
repo2docker Documentation
Release 0.9.0

Project Jupyter

May 05, 2019

Getting started with repo2docker

1 Installing repo2docker 3
1.1 Prerequisite: Docker . 3
1.2 Installing with pip . 3
1.3 Installing from source code . 3
1.4 Windows support . 4

2 Using repo2docker 5
2.1 Calling repo2docker . 5
2.2 Building a specific branch, commit or tag . 6
2.3 Where to put configuration files . 6
2.4 Debugging repo2docker with --debug and --no-build . 6
2.5 Command line API . 7

3 Frequently Asked Questions (FAQ) 9
3.1 How should I specify another version of Python? . 9
3.2 What versions of Python (or R or Julia. . .) are supported? . 9
3.3 Why is my repository is failing to build with ResolvePackageNotFound ? 10
3.4 Can I add executable files to the user’s PATH? . 10
3.5 How do I set environment variables? . 10
3.6 Can I use repo2docker to bootstrap my own Dockerfile? . 11
3.7 Can I use repo2docker to edit a local host repository within a Docker environment? 11
3.8 Why is my R shiny app not launching? . 11
3.9 Why does repo2docker need to exist? Why not use tool like source2image? 11

4 Configure the user interface 13
4.1 JupyterLab . 13
4.2 nteract . 13
4.3 RStudio . 14
4.4 Shiny . 14
4.5 Stencila . 14

5 Choose languages for your environment 15
5.1 Python . 15
5.2 The R Language . 16
5.3 Julia . 16
5.4 Languages not covered here . 16
5.5 Using multiple languages at once . 16

i

6 How to automatically create a environment.yml that works with repo2docker 17
6.1 The challenge . 17
6.2 The solution . 17

7 Share JupyterLab Workspaces with a repository 19

8 Build JupyterHub-ready images 21

9 Using repo2docker as part of your Continuous Integration 23
9.1 Getting Started . 23

10 Configuration Files 27
10.1 environment.yml - Install a Python environment . 28
10.2 requirements.txt - Install a Python environment . 28
10.3 setup.py - Install Python packages . 28
10.4 Project.toml - Install a Julia environment . 28
10.5 REQUIRE - Install a Julia environment (legacy) . 28
10.6 install.R - Install an R/RStudio environment . 29
10.7 apt.txt - Install packages with apt-get . 29
10.8 DESCRIPTION - Install an R package . 29
10.9 manifest.xml - Install Stencila . 29
10.10 postBuild - Run code after installing the environment . 29
10.11 start - Run code before the user sessions starts . 29
10.12 runtime.txt - Specifying runtimes . 30
10.13 default.nix - the nix package manager . 30
10.14 Dockerfile - Advanced environments . 30

11 The Reproducible Execution Environment Specification 31

12 Contributing to repo2docker development 33
12.1 Types of contribution . 33
12.2 Process for making a contribution . 34
12.3 Guidelines to getting a Pull Request merged . 34
12.4 Setting up for Local Development . 35

13 The repo2docker roadmap 37
13.1 Using the roadmap . 37
13.2 The roadmap proper . 38

14 Architecture of repo2docker 39
14.1 Buildpack . 39
14.2 Build base environment . 40
14.3 Copy repository contents . 40
14.4 Assemble repository environment . 40
14.5 Push . 41
14.6 Run . 41

15 Design of repo2docker 43
15.1 Deterministic output . 43
15.2 Reproducibility and version stability . 44
15.3 Unix principles “do one thing well” . 44
15.4 Composability . 44
15.5 Pareto principle (The 80-20 Rule) . 44

16 Common tasks 45
16.1 Running tests . 45

ii

16.2 Update and Freeze BuildPack Dependencies . 45
16.3 Creating a Release . 46

17 Adding a new buildpack to repo2docker 49
17.1 Criteria to balance and consider . 49
17.2 Adding libraries or UI to existing buildpacks . 49

18 Changelog 51
18.1 Version x.x.x . 51
18.2 Version 0.9.0 . 51
18.3 Version 0.8.0 . 52
18.4 Version 0.7.0 . 53
18.5 Version 0.6 . 54
18.6 Version 0.5 . 54
18.7 Version 0.4.1 . 54
18.8 Version 0.2 . 54
18.9 Version 0.1.1 . 54
18.10 Version 0.1 . 54

iii

iv

repo2docker Documentation, Release 0.9.0

jupyter-repo2docker is a tool to build, run, and push Docker images from source code repositories that run
via a Jupyter server.

repo2docker fetches a repository (from GitHub, GitLab or other locations) and builds a container image based on
the configuration files found in the repository. It can be used to explore a repository locally by building and executing
the constructed image of the repository, or as a means of building images that are pushed to a Docker registry.

repo2docker is the tool used by BinderHub to build images on demand.

Please report Bugs, ask questions or contribute to the project.

Getting started with repo2docker 1

https://binderhub.readthedocs.io
https://github.com/jupyter/repo2docker/issues
https://gitter.im/jupyterhub/binder
https://github.com/jupyter/repo2docker/blob/master/CONTRIBUTING.md

repo2docker Documentation, Release 0.9.0

2 Getting started with repo2docker

CHAPTER 1

Installing repo2docker

repo2docker requires Python 3.4 and above on Linux and macOS. See below for more information about Windows
support.

1.1 Prerequisite: Docker

Install Docker as it is required to build Docker images. The Community Edition, is available for free.

Recent versions of Docker are recommended. The latest version of Docker, 18.03, successfully builds repositories
from binder-examples. The BinderHub helm chart uses version 17.11.0-ce-dind. See the helm chart for more
details.

1.2 Installing with pip

We recommend installing repo2docker with the pip tool:

python3 -m pip install jupyter-repo2docker

for the latest release. To install the most recent code from the upstream repository, run:

python3 -m pip install https://github.com/jupyter/repo2docker/archive/master.zip

For information on using repo2docker, see Using repo2docker.

1.3 Installing from source code

Alternatively, you can install repo2docker from a local source tree, e.g. in case you are contributing back to this
project:

3

https://www.docker.com
https://www.docker.com/community-edition
https://github.com/binder-examples
https://binderhub.readthedocs.io/
https://github.com/jupyterhub/binderhub/blob/master/helm-chart/binderhub/values.yaml#L167

repo2docker Documentation, Release 0.9.0

git clone https://github.com/jupyter/repo2docker.git
cd repo2docker
python3 -m pip install -e .

That’s it! For information on using repo2docker, see Using repo2docker.

1.4 Windows support

Windows support for repo2docker is still in the experimental stage.

An article about using Windows and the WSL (Windows Subsytem for Linux or Bash on Windows) provides additional
information about Windows and docker.

4 Chapter 1. Installing repo2docker

https://nickjanetakis.com/blog/setting-up-docker-for-windows-and-wsl-to-work-flawlessly

CHAPTER 2

Using repo2docker

Note: Docker must be running in order to run repo2docker. For more information on installing repo2docker,
see Installing repo2docker.

repo2docker can build a reproducible computational environment for any repository that follows The Reproducible
Execution Environment Specification. repo2docker is called with a URL/path to a repository. It then performs these
steps:

1. Inspects the repository for configuration files. These will be used to build the environment needed to run the
repository.

2. Builds a Docker image with an environment specified in these configuration files.

3. Runs a Jupyter server within the image that lets you explore the repository interactively (optional)

4. Pushes the images to a Docker registry so that it may be accessed remotely (optional)

2.1 Calling repo2docker

repo2docker is called with this command:

jupyter-repo2docker <URL-or-path to repository>

where <URL-or-path to repository> is a URL or path to the source repository for which you’d like to build
an image.

For example, the following command will build an image of Peter Norvig’s Pytudes repository:

jupyter-repo2docker https://github.com/norvig/pytudes

Building the image may take a few minutes.

5

https://docs.docker.com/
https://github.com/norvig/pytudes

repo2docker Documentation, Release 0.9.0

Pytudes uses a requirements.txt file to specify its Python environment. Because of this, repo2docker will use pip
to install dependencies listed in this requirement.txt file, and these will be present in the generated Docker
image. To learn more about configuration files in repo2docker visit Configuration Files.

When the image is built, a message will be output to your terminal:

Copy/paste this URL into your browser when you connect for the first time,
to login with a token:

http://0.0.0.0:36511/?token=f94f8fabb92e22f5bfab116c382b4707fc2cade56ad1ace0

Pasting the URL into your browser will open Jupyter Notebook with the dependencies and contents of the source
repository in the built image.

2.2 Building a specific branch, commit or tag

To build a particular branch and commit, use the argument --ref and specify the branch-name or
commit-hash. For example:

jupyter-repo2docker --ref 9ced85dd9a84859d0767369e58f33912a214a3cf https://github.com/
→˓norvig/pytudes

Tip: For reproducible builds, we recommend specifying a commit-hash to deterministically build a fixed version of a
repository. Not specifying a commit-hash will result in the latest commit of the repository being built.

2.3 Where to put configuration files

repo2docker will look for configuration files in:

• A folder named binder/ in the root of the repository.

• A folder named .binder/ in the root of the repository.

• The root directory of the repository.

repo2docker searches for these folders in order (binder/, .binder/, root). Only configuration files in the first
identified folder are considered.

Check the complete list of configuration files supported by repo2docker to see how to configure the build process.

Note: repo2docker builds an environment with Python 3.7 by default. If you’d like a different version, you can
specify this in your configuration files.

2.4 Debugging repo2docker with --debug and --no-build

To debug the docker image being built, pass the --debug parameter:

jupyter-repo2docker --debug https://github.com/norvig/pytudes

6 Chapter 2. Using repo2docker

https://github.com/norvig/pytudes
https://github.com/norvig/pytudes/blob/master/requirements.txt

repo2docker Documentation, Release 0.9.0

This will print the generated Dockerfile, build it, and run it.

