to repo glennol-task-1 with 'pull' permission
[INFO] Opened issue glassey-task-1/#2-'Peer review'
[INFO] Adding team glassey-task-1-review to repo glassey-task-1 with 'pull' permission
[INFO] Opened issue slarse-task-1/#2-'Peer review'
[INFO] Adding team slarse-task-1-review to repo slarse-task-1 with 'pull' permission





The following steps were performed:


	One review team per repo was created (<student>-task-1-review).


	Two students were added to each review team. Note that these allocations are
_random_. For obvious resons, there can be at most num_students-1 peer
reviews per repo. So, in this case, we are at the maximum.


	An issue was opened in each repo with the title Peer review, and a body
saying something like You should peer review this repo.. The review team
students were assigned to the issue as well (although this is not apparent
from the logging).


	The review teams were added to their corresponding repoos with pull
permission. This permission allows members of the team to view the repo and
open issues, but they can’t push to (and therefore can’t modify) the repo.




That’s it for the basic functionality. The intent is that students should open
an issue in every repo they are to peer review, with a specific title. The issues
can then be searched by title, and the check-reviews command can find which
students have opened issues in the repositories they’ve been assigned to review.
Now, let’s talk a bit about that --issue argument.


Important

Assigning peer reviews gives the reviewers read-access to the repos they are
to review. This means that if you use issues to communicate grades/feedback
to your students, the reviewers will also see this feedback! It is therefore
important to remove the peer review teams (see Cleaning up with end-reviews).




Specifying a custom issue

The default issue is really meant to be replaced with something more specific to
the course and assignment. For example, say that there were five tasks in the
task-2 repo, and the students should review tasks 2 and 3 based on
some criteria. It would then be beneficial to specify this in the peer review
issue, so we’ll write up our own little issue to replace the default one.
Remember that the first line is taken to be the title, in exactly the same way
as issue files are treated in Opening Issues.

Review of task-2

Hello! The students assigned to this issue have been tasked to review this
repo. Each of you should open _one_ issue with the title `Peer review` and
the following content:

## Task 2
### Code style
Comments on code style, such as readability and general formatting.

### Time complexity
Is the algorithm O(n)? If not, try to figure out what time complexity it is
and point out what could have been done better.

## Task 3
### Code style
Comments on code style, such as readabilty and general formatting.





Assuming the file was saved as issue.md, we can now run the command
specifying the issue like this:

$ repobee assign-reviews --mn task-2 --sf students.txt --num-reviews 2 --issue issue.md
[INFO] Created team slarse-task-2-review
[INFO] Created team glennol-task-2-review
[INFO] Created team glassey-task-2-review
[INFO] Adding members glennol, glassey to team slarse-task-2-review
[INFO] Adding members glassey, slarse to team glennol-task-2-review
[INFO] Adding members slarse, glennol to team glassey-task-2-review
[INFO] Adding team glassey-task-2-review to repo glassey-task-2 with 'pull' permission
[INFO] Opened issue glassey-task-2/#8-'Review of task-2'
[INFO] Adding team glennol-task-2-review to repo glennol-task-2 with 'pull' permission
[INFO] Opened issue glennol-task-2/#8-'Review of task-2'
[INFO] Adding team slarse-task-2-review to repo slarse-task-2 with 'pull' permission
[INFO] Opened issue slarse-task-2/#9-'Review of task-2'





As you can tell from the last few lines, the title is the one specified in the
issue, and not the default title as it was before. And that’s pretty much it for
setting up the peer review repos.






