

Welcome to repobee-plug’s documentation!

repobee-plug is a package for creating plugins for RepoBee [https://github.com/repobee/repobee]. While the plugin system itself is
implemented in the core application, this package contains every part necessary
to actually create a plugin. If you just want to use plugins created by others,
then you’re in the wrong place and should head over to the RepoBee User Guide [https://repobee.readthedocs.io/en/stable/plugins.html]. If you want to create
plugins, you are in precisely the right place! I recommend you read through all
of the general documentation, and then refer to the parts of the module
reference that you need for your plugin.

Don’t hesitate to get in touch if you need help, you can use the issue tracker [https://github.com/repobee/repobee-plug] or find contact details on the
official web site [https://repobee.org/contact.html].

Contents:

	Plugin system overview
	Conventions

	Hooks

	Creating plugins
	Creating task plugins

	Creating extension command plugins

	Public API
	Hook functions

	API Wrappers

	Containers

	Helpers

	Exceptions

	repobee_plug Module Reference
	_apimeta

	_pluginmeta

	_containers

	_corehooks

	_exthooks

	_exceptions

	_name

	_serialize

	_tasks

	_deprecation

Indices and tables

	Index

	Module Index

	Search Page

Plugin system overview

Conventions

For RepoBee to discover a plugin and its hooks, the following conventions
need to be adhered to:

	The PyPi package should be named repobee-<plugin>, where <plugin>
is the name of the plugin.

	The actual Python package (i.e. the directory in which the source files
are located) should be called repobee_<plugin>. In other words,
replace the hyphen in the PyPi package name with an underscore.

	The Python module that defines the plugin’s hooks/hook classes should be
name <plugin>.py.

	Task plugins that add command line options must prefix the option with
--<plugin>. So, if the plugin exampleplug wants to add the option
--ignore, then it must be called --exampleplug-ignore.

	The reason for this is to avoid option collisions between different plugins.

	Note that this does not apply to extension command plugins, as they do
not piggyback on existing commands.

For an example plugin that follows these conventions, have a look at
repobee-junit4 [https://github.com/repobee/repobee-junit4]. Granted that the plugin follows these conventions and is
installed, it can be loaded like any other RepoBee plugin (see Using
Existing Plugins [https://repobee.readthedocs.io/en/stable/plugins.html#using-existing-plugins]).

Hooks

There are two types of hooks in RepoBee: core hooks and extension
hooks.

Core hooks

Core hooks provide core functionality for RepoBee, and always have a
default implementation in repobee.ext.defaults. Providing a
different plugin implementation will override this behavior, thereby
changing some core part of RepoBee. In general, only one implementation
of a core hook will run per invocation of RepoBee. All core hooks are
defined in repobee_plug._corehooks.

Important

Note that the default implementations in repobee.ext.defaults may
simply be imported into the module. They are not necessarily defined
there.

Extension hooks

Extension hooks extend the functionality of RepoBee in various ways. These are
probably of most interest to most people looking to create plugins for RepoBee.
Unlike the core hooks, there are no default implementations of the extension
hooks, and multiple implementations can be run on each invocation of
RepoBee. All extension hooks are defined in repobee_plug._exthooks.

Tasks

RepoBee has a notion of a task, which is a collection of one or more
interdependent functions. The purpose of all tasks is to act on repositories.
For example, the built-in pylint
plugin [https://repobee.readthedocs.io/en/stable/plugins.html#pylint] is a task
whose act consists of running static analysis on all Python files in a
repository. The repobee-junit4
plugin [https://github.com/repobee/repobee-junit4] is another task plugin whose
act consists of running JUnit4 unit tests on production code in the repository.
Tasks can run on master repos before they are pushed to student repos, or on
student repos after they have been cloned.

Extension commands

An extension command is a top level command that’s added to the RepoBee
command line interface. The built-in config-wizard command is implemented as
an extension command, and allows a user of RepoBee to edit the configuration
file. The repobee-feedback plugin [https://github.com/repobee/repobee-feedback] provides the issue-feedback
command, which opens feedback issues in student repositories based on local
text files. Extension commands are pretty awesome because they integrate
seamlessly with RepoBee, can leverage some of RepoBee’s powerful CLI
functionality and can do pretty much whatever they want on top of that.

Implementing hook functions

There are two ways to implement hooks: as standalone functions or as methods
wrapped in a Plugin class. In the following two
sections, I will briefly show both approaches. For a comprehensive guide on how
to use these approaches, refer to the Creating plugins section.

Standalone hook functions

Hook functions can be implemented as standalone functions by decorating them
with the repobee_hook() decorator. For example, if we
wanted to implement the clone_task hook, we could do it like this:

exampleplug.py

import repobee_plug as plug

@plug.repobee_hook
def clone_task():
 """Return a useless Task."""
 return plug.Task(act=act)

def act(path, api):
 return plug.Result(
 name="exampleplug",
 msg="This is a useless plugin!",
 status=plug.Status.SUCCESS,
)

The clone_task hook is described in more detail in Creating plugins.
For a complete plugin written with this approach, see the repobee-gofmt plugin [https://github.com/slarse/repobee-gofmt].

Hook functions in a plugin class

Wrapping hook implementations in a class inheriting from
Plugin is recommended way to write plugins for
RepoBee that are in any way complicated. A plugin class is instantiated exactly
once, and that instance then persists throughout the execution of one RepoBee
command, making it a convenient way to implement plugins that require command
line options or config values. The Plugin
class also performs some sanity checks when a subclass is defined to make sure
that all public functions have hook function names, which comes in handy if you
are in the habit of misspelling stuff (aren’t we all?). Doing it this way,
exampleplug.py would look like this:

exampleplug.py

import repobee_plug as plug

PLUGIN_NAME = 'exampleplug'

class ExamplePlugin(plug.Plugin):
 """Example plugin that implements the clone_task hook."""

 def clone_task(self):
 """Return a useless Task."""
 return plug.Task(act=self._act)

 def _act(self, path, api):
 return plug.Result(
 name="exampleplug",
 msg="This is a useless plugin!",
 status=plug.Status.SUCCESS,
)

Note how the clone_task function now does not have the @plug.repobee_hook
decorator, that we prefixed act with an underscore to signify that it’s not
a public method (there is no hook function called act, so
Plugin will raise if we forget the leading
underscore), and that the self argument was added to all functions. For a
complete example of a plugin written with this approach, see the
repobee-junit4 [https://github.com/repobee/repobee-junit4] plugin.

Creating plugins

Creating plugins for RepoBee is easy, there is even a template that will start
you off with a fully functioning plugin! In this section, I will show you
everything you need to know to create task and extension command plugins. Before
we begin, you will need to install cookiecutter [https://github.com/cookiecutter/cookiecutter].

$ python3 -m pip install --user --upgrade cookiecutter

With this, we will be able to use the repobee-plugin-cookiecutter template [https://github.com/repobee/repobee-plugin-cookiecutter] to get starter code
both for basic and advanced plugins, with minimal effort.

Note

In all of the examples in this tutorial, I will use the plugin name
exampleplug. This is provided to the template as the plugin_name
option. Wherever you see exampleplug in file names, command line
options, configuration files etc, exampleplug will be replaced by
whatever you provide for the plugin_name opiton.

Creating task plugins

Most plugins for RepoBee are task plugins. The basic idea is that you write some
code for doing something (pretty much anything) in a repository, and RepoBee
scales your code to operate on any number of student or master repositories.
There are currently two types of tasks:

	Clone task: operates on student repositories after they have been
cloned with the clone command.

	Setup task: operates on master repositories before they are pushed to
student repositories in the setup and update commands.

	Currently, a setup task is not allowed to alter the contents of the master
Git repository (e.g. with git commit), but plans are in motion for
allowing this in RepoBee 3.

A task is defined with the Task data structure, and is
more or less just a container for a bunch of callback functions. This allows you
as a plugin creator to implement your tasks however you want. Want to just have
standalone functions? That’s fine. Want to use a class? Also works great.

Whether the task you create is a clone task or a setup task is decided by which
hook function(s) you implement. For example, if you implement the
clone_task() hook to return your
task, then you’ve got a clone task, and if you implement the
setup_task() hook you’ve got a setup
task. There’s no problem implementing both hooks if your task makes sense as
both a clone task and a setup task. Let’s have a look at a basic task to get an
idea for how it works.

Basic

A basic task plugin can be generated with cookiecutter using the
repobee-plugin-cookiecutter template. Below is a CLI trace of generating
one, which you can follow along with. Of course, replace any personal
information with your own.

Note

Things such as your name and email are only put into local files (most
notably into setup.py and LICENSE). It’s not actually sent anywhere.

Generating a basic task plugin

$ python3 -m cookiecutter gh:repobee/repobee-plugin-cookiecutter
author []: Simon Larsén
email []: slarse@slar.se
github_username []: slarse
plugin_name []: exampleplug
short_description []: An example task plugin
Select generate_basic_task:
1 - no
2 - yes
Choose from 1, 2 (1, 2) [1]: 2
Select generate_advanced_task:
1 - no
2 - yes
Choose from 1, 2 (1, 2) [1]:
$ ls
repobee-exampleplug

After the command has been run, you should have a basic plugin defined locally
in the repobee-exampleplug directory. Let’s have a look at what we got.