To see the generated Dockerfile without actually building it, pass --no-build to the commandline. This
Dockerfile output is for debugging purposes of repo2docker only - it can not be used by docker directly.

jupyter-repo2docker --no-build --debug https://github.com/norvig/pytudes

2.5 Command line API

2.5.1 jupyter-repo2docker

Fetch a repository and build a container image

usage: jupyter-repo2docker [-h] [--config CONFIG] [--json-logs]
[--image-name IMAGE_NAME] [--ref REF] [--debug]
[--no-build]
[--build-memory-limit BUILD_MEMORY_LIMIT]
[--no-run] [--publish PORTS] [--publish-all]
[--no-clean] [--push] [--volume VOLUMES]
[--user-id USER_ID] [--user-name USER_NAME]
[--env ENVIRONMENT] [--editable]
[--target-repo-dir TARGET_REPO_DIR]
[--appendix APPENDIX] [--subdir SUBDIR] [--version]
[--cache-from CACHE_FROM]
repo ...

repo
Path to repository that should be built. Could be local path or a git URL.

cmd
Custom command to run after building container

-h, --help
show this help message and exit

--config <config>
Path to config file for repo2docker

--json-logs
Emit JSON logs instead of human readable logs

--image-name <image_name>
Name of image to be built. If unspecified will be autogenerated

--ref <ref>
If building a git url, which reference to check out. E.g., master.

--debug
Turn on debug logging

--no-build
Do not actually build the image. Useful in conjunction with –debug.

--build-memory-limit <build_memory_limit>
Total Memory that can be used by the docker build process

--no-run
Do not run container after it has been built

2.5. Command line API 7

repo2docker Documentation, Release 0.9.0

--publish <ports>, -p <ports>
Specify port mappings for the image. Needs a command to run in the container.

--publish-all, -P
Publish all exposed ports to random host ports.

--no-clean
Don’t clean up remote checkouts after we are done

--push
Push docker image to repository

--volume <volumes>, -v <volumes>
Volumes to mount inside the container, in form src:dest

--user-id <user_id>
User ID of the primary user in the image

--user-name <user_name>
Username of the primary user in the image

--env <environment>, -e <environment>
Environment variables to define at container run time

--editable, -E
Use the local repository in edit mode

--target-repo-dir <target_repo_dir>
Path inside the image where contents of the repositories are copied to.

Defaults to ${HOME} if not set

--appendix <appendix>

--subdir <subdir>

--version
Print the repo2docker version and exit.

--cache-from <cache_from>

8 Chapter 2. Using repo2docker

CHAPTER 3

Frequently Asked Questions (FAQ)

A collection of frequently asked questions with answers. If you have a question and have found an answer, send a PR
to add it here!

3.1 How should I specify another version of Python?

One can specify a Python version in the environment.yml file of a repository or runtime.txt file if using
requirements.txt instead of environment.yml.

3.2 What versions of Python (or R or Julia. . .) are supported?

3.2.1 Python

Repo2docker officially supports the following versions of Python (specified in your environment.yml or runtime.txt
file):

• 3.7 (added in 0.7, default in 0.8)

• 3.6 (default in 0.7 and earlier)

• 3.5

• 2.7

Additional versions may work, as long as the base environment can be installed for your version of Python. The most
likely source of incompatibility is if one of the packages in the base environment is not packaged for your Python,
either because the version of the package is too new and your chosen Python is too old, or vice versa.

I Python 2.7 is specified, a separate environment for the kernel will be installed with Python 2. The notebook server
will run in the default Python 3.7 environment.

9

https://github.com/jupyter/repo2docker/blob/master/repo2docker/buildpacks/conda/environment.yml

repo2docker Documentation, Release 0.9.0

3.2.2 Julia

All Julia versions since Julia 0.7.0 are supported via a Project.toml file, and this is the recommended way to install
Julia environments. Julia versions 0.6.x and earlier are supported via a REQUIRE file.

3.2.3 R

Only R 3.4.4 is currently supported, which is installed via apt from the ubuntu bionic repository.

3.3 Why is my repository is failing to build with
ResolvePackageNotFound ?

If you used conda env export to generate your environment.yml it will generate a list of packages and
versions of packages that is pinned to platform specific versions. These very specific versions are not available in the
linux docker image used by repo2docker. A typical error message will look like the following:

Step 39/44 : RUN conda env update -n root -f "environment.yml" && conda clean -tipsy &
→˓& conda list -n root
---> Running in ebe9a67762e4
Solving environment: ...working... failed

ResolvePackageNotFound:
- jsonschema==2.6.0=py36hb385e00_0
- libedit==3.1.20181209=hb402a30_0
- tornado==5.1.1=py36h1de35cc_0
...

We recommend to use conda env export --no-builds -f environment.yml to export your environ-
ment and then edit the file by hand to remove platform specific packages like appnope.

See How to automatically create a environment.yml that works with repo2docker for a recipe on how to create strict
exports of your environment that will work with repo2docker.

3.4 Can I add executable files to the user’s PATH?

Yes! With a postBuild - Run code after installing the environment file, you can place any files that should be called
from the command line in the folder ~/.local/. This folder will be available in a user’s PATH, and can be run from
the command line (or as a subsequent build step.)

3.5 How do I set environment variables?

To configure environment variables for all users of a repository use the start configuration file.

When running repo2docker locally you can use the -e or --env command-line flag for each variable that you want
to define.

For example jupyter-repo2docker -e VAR1=val1 -e VAR2=val2 ...

10 Chapter 3. Frequently Asked Questions (FAQ)

https://packages.ubuntu.com/bionic/r-base

repo2docker Documentation, Release 0.9.0

3.6 Can I use repo2docker to bootstrap my own Dockerfile?

No, you can’t.

If you pass the --debug flag to repo2docker, it outputs the intermediate Dockerfile that is used to build the
docker image. While it is tempting to copy this as a base for your own Dockerfile, that is not supported & in most
cases will not work. The --debug output is just our intermediate generated Dockerfile, and is meant to be built in a
very specific way. Hence the output of --debug can not be built with a normal docker build -t . or similar
traditional docker command.

Check out the binder-examples GitHub organization for example repositories you can copy & modify for your own
use!

3.7 Can I use repo2docker to edit a local host repository within a
Docker environment?

Yes: use the --editable or -E flag (don’t confuse this with the -e flag for environment variables), and run
repo2docker on a local repository:

repo2docker -E my-repository/

This builds a Docker container from the files in that repository (using, for example, a requirements.txt or
install.R file), then runs that container, while connecting the working directory inside the container to the local
repository outside the container. For example, in case there is a notebook file (.ipynb), this will open in a local
webbrowser, and one can edit it and save it. The resulting notebook is updated in both the Docker container and the
local repository. Once the container is exited, the changed file will still be in the local repository.

This allows for easy testing of the container while debugging some items, as well as using a fully customizable
container to edit notebooks (among others).

Note: Editable mode is a convenience option that will bind the repository to the container working directory (usually
$HOME). If you need to mount to a different location in the container, use the --volumes option instead. Similarly,
for a fully customized user Dockerfile, this option is not guaranteed to work.

3.8 Why is my R shiny app not launching?

If you are trying to run an R shiny app using the /shiny/folder_containing_shiny url option, but the launch
returns “The application exited during initialization.”, there might be something wrong with the specification of the
app. One way of debugging the app in the container is by running the rstudio url, open either the ui or server file
for the app, and run the app in the container rstudio. This way you can see the rstudio logs as it tries to initialise the
shiny app. If you a missing a package or other dependency for the container, this will be obvious at this stage.

3.9 Why does repo2docker need to exist? Why not use tool like
source2image?

The Jupyter community believes strongly in building on top of pre-existing tools whenever possible (this is why
repo2docker buildpacks largely build off of patterns that already exist in the data analytics community). We try
to perform due-diligence and search for other communities to leverage and help, but sometimes it makes the most

3.6. Can I use repo2docker to bootstrap my own Dockerfile? 11

http://github.com/binder-examples/

repo2docker Documentation, Release 0.9.0

sense to build our own new tool. In the case of repo2docker, we spent time integrating with a pre-existing tool
called [source2image](https://github.com/openshift/source-to-image). This is an excellent open tool for container-
ization, but we ultimately decided that it did not fit the use-case we wanted to address. For more information,
[here’s a short blog post about the decision and the reasoning behind it](https://github.com/yuvipanda/words/blob/
fd096dd49d87e624acd8bdf6d13c0cecb930bb3f/content/post/why-not-s2i.md).

12 Chapter 3. Frequently Asked Questions (FAQ)

https://github.com/openshift/source-to-image
https://github.com/yuvipanda/words/blob/fd096dd49d87e624acd8bdf6d13c0cecb930bb3f/content/post/why-not-s2i.md
https://github.com/yuvipanda/words/blob/fd096dd49d87e624acd8bdf6d13c0cecb930bb3f/content/post/why-not-s2i.md

CHAPTER 4

Configure the user interface

You can build several user interfaces into the resulting Docker image. This is controlled with various configuration
files.

4.1 JupyterLab

You do not need any extra configuration in order to allow the use of the JupyterLab interface. You can launch Jupyter-
Lab from within a user session by opening the Jupyter Notebook and appending /lab to the end of the URL like
so:

http(s)://<server:port>/lab

To switch back to the classic notebook, add /tree to the URL like so:

http(s)://<server:port>/tree

For example, the following Binder URL will open the pyTudes repository and begin a JupyterLab session in the
ipynb folder:

https://mybinder.org/v2/gh/norvig/pytudes/master?urlpath=lab/tree/ipynb

The /tree/ipynb above is how JupyterLab directs you to a specific file or folder.

To learn more about URLs in JupyterLab and Jupyter Notebook, visit starting JupyterLab.

4.2 nteract

nteract is a notebook interface built with React. It is similar to a more feature-filled version of the traditional Jupyter
Notebook interface.

nteract comes pre-installed in any session that has been built from a Python repository.

13

https://github.com/norvig/pytudes
https://mybinder.org/v2/gh/norvig/pytudes/master?urlpath=lab/tree/ipynb
http://jupyterlab.readthedocs.io/en/latest/getting_started/starting.html
https://nteract.io/

repo2docker Documentation, Release 0.9.0

You can launch nteract from within a user session by replacing /tree with /nteract at the end of a notebook
server’s URL like so:

http(s)://<server:port>/nteract

For example, the following Binder URL will open the pyTudes repository and begin an nteract session in the ipynb
folder:

https://mybinder.org/v2/gh/norvig/pytudes/master?urlpath=nteract/tree/ipynb

The /tree/ipynb above is how nteract directs you to a specific file or folder.