Checking review progress with check-reviews

The check-reviews command provides a quick and easy way of checking which
students have performed their reviews. You provide it with the same information
that you do for assign-reviews, but additionally also provide a regex to
match against issue titles. The command then finds all of the associated review
teams, and checks which students have opened issues with matching titles in their
alloted repositories. Of course, this says nothing about the content of those
issues: it purely checks that the issues have been opened at all.
--num-reviews is also required here, as it is used as an expected value for
how many reviews each student should be assigned to review. It is a simple
but fairly effective way of detecting if students have simply left their review
teams. Here’s an example call:

$ repobee check-reviews --mn task-2 --sf students.txt --num-reviews 2 --title-regex '\APeer review\Z'
[INFO] Processing glassey-task-2-review
[INFO] Processing glennol-task-2-review
[INFO] Processing slarse-task-2-review
reviewer        num done        num remaining   repos remaining
glennol         0               2               glassey-task-2,slarse-task-2
slarse          2               0
glassey         0               2               glennol-task-2,slarse-task-2





The output is color-coded in the terminal, making it easier to parse. I find
this higly useful when doing peer reviews in a classroom settings, as I can
check which students are done without having to ask them out loud every five
minutes. The next command lets you clean up review teams and thereby revoke
reviewers’ read access once reviews are over and done with.




Cleaning up with end-reviews

The one downside of using teams for access privileges is that we bloat the
organization with a ton of teams. Once the deadline has passed and all peer
reviews are done, there is little reason to keep them (in my mind). It can also
often be a good idea to revoke the reviewers’ access to reviewed repos if you
yourself plan to provide feedback on the issue tracker, so as not to let the
reviewers see it. Therefore, the end-reviews command can be used to remove
all peer review teams for a given set of student repos, both cleaning up the
organization and revoking reviewers’ read access. Let’s say that we’re
completely done with the peer reviews of task-1, and want to remove the
review teams. It’s as simple as:

$ repobee end-reviews --mn task-1 --sf students.txt
[INFO] Deleted team glennol-task-1-review
[INFO] Deleted team glassey-task-1-review
[INFO] Deleted team slarse-task-1-review






Warning

end-reviews deletes review allocations created by assign-reviews.
This is an irreversible action. You cannot run check-reviews after
running end-reviews for any given set of student repos, and there is
no functionality for retrieving deleted review allocations. Only use
end-reviews when reviews are truly done, and you have collected what
results you need. If being able to backup and restore review allocations is
something you need, please open an issue with a feature request on the
issue tracker [https://github.com/repobee/repobee/issues/new].



And that’s it, the review teams are gone. If you also want to close the related
issues, you can simply use the close-issues command for that (see
Closing Issues). end-reviews plays one more important role:
if you mess something up when assigning the peer reviews. The next section
details how you can deal with such a scenario.




Messing up and getting back on track

Let’s say you messed something up with allocating the peer reviews. For example,
if you left out a student, there is no easy way to rectify the allocations such
that that student is included. Let’s say we did just that, and forgot to include
the student cabbage in the reviews for task-2 back at
Getting started with peer reviews using assign-reviews. We then do the following:


	Check if any reviews have already been posted. This can easily be performed
with repobee list-issues --mn task-2 --sf students.txt -r '^Peer
review$' (assuming the naming conventions were followed!). Take appropriate
action if you find any reviews already posted (appropriate being anything you
see fit to alleviate the situation of affected students possibly being
assigned new repos to review).


	Purge the review teams with repobee end-reviews --mn task-2
--sf students.txt


	Close all review issues with repobee close-issues --mn task-2 --sf
students.txt -r '^Review of task-2$'


	Create a new issue.md file apologetically explaining that you messed up:




Review of task-2 (for real this time!)

Sorry, I messed up with the allocations previously. Disregard the previous
allocations (repo access has been revoked anyway).






	Assign peer reviews again, with the new issue, with repobee
assign-reviews --mn task-2 --sf students.txt --num-reviews 2
--issue issue.md




And that’s it! Disaster averted.