$ tree repobee-exampleplug
repobee-exampleplug/
├── LICENSE
├── README.md
├── repobee_exampleplug
│ ├── exampleplug.py
│ ├── __init__.py
│ └── __version.py
├── setup.py
└── tests
 └─test_exampleplug.py

Note how the directory structure adheres to the conventions defined in
Conventions. The actual plugin is contained entirely in
repobee_exampleplug/exampleplug.py, and this is where you want to make
changes to alter the behavior of the plugin. Let’s have a look at it.

exampleplug.py (note that docstrings have been removed for brevity)

import pathlib
import os

import repobee_plug as plug

PLUGIN_NAME = "exampleplug"

def act(path: pathlib.Path, api: plug.API):
 filepaths = [
 str(p) for p in path.resolve().rglob("*") if ".git" not in str(p).split(os.sep)
]
 output = os.linesep.join(filepaths)
 return plug.Result(name=PLUGIN_NAME, status=plug.Status.SUCCESS, msg=output)

@plug.repobee_hook
def clone_task() -> plug.Task:
 return plug.Task(act=act)

@plug.repobee_hook
def setup_task() -> plug.Task:
 return plug.Task(act=act)

As you can see, it’s rather uncomplicated. The act function simply finds
files in the repository at path, and returns a
Result with the results. Returning a
Result is optional, but if you don’t RepoBee will
not report any results for your plugin. As listing files makes sense both for
student and master repos, we can safely implement both the setup_task and
clone_task hooks, and return a Task with the
act callback specified. And that’s really all there is to to it.

There are some other notable files that you should be familiar with as well.

	README.md: You know what this is.

	LICENSE: This is the license file, which is relevant if you put this in a
public repository (for example on GitHub). It’s an MIT license by default, but
you can of course change it to whatever you want.

	setup.py: This is the file that allows the plugin to be installed. It will
work out-of-the-box. If you add any dependencies to your plugin, you must list
them in the required attribute in setup.py. See Packaging Python
Projects <https://packaging.python.org/tutorials/packaging-projects/> for
details.

	repobee_exampleplug/__version.py: This contains the version number for the
plugin. It defaults to 0.0.1. This is only important if you plan to
distribute your plugin.

	tests/ A directory with unit tests. It starts with a single default test
that makes sure the plugin can be registered with RepoBee, which is a minimum
requirement for it actually working.

And that’s it for creating a basic plugin.

Interlude - Installing your plugin

Since you’re here looking how to create your own plugins, I’m guessing you’ve
already tried using a plugin or two (if not, have a look at the plugin section
of the user guide [https://repobee.readthedocs.io/en/stable/plugins.html]). To
be able to use the exampleplug plugin that we just created, it needs to be
installed. That can easily be done like this:

local install
$ python3 -m pip install --user --upgrade path/to/repobee-exampleplug
or from a Git repository
$ python3 -m pip install --user --upgrade git+https://urltogitrepo.git

Important

Each time you update your plugin, you must install it again!

To check that the plugin was installed correctly and is recognized, we can run
RepoBee with the plugin enabled and request the help section.

$ repobee -p exampleplug --help

In the displayed help section, just over the list of positional arguments, you
should see something that looks like this:

Loaded plugins: exampleplug-0.0.1, defaults-2.4.0

If you see exampleplug listed among the plugins, then it was correctly
installed! To try it out, you can simply run the clone or setup command
with exampleplug enabled. It should give you output like this:

$ repobee -p exampleplug clone --mn task-1 -s slarse
[INFO] Cloning into student repos ...
[INFO] Cloned into https://[...]/slarse-task-1
[INFO] Executing tasks ...
[INFO] Processing slarse-task-1
[INFO] hook results for slarse-task-1

exampleplug: SUCCESS
/tmp/tmp_p0v8ha2/slarse-task-1/src
/tmp/tmp_p0v8ha2/slarse-task-1/README.md
/tmp/tmp_p0v8ha2/slarse-task-1/.gitignore
/tmp/tmp_p0v8ha2/slarse-task-1/docs
/tmp/tmp_p0v8ha2/slarse-task-1/src/README.md
/tmp/tmp_p0v8ha2/slarse-task-1/docs/README.md

If you’ve gotten this far, then your plugin is working and you can start
adapting it to your needs. If you need more advanced functionality for your
task, such as the possibility of providing command line options or config
values, then have a look at the advanced task in the next section.

Advanced

You can generate an advanced task plugin with the same cookiecutter template by
selecting “yes” on the generate_advanced_task option. The advanced task
template does the same thing as the basic one, but it also accepts a command
line option (--exampleplug-pattern), which can also be configured in the
config file by adding the pattern option to the [exampleplug] section.
Before you proceed with this section, make sure to have a careful look at the
Task data structure. When you’ve done so, proceed
with generating a plugin like this:

Generating an advanced task plugin

$ python3 -m cookiecutter gh:repobee/repobee-plugin-cookiecutter
author []: Simon Larsén
email []: slarse@slar.se
github_username []: slarse
plugin_name []: exampleplug
short_description []: An example task plugin
Select generate_basic_task:
1 - no
2 - yes
Choose from 1, 2 (1, 2) [1]:
Select generate_advanced_task:
1 - no
2 - yes
Choose from 1, 2 (1, 2) [1]: 2
$ ls
repobee-exampleplug

The layout will be exactly the same as with the Basic task, but
the exampleplug.py file will be much more elaborate. It is a bit on the
large side so I won’t inline it here, but I can point out the differences.

	The plugin is implemented as a class that extends the
Plugin class, as described in Hook functions in a plugin class
for non-trivial plugins.

	The add_option callback is implemented to add a few options to the
parser.

	The handle_args callback is also provided to handle the new options added
by add_option. The reason that handle_args is a separate callback,
instead of just passing parsed args to the act callback, is to allow for
fail-fast behavior in case of bad arguments. The act callback is
typically called fairly late in the execution of RepoBee, but the
handle_args callback can be called very early.

	It also implements
config_hook() to access the
configuration file. There are a few reasons why there is no
handle_config-ish callback in Task. First,
config file handling can’t depend on the context (e.g. if setup or
clone is called), as the config file is accessed before the CLI arguments
are parsed. Second, there are other plugins (such as extension commands) that
also need to be able to access the config file, so it’s easier to simply have
one way of doing it.

Note

If you named your plugin something other than exampleplug, then the
command line option and config file sections will be named accordingly.

If you install the plugin as specified in the Interlude - Installing your plugin section and
run repobee -p exampleplug clone -h, you should see the added command line
option listed in the help section. The plugin can then for example be run like
this to list only files ending with md:

$ repobee -p exampleplug clone --mn task-1 -s slarse --exampleplug-pattern '.*md'
[INFO] Cloning into student repos ...
[INFO] Cloned into https://[...]/slarse-task-1
[INFO] Executing tasks ...
[INFO] Processing slarse-task-1
[INFO] hook results for slarse-task-1

exampleplug: SUCCESS
/tmp/tmp_p0v8ha2/slarse-task-1/README.md
/tmp/tmp_p0v8ha2/slarse-task-1/src/README.md
/tmp/tmp_p0v8ha2/slarse-task-1/docs/README.md

That’s pretty much it for tasks. Refer to the documentation of the individual
parts for details.

Creating extension command plugins

An extension command is a top-level command in the RepoBee CLI which seamlessly
integrates with the base tool. Creating an extension command is fairly similar
to creating an advanced task, but it is somewhat easier as an extension
command does not need to integrate into an existing command, making the
definition simpler. For a user, calling an extension command is as simple as
enabling the plugin and running repobee <EXT_COMMAND_NAME>. As an example,
the built-in config-wizard command is actually implemented as an extension
command. Before we dive into how to create an extension command plugin, let’s
first have a look at the core components that make up extension commands.

Extension command components

Extension commands consist of two primary components: the
ExtensionCommand container and the
ExtensionParser parser class.

The ExtensionParser

A ExtensionParser is fairly straightforward: it’s
simply a thin wrapper around an argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser] that’s
instantiated without any arguments. It can then be used identically to an
argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser].

Example usage of an ExtensionParser

import repobee_plug as plug

parser = plug.ExtensionParser()
parser.add_argument(
 "-n",
 "--name",
 help="Your name.",
 required=True,
 type=str,
)
parser.add_argument(
 "-a",
 "--age",
 help="Your age.",
 type=int,
)

The ExtensionParser is then added to an extension
command, which we’ll have a look at next.

The ExtensionCommand

ExtensionCommand defines an extension command in much
the same way as a Task defines a task. Most of its
properties are self-explanatory, but the callback, requires_api and
requires_base_parsers deserve a closer look.

First of all, requires_base_parsers is an interesting feature which allows
an extension command to request parser components from RepoBee’s core parser.
The currently available parsers are defined in the
BaseParser enum. As an example, if you provide
requires_base_parsers=[plug.BaseParser.STUDENTS], the
--students and --students-file options are added to the extension
parser. Not only does this add options to your parser, but they are processed
automatically as well. In the case of the students parser, RepoBee will
automatically check the configuration file for the students_file option, and
also parse the raw CLI input into a list of Team
tuples for you. In essence, the parsers you can request to have added are parsed
and processed automatically by RepoBee in such a way that your extension command
can provide the same experience as RepoBee’s core commands, without having to do
any work. This is only semi-well documented at the moment, but it’s easy enough
to simply try passing different base parsers to the requires_base_parsers.

The callback should be a function that accepts the parsed arguments from the
extension command’s parser, as well as an API
instance. Again, if the command requires any base parsers, the arguments from
these will be both parsed and processed. The api argument is only passed a
meaningful value if requires_api=True, otherwise None is passed.

Basic

Of course, the repobee-plugin-cookiecutter template [https://github.com/repobee/repobee-plugin-cookiecutter] has starter code for
extension commands. There’s a basic and an advanced template, and we’ll start
with the basic one.