To learn more about nteract, visit the nteract website.

4.3 RStudio

The RStudio user interface is automatically enabled if a configuration file for R is detected (i.e. an R version specified
in runtime.txt). If this is detected, RStudio will be accessible by appending /rstudio to the URL, like so:

http(s)://<server:port>/rstudio

For example, the following Binder link will open an RStudio session in the R demo repository.

http://mybinder.org/v2/gh/binder-examples/r/master?urlpath=rstudio

4.4 Shiny

Shiny lets you create interactive visualizaions with R. Shiny is automatically enabled if a configuration file for R is
detected (i.e. an R version specified in runtime.txt). If this is detected, Shiny will be accessible by appending
/shiny/<folder-w-shiny-files> to the URL, like so:

http(s)://<server:port>/shiny/bus-dashboard

This assumes that a folder called bus-dashboard exists in the root of the repository, and that it contains all of the
files needed to run a Shiny app.

For example, the following Binder link will open a Shiny session in the R demo repository.

http://mybinder.org/v2/gh/binder-examples/r/master?urlpath=shiny/bus-dashboard/

4.5 Stencila

The Stencila user interface is automatically enabled if a Stencila document (i.e. a file manifest.xml) is detected.
Stencila will be accessible by appending /stencila to the URL, like so:

http(s)://<server:port>/stencila

The editor will open the Stencila document corresponding to the last manifest.xml found in the file tree. If you
want to open a different document, you can configure the path in the URL parameter archive:

http(s)://<server:port>/stencila/?archive=other-dir

14 Chapter 4. Configure the user interface

https://github.com/norvig/pytudes
https://mybinder.org/v2/gh/norvig/pytudes/master?urlpath=nteract/tree/ipynb
https://nteract.io/about
https://github.com/binder-examples/r
http://mybinder.org/v2/gh/binder-examples/r/master?urlpath=rstudio
https://shiny.rstudio.com/
https://github.com/binder-examples/r
http://mybinder.org/v2/gh/binder-examples/r/master?urlpath=shiny/bus-dashboard/

CHAPTER 5

Choose languages for your environment

You can define many different languages in your configuration files. This page describes how to use some of the more
common ones.

5.1 Python

Your environment will have Python (and specified dependencies) installed when you use one of the following config-
uration files:

• requirements.txt

• environment.yml

Note: By default, the environment will have Python 3.7.

Changed in version 0.8: Upgraded default Python from 3.6 to 3.7.

5.1.1 Specifying a version of Python

To specify a specific version of Python, you have two options:

• Use environment.yml. Conda environments let you define the Python version in environment.yml. To do
so, add python=X.X to your dependencies section, like so:

name: python 2.7
dependencies:
- python=2.7
- numpy

• Use runtime.txt with requirements.txt. If you are using requirements.txt instead of environment.
yml, you can specify the Python runtime version in a separate file called runtime.txt. This file contains a
single line of the following form:

15

repo2docker Documentation, Release 0.9.0

python-X.X

For example:

python-3.6

5.2 The R Language

To ensure that R is installed, you must specify a version of R in a runtime.txt file. This takes the following form:

r-YYYY-MM-DD

The date corresponds to the state of the MRAN repository at this day. Make sure that you choose a day with the
desired version of your packages. For example, to use the MRAN repository on January 1st, 2018, add this line to
runtime.txt:

r-2018-01-01

Note that to install specific packages with the R environment, you should use the install.R configuration file.

5.3 Julia

To build an environment with Julia, include a configuration file called Project.toml. The format of this file
is documented at the Julia Pkg.jl documentation. To specify a specific version of Julia to install, put a Julia ver-
sion in the [compat] section of the Project.toml file, as described here: https://julialang.github.io/Pkg.jl/v1/
compatibility/.

5.4 Languages not covered here

If a language is not “officially” supported by a build pack, it can often be installed with a postBuild script. This
will run arbitrary bash commands, and can be used to download / install a language.

5.5 Using multiple languages at once

It may also be possible to combine multiple languages in a single environment. The details on how to accomplish this
with all possible combinations are outside the scope of this guide. However we recommend that you take a look at the
Multi-Language Demo repository for some inspiration.

16 Chapter 5. Choose languages for your environment

https://julialang.github.io/Pkg.jl/v1/
https://julialang.github.io/Pkg.jl/v1/compatibility/
https://julialang.github.io/Pkg.jl/v1/compatibility/
https://github.com/binder-examples/multi-language-demo

CHAPTER 6

How to automatically create a environment.yml that works with
repo2docker

This how-to explains how to create a environment.yml that specifies all installed packages and their precise
versions from your environment.

6.1 The challenge

conda env export -f environment.yml creates a strict export of all packages. This is the most robust for
reproducibility, but it does bake in potential platform-specific packages, so you can only use an exported environment
on the same platform.

repo2docker uses a linux based image as the starting point for every docker image it creates. However a lot
of people use OSX or Windows as their day to day operating system. This means that the environment.
yml created by a strict export will not work with error messages saying that certain packages can not be resolved
(ResolvePackageNotFound).

6.2 The solution

Follow this procedure to create a strict export of your environment that will work with repo2docker and sites like
mybinder.org.

We will launch a terminal inside a basic docker image, install the packages you need and then perform a strict export
of the environment.

1. install repo2docker on your computer by following Installing repo2docker

2. in a terminal launch a basic repository repo2docker https://github.com/binder-examples/
conda-freeze inside repo2docker

3. open the URL printed at the end in a browser, the URL should look like http://127.0.0.1:61037/?
token=30e61ec80bda6dd0d14805ea76bb59e7b0cd78b5d6b436f0

17

https://mybinder.org/

repo2docker Documentation, Release 0.9.0

4. open a terminal by clicking “New -> Terminal” next to the “Upload” button on the right hand side of the webpage

5. install the packages your project requires with conda install <yourpackages>

6. use conda env export -n root to print the environment

7. copy and paste the environment you just printed into a environment.yml in your projects repository

8. close your browser tabs and exit the repo2docker session by pressing Ctrl-C.

This will give you a strict export of your environment that precisely pins the versions of packages in your environment
based on a linux environment.

18 Chapter 6. How to automatically create a environment.yml that works with repo2docker

CHAPTER 7

Share JupyterLab Workspaces with a repository

JupyterLab uses workspaces to save the current state of windows, settings, and documents that are open in a JupyterLab
session. It is a way to persist the general configuration over time.

It is possible to export JupyterLab workspaces and load them in to another JupyterLab installation in order to share a
workspace with someone else.

In order to package your workspace with a repository, we recommend following the steps in this example repository:

https://github.com/ian-r-rose/binder-workspace-demo/

19

https://jupyterlab.readthedocs.io/en/stable/user/urls.html#managing-workspaces-ui
https://github.com/ian-r-rose/binder-workspace-demo/

repo2docker Documentation, Release 0.9.0

20 Chapter 7. Share JupyterLab Workspaces with a repository

CHAPTER 8

Build JupyterHub-ready images

JupyterHub allows multiple users to collaborate on a shared Jupyter server. repo2docker can build Docker images
that can be shared within a JupyterHub deployment. For example, mybinder.org uses JupyterHub and repo2docker
to allow anyone to build a Docker image of a git repository online and share an executable version of the repository
with a URL to the built image.

To build JupyterHub-ready Docker images with repo2docker, the version of your JupterHub deployment must be
included in the environment.yml or requirements.txt of the git repositories you build.

If your instance of JupyterHub uses DockerSpawner, you will need to set its command to run
jupyterhub-singleuser by adding this line in your configuration file:

c.DockerSpawner.cmd = ['jupyterhub-singleuser']

21

https://github.com/jupyterhub/jupyterhub
https://mybinder.org
https://github.com/jupyterhub/jupyterhub

repo2docker Documentation, Release 0.9.0

22 Chapter 8. Build JupyterHub-ready images

CHAPTER 9

Using repo2docker as part of your Continuous Integration

We’ve created for you the continuous-build repository so that you can push a Docker container to Docker Hub directly
from a GitHub repository that has a Jupyter notebook. Here are instructions to do this.

9.1 Getting Started

Today you will be doing the following:

1. Fork and clone the continuous-build GitHub repository to obtain the hidden .circleci folder.

2. Creating an image repository on Docker Hub

3. Connecting your repository to CircleCI

4. Push, commit, or create a pull request to trigger a build.

You don’t need to install any dependencies on your host to build the container, it will be done on a continuous
integration server, and the container built and available to you to pull from Docker Hub.

9.1.1 Step 1. Clone the Repository

First, fork the continuous-build GitHub repository to your account, and clone the branch via either:

git clone https://www.github.com/<username>/continuous-build

or

git clone git@github.com:<username>/continuous-build.git

23

https://www.github.com/binder-examples/continuous-build/
https://docs.docker.com/
https://hub.docker.com/
https://www.github.com/binder-examples/continuous-build/

repo2docker Documentation, Release 0.9.0

9.1.2 Step 2. Choose your Configuration

The hidden folder .circleci/config.yml has instructions for CircleCI to automatically discover and build your
repo2docker Jupyter notebook container. The default template provided in the repository in this folder will do the most
basic steps, including:

1. Clone the repository with the notebook that you specify

2. Build a Docker image

3. Push the build image to Docker Hub

This repository aims to provide templates for your use. If you have a request for a new template, please let us know.
We will add templates as they are requested to do additional tasks like test containers, run nbconvert, etc.

Thus, if I have a repository named myrepo and I want to use the default configuration on circleCI, I would copy it
there from the continuous-build folder. In the example below, I’m creating a new folder called “myrepo” and
then copying the entire folder there:

mkdir -p myrepo
cp -R continuous-build/.circleci myrepo/

You would then logically create a GitHub repository in the “myrepo” folder, add the circleci configuration folder, and
continue on to the next steps.

cd myrepo
git init
git add .circleci

9.1.3 Step 3. Docker Hub

Go to Docker Hub, log in, and click the big blue button that says “create repository” (not an automated build). Choose
an organization and name that you like (in the traditional format <ORG>/<NAME>), and remember it! We will be
adding it, along with your Docker credentials, to be encrypted CircleCI environment variables.