Selecting peer review allocation algorithm

The default allocation algorithm is as described in Peer review (assign-reviews, check-reviews and end-reviews commands), and is
suitable for when reviewers do not need to interact with the students whom they
review. This is however not always the case, sometimes it is beneficial for
reviewers to to interact with reviewees (is that a word?), especially if the
peer review is done in the classroom. Because of this, RepoBee also
provides a _pairwise_ allocation scheme, which allocates reviews such that
if student A reviews student B, then student B reviews student
A (except for an A->B->C->A kind of deal in one group if there are an
odd amount of students). This implemented as a plugin, so to run with this
scheme, you add -p pairwise in front of the command.

$ repobee -p pairwise assign-reviews --mn task-1 --sf students.txt





Note that the pairwise algorithm ignores the --num-reviews argument, and
will issue a warning if this is set (to anything but 1, but you should just not
specify it). For more details on plugins in RepoBee, Plugins for RepoBee.







          

      

      

    

  

    
      
          
            
  
Plugins for RepoBee

RepoBee defines a fairly simple but powerful plugin system that allows
programmers to hook into certain execution points. To read more about the
details of these hooks (and how to write your own plugins), see the
repobee-plug docs [https://repobee-plug.readthedocs.io/en/latest/].


Using Existing Plugins

You can specify which plugins you want to use either by adding them to the
configuration file, or by specifying them on the command line. Personally,
I find it most convenient to specify plugins on the command line. To do this,
use -p|--plug option before any other options. The reson the plugins must
go before any other options is that some plugins alter the command line
interface of RepoBee, and must therefore be parsed separately. As an example,
you can activate the builtins javac and pylint like this:

$ repobee -p pylint -p javac clone --mn task-1 --sf students.txt





This will clone the repos, and the run the plugins on the repos. You can also
specify the default plugins you would like to use in the configuration file by
adding the plugins option under the [DEFAULT] section. Here is an
example of using the builtins javac and pylint.

[DEFAULTS]
plugins = javac, pylint





Like with all other configuration values, they are only used if no command line
options are specified. If you have defaults specified, but want to run without
any plugins, you can use the --no-plugins argument, which disables plugins.


Important

The order plugins are specified in is significant and defines the execution
order of the plugins. This is useful for plugins that rely on the results
of other plugins. This system for deciding execution order may be
overhauled in the future, if anyone comes up with a better idea.



Some plugins can be further configured in the configuration file by adding new
headers. See the documentation of the specific plugins for details on that.




Built-in API plugins

RepoBee ships with two API plugins, one for GitHub
(_repobee.ext.github) and one for GitLab
(_repobee.ext.gitlab). The GitHub plugin is loaded by default. If you
use GitLab, you must specify the gitlab plugin either on the command line
or in the configuration file.




Built-in subcommand plugins

The config-wizard command is actually a plugin, which loads by default.
It’s mostly implemented as a plugin for demonstrational purposes, showing how
to add a command to RepoBee. See _repobee.ext.configwizard for the
source code.




Built-in plugins for repobee assign-reviews

RepoBee ships with two plugins for the assign-reviews command.  The
first of these is located in the defaults plugin, and
just randomly allocates student to review each other. The second plugin is the
pairwise plugin. This plugin will divide N students
into N/2 groups of 2 students (and possibly one with 3 students, if N
is odd), and have them peer review the other person in the group. The intention
is to let students sit together and be able to ask questions regarding the repo
they are peer reviewing. To use this allocation algorithm, simply specify the
plugin with -p pairwise to override the default algorithm. Note that this
plugin ignores the --num-reviews argument.




Built-in Plugins for repobee clone

RepoBee currently ships with two built-in plugins:
javac and pylint. The former
attempts to compile all .java files in each cloned repo, while the latter
runs pylint [https://www.pylint.org/] on every .py file in each cloned repo. These plugins are
mostly meant to serve as demonstarations of how to implement simple plugins in
the repobee package itself.


pylint

The pylint plugin is fairly simple: it finds all
.py files in the repo, and runs pylint on them individually.
For each file somefile.py, it stores the output in the file
somefile.py.lint in the same directory. That’s it, the
pylint plugin has no other features, it just does its
thing.