Generating a basic extension command plugin

$ python3 -m cookiecutter gh:repobee/repobee-plugin-cookiecutter
author []: Simon Larsén
email []: slarse@slar.se
github_username []: slarse
plugin_name []: exampleplug
short_description []: An example task plugin
Select generate_basic_task:
1 - no
2 - yes
Choose from 1, 2 (1, 2) [1]:
Select generate_advanced_task:
1 - no
2 - yes
Choose from 1, 2 (1, 2) [1]:
Select generate_basic_extension_command:
1 - no
2 - yes
Choose from 1, 2 [1]: 2
Select generate_advanced_extension_command:
1 - no
2 - yes
Choose from 1, 2 [1]:
$ ls
repobee-exampleplug

It will again generate the same directory structure as for tasks, but the plugin
will look something like this instead:

exampleplug.py

import argparse
import configparser
from typing import List, Mapping, Optional

import repobee_plug as plug

PLUGIN_NAME = "exampleplug"

def callback(
 args: argparse.Namespace, api: Optional[plug.API]
) -> Optional[Mapping[str, List[plug.Result]]]:
 # do whatever you want to do!
 return {
 PLUGIN_NAME: [plug.Result(
 name=PLUGIN_NAME, status=plug.Status.SUCCESS, msg="Hello, world!"
)]
 }

@plug.repobee_hook
def create_extension_command() -> plug.ExtensionCommand:
 """Create an extension command with no arguments.

 Returns:
 The extension command to add to the RepoBee CLI.
 """
 return plug.ExtensionCommand(
 parser=plug.ExtensionParser(), # empty parser
 name="example-command",
 help="An example command.",
 description="An example extension command.",
 callback=callback,
)

This extension command does nothing, it simply reports some results to RepoBee
with the repobee_plug.Result data structure. Installing this (see
Interlude - Installing your plugin) and enabling it (again with -p exampleplug) will add
the example-command command to your RepoBee CLI.

$ repobee -p exampleplug example-command
[INFO] hook results for exampleplug

exampleplug: SUCCESS
Hello, world!

Not very interesting, but it gives you a base to start on to do very simple
extension commands. To also add command line options, configuration file parsing
and the like, see the advanced extension.

Advanced

To generate the advanced extension command, simply select it when running the
template generation.

Generating an advanced extension command plugin

$ python3 -m cookiecutter gh:repobee/repobee-plugin-cookiecutter
author []: Simon Larsén
email []: slarse@slar.se
github_username []: slarse
plugin_name []: exampleplug
short_description []: An example task plugin
Select generate_basic_task:
1 - no
2 - yes
Choose from 1, 2 (1, 2) [1]:
Select generate_advanced_task:
1 - no
2 - yes
Choose from 1, 2 (1, 2) [1]:
Select generate_basic_extension_command:
1 - no
2 - yes
Choose from 1, 2 [1]:
Select generate_advanced_extension_command:
1 - no
2 - yes
Choose from 1, 2 [1]: 2
$ ls
repobee-exampleplug

Again, it will have the exact same directory structure as all the other plugins
that we’ve generated, and all differences are contained in exampleplug.py.
This extension command adds options, uses the configuration file and has
internal state. It is much too large to include here, but I recommend that you
simply read the source code and try to figure out how it works. Given the time,
I will add more elaborate instructions here, but right now this is as far as I
can take it.

Public API

All of the public functions and classes of repobee-plug can be imported
from the top-level package repobee_plug. Only this API is stable, the
internal modules currently are not. The recommended way to use repobee_plug
is to import it either as is, or alias it to plug. Typically, I do the
latter.

Example usage of repobee-plug

import repobee_plug as plug

def act(path, api):
 result = plug.Result(
 name="hello",
 msg="Hello, world!",
 status=plug.Status.SUCCESS,
)
 return result

@plug.repobee_hook
def clone_task():
 """A hello world clone task."""
 return plug.Task(act=act)

Hook functions

There are two parts to hook functions in RepoBee: the specifications of the
hook functions, and the implementation markers to signify that you have
(attempted) to implement a hook.

Implementation markers

There are two ways to mark a function as a hook implementation: with the
repobee_hook decorator or using the Plugin class.

	
class repobee_plug.Plugin

	This is a base class for plugin classes. For plugin classes to be picked
up by RepoBee, they must inherit from this class.

Public methods must be hook methods. If there are any public methods that
are not hook methods, an error is raised on creation of the class. As long
as the method has the correct name, it will be recognized as a hook method
during creation. However, if the signature is incorrect, the plugin
framework will raise a runtime exception once it is called. Private methods
(i.e. methods prefixed with _) carry no restrictions.

The signatures of hook methods are not checked until the plugin class is
registered by the repobee_plug.manager (an instance of
pluggy.manager.PluginManager). Therefore, when testing a
plugin, it is a good idea to include a test where it is registered with the
manager to ensure that it has the correct signatures.

A plugin class is instantiated exactly once; when RepoBee loads the plugin.
This means that any state that is stored in the plugin will be carried
throughout the execution of a RepoBee command. This makes plugin classes
well suited for implementing tasks that require command line options or
configuration values, as well as for implementing extension commands.

Extension hooks

Important

The hook function specifications are part of the public API for
documentation purposes only. You should not import or use these function in
any way, but only implement them as described in
Implementing hook functions.

Hookspecs for repobee extension hooks.

Extension hooks add something to the functionality of repobee, but are not
necessary for its operation. Currently, all extension hooks are related to
cloning repos.

	
class repobee_plug._exthooks.CloneHook

	Hook functions related to cloning repos.

	
act_on_cloned_repo(path, api)

	Do something with a cloned repo.

Deprecated since version 0.12.0: This hook is has been replaced by TaskHooks.clone_task().
Once all known, existing plugins have been migrated to the new
hook, this hook will be removed.

	Parameters

	
	path (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]) – Path to the repo.

	api (API) – An instance of repobee.github_api.GitHubAPI.

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Result]

	Returns

	optionally returns a Result namedtuple for reporting the
outcome of the hook. May also return None, in which case no
reporting will be performed for the hook.

	
clone_parser_hook(clone_parser)

	Do something with the clone repos subparser before it is used used to
parse CLI options. The typical task is to add options to it.

Deprecated since version 0.12.0: This hook is has been replaced by TaskHooks.clone_task().
Once all known, existing plugins have been migrated to the new
hook, this hook will be removed.

	Parameters

	clone_parser (ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) – The clone subparser.

	Return type

	None

	
config_hook(config_parser)

	Hook into the config file parsing.

	Parameters

	config – the config parser after config has been read.

	Return type

	None

	
parse_args(args)

	Get the raw args from the parser. Only called for the clone parser.
The typical task is to fetch any values from options added in
clone_parser_hook().

	Parameters

	args (Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) – The full namespace returned by
argparse.ArgumentParser.parse_args()

	Return type

	None

	
class repobee_plug._exthooks.ExtensionCommandHook

	Hooks related to extension commands.

	
create_extension_command()

	Create an extension command to add to the RepoBee CLI. The command will
be added as one of the top-level subcommands of RepoBee. This hook is
called precisely once, and should return an
ExtensionCommand.

def command(args: argparse.Namespace, api: apimeta.API)

The command function will be called if the extension command is
used on the command line.

Note that the
RepoBeeExtensionParser class is
just a thin wrapper around argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser], and can
be used in an identical manner. The following is an example definition
of this hook that adds a subcommand called example-command, that
can be called with repobee example-command.

import repobee_plug as plug

def callback(args: argparse.Namespace, api: plug.API) -> None:
 LOGGER.info("callback called with: {}, {}".format(args, api))

@plug.repobee_hook
def create_extension_command():
 parser = plug.RepoBeeExtensionParser()
 parser.add_argument("-b", "--bb", help="A useless argument")
 return plug.ExtensionCommand(
 parser=parser,
 name="example-command",
 help="An example command",
 description="Description of an example command",
 callback=callback,
)

Important

If you need to use the api, you set requires_api=True in the
ExtensionCommand. This will automatically add the options that
the API requires to the CLI options of the subcommand, and
initialize the api and pass it in.

See the documentation for ExtensionCommand
for more details on it.

	Return type

	ExtensionCommand

	Returns

	A ExtensionCommand.

	
class repobee_plug._exthooks.TaskHooks

	Hook functions relating to RepoBee tasks.

	
clone_task()

	Create a task to run on a copy of a cloned student repo. This hook
replaces the old act_on_cloned_repo hook.

Implementations of this hook should return a Task, which
defines a callback that is called after all student repos have been
cloned. See the definition of Task for details.

	Return type

	Task

	Returns

	A Task instance defining a RepoBee task.

	
setup_task()

	Create a task to run on a copy of the master repo before it is
pushed out to student repositories. This can for example be pre-flight
checks of the master repo, or something else entirely.

Implementations of this hook should return a Task, which
defines a callback that is called after the master repo has been safely
copied, but before that copy is pushed out to student repositories.
Note that any changes to the repository must be committed to actually
show up in the student repositories.

Note

Structural changes to the master repo are not currently supported.
Changes to the repository during the callback will not be reflected
in the generated repositories. Support for preprocessing (such that
changes do take effect) is a potential future feature.

	Return type

	Task

Core hooks

Important

The hook function specifications are part of the public API for
documentation purposes only. You should not import or use these function in
any way, but only implement them as described in
Implementing hook functions.

Hookspecs for repobee core hooks.

Core hooks provide the basic functionality of repobee. These hooks all have
default implementations, but are overridden by any other implementation. All
hooks in this module should have the firstresult=True option to the hookspec
to allow for this dynamic override.

	
class repobee_plug._corehooks.APIHook

	Hooks related to platform APIs.

	
api_init_requires()

	Return which of the arguments to apimeta.APISpec.__init__ that the
given API requires. For example, the GitHubAPI requires all, but the
GitLabAPI does not require user.

	Return type

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Returns

	Names of the required arguments.

	
get_api_class()

	Return an API platform class. Must be a subclass of apimeta.API.

	Returns

	An apimeta.API subclass.

	
class repobee_plug._corehooks.PeerReviewHook

	Hook functions related to allocating peer reviews.

	
generate_review_allocations(teams, num_reviews)

	Generate ReviewAllocation
tuples from the provided teams, given that this concerns reviews for a
single master repo.