9.1.4 Step 4. Connect to CircleCI

If you navigate to the main app page you should be able to click “Add Projects” and then select your repository. If you
don’t see it on the list, then select a different organization in the top left. Once you find the repository, you can click
the button to “Start Building” and accept the defaults.

Before you push or trigger a build, let’s set up the following environment variables. Also in the project interface on
CirleCi, click the gears icon next to the project name to get to your project settings. Under settings, click on the
“Environment Variables” tab. In this section, you want to define the following:

1. CONTAINER_NAME should be the name of the Docker Hub repository you just created.

2. DOCKER_TAG is the tag you want to use. If not defined, will use first 10 characters of commit.

3. DOCKER_USER and DOCKER_PASS should be your credentials (to allowing pushing)

4. REPO_NAME should be the full GitHub url (or other) of the repository with the notebook. This doesn’t have to
coincide with the repository you are using to do the build (e.g., “myrepo” in our example).

If you don’t define the CONTAINER_NAME it will default to be the repository where it is building from, which you
should only do if the Docker Hub repository is named equivalently. If you don’t define either of the variables from
step 3. for the Docker credentials, your image will build but not be pushed to Docker Hub. Finally, if you don’t define
the REPO_NAME it will again use the name of the repository defined for the CONTAINER_NAME.

24 Chapter 9. Using repo2docker as part of your Continuous Integration

https://circleci.com/dashboard/
https://www.github.com/binder-examples/continuous-build/issues/
https://hub.docker.com/
https://circleci.com/dashboard/

repo2docker Documentation, Release 0.9.0

9.1.5 Step 5. Push Away, Merrill!

Once the environment variables are set up, you can push or issue a pull request to see circle build the workflow.
Remember that you only need the .circleci/config.yml and not any other files in the repository. If your
notebook is hosted in the same repository, you might want to add these, along with your requirements.txt, etc.

Tip: By default, new builds on CircleCI will not build for pull requests and you can change this default in the
settings. You can easily add filters (or other criteria and actions) to be performed during or after the build by editing
the .circleci/config.yml file in your repository.

9.1.6 Step 5. Use Your Container!

You should then be able to pull your new container, and run it! Here is an example:

docker pull <ORG>/<NAME>
docker run -it --name repo2docker -p 8888:8888 <ORG>/<NAME> jupyter notebook --ip 0.0.
→˓0.0

For a pre-built working example, try the following:

docker pull vanessa/repo2docker
docker run -it --name repo2docker -p 8888:8888 vanessa/repo2docker jupyter notebook --
→˓ip 0.0.0.0

You can then enter the url and token provided in the browser to access your notebook. When you are done and need
to stop and remove the container:

docker stop repo2docker
docker rm repo2docker

9.1. Getting Started 25

repo2docker Documentation, Release 0.9.0

26 Chapter 9. Using repo2docker as part of your Continuous Integration

CHAPTER 10

Configuration Files

repo2docker looks for configuration files in the repository being built to determine how to build it. In general,
repo2docker uses the same configuration files as other software installation tools, rather than creating new custom
configuration files.

A number of repo2docker configuration files can be combined to compose more complex setups.

The binder examples organization on GitHub contains a list of sample repositories for common configurations that
repo2docker can build with various configuration files such as Python and R installation in a repository.

Below is a list of supported configuration files (roughly in the order of build priority):

• environment.yml - Install a Python environment

• requirements.txt - Install a Python environment

• setup.py - Install Python packages

• Project.toml - Install a Julia environment

• REQUIRE - Install a Julia environment (legacy)

• install.R - Install an R/RStudio environment

• apt.txt - Install packages with apt-get

• DESCRIPTION - Install an R package

• manifest.xml - Install Stencila

• postBuild - Run code after installing the environment

• start - Run code before the user sessions starts

• runtime.txt - Specifying runtimes

• default.nix - the nix package manager

• Dockerfile - Advanced environments

27

https://github.com/binder-examples

repo2docker Documentation, Release 0.9.0

10.1 environment.yml - Install a Python environment

environment.yml is the standard configuration file used by conda that lets you install any kind of package, includ-
ing Python, R, and C/C++ packages. repo2docker does not use environment.yml to create and activate a new
conda environment. Rather, it updates a base conda environment with the packages listed in environment.yml.
This means that the environment will always have the same default name, not the name specified in environment.
yml.

Note: You can install files from pip in your environment.yml as well. For example, see the binder-examples
environment.yml file.

You can also specify which Python version to install in your built environment with environment.yml. By default,
repo2docker installs Python 3.7 with your environment.yml unless you include the version of Python in this
file. conda supports all versions of Python, though repo2docker support is best with Python 3.7, 3.6, 3.5 and 2.7.

Warning: If you include a Python version in a runtime.txt file in addition to your environment.yml,
your runtime.txt will be ignored.

10.2 requirements.txt - Install a Python environment

This specifies a list of Python packages that should be installed in your environment. Our requirements.txt example
on GitHub shows a typical requirements file.

10.3 setup.py - Install Python packages

To install your repository like a Python package, you may include a setup.py file. repo2docker installs setup.py
files by running pip install -e ..

10.4 Project.toml - Install a Julia environment

A Project.toml (or JuliaProject.toml) file can specify both the version of Julia to be used and a list of
Julia packages to be installed. If a Manifest.toml is present, it will determine the exact versions of the Julia
packages that are installed.

10.5 REQUIRE - Install a Julia environment (legacy)

A REQUIRE file can specify both the version of Julia to be used and which Julia packages should be used. The use of
REQUIRE is only recommended for pre 1.0 Julia versions. The recommended way of installing a Julia environment
that uses Julia 1.0 or newer is to use a Project.toml file. If both a REQUIRE and a Project.toml file are
detected, the REQUIRE file is ignored. To see an example of a Julia repository with REQUIRE and environment.
yml, visit binder-examples/julia-python.

28 Chapter 10. Configuration Files

https://conda.io
https://github.com/binder-examples/python-conda_pip/blob/master/environment.yml
https://github.com/binder-examples/python-conda_pip/blob/master/environment.yml
https://github.com/binder-examples/requirements/blob/master/requirements.txt
https://github.com/binder-examples/julia-python

repo2docker Documentation, Release 0.9.0

10.6 install.R - Install an R/RStudio environment

This is used to install R libraries pinned to a specific snapshot on MRAN. To set the date of the snapshot add a
runtime.txt. For an example install.R file, visit our example install.R file.

10.7 apt.txt - Install packages with apt-get

A list of Debian packages that should be installed. The base image used is usually the latest released version of Ubuntu.

We use apt.txt, for example, to install LaTeX in our example apt.txt for LaTeX.

10.8 DESCRIPTION - Install an R package

To install your repository like an R package, you may include a DESCRIPTION file. repo2docker installs the package
and dependencies from the DESCRIPTION by running devtools:install_git(".").

You also need to have a runtime.txt file that is formatted as r-<YYYY>-<MM>-<DD>, where YYYY-MM-DD
is a snapshot of MRAN that will be used for your R installation.

10.9 manifest.xml - Install Stencila

Stencila is an open source office suite for reproducible research. It is powered by the open file format Dar.

If your repository contains a Stencila document, repo2docker detects it based on the file manifest.xml. The
required execution contexts are extracted from a Dar article (i.e. files named *.jats.xml).

You may also have a runtime.txt and/or an install.R to manually configure your R installation.

To see example repositories, visit our Stencila with R and Stencila with Python examples.

10.10 postBuild - Run code after installing the environment

A script that can contain arbitrary commands to be run after the whole repository has been built. If you want this to be
a shell script, make sure the first line is #!/bin/bash.

An example use-case of postBuild file is JupyterLab’s demo on mybinder.org. It uses a postBuild file in a
folder called binder to prepare their demo for binder.

10.11 start - Run code before the user sessions starts

A script that can contain simple commands to be run at runtime (as an ENTRYPOINT to the docker container). If
you want this to be a shell script, make sure the first line is #!/bin/bash. The last line must be exec "$@" or
equivalent.

Use this to set environment variables that software installed in your container expects to be set. This script is executed
each time your binder is started and should at most take a few seconds to run.

If you only need to run things once during the build phase use postBuild - Run code after installing the environment.

10.6. install.R - Install an R/RStudio environment 29

https://mran.microsoft.com/documents/rro/reproducibility
https://github.com/binder-examples/r/blob/master/install.R
https://github.com/binder-examples/latex/blob/master/apt.txt
https://stenci.la/
https://github.com/substance/dar
https://stenci.la/learn/intro.html
https://github.com/binder-examples/stencila-r/
https://github.com/binder-examples/stencila-py
https://github.com/jupyterlab/jupyterlab-demo/blob/master/binder/postBuild
https://docs.docker.com/engine/reference/builder/#entrypoint

repo2docker Documentation, Release 0.9.0

10.12 runtime.txt - Specifying runtimes

Sometimes you want to specify the version of the runtime (e.g. the version of Python or R), but the environment
specification format don’t let you specify this information (e.g. requirements.txt or install.R). For these cases, we have
a special file, runtime.txt.

Note: runtime.txt is only supported when used with environment specifications that do not already support
specifying the runtime (e.g. when using environment.yml for conda or Project.toml for Julia, runtime.
txt will be ignored).

To use python-2.7: add python-2.7 in runtime.txt file. The repository will run in an env with Python 2 installed.
To see a full example repository, visit our Python2 example.

repo2docker uses R libraries pinned to a specific snapshot on MRAN. You need to have a runtime.txt file that is
formatted as r-<YYYY>-<MM>-<DD>, where YYYY-MM-DD is a snapshot at MRAN that will be used for installing
libraries.

To see an example R repository, visit our R example in binder-examples.