Important

pylint [https://www.pylint.org/] must be installed and accessible
by the script for this plugin to work!






javac

The javac plugin runs the Java compiler program
javac on all .java files in the repo. Note that it tries to compile
all files at the same time.


CLI Option

javac adds a command line option -i|--ignore to
repobee clone, which takes a space-separated list of files to ignore when
compiling.




Configuration

javac also adds a configuration file option
ignore taking a comma-separated list of files, which must be added under
the [javac] section. Example:

[DEFAULTS]
plugins = javac

[javac]
ignore = Main.java, Canvas.java, Other.java






Important

The javac plugin requires javac to be installed
and accessible from the command line. All JDK distributions come with
javac, but you must also ensure that it is on the PATH variable.










External Plugins

It’s also possible to use plugins that are not included with RepoBee.
Following the conventions defined in the repobee-plug docs [https://repobee-plug.readthedocs.io/en/latest/], all plugins
uploaded to PyPi should be named repobee-<plugin>, where <plugin> is
the name of the plugin and thereby the thing to add to the plugins option
in the configuration file. Any options for the plugin itself should be
located under a header named [<plugin>]. For example, if I want to use
the repobee-junit4 [https://github.com/repobee/repobee-junit4] plugin, I first install it:

python3 -m pip install repobee-junit4





and then use for example this configuration file to activate the plugin, and
define some defaults:

[DEFAULTS]
plugins = junit4

[junit4]
hamcrest_path = /absolute/path/to/hamcrest-1.3.jar
junit_path = /absolute/path/to/junit-4.12.jar






Important

If the configuration file exists, it must contain the [DEFAULTS]
header, even if you don’t put anything in that section. This is to minimize
the risk of subtle misconfiguration errors by novice users. If you only
want to configure plugins, just add the [DEFAULTS] header by itself,
without options, to meet this requirement.









          

      

      

    

  

    
      
          
            
  
Migrate repositories into the target (or master) organization (migrate command)

Migrating repositories into an organization can be useful in a few cases. You
may have repos that should be accessible to students and need to be moved
across course rounds, or you might be storing your master repos in the target
organization and need to migrate them for each new course round. To migrate
repos into the target organization, they must be local on disc. Assuming we
have the repos task-1 and task-2 in the current working
directory (i.e. local repos), all we have to do is this:


Note

Prior to v1.4.0, the migrate command also accepted urls with the
-mu option. This functionality was abruptly removed due to
implementation issues, and is unlikely to appear again because of its
limited use.



$ repobee migrate --mn task-1 task-2
[INFO] cloning into file:///some/directory/path/task-1
[INFO] cloning into file:///some/directory/path/task-2
[INFO] created repobee-demo/task-1
[INFO] created repobee-demo/task-2
[INFO] pushing, attempt 1/3
[INFO] Pushed files to https://some-enterprise-host/repobee-demo/task-1 master
[INFO] Pushed files to https://some-enterprise-host/repobee-demo/task-2 master
[INFO] done!






Important

If you want to use this command to migrate repos into a master organization,
you must specify it with the --org-name option here (instead of the
--master-org-name).



What happens here is pretty straightforward, except for the local repos being
cloned, which is an implementation detail that does not need to be thought
further of. Note that only the defualt branch is actually migrated, and pushed
to master in the new repo. Local repos are pushed to the master branch
of the remote repo. Migrating several branches is something that we’ve never
had a need to do, but if you do, please open an issue on GitHub [https://github.com/repobee/repobee/issues/new] with a feature request.
migrate is perfectly safe to run several times, in case you think you
missed something, or need to update repos. Running the same thing again without
changing the local repos yields the following output:

$ repobee migrate --mn task-1 task-2
[INFO] cloning into file:///some/directory/path/task-1
[INFO] cloning into file:///some/directory/path/task-2
[INFO] repobee-demo/task-1 already exists
[INFO] repobee-demo/task-2 already exists
[INFO] pushing, attempt 1/3
[INFO] https://some-enterprise-host/repobee-demo/task-1 master is up-to-date
[INFO] https://some-enterprise-host/repobee-demo/task-2 master is up-to-date
[INFO] done!