The provided teams of students should be treated as units. That is to
say, if there are multiple members in a team, they should always be
assigned to the same review team. The best way to merge two teams
team_a and team_b into one review team is to simply do:

team_c = apimeta.Team(members=team_a.members + team_b.members)

This can be scaled to however many teams you would like to merge. As a
practical example, if teams team_a and team_b are to review
team_c, then the following
ReviewAllocation tuple, here
called allocation, should be contained in the returned list.

review_team = apimeta.Team(members=team_a.members + team_b.members)
allocation = containers.ReviewAllocation(
 review_team=review_team,
 reviewed_team=team_c,
)

Note

Respecting the num_reviews argument is optional: only do it if
it makes sense. It’s good practice to issue a warning if
num_reviews is ignored, however.

	Parameters

	
	team – A list of Team tuples.

	num_reviews (int [https://docs.python.org/3/library/functions.html#int]) – Amount of reviews each student should perform (and
consequently amount of reviewers per repo)

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][ReviewAllocation]

	Returns

	
	A list of ReviewAllocation

	tuples.

API Wrappers

The API wrappers in repobee-plug provide a level of abstraction from the
the underlying platform API (e.g. GitHub or GitLab), and allows RepoBee to work
with different platforms. To fully support a new platform, the
API must be subclassed an all of its functions
implemented. It is possible to support a subset of the functionality as well,
but you will need to look into the RepoBee implementation to see which
API methods are required for which commands.

	
class repobee_plug.Team

	Wrapper class for a Team API object.

	
class repobee_plug.TeamPermission

	Enum specifying team permissions on creating teams. On GitHub, for
example, this can be e.g. push or pull.

	
class repobee_plug.Issue

	Wrapper class for an Issue API object.

	
static from_dict(asdict)

	Take a dictionary produced by Issue.to_dict and reconstruct the
corresponding instance. The implementation field is lost in a
to_dict -> from_dict roundtrip.

	Return type

	Issue

	
to_dict()

	Return a dictionary representation of this namedtuple, without
the implementation field.

	
class repobee_plug.IssueState

	Enum specifying a possible issue state.

	
class repobee_plug.Repo

	Wrapper class for a Repo API object.

	
class repobee_plug.API(base_url, token, org_name, user)

	API base class that all API implementations should inherit from. This
class functions similarly to an abstract base class, but with a few key
distinctions that affect the inheriting class.

	Public methods must override one of the public methods of
APISpec. If an inheriting class defines any other public
method, an APIError [https://repobee.readthedocs.io/en/stable/code.html#_repobee.exception.APIError] is raised when the
class is defined.

	All public methods in APISpec have a default implementation
that simply raise a NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError]. There is no
requirement to implement any of them.

	
add_repos_to_review_teams(team_to_repos, issue=None)

	Add repos to review teams. For each repo, an issue is opened, and
every user in the review team is assigned to it. If no issue is
specified, sensible defaults for title and body are used.

	Parameters

	
	team_to_repos (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A mapping from a team name to an iterable of repo
names.

	issue (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Issue]) – An optional Issue tuple to override the default issue.

	Return type

	None

	
close_issue(title_regex, repo_names)

	Close any issues in the given repos in the target organization,
whose titles match the title_regex.

	Parameters

	
	title_regex (str [https://docs.python.org/3/library/stdtypes.html#str]) – A regex to match against issue titles.

	repo_names (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Names of repositories to close issues in.

	Return type

	None

	
create_repos(repos)

	Create repos in the target organization according the those specced
by the repos argument. Repos that already exist are skipped.

	Parameters

	repos (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Repo]) – Repos to be created.

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Returns

	A list of urls to the repos specified by the repos argument,
both those that were created and those that already existed.

	
delete_teams(team_names)

	Delete all teams in the target organizatoin that exactly match one
of the provided team_names. Skip any team name for which no match
is found.

	Parameters

	team_names (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of team names for teams to be deleted.

	Return type

	None

	
discover_repos(teams)

	Return all repositories related to the provided teams.

	Parameters

	teams (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Team]) – Team tuples.

	Return type

	Generator [https://docs.python.org/3/library/typing.html#typing.Generator][Repo, None, None]

	Returns

	A list of Repo tuples.

	
ensure_teams_and_members(teams, permission=<TeamPermission.PUSH: 'push'>)

	Ensure that the teams exist, and that their members are added to the
teams.

Teams that do not exist are created, teams that already exist are
fetched. Members that are not in their teams are added, members that do
not exist or are already in their teams are skipped.

	Parameters

	
	teams (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Team]) – A list of teams specifying student groups.

	permission (TeamPermission) – The permission these teams (or members of them) should
be given in regards to associated repositories.

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][Team]

	Returns

	A list of Team API objects of the teams provided to the function,
both those that were created and those that already existed.

	
extract_repo_name(repo_url)

	Extract a repo name from the provided url.

	Parameters

	repo_url (str [https://docs.python.org/3/library/stdtypes.html#str]) – A URL to a repository.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns

	The name of the repository corresponding to the url.

	
get_issues(repo_names, state=<IssueState.OPEN: 'open'>, title_regex='')

	Get all issues for the repos in repo_names an return a generator
that yields (repo_name, issue generator) tuples. Will by default only
get open issues.

	Parameters

	
	repo_names (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]) – An iterable of repo names.

	state (IssueState) – Specifies the state of the issue.

	title_regex (str [https://docs.python.org/3/library/stdtypes.html#str]) – If specified, only issues matching this regex are

	Defaults to the empty string (returned.) –

	Return type

	Generator [https://docs.python.org/3/library/typing.html#typing.Generator][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Generator [https://docs.python.org/3/library/typing.html#typing.Generator][Issue, None, None]], None, None]

	Returns

	A generator that yields (repo_name, issue_generator) tuples.

	
get_repo_urls(master_repo_names, org_name=None, teams=None)

	Get repo urls for all specified repo names in the organization. As
checking if every single repo actually exists takes a long time with a
typical REST API, this function does not in general guarantee that the
urls returned actually correspond to existing repos.

If the org_name argument is supplied, urls are computed relative to
that organization. If it is not supplied, the target organization is
used.

If the teams argument is supplied, student repo urls are
computed instead of master repo urls.

	Parameters

	
	master_repo_names (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of master repository names.

	org_name (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Organization in which repos are expected. Defaults to the
target organization of the API instance.

	teams (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][Team]]) – A list of teams specifying student groups. Defaults to None.

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Returns

	a list of urls corresponding to the repo names.

	
get_review_progress(review_team_names, teams, title_regex)

	Get the peer review progress for the specified review teams and
student teams by checking which review team members have opened issues
in their assigned repos. Only issues matching the title regex will be
considered peer review issues. If a reviewer has opened an issue in the
assigned repo with a title matching the regex, the review will be
considered done.

Note that reviews only count if the student is in the review team for
that repo. Review teams must only have one associated repo, or the repo
is skipped.

	Parameters

	
	review_team_names (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Names of review teams.

	teams (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Team]) – Team API objects specifying student groups.

	title_regex (str [https://docs.python.org/3/library/stdtypes.html#str]) – If an issue title matches this regex, the issue is
considered a potential peer review issue.

	Return type

	Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List]]

	Returns

	a mapping (reviewer -> assigned_repos), where reviewer is a str and
assigned_repos is a _repobee.tuples.Review.

	
get_teams()

	Get all teams related to the target organization.

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][Team]

	Returns

	A list of Team API object.

	
open_issue(title, body, repo_names)

	Open the specified issue in all repos with the given names, in the
target organization.

	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – Title of the issue.

	body (str [https://docs.python.org/3/library/stdtypes.html#str]) – Body of the issue.

	repo_names (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Names of repos to open the issue in.

	Return type

	None

	
static verify_settings(user, org_name, base_url, token, master_org_name=None)

	Verify the following (to the extent that is possible and makes sense
for the specifi platform):

	Base url is correct

	The token has sufficient access privileges

	
	Target organization (specifiend by org_name) exists

	
	If master_org_name is supplied, this is also checked to
exist.

	
	User is owner in organization (verify by getting

	
	If master_org_name is supplied, user is also checked to be an
owner of it.

organization member list and checking roles)

Should raise an appropriate subclass of
_repobee.exception.APIError [https://repobee.readthedocs.io/en/stable/code.html#_repobee.exception.APIError] when a problem is encountered.

	Parameters

	
	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – The username to try to fetch.

	org_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the target organization.

	base_url (str [https://docs.python.org/3/library/stdtypes.html#str]) – A base url to a github API.

	token (str [https://docs.python.org/3/library/stdtypes.html#str]) – A secure OAUTH2 token.

	org_name – Name of the master organization.

	Returns

	True if the connection is well formed.

	Raises

	_repobee.exception.APIError [https://repobee.readthedocs.io/en/stable/code.html#_repobee.exception.APIError]

Containers

The containers in repobee-plug are immutable classes for storing data.
Probably the most important containers are the
Result and the Task
classes.

	
class repobee_plug.Result(name, status, msg, data=None)

	Container for storing results from hooks.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name to associate with this result. This is typically the
name of the plugin that returns this result.

	status (Status) – Status of the plugin execution.

	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – A free-form result message.

	data (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][Any [https://docs.python.org/3/library/typing.html#typing.Any], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – Semi-structured data in the form of a dictionary. All of the
contents of the dictionary should be serializable as this is
primarily used for JSON storage.

	
class repobee_plug.Task(act, add_option=None, handle_args=None, persist_changes=False)

	A data structure for describing a task. Tasks are operations that
plugins can define to run on for example cloned student repos (a clone
task) or on master repos before setting up student repos (a setup task).
Only the act attribute is required, all other attributes can be
omitted.

The callback methods should have the following headers.

def act(
 path: pathlib.Path, api: repobee_plug.API
) -> Optional[containers.Result]:

def add_option(parser: argparse.ArgumentParser) -> None:

def handle_args(args: argparse.Namespace) -> None:

Note

The functions are called in the following order: add_option ->
handle_args -> act.

Important

The act callback should never change the Git repository it acts
upon (e.g. running commands such as git add, git checkout or
git commit). This can have adverse and unexpected effects on
RepoBee’s functionality. It is however absolutely fine to change the
files in the Git working tree, as long as nothing is added or
committed.