10.13 default.nix - the nix package manager

Specify packages to be installed by the nix package manager. When you use this config file all other configuration files
(like requirements.txt) that specify packages are ignored. When using nix you have to specify all packages
and dependencies explicitly, including the Jupyter notebook package that repo2docker expects to be installed. If you
do not install Jupyter explicitly repo2docker will no be able to start your container.

nix-shell is used to evaluate a nix expression written in a default.nix file. Make sure to pin your nixpkgs to
produce a reproducible environment.

To see an example repository visit nix binder example.

10.14 Dockerfile - Advanced environments

In the majority of cases, providing your own Dockerfile is not necessary as the base images provide core functionality,
compact image sizes, and efficient builds. We recommend trying the other configuration files before deciding to use
your own Dockerfile.

With Dockerfiles, a regular Docker build will be performed.

Note: If a Dockerfile is present, all other configuration files will be ignored.

See the Advanced Binder Documentation for best-practices with Dockerfiles.

30 Chapter 10. Configuration Files

https://github.com/binder-examples/python2_runtime/blob/master/runtime.txt
https://mran.microsoft.com/documents/rro/reproducibility
https://github.com/binder-examples/r/blob/master/runtime.txt
https://github.com/NixOS/nixpkgs
https://nixos.org/nix/manual/#sec-nix-shell
https://discourse.nixos.org/t/nixops-pinning-nixpkgs/734
https://github.com/binder-examples/nix
https://mybinder.readthedocs.io/en/latest/tutorials/dockerfile.html

CHAPTER 11

The Reproducible Execution Environment Specification

repo2docker scans a repository for particular Configuration Files, such as requirements.txt or REQUIRE. The
collection of files, their contents, and the resulting actions that repo2docker takes is known as the Reproducible
Execution Environment Specification (or REES).

The goal of the REES is to automate and encourage existing community best practices for reproducible computational
environments. This includes installing pacakges using community-standard specification files and their correspond-
ing tools, such as requirements.txt (with pip), REQUIRE (with Julia), or apt.txt (with apt). While
repo2docker automates the creation of the environment, a human should be able to look at a REES-compliant reposi-
tory and reproduce the environment using common, clear steps without repo2docker software.

Currently, the definition of the REE Specification is the following:

Any directory containing zero or more files from the Configuration Files list is a valid reproducible exe-
cution environment as defined by the REES. The configuration files have to all be placed either in the root
of the directory, in a binder/ sub-directory or a .binder/ sub-directory.

For example, the REES recognises requirements.txt as a valid config file. The file format is as defined by the
requirements.txt standard of the Python community. A REES-compliant tool will install a Python interpreter
(of unspecified version) and perform the equivalent action of pip install -r requirements.txt so that
the user can afterwards run python and use the packages installed.

31

repo2docker Documentation, Release 0.9.0

32 Chapter 11. The Reproducible Execution Environment Specification

CHAPTER 12

Contributing to repo2docker development

Thank you for thinking about contributing to repo2docker! This is an open source project that is developed and
maintained entirely by volunteers. Your contribution is integral to the future of the project. THANK YOU!

12.1 Types of contribution

There are many ways to contribute to repo2docker:

• Update the documentation. If you’re reading a page or docstring and it doesn’t make sense (or doesn’t exist!),
please let us know by opening a bug report. It’s even more amazing if you can give us a suggested change.

• Fix bugs or add requested features. Have a look through the issue tracker and see if there are any tagged as
“help wanted”. As the label suggests, we’d love your help!

• Report a bug. If repo2docker isn’t doing what you thought it would do then open a bug report. That issue
template will ask you a few questions described in more detail below.

• Suggest a new feature. We know that there are lots of ways to extend repo2docker! If you’re interested in
adding a feature then please open a feature request. That issue template will ask you a few questions described
in detail below.

• Review someone’s Pull Request. Whenever somebody proposes changes to the repo2docker codebase, the
community reviews the changes, and provides feedback, edits, and suggestions. Check out the open pull requests
and provide feedback that helps improve the PR and get it merged. Please keep your feedback positive and
constructive!

• Tell people about repo2docker. As we said above, repo2docker is built by and for its community. If you know
anyone who would like to use repo2docker, please tell them about the project! You could give a talk about it, or
run a demonstration. The sky is the limit :rocket::star2:.

If you’re not sure where to get started, then please come and say hello in our Gitter channel, or open an discussion
thread at the Jupyter discourse forum.

33

https://github.com/jupyter/repo2docker/issues
https://github.com/jupyter/repo2docker/issues?q=is%3Aissue+is%3Aopen+label%3A%22help+wanted%22
https://github.com/jupyter/repo2docker/issues/new?template=bug_report
https://github.com/jupyter/repo2docker/issues/new?template=feature_request
https://github.com/jupyter/repo2docker/pulls?q=is%3Apr+is%3Aopen+sort%3Aupdated-desc
https://gitter.im/jupyterhub/binder
https://discourse.jupyter.org/

repo2docker Documentation, Release 0.9.0

12.2 Process for making a contribution

This outlines the process for getting changes to the repo2docker project merged.

1. Identify the correct issue template: bug report or feature request.

Bug reports (examples, new issue) will ask you for a description of the problem, the expected behaviour, the
actual behaviour, how to reproduce the problem, and your personal set up. Bugs can include problems with the
documentation, or code not running as expected.

It is really important that you make it easy for the maintainers to reproduce the problem you’re having. This
guide on creating a minimal, complete and verifiable example is a great place to start.

Feature requests (examples, new issue) will ask you for the proposed change, any alternatives that you have
considered, a description of who would use this feature, and a best-guess of how much work it will take and
what skills are required to accomplish.

Very easy feature requests might be updates to the documentation to clarify steps for new users. Harder feature
requests may be to add new functionality to the project and will need more in depth discussion about who can
complete and maintain the work.

Feature requests are a great opportunity for you to advocate for the use case you’re suggesting. They help others
understand how much effort it would be to integrate the work,and - if you’re successful at convincing them that
this effort is worth it - make it more likely that they to choose to work on it with you.

2. Open an issue. Getting consensus with the community is a great way to save time later.

3. Make edits in your fork of the repo2docker repository.

4. Make a pull request. Read the next section for guidelines for both reviewers and contributors on merging a PR.

5. Edit the changelog by appending your feature / bug fix to the development version.

6. Wait for a community member to merge your changes. Remember that someone else must merge your pull
request. That goes for new contributors and long term maintainers alike.

7. (optional) Deploy a new version of repo2docker to mybinder.org by following these steps

12.3 Guidelines to getting a Pull Request merged

These are not hard rules to be enforced by but they are suggestions written by the repo2docker maintainers to help
complete your contribution as smoothly as possible for both you and for them.

• Create a PR as early as possible, marking it with [WIP] while you work on it. This avoids duplicated work,
lets you get high level feedback on functionality or API changes, and/or helps find collaborators to work with
you.

• Keep your PR focused. The best PRs solve one problem. If you end up changing multiple things, please open
separate PRs for the different conceptual changes.

• Add tests to your code. PRs will not be merged if Travis is failing.

• Apply PEP8 as much as possible, but not too much. If in doubt, ask.

• Use merge commits instead of merge-by-squashing/-rebasing. This makes it easier to find all changes since the
last deployment git log --merges --pretty=format:"%h %<(10,trunc)%an %<(15)%ar
%s" <deployed-revision>.. and your PR easier to review.

• Make it clear when your PR is ready for review. Prefix the title of your pull request (PR) with [MRG] if the
contribution is complete and should be subjected to a detailed review.

34 Chapter 12. Contributing to repo2docker development

https://github.com/jupyter/repo2docker/issues/new?template=bug_report
https://github.com/jupyter/repo2docker/issues/new?template=feature_request
https://github.com/jupyter/repo2docker/issues?q=is%3Aissue+is%3Aopen+label%3Abug
https://github.com/jupyter/repo2docker/issues/new?template=bug_report
https://stackoverflow.com/help/mcve
https://github.com/jupyter/repo2docker/labels/needs%3A%20discussion
https://github.com/jupyter/repo2docker/issues/new?template=feature_request
https://help.github.com/en/articles/fork-a-repo
https://github.com/jupyter/repo2docker
https://help.github.com/en/articles/about-pull-requests
http://mybinder-sre.readthedocs.io/en/latest/deployment/how.html
https://www.python.org/dev/peps/pep-0008/

repo2docker Documentation, Release 0.9.0

• Enter your changes into the changelog in docs/source/changelog.rst.

• Use commit messages to describe why you are proposing the changes you are proposing.

• Try to not rush changes (the definition of rush depends on how big your changes are). Remember that everyone
in the repo2docker team is a volunteer and we can not (nor would we want to) control their time or interests.
Wait patiently for a reviewer to merge the PR. (Remember that someone else must merge your PR, even if you
have the admin rights to do so.)

12.4 Setting up for Local Development

To develop & test repo2docker locally, you need:

1. Familiarity with using a command line terminal

2. A computer running macOS / Linux

3. Some knowledge of git

4. At least python 3.6

5. Your favorite text editor

6. A recent version of Docker Community Edition

12.4.1 Clone the repository

First, you need to get a copy of the repo2docker git repository on your local disk. Fork the repository on GitHub, then
clone it to your computer:

git clone https://github.com/<your-username>/repo2docker

This will clone repo2docker into a directory called repo2docker. You can make that your current directory with
cd repo2docker.

12.4.2 Set up a local virtual environment

After cloning the repository (or your fork of the repository), you should set up an isolated environment to install
libraries required for running / developing repo2docker.

There are many ways to do this but here we present you with two approaches: virtual environment or
pipenv.

• Using virtual environment

python3 -m venv .
source bin/activate
pip3 install -e .
pip3 install -r dev-requirements.txt
pip3 install -r docs/doc-requirements.txt

This should install all the libraries required for testing & running repo2docker!

• Using pipenv

Note that you will need to install pipenv first using pip3 install pipenv. Then from the root directory of this
project you can use the following commands:

12.4. Setting up for Local Development 35

https://www.docker.com/community-edition

repo2docker Documentation, Release 0.9.0

pipenv install --dev

This should install both the dev and docs requirements at once!