In fact, all RepoBee commands that deal with pushing to or cloning from
repos in some way are safe to run over and over. This is mostly because of
how Git works, and has little to do with RepoBee itself.





          

      

      

    

  

    
      
          
            
  
Group assignments


Important

The peer review commands (see Peer review (assign-reviews, check-reviews and end-reviews commands)) do not currently support
group assignments.



RepoBee supports group assignments such that multiple students are assigned to
the same student repositories. To put students in a group, they need to be
entered on the same line in the students file, separated by spaces. This is the
only way to group students, the -s option on the command line does not
support groups. As an example, if glassey and slarse should be in one group,
and glennol solo, the following students file would work:

glassey slarse
glennol





There is no difference in using RepoBee with student groups in the student
file. For example, running the setup command from Set up student sepositories would then have
the following result:

$ repobee setup --mn task-1 task-2 --sf students.txt
[INFO] cloning into master repos ...
[INFO] cloning into file:///home/slarse/tmp/task-1
[INFO] cloning into file:///home/slarse/tmp/task-2
[INFO] created team glennol
[INFO] created team glassey-slarse
[INFO] adding members glennol to team glennol
[WARNING] user glennol does not exist
[INFO] adding members glassey, slarse to team glassey-slarse
[INFO] creating student repos ...
[INFO] created repobee-demo/glennol-task-1
[INFO] created repobee-demo/glassey-slarse-task-1
[INFO] created repobee-demo/glennol-task-2
[INFO] created repobee-demo/glassey-slarse-task-2
[INFO] pushing files to student repos ...
[INFO] pushing, attempt 1/3
[INFO] Pushed files to https://some-enterprise-host/repobee-demo/glassey-slarse-task-2 master
[INFO] Pushed files to https://some-enterprise-host/repobee-demo/glassey-slarse-task-1 master
[INFO] Pushed files to https://some-enterprise-host/repobee-demo/glennol-task-2 master
[INFO] Pushed files to https://some-enterprise-host/repobee-demo/glennol-task-1 master





Note the naming convention for group repos:
<student-1>-<student-2>-[...]-<master-repo-name>. The associated teams
follow the same convention, but without the trailing -<master-repo-name>.
And that is all you need to know to start doing group assignments!


Warning

The naming scheme has a weakness: it can create fairly long names, and
GitHub has a hard limit for repo names at 100 characters. RepoBee will
therefore crash (on purpose) if a Team or repo name exceeds 100 characters.
There is no workaround for this problem at the moment.







          

      

      

    

  

    
      
          
            
  
RepoBee and GitLab

As of v1.5.0, RepoBee has alpha support for GitLab. Both https://gitlab.com and
self-hosted GitLab are supported, but currently, some commands (including all
peer review commands) do not work. GitLab is planned to be fully supported by
in late 2019. See Roadmap for details.


Note

GitLab support is currently in alpha, and may not yet be sufficiently stable
for production use. Please report any issues on the issue tracker [https://github.com/repobee/repobee/issues/new]




Important

RepoBee requires GitLab 11.11 or later.




Roadmap

The roadmap for GitLab support is listed below. For the most up-to-date
activity, see the GitLab support Kanban board [https://github.com/repobee/repobee/projects/7].