Each callback is called at most once. They are not guaranteed to execute,
because there may be an unexpected crash somewhere else, or the plugin may
not come into scope (for example, a clone task plugin will not come into
scope if repobee setup is run). The callbacks can do whatever is
appropriate for the plugin, except for changing any Git repositories. For
information on the types used in the callbacks, see the Python stdlib
documentation for argparse [https://docs.python.org/3/library/argparse.html#module-argparse].

As an example, a simple clone task can be defined like so:

import repobee_plug as plug

def act(path, api):
 return plug.Result(
 name="example",
 msg="IT LIVES!",
 status=plug.Status.SUCCESS
)

@plug.repobee_hook
def clone_task():
 return plug.Task(act=act)

If your task plugin also needs to access the configuration file, then
implement the separate config_hook hook. For more elaborate
instructions on creating tasks, see the tutorial.

	Parameters

	
	act (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], API], Result]) – A required callback function that takes the path to a
repository worktree and an API instance, and optionally returns
a Result to report results.

	add_option (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]], None]]) – An optional callback function that adds options to the
CLI parser.

	handle_args (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]], None]]) – An optional callback function that receives the parsed
CLI args.

	persist_changes (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the task requires that changes to the
repository that has been acted upon be persisted. This means
different things in different contexts (e.g. whether the task
is executed in a clone context or in a setup context), and may
not be supported for all contexts.

	
class repobee_plug.Deprecation

	
	Parameters

	
	replacement (str [https://docs.python.org/3/library/stdtypes.html#str]) – The functionality that replaces the deprecated
functionality.

	remove_by_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – A version number on the form
MAJOR.MINOR.PATCH by which the deprecated functionality will be
removed.

Create new instance of Deprecation(replacement, remove_by_version)

	
remove_by_version

	Alias for field number 1

	
replacement

	Alias for field number 0

	
class repobee_plug.Status

	Status codes enums for Results.

	
SUCCESS

	Signifies a plugin execution without any complications.

	
WARNING

	Signifies a plugin execution with non-critical failures.

	
ERROR

	Signifies a critical error during execution.

	
class repobee_plug.ExtensionCommand(parser, name, help, description, callback, requires_api=False, requires_base_parsers=None)

	Class defining an extension command for the RepoBee CLI.

	Parameters

	
	parser (ExtensionParser) – The parser to use for the CLI.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the command.

	help (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text that will be displayed when running repobee -h

	description (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text that will be displayed when calling the -h
option for this specific command. Should be elaborate in
describing the usage of the command.

	callback (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][API]], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Result]]]) – A callback function that is called if this command is
used on the CLI. It is passed the parsed namespace and the
platform API. It may optionally return a result mapping on
the form (name: str -> List[Result]) that’s reported by
RepoBee.

	requires_api (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the base arguments required for the platform
API are added as options to the extension command, and the
platform API is then passed to the callback function. It is
then important not to have clashing option names. If False, the
base arguments are not added to the CLI, and None is passed in
place of the API. If you include REPO_DISCOVERY in
requires_base_parsers, then you must set this to True.

	requires_base_parsers (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][BaseParser]]) – A list of
repobee_plug.BaseParser that decide which base
parsers are added to this command. For example, setting
requires_base_parsers = [BaseParser.STUDENTS] adds the
--students and --students-file options to this
extension command’s parser.

	
class repobee_plug.ExtensionParser

	An ArgumentParser specialized for RepoBee extension commands.

	
add_argument(dest, ..., name=value, ...)

	add_argument(option_string, option_string, …, name=value, …)

	
error(message: string)

	Prints a usage message incorporating the message to stderr and
exits.

If you override this in a subclass, it should not return – it
should either exit or raise an exception.

	
class repobee_plug.ReviewAllocation

	
	Parameters

	
	review_team (Team) – The team of reviewers.

	reviewed_team (Team) – The team that is to be reviewed.

Create new instance of ReviewAllocation(review_team, reviewed_team)

	
review_team

	Alias for field number 0

	
reviewed_team

	Alias for field number 1

	
class repobee_plug.Review

	
	Parameters

	
	repo (Repo) – The reviewed repository.

	done (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not the review is done.

Create new instance of Review(repo, done)

	
done

	Alias for field number 1

	
repo

	Alias for field number 0

Helpers

repobee-plug defines various helper functions and classes for use in both
RepoBee core and in plugins. These vary from generating repo names, to handling
deprecation, to mapping key data structures from and to JSON.

	
repobee_plug.json_to_result_mapping(json_string)

	Deserialize a JSON string to a mapping repo_name: str -> hook_results:
List[Result]

	Return type

	Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][Result]]

	
repobee_plug.result_mapping_to_json(result_mapping)

	Serialize a result mapping repo_name: str -> hook_results:
List[Result] to JSON.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
repobee_plug.generate_repo_name(team_name, master_repo_name)

	Construct a repo name for a team.

	Parameters

	
	team_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the associated team.

	master_repo_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the template repository.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
repobee_plug.generate_repo_names(team_names, master_repo_names)

	Construct all combinations of generate_repo_name(team_name,
master_repo_name) for the provided team names and master repo names.

	Parameters

	
	team_names (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]) – One or more names of teams.

	master_repo_names (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]) – One or more names of master repositories.

	Return type

	Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Returns

	a list of repo names for all combinations of team and master repo.

	
repobee_plug.generate_review_team_name(student, master_repo_name)

	Generate a review team name.

	Parameters

	
	student (str [https://docs.python.org/3/library/stdtypes.html#str]) – A student username.

	master_repo_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of a master repository.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns

	a review team name for the student repo associated with this master
repo and student.

	
repobee_plug.deprecated_hooks()

	
	Return type

	Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Deprecation]

	Returns

	A mapping of hook names to Deprecation tuples.

Exceptions

	
exception repobee_plug.PlugError(*args, **kwargs)

	Base class for all repobee_plug exceptions.

Instantiate a PlugError.

	Parameters

	
	args – List of positionals. These are passed directly to
Exception [https://docs.python.org/3/library/exceptions.html#Exception]. Typically, you should only
pass an error message here.

	kwargs – Keyword arguments to indicate what went wrong.
For example, if the argument a caused the error, then you
should pass a=a as a kwarg so it can be introspected at a
later time.

	
exception repobee_plug.ExtensionCommandError(*args, **kwargs)

	Raise when an :py:class:~repobee_plug.containers.ExtensionCommand: is
incorrectly defined.

Instantiate a PlugError.

	Parameters

	
	args – List of positionals. These are passed directly to
Exception [https://docs.python.org/3/library/exceptions.html#Exception]. Typically, you should only
pass an error message here.

	kwargs – Keyword arguments to indicate what went wrong.
For example, if the argument a caused the error, then you
should pass a=a as a kwarg so it can be introspected at a
later time.

	
exception repobee_plug.HookNameError(*args, **kwargs)

	Raise when a public method in a class that inherits from
Plugin does not have a hook name.

Instantiate a PlugError.

	Parameters

	
	args – List of positionals. These are passed directly to
Exception [https://docs.python.org/3/library/exceptions.html#Exception]. Typically, you should only
pass an error message here.

	kwargs – Keyword arguments to indicate what went wrong.
For example, if the argument a caused the error, then you
should pass a=a as a kwarg so it can be introspected at a
later time.

repobee_plug Module Reference

This is the internal API of repobee_plug, which is not stable.

_apimeta

Metaclass for API implementations.

APIMeta defines the behavior required of platform API
implementations, based on the methods in APISpec. With platform
API, we mean for example the GitHub REST API, and the GitLab REST API. The
point is to introduce another layer of indirection such that higher levels of
RepoBee can use different platforms in a platform-independent way.
API is a convenience class so consumers don’t have to use the
metaclass directly.

Any class implementing a platform API should derive from API. It
will enforce that all public methods are one of the method defined py
APISpec, and give a default implementation (that just raises
NotImplementedError) for any unimplemented API methods.

	
class repobee_plug._apimeta.API(base_url, token, org_name, user)

	API base class that all API implementations should inherit from. This
class functions similarly to an abstract base class, but with a few key
distinctions that affect the inheriting class.

	Public methods must override one of the public methods of
APISpec. If an inheriting class defines any other public
method, an APIError [https://repobee.readthedocs.io/en/stable/code.html#_repobee.exception.APIError] is raised when the
class is defined.

	All public methods in APISpec have a default implementation
that simply raise a NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError]. There is no
requirement to implement any of them.

	
class repobee_plug._apimeta.APIMeta

	Metaclass for an API implementation. All public methods must be a
specified api method, but all api methods do not need to be implemented.

	
class repobee_plug._apimeta.APIObject

	Base wrapper class for platform API objects.

	
class repobee_plug._apimeta.APISpec(base_url, token, org_name, user)

	Wrapper class for API method stubs.

Important

This class should not be inherited from directly, it serves only to
document the behavior of a platform API. Classes that implement this
behavior should inherit from API.

	
add_repos_to_review_teams(team_to_repos, issue=None)

	Add repos to review teams. For each repo, an issue is opened, and
every user in the review team is assigned to it. If no issue is
specified, sensible defaults for title and body are used.

	Parameters

	
	team_to_repos (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – A mapping from a team name to an iterable of repo
names.

	issue (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Issue]) – An optional Issue tuple to override the default issue.

	Return type

	None

	
close_issue(title_regex, repo_names)

	Close any issues in the given repos in the target organization,
whose titles match the title_regex.

	Parameters

	
	title_regex (str [https://docs.python.org/3/library/stdtypes.html#str]) – A regex to match against issue titles.

	repo_names (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Names of repositories to close issues in.

	Return type

	None

	
create_repos(repos)

	Create repos in the target organization according the those specced
by the repos argument. Repos that already exist are skipped.

	Parameters

	repos (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Repo]) – Repos to be created.