12.4.3 Set up

12.4.4 Verify that docker is installed and running

If you do not already have Docker, you should be able to download and install it for your operating system using the
links from the official website. After you have installed it, you can verify that it is working by running the following
commands:

docker version

It should output something like:

Client:
Version: 17.09.0-ce
API version: 1.32
Go version: go1.8.3
Git commit: afdb6d4
Built: Tue Sep 26 22:42:45 2017
OS/Arch: linux/amd64

Server:
Version: 17.09.0-ce
API version: 1.32 (minimum version 1.12)
Go version: go1.8.3
Git commit: afdb6d4
Built: Tue Sep 26 22:41:24 2017
OS/Arch: linux/amd64
Experimental: false

Then you are good to go!

36 Chapter 12. Contributing to repo2docker development

https://www.docker.com/
https://www.docker.com/community-edition

CHAPTER 13

The repo2docker roadmap

This roadmap collects “next steps” for repo2docker. It is about creating a shared understanding of the project’s vision
and direction amongst the community of users, contributors, and maintainers. The goal is to communicate priorities
and upcoming release plans. It is not a aimed at limiting contributions to what is listed here.

13.1 Using the roadmap

13.1.1 Sharing Feedback on the Roadmap

All of the community is encouraged to provide feedback as well as share new ideas with the community. Please do
so by submitting an issue. If you want to have an informal conversation first use one of the other communication
channels. After submitting the issue, others from the community will probably respond with questions or comments
they have to clarify the issue. The maintainers will help identify what a good next step is for the issue.

13.1.2 What do we mean by “next step”?

When submitting an issue, think about what “next step” category best describes your issue:

• now, concrete/actionable step that is ready for someone to start work on. These might be items that have a link
to an issue or more abstract like “decrease typos and dead links in the documentation”

• soon, less concrete/actionable step that is going to happen soon, discussions around the topic are coming close
to an end at which point it can move into the “now” category

• later, abstract ideas or tasks, need a lot of discussion or experimentation to shape the idea so that it can be
executed. Can also contain concrete/actionable steps that have been postponed on purpose (these are steps that
could be in “now” but the decision was taken to work on them later)

37

repo2docker Documentation, Release 0.9.0

13.1.3 Reviewing and Updating the Roadmap

The roadmap will get updated as time passes (next review by 31st January 2019) based on discussions and ideas
captured as issues. This means this list should not be exhaustive, it should only represent the “top of the stack” of
ideas. It should not function as a wish list, collection of feature requests or todo list. For those please create a new
issue.

The roadmap should give the reader an idea of what is happening next, what needs input and discussion before it can
happen and what has been postponed.

13.2 The roadmap proper

13.2.1 Project vision

Repo2docker is a dependable tool used by humans that reduces the complexity of creating the environment in which a
piece of software can be executed.

13.2.2 Now

The “Now” items are being actively worked on by the project:

• reduce documentation typos and syntax errors

• increase test coverage to 80% (see https://codecov.io/gh/jupyter/repo2docker/tree/master/repo2docker for low
coverage files)

• mounting repository contents in locations that is not /home/jovyan

• investigate options for pinning repo2docker versions (#490)

13.2.3 Soon

The “Soon” items are being discussed/a plan of action is being made. Once an item reaches the point of an actionable
plan and person who wants to work on it, the item will be moved to the “Now” section. Typically, these will be moved
at a future review of the roadmap.

• create the contributor highway, define the route from newcomer to project lead

• add Julia Manifest support (https://docs.julialang.org/en/v1/stdlib/Pkg/index.html, #486)

• support different base images/build pack stacks (#487)

13.2.4 Later

The “Later” items are things that are at the back of the project’s mind. At this time there is no active plan for an item.
The project would like to find the resources and time to discuss and then execute these ideas.

• support execution on a remote host (with more resources than available locally) via the command-line

• add support for using ZIP files as the repo (repo2docker https://example.com/an-archive.
zip) this will give us access to several archives (like Zenodo) that expose things as ZIP files.

• add support for Zenodo (repo2docker 10.5281/zenodo.1476680) so Zenodo software archives can
be used as the source in addition to a git repository

38 Chapter 13. The repo2docker roadmap

https://github.com/jupyter/repo2docker/issues/new
https://github.com/jupyter/repo2docker/issues/new
https://github.com/jupyter/repo2docker/issues/490
https://github.com/jupyter/repo2docker/issues/486
https://github.com/jupyter/repo2docker/issues/487

CHAPTER 14

Architecture of repo2docker

This is a living document talking about the architecture of repo2docker from various perspectives.

14.1 Buildpack

The buildpack concept comes from Heroku and Ruby on Rails’ Convention over Configuration doctrine.

Instead of the user specifying a complete specification of exactly how they want their environment to be, they can
focus only on how their environment differs from a conventional environment. This means instead of deciding ‘should
I get Python from Apt or pyenv or ?’, user can just specify ‘I want python-3.6’. Usually, specifying a runtime and list
of libraries with explicit versions is all that is needed.

In repo2docker, a Buildpack does the following things:

1. Detect if it can handle a given repository

2. Build a base language environment in the docker image

3. Copy the contents of the repository into the docker image

4. Assemble a specific environment in the docker image based on repository contents

5. Push the built docker image to a specific docker registry (optional)

6. Run the build docker image as a docker container (optional)

14.1.1 Detect

When given a repository, repo2docker first has to determine which buildpack to use. It takes the following steps to
determine this:

1. Look at the ordered list of BuildPack objects listed in Repo2Docker.buildpacks traitlet. This is pop-
ulated with a default set of buildpacks in most-specific-to-least-specific order. Other applications using this can
add / change this using traditional traitlet configuration mechanisms.

39

https://devcenter.heroku.com/articles/buildpacks
http://rubyonrails.org/doctrine/#convention-over-configuration
http://traitlets.readthedocs.io/en/stable/

repo2docker Documentation, Release 0.9.0

2. Calls the detect method of each BuildPack object. This method assumes that the repository is present in
the current working directory, and should return True if the repository is something that it should be used for.
For example, a BuildPack that uses conda to install libraries can check for presence of an environment.
yml file and say ‘yes, I can handle this repository’ by returning True. Usually buildpacks look for presence
of specific files (requirements.txt, environment.yml, install.R, manifest.xml etc) to deter-
mine if they can handle a repository or not. Buildpacks may also look into specific files to determine specifics of
the required environment, such as the Stencila integration which extracts the required language-specific execu-
tions contexts from an XML file (see base BuildPack). More than one buildpack may use such information,
as properties can be inherited (e.g. the R buildpack uses the list of required Stencila contexts to see if R must be
installed).

3. If no BuildPack returns true, then repo2docker will use the default BuildPack (defined in
Repo2Docker.default_buildpack traitlet).

14.2 Build base environment

Once a buildpack is chosen, it builds a base environment that is mostly the same for various repositories built with
the same buildpack.

For example, in CondaBuildPack, the base environment consists of installing miniconda and basic notebook pack-
ages (from repo2docker/buildpacks/conda/environment.yml). This is going to be the same for most
repositories built with CondaBuildPack, so we want to use docker layer caching as much as possible for perfor-
mance reasons. Next time a repository is built with CondaBuildPack, we can skip straight to the copy step (since
the base environment docker image layers have already been built and cached).

The get_build_scripts and get_build_script_files methods are primarily used for this.
get_build_scripts can return arbitrary bash script lines that can be run as different users, and
get_build_script_files is used to copy specific scripts (such as a conda installer) into the image to be run as
pat of get_build_scripts. Code in either has following constraints:

1. You can not use the contents of repository in them, since this happens before the repository is copied
into the image. For example, pip install -r requirements.txt will not work, since there’s no
requirements.txt inside the image at this point. This is an explicit design decision, to enable better layer
caching.

2. You may, however, read the contents of the repository and modify the scripts emitted based on that! For example,
in CondaBuildPack, if there’s Python 2 specified in environment.yml, a different kind of environment
is set up. The reading of the environment.yml is performed in the BuildPack itself, and not in the scripts
returned by get_build_scripts. This is fine. BuildPack authors should still try to minimize the variants
created in this fashion, to optimize the build cache.

14.3 Copy repository contents

The contents of the repository are copied unconditionally into the Docker image, and made available for all further
commands. This is common to most BuildPacks, and the code is in the build method of the BuildPack base
class.

14.4 Assemble repository environment

The assemble stage builds the specific environment that is requested by the repository. This usually means in-
stalling required libraries specified in a format native to the language (requirements.txt, environment.yml,
REQUIRE, install.R, etc).

40 Chapter 14. Architecture of repo2docker

https://conda.io/miniconda.html
https://thenewstack.io/understanding-the-docker-cache-for-faster-builds/

repo2docker Documentation, Release 0.9.0

Most of this work is done in get_assemble_scripts method. It can return arbitrary bash script lines that can be
run as different users, and has access to the repository contents (unlike get_build_scripts). The docker image
layers produced by this usually can not be cached, so less restrictions apply to this than to get_build_scripts.

At the end of the assemble step, the docker image is ready to be used in various ways!

14.5 Push

Optionally, repo2docker can push a built image to a docker registry. This is done as a convenience only (since you
can do the same with a docker push after using repo2docker only to build), and implemented in Repo2Docker.
push method. It is only activated if using the --push commandline flag.

14.6 Run

Optionally, repo2docker can run the built image and allow the user to access the Jupyter Notebook running inside
by default. This is also done as a convenience only (since you can do the same with docker run after using
repo2docker only to build), and implemented in Repo2Docker.run. It is activated by default unless the --no-run
commandline flag is passed.

14.5. Push 41

https://docs.docker.com/registry/

repo2docker Documentation, Release 0.9.0

42 Chapter 14. Architecture of repo2docker

CHAPTER 15

Design of repo2docker

The repo2docker buildpacks are inspired by Heroku’s Build Packs. The philosophy for the repo2docker buildpacks
includes:

• using common configuration files for familiar installation and packaging tools

• allowing configuration files to be combined to compose more complex setups

• specifying default locations for configuration files (in the repository’s root, binder or .binder directory)

When designing repo2docker and adding to it in the future, the developers are influenced by two primary use
cases. The use cases for repo2docker which drive most design decisions are:

1. Automated image building used by projects like BinderHub

2. Manual image building and running the image from the command line client, jupyter-repo2docker, by
users interactively on their workstations

15.1 Deterministic output

The core of repo2docker can be considered a deterministic algorithm. When given an input directory which has a
particular repository checked out, it deterministically produces a Dockerfile based on the contents of the directory. So
if we run repo2docker on the same directory multiple times, we get the exact same Dockerfile output.