	Command

	Status

	ETA/Added in





	show-config

	Done

	N/A (not platform dependent)



	setup

	Done

	v1.5.0



	update

	Done

	v1.5.0



	clone

	Done

	v1.5.0



	migrate

	Done

	v1.6.0



	open-issues

	Done

	v1.6.0



	close-issues

	Done

	v1.6.0



	list-issues

	Done

	v1.6.0



	assign-reviews

	Not started

	Late 2019



	end-reviews

	Not started

	Late 2019



	check-reviews

	Not started

	Late 2019



	verify-settings

	Not started

	August 2019









GitLab terminology

RepoBee uses GitHub terminology, as GitHub is the primary platform. It is
however simple to map the terminology between the two platforms as follows:







	GitHub

	GitLab





	Organization

	Group



	Team

	Subgroup



	Repository

	Project



	Issue

	Issue






So, if you read “target organization” in the documentation, that translates
directly to “target group” when using GitLab. Although there are a few
practical differences, the concepts on both platforms are similar enough that
it makes no difference as far as using RepoBee goes. You can read more about
differences and similarities in this GitLab blog post [https://about.gitlab.com/2017/09/11/comparing-confusing-terms-in-github-bitbucket-and-gitlab/].




How to use RepoBee with GitLab

You must use the gitlab plugin for RepoBee to be able to interface with
GitLab. See Using Existing Plugins for instructions on how to use plugins.
Provide the url to a GitLab instance host (not to the api endpoint, just to
the host) as an argument to --bu|--base-url, or put it in the config file as
the value for option base_url. Other than that, there are a few important
differences between GitHub and GitLab that the user should be aware of.


	As noted, the base url should be provided to the host of the GitLab instance,
and not to any specific endpoint (as is the case when using GitHub). When
using github.com for example, the url should be provided as
base_url = https://gitlab.com in the config.


	The org-name and master-org-name arguments should be given the path
of the respective groups. If you create a group with a long name, GitLab may
shorten the path automatically. For example, I created the group
repobee-master-repos, and it got the path repobee-master. You can find
your path by going to the landing page of your group and checking the URL: the
path is the last part. You can change the path manually by going to your
group, then Settings->General->Path,transfer,remove and changing the group
path.





Getting an OAUTH token for GitLab

Creating an OAUTH token for a GitLab API is just as easy as creating one for
GitHub. Just follow these instructions [https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html].
The scopes you need to tick are api, read_user, read_repository and
write_repository. That’s it!









          

      

      

    

  

    
      
          
            
  
Configuration

RepoBee does not have to be configured as all arguments can be provided on
the command line, but doing so becomes very tedious, very quickly.
It’s typically a good idea to at least configure the OAUTH token, as well as the
GitHub base url (for the API) and your GitHub username (see Configuration file).


Important

The RepoBee User Guide expects there to be
a configuration file as described in Getting started (the show-config, verify-settings and setup commands).




OAUTH token

For repobee to work at all, it needs access to an OAUTH token. See the GitHub
OAUTH docs [https://help.github.com/articles/creating-a-personal-access-token-for-the-command-line/] for how to create a token. Make sure that it has the repo and
admin:org permissions. There are two ways to hand the token to repobee:


	Put it in the REPOBEE_OAUTH environment variable.
- On a unix system, this is as simple as export
REPOBEE_OAUTH=<YOUR_TOKEN>


	Put it in the configuration file (see Configuration file).







Configuration file

An optional configuration file can be added, specifying defaults for several of
the most frequently used cli options line options. This is especially useful
for teachers ant TAs who are managing repos for a single course (and, as a
consequence, a single organization).

[DEFAULTS]
base_url = https://some-api-v3-url
user = YOUR_USERNAME
org_name = ORGANIZATION_NAME
master_org_name = MASTER_ORGANIZATION_NAME
students_file = STUDENTS_FILE_ABSOLUTE_PATH
token = SUPER_SECRET_TOKEN






Important

If the configuration file exists, it must contain the [DEFAULTS]
header. This is to minimize the risk of misconfiguration by novice users.