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Returns

	A list of urls to the repos specified by the repos argument,
both those that were created and those that already existed.

	
delete_teams(team_names)

	Delete all teams in the target organizatoin that exactly match one
of the provided team_names. Skip any team name for which no match
is found.

	Parameters

	team_names (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of team names for teams to be deleted.

	Return type

	None

	
discover_repos(teams)

	Return all repositories related to the provided teams.

	Parameters

	teams (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Team]) – Team tuples.

	Return type

	Generator [https://docs.python.org/3/library/typing.html#typing.Generator][Repo, None, None]

	Returns

	A list of Repo tuples.

	
ensure_teams_and_members(teams, permission=<TeamPermission.PUSH: 'push'>)

	Ensure that the teams exist, and that their members are added to the
teams.

Teams that do not exist are created, teams that already exist are
fetched. Members that are not in their teams are added, members that do
not exist or are already in their teams are skipped.

	Parameters

	
	teams (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Team]) – A list of teams specifying student groups.

	permission (TeamPermission) – The permission these teams (or members of them) should
be given in regards to associated repositories.

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][Team]

	Returns

	A list of Team API objects of the teams provided to the function,
both those that were created and those that already existed.

	
extract_repo_name(repo_url)

	Extract a repo name from the provided url.

	Parameters

	repo_url (str [https://docs.python.org/3/library/stdtypes.html#str]) – A URL to a repository.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns

	The name of the repository corresponding to the url.

	
get_issues(repo_names, state=<IssueState.OPEN: 'open'>, title_regex='')

	Get all issues for the repos in repo_names an return a generator
that yields (repo_name, issue generator) tuples. Will by default only
get open issues.

	Parameters

	
	repo_names (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]) – An iterable of repo names.

	state (IssueState) – Specifies the state of the issue.

	title_regex (str [https://docs.python.org/3/library/stdtypes.html#str]) – If specified, only issues matching this regex are

	Defaults to the empty string (returned.) –

	Return type

	Generator [https://docs.python.org/3/library/typing.html#typing.Generator][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Generator [https://docs.python.org/3/library/typing.html#typing.Generator][Issue, None, None]], None, None]

	Returns

	A generator that yields (repo_name, issue_generator) tuples.

	
get_repo_urls(master_repo_names, org_name=None, teams=None)

	Get repo urls for all specified repo names in the organization. As
checking if every single repo actually exists takes a long time with a
typical REST API, this function does not in general guarantee that the
urls returned actually correspond to existing repos.

If the org_name argument is supplied, urls are computed relative to
that organization. If it is not supplied, the target organization is
used.

If the teams argument is supplied, student repo urls are
computed instead of master repo urls.

	Parameters

	
	master_repo_names (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]) – A list of master repository names.

	org_name (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Organization in which repos are expected. Defaults to the
target organization of the API instance.

	teams (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][Team]]) – A list of teams specifying student groups. Defaults to None.

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Returns

	a list of urls corresponding to the repo names.

	
get_review_progress(review_team_names, teams, title_regex)

	Get the peer review progress for the specified review teams and
student teams by checking which review team members have opened issues
in their assigned repos. Only issues matching the title regex will be
considered peer review issues. If a reviewer has opened an issue in the
assigned repo with a title matching the regex, the review will be
considered done.

Note that reviews only count if the student is in the review team for
that repo. Review teams must only have one associated repo, or the repo
is skipped.

	Parameters

	
	review_team_names (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Names of review teams.

	teams (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Team]) – Team API objects specifying student groups.

	title_regex (str [https://docs.python.org/3/library/stdtypes.html#str]) – If an issue title matches this regex, the issue is
considered a potential peer review issue.

	Return type

	Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List]]

	Returns

	a mapping (reviewer -> assigned_repos), where reviewer is a str and
assigned_repos is a _repobee.tuples.Review.

	
get_teams()

	Get all teams related to the target organization.

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][Team]

	Returns

	A list of Team API object.

	
open_issue(title, body, repo_names)

	Open the specified issue in all repos with the given names, in the
target organization.

	Parameters

	
	title (str [https://docs.python.org/3/library/stdtypes.html#str]) – Title of the issue.

	body (str [https://docs.python.org/3/library/stdtypes.html#str]) – Body of the issue.

	repo_names (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Names of repos to open the issue in.

	Return type

	None

	
static verify_settings(user, org_name, base_url, token, master_org_name=None)

	Verify the following (to the extent that is possible and makes sense
for the specifi platform):

	Base url is correct

	The token has sufficient access privileges

	
	Target organization (specifiend by org_name) exists

	
	If master_org_name is supplied, this is also checked to
exist.

	
	User is owner in organization (verify by getting

	
	If master_org_name is supplied, user is also checked to be an
owner of it.

organization member list and checking roles)

Should raise an appropriate subclass of
_repobee.exception.APIError [https://repobee.readthedocs.io/en/stable/code.html#_repobee.exception.APIError] when a problem is encountered.

	Parameters

	
	user (str [https://docs.python.org/3/library/stdtypes.html#str]) – The username to try to fetch.

	org_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the target organization.

	base_url (str [https://docs.python.org/3/library/stdtypes.html#str]) – A base url to a github API.

	token (str [https://docs.python.org/3/library/stdtypes.html#str]) – A secure OAUTH2 token.

	org_name – Name of the master organization.

	Returns

	True if the connection is well formed.

	Raises

	_repobee.exception.APIError [https://repobee.readthedocs.io/en/stable/code.html#_repobee.exception.APIError]

	
class repobee_plug._apimeta.Issue

	Wrapper class for an Issue API object.

	
static from_dict(asdict)

	Take a dictionary produced by Issue.to_dict and reconstruct the
corresponding instance. The implementation field is lost in a
to_dict -> from_dict roundtrip.

	Return type

	Issue

	
to_dict()

	Return a dictionary representation of this namedtuple, without
the implementation field.

	
class repobee_plug._apimeta.IssueState

	Enum specifying a possible issue state.

	
class repobee_plug._apimeta.Repo

	Wrapper class for a Repo API object.

	
class repobee_plug._apimeta.Team

	Wrapper class for a Team API object.

	
class repobee_plug._apimeta.TeamPermission

	Enum specifying team permissions on creating teams. On GitHub, for
example, this can be e.g. push or pull.

	
repobee_plug._apimeta.check_init_params(reference_params, compare_params)

	Check that the compare __init__’s parameters are a subset of the
reference class’s version.

	
repobee_plug._apimeta.check_parameters(reference, compare)

	Check if the parameters match, one by one. Stop at the first diff and
raise an exception for that parameter.

An exception is made for __init__, for which the compare may be a subset of
the reference in no particular order.

	
repobee_plug._apimeta.methods(attrdict)

	Return all public methods and __init__ for some class.

	
repobee_plug._apimeta.parameters(function)

	Extract parameter names and default arguments from a function.

_pluginmeta

	
class repobee_plug._pluginmeta.Plugin

	This is a base class for plugin classes. For plugin classes to be picked
up by RepoBee, they must inherit from this class.

Public methods must be hook methods. If there are any public methods that
are not hook methods, an error is raised on creation of the class. As long
as the method has the correct name, it will be recognized as a hook method
during creation. However, if the signature is incorrect, the plugin
framework will raise a runtime exception once it is called. Private methods
(i.e. methods prefixed with _) carry no restrictions.

The signatures of hook methods are not checked until the plugin class is
registered by the repobee_plug.manager (an instance of
pluggy.manager.PluginManager). Therefore, when testing a
plugin, it is a good idea to include a test where it is registered with the
manager to ensure that it has the correct signatures.

A plugin class is instantiated exactly once; when RepoBee loads the plugin.
This means that any state that is stored in the plugin will be carried
throughout the execution of a RepoBee command. This makes plugin classes
well suited for implementing tasks that require command line options or
configuration values, as well as for implementing extension commands.

_containers

Container classes and enums.

	
class repobee_plug._containers.BaseParser

	Enumeration of base parsers that an extension command can request to
have added to it.

	
BASE

	Represents the base parser, which includes the --user,
--org-name, --base-url and --token arguments.

	
STUDENTS

	Represents the students parser, which includes the
--students and –students-file` arguments.

	
REPO_NAMES

	Represents the repo names parser, which includes the
--master-repo-names argument.

	
REPO_DISCOVERY

	Represents the repo discovery parser, which adds
both the --master-repo-names and the --discover-repos
arguments.

	
MASTER_ORG

	Represents the master organization parser, which includes
the --master-org argument.

	
class repobee_plug._containers.Deprecation

	
	Parameters

	
	replacement (str [https://docs.python.org/3/library/stdtypes.html#str]) – The functionality that replaces the deprecated
functionality.

	remove_by_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – A version number on the form
MAJOR.MINOR.PATCH by which the deprecated functionality will be
removed.

Create new instance of Deprecation(replacement, remove_by_version)

	
remove_by_version

	Alias for field number 1

	
replacement

	Alias for field number 0

	
class repobee_plug._containers.ExtensionCommand(parser, name, help, description, callback, requires_api=False, requires_base_parsers=None)

	Class defining an extension command for the RepoBee CLI.

	Parameters

	
	parser (ExtensionParser) – The parser to use for the CLI.

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the command.

	help (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text that will be displayed when running repobee -h

	description (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text that will be displayed when calling the -h
option for this specific command. Should be elaborate in
describing the usage of the command.

	callback (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][API]], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Result]]]) – A callback function that is called if this command is
used on the CLI. It is passed the parsed namespace and the
platform API. It may optionally return a result mapping on
the form (name: str -> List[Result]) that’s reported by
RepoBee.

	requires_api (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the base arguments required for the platform
API are added as options to the extension command, and the
platform API is then passed to the callback function. It is
then important not to have clashing option names. If False, the
base arguments are not added to the CLI, and None is passed in
place of the API. If you include REPO_DISCOVERY in
requires_base_parsers, then you must set this to True.

	requires_base_parsers (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][BaseParser]]) – A list of
repobee_plug.BaseParser that decide which base
parsers are added to this command. For example, setting
requires_base_parsers = [BaseParser.STUDENTS] adds the
--students and --students-file options to this
extension command’s parser.

	
class repobee_plug._containers.ExtensionParser

	An ArgumentParser specialized for RepoBee extension commands.

	
repobee_plug._containers.HookResult(hook, status, msg, data=None)

	Backwards compat function.