This provides a few advantages:

1. Reuse of cached built artifacts based on a repository’s identity increases efficiency and reliability. For example,
if we had already run repo2docker on a git repository at a particular commit hash, we know we can just re-
use the old output, since we know it is going to be the same. This provides massive performance & architectural
advantages when building additional tools (like BinderHub) on top of repo2docker.

2. We produce Dockerfiles that have as much in common as possible across multiple repositories, enabling better
use of the Docker build cache. This also provides massive performance advantages.

43

https://devcenter.heroku.com/articles/buildpacks
http://github.com/jupyterhub/binderhub
https://en.wikipedia.org/wiki/Deterministic_algorithm

repo2docker Documentation, Release 0.9.0

15.2 Reproducibility and version stability

Many ingredients go into making an image from a repository:

1. version of the base docker image

2. version of repo2docker itself

3. versions of the libraries installed by the repository

repo2docker controls the first two, the user controls the third one. The current policy for the version of the base
image is that we will keep pace with Ubuntu releases until we reach the next release with Long Term Support (LTS).
We currently use Artful Aardvark (17.10) and the next LTS version will be Bionic Beaver (18.04).

The version of repo2docker used to build an image can influence which packages are installed by default and
which features are supported during the build process. We will periodically update those packages to keep step with
releases of Jupyter Notebook, JupyterLab, etc. For packages that are installed by default but where you want to control
the version we recommend you specify them explicitly in your dependencies.

15.3 Unix principles “do one thing well”

repo2docker should do one thing, and do it well. This one thing is:

Given a repository, deterministically build a docker image from it.

There’s also some convenience code (to run the built image) for users, but that’s separated out cleanly. This allows
easy use by other projects (like BinderHub).

There is additional (and very useful) design advice on this in the Art of Unix Programming which is a highly recom-
mended quick read.

15.4 Composability

Although other projects, like s2i, exist to convert source to Docker images, repo2docker provides the additional
functionality to support composable environments. We want to easily have an image with Python3+Julia+R-3.2 envi-
ronments, rather than just one single language environment. While generally one language environment per container
works well, in many scientific / datascience computing environments you need multiple languages working together
to get anything done. So all buildpacks are composable, and need to be able to work well with other languages.

15.5 Pareto principle (The 80-20 Rule)

Roughly speaking, we want to support 80% of use cases, and provide an escape hatch (raw Dockerfiles) for the other
20%. We explicitly want to provide support only for the most common use cases - covering every possible use case
never ends well.

An easy process for getting support for more languages here is to demonstrate their value with Dockerfiles that other
people can use, and then show that this pattern is popular enough to be included inside repo2docker. Remember
that ‘yes’ is forever (very hard to remove features!), but ‘no’ is only temporary!

44 Chapter 15. Design of repo2docker

http://www.faqs.org/docs/artu/ch01s06.html
https://github.com/openshift/source-to-image

CHAPTER 16

Common tasks

These are some common tasks to be done as a part of developing and maintaining repo2docker. If you’d like more
guidance for how to do these things, reach out in the JupyterHub Gitter channel.

16.1 Running tests

We have a lot of tests for various cases supported by repo2docker in the tests/ subdirectory. If you fix a bug or add
new functionality consider adding a new test to prevent the bug from coming back. These use py.test.

You can run all the tests with:

py.test -s tests/*

If you want to run a specific test, you can do so with:

py.test -s tests/<path-to-test>

16.2 Update and Freeze BuildPack Dependencies

This section covers the process by which repo2docker defines and updates the dependencies that are installed by
default for several buildpacks.

For both the conda and virtualenv (pip) base environments in the Conda BuildPack and Python BuildPack,
we install specific pinned versions of all dependencies. We explicitly list the dependencies we want, then freeze
them at commit time to explicitly list all the transitive dependencies at current versions. This way, we know that all
dependencies will have the exact same version installed at all times.

To update one of the dependencies shared across all repo2docker builds, you must follow these steps (with more
detailed information in the sections below):

1. Make sure you have Docker running on your computer

45

https://gitter.im/jupyterhub/jupyterhub
https://docs.pytest.org/
https://www.docker.com/

repo2docker Documentation, Release 0.9.0

2. Bump the version numbers of the dependencies you want to update in the conda environment (link)

3. Make a pull request with your changes (link)

See the subsections below for more detailed instructions.

16.2.1 Conda dependencies

1. There are two files related to conda dependencies. Edit as needed.

• repo2docker/buildpacks/conda/environment.yml

Contains list of packages to install in Python3 conda environments, which are the default. This is where
all Notebook versions & notebook extensions (such as JupyterLab / nteract) go.

• repo2docker/buildpacks/conda/environment.py-2.7.yml

Contains list of packages to install in Python2 conda environments, which can be specifically requested by
users. This only needs IPyKernel and kernel related libraries. Notebook / Notebook Extension need
not be installed here.

2. Once you edit either of these files to add a new package / bump version on an existing package, you should then
run:

cd ./repo2docker/buildpacks/conda/
python freeze.py

This script will resolve dependencies and write them to the respective .frozen.yml files. You will need
docker installed to run this script.

3. After the freeze script finishes, a number of files will have been created. Commit the following subset of files to
git:

repo2docker/buildpacks/conda/environment.yml
repo2docker/buildpacks/conda/environment.frozen.yml
repo2docker/buildpacks/conda/environment.py-2.7.yml
repo2docker/buildpacks/conda/environment.py-2.7.frozen.yml
repo2docker/buildpacks/conda/environment.py-3.5.frozen.yml
repo2docker/buildpacks/conda/environment.py-3.6.frozen.yml

4. Make a pull request; see details below.

5. Once the pull request is approved (but not yet merged), Update the change log (details below) and commit the
change log, then update the pull request.

16.2.2 Make a Pull Request

Once you’ve made the commit, please make a Pull Request to the jupyterhub/repo2docker repository, with
a description of what versions were bumped / what new packages were added and why. If you fix a bug or add new
functionality consider adding a new test to prevent the bug from coming back/the feature breaking in the future.

16.3 Creating a Release

We try to make a release of repo2docker every few months if possible.

We follow semantic versioning.

46 Chapter 16. Common tasks

https://github.com/jupyter/repo2docker/blob/master/CONTRIBUTING.md#conda-dependencies
https://github.com/jupyter/repo2docker/blob/master/CONTRIBUTING.md#make-a-pull-request

repo2docker Documentation, Release 0.9.0

Check that the Change log is ready and then tag a new release locally:

V=0.7.0 git tag -am "release $V" $V
git push origin --tags

When the travis run completes check that the new release is available on PyPI.

16.3.1 Update the change log

To add your change to the change log, find the relevant Feature/Bug fix/API change section for the next release near
the top of the file; then add one or two sentences as a new bullet point about your changes. Include the pull request or
issue number between square brackets at the end.

Some details:

• versioning follows the x.y.z, major.minor.bugfix numbering

• bug fixes go into the next bugfix release. If there isn’t any, you can create a new section (see point below). Don’t
worry if you’re not sure about that, and think it should go into a next major or minor release: an admin will let
you know, or move the change later to the appropriate section

• API changes should preferably go into the next major release, unless they are backward compatible (for example,
a deprecated function keyword): then they can go into the next minor release. For release with major release 0,
non-backward compatible breaking changes are also fine for the next minor release.

• new features should go into the next minor release.

• if there is no section for the appropriate release, you can add one:

follow the versioning scheme, by simply increasing the relevant number for one of the major /minor/bugfix
numbers, appropriate for your change (see the above bullet points); add the release section. Then add three
subsections: new features, api changes, and bug fixes. Leave out the sections that are not appropriate for the
newlye added release section.

Release candidate versions in the change log are only temporary, and should be superseded by either a next release
candidate, or the final release for that version (bugfix version 0).

16.3.2 Keeping the Pipfile and requirements files up to date

We now have both a dev-requirements.txt and a Pifile for repo2docker, as such it is important to keep
these in sync/up-to-date.

Both files use pip identifiers so if you are updating for example the Sphinx version in the
doc-requirements.txt (currently Sphinx = ">=1.4,!=1.5.4") you can use the same syntax to update
the Pipfile and viceversa.

At the moment this has to be done manually so please make sure to update both files accordingly.

16.3. Creating a Release 47

repo2docker Documentation, Release 0.9.0

48 Chapter 16. Common tasks

CHAPTER 17

Adding a new buildpack to repo2docker

A new buildpack is needed when a new language or a new package manager should be supported. Existing buildpacks
are a good model for how new buildpacks should be structured.

17.1 Criteria to balance and consider

Criteria to balance are:

1. Maintenance burden on repo2docker.

2. How easy it is to use a given setup without support from repo2docker natively. There are two escape hatches
here - postBuild and Dockerfile.

3. How widely used is this language / package manager? This is the primary tradeoff with point (1). We (the
Binder / Jupyter team) want to make new formats as little as possible, so ideally we can just say “X repositories
on binder already use this using one of the escape hatches in (2), so let us make it easy and add native support”.

17.2 Adding libraries or UI to existing buildpacks

Note that this doesn’t apply to adding additional libraries / UI to existing buildpacks. For example, if we had an R
buildpack and it supported IRKernel, it is much easier to just support RStudio / Shiny with it, since those are library
additions instead of entirely new buildpacks.

49

repo2docker Documentation, Release 0.9.0

50 Chapter 17. Adding a new buildpack to repo2docker

CHAPTER 18

Changelog

18.1 Version x.x.x

Release date: TBD

18.1.1 New features

18.1.2 API changes

18.1.3 Bug fixes

18.2 Version 0.9.0

Release date: 2019-05-05

18.2.1 New features

• Support for julia Project.toml, JuliaProject.toml and Manifest.toml files in PR #595 by @davidanthoff

• Set JULIA_PROJECT globally, so that every julia instance starts with the julia environment activated in PR
#612 by @davidanthoff.