To find out where to place the configuration file (and what to name it),
run repobee show-config. The configuration file can also be used to
configure repobee plugins. See the Using Existing Plugins section for more
details.


Important

Do note that the configuration file contains only default values. Specifying
any of the parameters on the command line will override the configuration
file’s values.




Note

You can run repobee verify-settings to verify the basic configuration.
This will check the most important settings configurable in DEFAULTS.









          

      

      

    

  

    
      
          
            
  
CLI documentation





          

      

      

    

  

    
      
          
            
  
RepoBee Module Reference


command




cli




config




exception




git




tuples




util




Core plugins


defaults




github




gitlab




pairwise






Extension plugins


javac




pylint




config-wizard









          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _static/up.png





_static/ajax-loader.gif





_static/comment-bright.png





_static/comment-close.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to RepoBee’s documentation!
        


        		
          Introduction
          
            		
              Philosophy and goals
            


            		
              Key concepts
            


            		
              Conventions
            


            		
              Usage with different platforms (GitHub, GitHub Enterprise and GitLab)
              
                		
                  The Organization must have support for private repositories
                


                		
                  Students are added to the target Organization slightly differently
                


              


            


          


        


        		
          Install
          
            		
              Requirements
            


            		
              Check your Python version
            


            		
              Option 1: Install from PyPi with pip
            


            		
              Option 2: Clone the repo and the install with pip
            


          


        


        		
          RepoBee User Guide
          
            		
              Getting started (the show-config, verify-settings and setup commands)
              
                		
                  Create an organization
                


                		
                  Configure RepoBee for the target organization (show-config and verify-settings)
                


                		
                  Verify settings
                


                		
                  Set up master repos
                


                		
                  Set up student sepositories
                


              


            


            		
              Updating student repositories (the update command)
              
                		
                  Scenario 1: Repos are unchanged
                


                		
                  Scenario 2: At least 1 repo altered
                


              


            


            		
              Opening and Closing issues (the open-issues and close-issues commands)
              
                		
                  Opening Issues
                


                		
                  Closing Issues
                


                		
                  Listing Issues
                


              


            


            		
              Cloning Repos in Bulk (the clone command)
            


            		
              Peer review (assign-reviews, check-reviews and end-reviews commands)
              
                		
                  Getting started with peer reviews using assign-reviews
                


                		
                  Checking review progress with check-reviews
                


                		
                  Cleaning up with end-reviews
                


                		
                  Messing up and getting back on track
                


                		
                  Selecting peer review allocation algorithm
                


              


            


            		
              Plugins for RepoBee
              
                		
                  Using Existing Plugins
                


                		
                  Built-in API plugins
                


                		
                  Built-in subcommand plugins
                


                		
                  Built-in plugins for repobee assign-reviews
                


                		
                  Built-in Plugins for repobee clone
                


                		
                  External Plugins
                


              


            


            		
              Migrate repositories into the target (or master) organization (migrate command)
            


            		
              Group assignments
            


            		
              RepoBee and GitLab
              
                		
                  Roadmap
                


                		
                  GitLab terminology
                


                		
                  How to use RepoBee with GitLab
                


              


            


          


        


        		
          Configuration
          
            		
              OAUTH token
            


            		
              Configuration file
            


          


        


        		
          CLI documentation
        


        		
          RepoBee Module Reference
          
            		
              command
            


            		
              cli
            


            		
              config
            


            		
              exception
            


            		
              git
            


            		
              tuples
            


            		
              util
            


            		
              Core plugins
              
                		
                  defaults
                


                		
                  github
                


                		
                  gitlab
                


                		
                  pairwise
                


              


            


            		
              Extension plugins
              
                		
                  javac
                


                		
                  pylint
                


                		
                  config-wizard
                


              


            


          


        


      


    
  

_static/down.png





_static/comment.png





_static/down-pressed.png





_static/plus.png





_static/file.png





_static/minus.png





_static/up-pressed.png