Deprecated since version 0.12.0: Replaced by Result.

	Return type

	Result

	
class repobee_plug._containers.Result(name, status, msg, data=None)

	Container for storing results from hooks.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name to associate with this result. This is typically the
name of the plugin that returns this result.

	status (Status) – Status of the plugin execution.

	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – A free-form result message.

	data (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][Any [https://docs.python.org/3/library/typing.html#typing.Any], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – Semi-structured data in the form of a dictionary. All of the
contents of the dictionary should be serializable as this is
primarily used for JSON storage.

	
class repobee_plug._containers.Review

	
	Parameters

	
	repo (Repo) – The reviewed repository.

	done (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether or not the review is done.

Create new instance of Review(repo, done)

	
done

	Alias for field number 1

	
repo

	Alias for field number 0

	
class repobee_plug._containers.ReviewAllocation

	
	Parameters

	
	review_team (Team) – The team of reviewers.

	reviewed_team (Team) – The team that is to be reviewed.

Create new instance of ReviewAllocation(review_team, reviewed_team)

	
review_team

	Alias for field number 0

	
reviewed_team

	Alias for field number 1

	
class repobee_plug._containers.Status

	Status codes enums for Results.

	
SUCCESS

	Signifies a plugin execution without any complications.

	
WARNING

	Signifies a plugin execution with non-critical failures.

	
ERROR

	Signifies a critical error during execution.

_corehooks

Hookspecs for repobee core hooks.

Core hooks provide the basic functionality of repobee. These hooks all have
default implementations, but are overridden by any other implementation. All
hooks in this module should have the firstresult=True option to the hookspec
to allow for this dynamic override.

	
class repobee_plug._corehooks.APIHook

	Hooks related to platform APIs.

	
api_init_requires()

	Return which of the arguments to apimeta.APISpec.__init__ that the
given API requires. For example, the GitHubAPI requires all, but the
GitLabAPI does not require user.

	Return type

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Returns

	Names of the required arguments.

	
get_api_class()

	Return an API platform class. Must be a subclass of apimeta.API.

	Returns

	An apimeta.API subclass.

	
class repobee_plug._corehooks.PeerReviewHook

	Hook functions related to allocating peer reviews.

	
generate_review_allocations(teams, num_reviews)

	Generate ReviewAllocation
tuples from the provided teams, given that this concerns reviews for a
single master repo.

The provided teams of students should be treated as units. That is to
say, if there are multiple members in a team, they should always be
assigned to the same review team. The best way to merge two teams
team_a and team_b into one review team is to simply do:

team_c = apimeta.Team(members=team_a.members + team_b.members)

This can be scaled to however many teams you would like to merge. As a
practical example, if teams team_a and team_b are to review
team_c, then the following
ReviewAllocation tuple, here
called allocation, should be contained in the returned list.

review_team = apimeta.Team(members=team_a.members + team_b.members)
allocation = containers.ReviewAllocation(
 review_team=review_team,
 reviewed_team=team_c,
)

Note

Respecting the num_reviews argument is optional: only do it if
it makes sense. It’s good practice to issue a warning if
num_reviews is ignored, however.

	Parameters

	
	team – A list of Team tuples.

	num_reviews (int [https://docs.python.org/3/library/functions.html#int]) – Amount of reviews each student should perform (and
consequently amount of reviewers per repo)

	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][ReviewAllocation]

	Returns

	
	A list of ReviewAllocation

	tuples.

_exthooks

Hookspecs for repobee extension hooks.

Extension hooks add something to the functionality of repobee, but are not
necessary for its operation. Currently, all extension hooks are related to
cloning repos.

	
class repobee_plug._exthooks.CloneHook

	Hook functions related to cloning repos.

	
act_on_cloned_repo(path, api)

	Do something with a cloned repo.

Deprecated since version 0.12.0: This hook is has been replaced by TaskHooks.clone_task().
Once all known, existing plugins have been migrated to the new
hook, this hook will be removed.

	Parameters

	
	path (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]]) – Path to the repo.

	api (API) – An instance of repobee.github_api.GitHubAPI.

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Result]

	Returns

	optionally returns a Result namedtuple for reporting the
outcome of the hook. May also return None, in which case no
reporting will be performed for the hook.

	
clone_parser_hook(clone_parser)

	Do something with the clone repos subparser before it is used used to
parse CLI options. The typical task is to add options to it.

Deprecated since version 0.12.0: This hook is has been replaced by TaskHooks.clone_task().
Once all known, existing plugins have been migrated to the new
hook, this hook will be removed.

	Parameters

	clone_parser (ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]) – The clone subparser.

	Return type

	None

	
config_hook(config_parser)

	Hook into the config file parsing.

	Parameters

	config – the config parser after config has been read.

	Return type

	None

	
parse_args(args)

	Get the raw args from the parser. Only called for the clone parser.
The typical task is to fetch any values from options added in
clone_parser_hook().

	Parameters

	args (Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]) – The full namespace returned by
argparse.ArgumentParser.parse_args()

	Return type

	None

	
class repobee_plug._exthooks.ExtensionCommandHook

	Hooks related to extension commands.

	
create_extension_command()

	Create an extension command to add to the RepoBee CLI. The command will
be added as one of the top-level subcommands of RepoBee. This hook is
called precisely once, and should return an
ExtensionCommand.

def command(args: argparse.Namespace, api: apimeta.API)

The command function will be called if the extension command is
used on the command line.

Note that the
RepoBeeExtensionParser class is
just a thin wrapper around argparse.ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser], and can
be used in an identical manner. The following is an example definition
of this hook that adds a subcommand called example-command, that
can be called with repobee example-command.

import repobee_plug as plug

def callback(args: argparse.Namespace, api: plug.API) -> None:
 LOGGER.info("callback called with: {}, {}".format(args, api))

@plug.repobee_hook
def create_extension_command():
 parser = plug.RepoBeeExtensionParser()
 parser.add_argument("-b", "--bb", help="A useless argument")
 return plug.ExtensionCommand(
 parser=parser,
 name="example-command",
 help="An example command",
 description="Description of an example command",
 callback=callback,
)

Important

If you need to use the api, you set requires_api=True in the
ExtensionCommand. This will automatically add the options that
the API requires to the CLI options of the subcommand, and
initialize the api and pass it in.

See the documentation for ExtensionCommand
for more details on it.

	Return type

	ExtensionCommand

	Returns

	A ExtensionCommand.

	
class repobee_plug._exthooks.TaskHooks

	Hook functions relating to RepoBee tasks.

	
clone_task()

	Create a task to run on a copy of a cloned student repo. This hook
replaces the old act_on_cloned_repo hook.

Implementations of this hook should return a Task, which
defines a callback that is called after all student repos have been
cloned. See the definition of Task for details.

	Return type

	Task

	Returns

	A Task instance defining a RepoBee task.

	
setup_task()

	Create a task to run on a copy of the master repo before it is
pushed out to student repositories. This can for example be pre-flight
checks of the master repo, or something else entirely.

Implementations of this hook should return a Task, which
defines a callback that is called after the master repo has been safely
copied, but before that copy is pushed out to student repositories.
Note that any changes to the repository must be committed to actually
show up in the student repositories.

Note

Structural changes to the master repo are not currently supported.
Changes to the repository during the callback will not be reflected
in the generated repositories. Support for preprocessing (such that
changes do take effect) is a potential future feature.

	Return type

	Task

_exceptions

Exceptions for repobee_plug.

	
exception repobee_plug._exceptions.APIImplementationError(*args, **kwargs)

	Raise when an API is defined incorrectly.

Instantiate a PlugError.

	Parameters

	
	args – List of positionals. These are passed directly to
Exception [https://docs.python.org/3/library/exceptions.html#Exception]. Typically, you should only
pass an error message here.

	kwargs – Keyword arguments to indicate what went wrong.
For example, if the argument a caused the error, then you
should pass a=a as a kwarg so it can be introspected at a
later time.

	
exception repobee_plug._exceptions.ExtensionCommandError(*args, **kwargs)

	Raise when an :py:class:~repobee_plug.containers.ExtensionCommand: is
incorrectly defined.

Instantiate a PlugError.

	Parameters

	
	args – List of positionals. These are passed directly to
Exception [https://docs.python.org/3/library/exceptions.html#Exception]. Typically, you should only
pass an error message here.

	kwargs – Keyword arguments to indicate what went wrong.
For example, if the argument a caused the error, then you
should pass a=a as a kwarg so it can be introspected at a
later time.

	
exception repobee_plug._exceptions.HookNameError(*args, **kwargs)

	Raise when a public method in a class that inherits from
Plugin does not have a hook name.

Instantiate a PlugError.

	Parameters

	
	args – List of positionals. These are passed directly to
Exception [https://docs.python.org/3/library/exceptions.html#Exception]. Typically, you should only
pass an error message here.

	kwargs – Keyword arguments to indicate what went wrong.
For example, if the argument a caused the error, then you
should pass a=a as a kwarg so it can be introspected at a
later time.

	
exception repobee_plug._exceptions.PlugError(*args, **kwargs)

	Base class for all repobee_plug exceptions.

Instantiate a PlugError.

	Parameters

	
	args – List of positionals. These are passed directly to
Exception [https://docs.python.org/3/library/exceptions.html#Exception]. Typically, you should only
pass an error message here.

	kwargs – Keyword arguments to indicate what went wrong.
For example, if the argument a caused the error, then you
should pass a=a as a kwarg so it can be introspected at a
later time.

_name

Utility functions relating to RepoBee’s naming conventions.

	
repobee_plug._name.generate_repo_name(team_name, master_repo_name)

	Construct a repo name for a team.

	Parameters

	
	team_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the associated team.

	master_repo_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the template repository.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
repobee_plug._name.generate_repo_names(team_names, master_repo_names)

	Construct all combinations of generate_repo_name(team_name,
master_repo_name) for the provided team names and master repo names.

	Parameters

	
	team_names (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]) – One or more names of teams.

	master_repo_names (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]) – One or more names of master repositories.

	Return type

	Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][str [https://docs.python.org/3/library/stdtypes.html#str]]

	Returns

	a list of repo names for all combinations of team and master repo.

	
repobee_plug._name.generate_review_team_name(student, master_repo_name)

	Generate a review team name.

	Parameters

	
	student (str [https://docs.python.org/3/library/stdtypes.html#str]) – A student username.

	master_repo_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of a master repository.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	Returns

	a review team name for the student repo associated with this master
repo and student.

_serialize

JSON serialization/deserialization functions.

	
repobee_plug._serialize.json_to_result_mapping(json_string)

	Deserialize a JSON string to a mapping repo_name: str -> hook_results:
List[Result]

	Return type

	Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], List [https://docs.python.org/3/library/typing.html#typing.List][Result]]

	
repobee_plug._serialize.result_mapping_to_json(result_mapping)

	Serialize a result mapping repo_name: str -> hook_results:
List[Result] to JSON.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

_tasks

Task data structure and related functionality.

	
class repobee_plug._tasks.Task(act, add_option=None, handle_args=None, persist_changes=False)

	A data structure for describing a task. Tasks are operations that
plugins can define to run on for example cloned student repos (a clone
task) or on master repos before setting up student repos (a setup task).
Only the act attribute is required, all other attributes can be
omitted.

The callback methods should have the following headers.

def act(
 path: pathlib.Path, api: repobee_plug.API
) -> Optional[containers.Result]:

def add_option(parser: argparse.ArgumentParser) -> None:

def handle_args(args: argparse.Namespace) -> None:

Note

The functions are called in the following order: add_option ->
handle_args -> act.

Important

The act callback should never change the Git repository it acts
upon (e.g. running commands such as git add, git checkout or
git commit). This can have adverse and unexpected effects on
RepoBee’s functionality. It is however absolutely fine to change the
files in the Git working tree, as long as nothing is added or
committed.

Each callback is called at most once. They are not guaranteed to execute,
because there may be an unexpected crash somewhere else, or the plugin may
not come into scope (for example, a clone task plugin will not come into
scope if repobee setup is run). The callbacks can do whatever is
appropriate for the plugin, except for changing any Git repositories. For
information on the types used in the callbacks, see the Python stdlib
documentation for argparse [https://docs.python.org/3/library/argparse.html#module-argparse].

As an example, a simple clone task can be defined like so:

import repobee_plug as plug

def act(path, api):
 return plug.Result(
 name="example",
 msg="IT LIVES!",
 status=plug.Status.SUCCESS
)

@plug.repobee_hook
def clone_task():
 return plug.Task(act=act)

If your task plugin also needs to access the configuration file, then
implement the separate config_hook hook. For more elaborate
instructions on creating tasks, see the tutorial.

	Parameters

	
	act (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], API], Result]) – A required callback function that takes the path to a
repository worktree and an API instance, and optionally returns
a Result to report results.

	add_option (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[ArgumentParser [https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser]], None]]) – An optional callback function that adds options to the
CLI parser.

	handle_args (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Namespace [https://docs.python.org/3/library/argparse.html#argparse.Namespace]], None]]) – An optional callback function that receives the parsed
CLI args.

	persist_changes (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the task requires that changes to the
repository that has been acted upon be persisted. This means
different things in different contexts (e.g. whether the task
is executed in a clone context or in a setup context), and may
not be supported for all contexts.

_deprecation

Module with functions for dealing with deprecation.

	
repobee_plug._deprecation.deprecate(remove_by_version, replacement=None)

	Return a function that can be used to deprecate functions. Currently
this is only used for deprecation of hook functions, but it may be expanded
to deprecated other things in the future.

	Parameters

	
	remove_by_version (str [https://docs.python.org/3/library/stdtypes.html#str]) – A string that should contain a version number.

	replacement (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – An optional string with the name of the replacing
function.

	Return type

	Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[~T], ~T]

	Returns

	A function

	
repobee_plug._deprecation.deprecated_hooks()

	
	Return type

	Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Deprecation]

	Returns

	A mapping of hook names to Deprecation tuples.

 Python Module Index

 _ |
 a |
 c |
 e |
 n |
 s |
 t

 		 	

 		
 _	

 	
 	
 _deprecation	
 Module with functions for dealing with deprecation.

 		 	

 		
 a	

 	
 	
 apimeta	
 Metaclass for API implementations.

 		 	

 		
 c	

 	
 	
 containers	
 Container classes and enums.

 	
 	
 corehooks	
 Hookspecs for repobee core hooks.

 		 	

 		
 e	

 	
 	
 exception	
 Exceptions for repobee_plug.

 	
 	
 exthooks	
 Hookspecs for repobee extension hooks.

 		 	

 		
 n	

 	
 	
 name	
 Utility functions relating to RepoBee's naming conventions.

 		 	

 		
 s	

 	
 	
 serialize	
 JSON serialization/deserialization functions.

 		 	

 		
 t	

 	
 	
 tasks	
 Task data structure and related functionality.

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W

_

 	
 	_deprecation (module)

A

 	
 	add_argument() (repobee_plug.ExtensionParser method)

 	add_repos_to_review_teams() (repobee_plug.API method)

 	
 	API (class in repobee_plug)

 	apimeta (module)

B

 	
 	BASE (repobee_plug._containers.BaseParser attribute)

C

 	
 	close_issue() (repobee_plug.API method)

 	containers (module)

 	
 	corehooks (module), [1]

 	create_repos() (repobee_plug.API method)

D

 	
 	delete_teams() (repobee_plug.API method)

 	deprecated_hooks() (in module repobee_plug)

 	
 	Deprecation (class in repobee_plug)

 	discover_repos() (repobee_plug.API method)

 	done (repobee_plug.Review attribute)

E

 	
 	ensure_teams_and_members() (repobee_plug.API method)

 	ERROR (repobee_plug._containers.Status attribute)

 	(repobee_plug.Status attribute)

 	error() (repobee_plug.ExtensionParser method)

 	exception (module)

 	
 	ExtensionCommand (class in repobee_plug)

 	ExtensionCommandError

 	ExtensionParser (class in repobee_plug)

 	exthooks (module), [1]

 	extract_repo_name() (repobee_plug.API method)

F

 	
 	from_dict() (repobee_plug.Issue static method)

G

 	
 	generate_repo_name() (in module repobee_plug)

 	generate_repo_names() (in module repobee_plug)

 	generate_review_team_name() (in module repobee_plug)

 	
 	get_issues() (repobee_plug.API method)

 	get_repo_urls() (repobee_plug.API method)

 	get_review_progress() (repobee_plug.API method)

 	get_teams() (repobee_plug.API method)

H

 	
 	HookNameError

I

 	
 	Issue (class in repobee_plug)

 	
 	IssueState (class in repobee_plug)

J

 	
 	json_to_result_mapping() (in module repobee_plug)

M

 	
 	MASTER_ORG (repobee_plug._containers.BaseParser attribute)

N

 	
 	name (module)

O

 	
 	open_issue() (repobee_plug.API method)

P

 	
 	PlugError

 	
 	Plugin (class in repobee_plug)

R

 	
 	remove_by_version (repobee_plug.Deprecation attribute)

 	replacement (repobee_plug.Deprecation attribute)

 	Repo (class in repobee_plug)

 	repo (repobee_plug.Review attribute)

 	REPO_DISCOVERY (repobee_plug._containers.BaseParser attribute)

 	REPO_NAMES (repobee_plug._containers.BaseParser attribute)

 	
 	Result (class in repobee_plug)

 	result_mapping_to_json() (in module repobee_plug)

 	Review (class in repobee_plug)

 	review_team (repobee_plug.ReviewAllocation attribute)

 	ReviewAllocation (class in repobee_plug)

 	reviewed_team (repobee_plug.ReviewAllocation attribute)

S

 	
 	serialize (module)

 	Status (class in repobee_plug)

 	
 	STUDENTS (repobee_plug._containers.BaseParser attribute)

 	SUCCESS (repobee_plug._containers.Status attribute)

 	(repobee_plug.Status attribute)

T

 	
 	Task (class in repobee_plug)

 	tasks (module)

 	
 	Team (class in repobee_plug)

 	TeamPermission (class in repobee_plug)

 	to_dict() (repobee_plug.Issue method)

V

 	
 	verify_settings() (repobee_plug.API static method)

W

 	
 	WARNING (repobee_plug._containers.Status attribute)

 	(repobee_plug.Status attribute)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to repobee-plug’s documentation!

 		
 Plugin system overview

 		
 Conventions

 		
 Hooks

 		
 Core hooks

 		
 Extension hooks

 		
 Implementing hook functions

 		
 Creating plugins

 		
 Creating task plugins

 		
 Basic

 		
 Interlude - Installing your plugin

 		
 Advanced

 		
 Creating extension command plugins

 		
 Extension command components

 		
 Basic

 		
 Advanced

 		
 Public API

 		
 Hook functions

 		
 Implementation markers

 		
 Extension hooks

 		
 Core hooks

 		
 API Wrappers

 		
 Containers

 		
 Helpers

 		
 Exceptions

 		
 repobee_plug Module Reference

 		
 _apimeta

 		
 _pluginmeta

 		
 _containers

 		
 _corehooks

 		
 _exthooks

 		
 _exceptions

 		
 _name

 		
 _serialize

 		
 _tasks

 		
 _deprecation

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