• Update Miniconda version to 4.6.14 and Conda version to 4.6.14 in PR #637 by @jhamman

• Install notebook into notebook env instead of root. Activate conda environments and shell integration via EN-
TRYPOINT in PR #651 by @minrk

• Support for .binder directory in addition to binder directory for location of configuration files, in PR #653 by
@jhamman.

• Updated contributor guide and issue templates for bugs, feature requests, and support questions in PR #654 and
PR #655 by @KirstieJane and @betatim.

51

https://github.com/jupyter/repo2docker/pull/595
https://github.com/davidanthoff
https://github.com/jupyter/repo2docker/pull/612
https://github.com/jupyter/repo2docker/pull/612
https://github.com/davidanthoff
https://github.com/jupyter/repo2docker/pull/637
https://github.com/jhamman
https://github.com/jupyter/repo2docker/pull/651
https://github.com/minrk
https://github.com/jupyter/repo2docker/pull/653
https://github.com/jhamman
https://github.com/jupyter/repo2docker/pull/654
https://github.com/jupyter/repo2docker/pull/655
https://github.com/KirstieJane
https://github.com/betatim

repo2docker Documentation, Release 0.9.0

• Create a page naming and describing the “Reproducible Execution Environment Specification” (the specification
used by repo2docker) in PR #662 by @choldgraf.

18.2.2 API changes

18.2.3 Bug fixes

• Install IJulia kernel into ${NB_PYTHON_PREFIX}/share/jupyter in PR #622 by @davidanthoff.

• Ensure git submodules are updated and initilized correctly in PR #639 by @djhoese.

• Use archive.debian.org as source for the debian jessie based legacy buildpack in PR #633 by @betatim.

• Update to version 5.7.6 of the notebook package used in all environments in PR #628 by @betatim.

• Update to version 5.7.8 of the notebook package and version 2.0.12 of nteract-on-jupyter in PR #650 by @be-
tatim.

• Switch to newer version of jupyter-server-proxy to fix websocket handling in PR #646 by @betatim.

• Update to pip version 19.0.3 in PR #647 by @betatim.

• Ensure ENTRYPOINT is an absolute path in PR #657 by @yuvipanda.

• Fix handling of –build-memory-limit values without a postfix in PR #652 by @betatim.

18.3 Version 0.8.0

Release date: 2019-02-21

18.3.1 New features

• Add additional metadata to docker images about how they were built PR #500 by @jrbourbeau.

• Allow users to install global NPM packages: PR #573 by @GladysNalvarte.

• Add documentation on switching the user interface presented by a container. PR #568 by user:choldgraf.

• Increased test coverage to ~87% by @betatim and @yuvipanda.

• Documentation improvements and additions by @lheagy, @choldgraf.

• Remove f-strings from code base, repo2docker is compatible with Python 3.4+ again by @jrbourbeau in PR
#520.

• Local caching of previously built repostories to speed up launch times by @betatim in PR #511.

• Make destination of repository content in the container image configurable on the CLI via
--target-repo-dir. By @yuvipanda in PR #507.

• Expose CPU limit settings for building and running containers. By @GladysNalvarte in PR #579.

• Make Python 3.7 the default version. By @yuvipanda and @minrk in PR #539.

52 Chapter 18. Changelog

https://github.com/jupyter/repo2docker/pull/662
https://github.com/choldgraf
https://github.com/jupyter/repo2docker/pull/622
https://github.com/davidanthoff
https://github.com/jupyter/repo2docker/pull/639
https://github.com/djhoese
https://github.com/jupyter/repo2docker/pull/633
https://github.com/betatim
https://github.com/jupyter/repo2docker/pull/628
https://github.com/betatim
https://github.com/jupyter/repo2docker/pull/650
https://github.com/betatim
https://github.com/betatim
https://github.com/jupyter/repo2docker/pull/646
https://github.com/betatim
https://github.com/jupyter/repo2docker/pull/647
https://github.com/betatim
https://github.com/jupyter/repo2docker/pull/657
https://github.com/yuvipanda
https://github.com/jupyter/repo2docker/pull/652
https://github.com/betatim
https://github.com/jupyter/repo2docker/pull/500
https://github.com/jrbourbeau
https://github.com/jupyter/repo2docker/pull/573
https://github.com/GladysNalvarte
https://github.com/jupyter/repo2docker/pull/568
https://github.com/betatim
https://github.com/yuvipanda
https://github.com/lheagy
https://github.com/choldgraf
https://github.com/jrbourbeau
https://github.com/jupyter/repo2docker/pull/520
https://github.com/jupyter/repo2docker/pull/520
https://github.com/betatim
https://github.com/jupyter/repo2docker/pull/511
https://github.com/yuvipanda
https://github.com/jupyter/repo2docker/pull/507
https://github.com/GladysNalvarte
https://github.com/jupyter/repo2docker/pull/579
https://github.com/yuvipanda
https://github.com/minrk
https://github.com/jupyter/repo2docker/pull/539

repo2docker Documentation, Release 0.9.0

18.3.2 API changes

18.3.3 Bug fixes

• In some cases the version of conda installed in images was not pinned and got upgraded by user actions. Fixed
in PR #576 by @minrk.

• Fix an error related to checking if debug output was enabled or not: PR #575 by @yuvipanda.

• Update nteract frontend to version 2.0.0 by @yuvipanda in PR #571.

• Fix quoting issue in GIT_CREDENTIAL_ENV environment variable by @minrk in PR #572.

• Change to using the first 8 characters of each Git commit, not the last 8, to tag each built docker image of
repo2docker itself. @minrk in PR #562.

• Allow users to select the Julia when using a requirements.txt by @yuvipanda in PR #557.

• Set JULIA_DEPOT_PATH to install packages outside the home directory by @yuvipanda in PR #555.

• Update to Jupyter notebook 5.7.4 PR #519 by @minrk.

18.4 Version 0.7.0

Release date: 2018-12-12

18.4.1 New features

• Build from sub-directory: build the image based on a sub-directory of a repository PR #413 by @dsludwig.

• Editable mode: allows editing a local repository from a live container PR #421 by @evertrol.

• Change log added PR #426 by @evertrol.

• Documentation: improved the documentation for contributors PR #453 by @choldgraf.

• Buildpack: added support for the nix package manager PR #407 by @costrouc.

• Log a ‘success’ message when push is complete PR #482 by @yuvipanda.

• Allow specifying images to reuse cache from PR #478 by @yuvipanda.

• Add JupyterHub back to base environment PR #476 by @yuvipanda.

• Repo2docker has a logo! by @agahkarakuzu and @blairhudson.

• Improve support for Stencila, including identifying stencila runtime from document context PR #457 by @nuest.

18.4.2 API changes

• Add content provider abstraction PR #421 by @betatim.

18.4.3 Bug fixes

• Update to Jupyter notebook 5.7 PR #475 by @betatim and @minrk.

18.4. Version 0.7.0 53

https://github.com/jupyter/repo2docker/pull/576
https://github.com/minrk
https://github.com/jupyter/repo2docker/pull/575
https://github.com/yuvipanda
https://github.com/yuvipanda
https://github.com/jupyter/repo2docker/pull/571
https://github.com/minrk
https://github.com/jupyter/repo2docker/pull/572
https://github.com/minrk
https://github.com/jupyter/repo2docker/pull/562
https://github.com/yuvipanda
https://github.com/jupyter/repo2docker/pull/557
https://github.com/yuvipanda
https://github.com/jupyter/repo2docker/pull/555
https://github.com/jupyter/repo2docker/pull/519
https://github.com/minrk
https://github.com/jupyter/repo2docker/pull/413
https://github.com/dsludwig
https://github.com/jupyter/repo2docker/pull/421
https://github.com/evertrol
https://github.com/jupyter/repo2docker/pull/426
https://github.com/evertrol
https://github.com/jupyter/repo2docker/pull/453
https://github.com/choldgraf
https://github.com/jupyter/repo2docker/pull/407
https://github.com/costrouc
https://github.com/jupyter/repo2docker/pull/482
https://github.com/yuvipanda
https://github.com/jupyter/repo2docker/pull/478
https://github.com/yuvipanda
https://github.com/jupyter/repo2docker/pull/476
https://github.com/yuvipanda
https://github.com/agahkarakuzu
https://github.com/blairhudson
https://github.com/jupyter/repo2docker/pull/457
https://github.com/nuest
https://github.com/jupyter/repo2docker/pull/421
https://github.com/betatim
https://github.com/jupyter/repo2docker/pull/475
https://github.com/betatim
https://github.com/minrk

repo2docker Documentation, Release 0.9.0

18.5 Version 0.6

Released 2018-09-09

18.6 Version 0.5

Released 2018-02-07

18.7 Version 0.4.1

Released 2018-09-06

18.8 Version 0.2

Released 2018-05-25

18.9 Version 0.1.1

Released 2017-04-19

18.10 Version 0.1

Released 2017-04-14

54 Chapter 18. Changelog

Index

Symbols
-appendix <appendix>

jupyter-repo2docker command line
option, 8

-build-memory-limit
<build_memory_limit>

jupyter-repo2docker command line
option, 7

-cache-from <cache_from>
jupyter-repo2docker command line

option, 8
-config <config>

jupyter-repo2docker command line
option, 7

-debug
jupyter-repo2docker command line

option, 7
-editable, -E

jupyter-repo2docker command line
option, 8

-env <environment>, -e <environment>
jupyter-repo2docker command line

option, 8
-image-name <image_name>

jupyter-repo2docker command line
option, 7

-json-logs
jupyter-repo2docker command line

option, 7
-no-build

jupyter-repo2docker command line
option, 7

-no-clean
jupyter-repo2docker command line

option, 8
-no-run

jupyter-repo2docker command line
option, 7

-publish <ports>, -p <ports>

jupyter-repo2docker command line
option, 7

-publish-all, -P
jupyter-repo2docker command line

option, 8
-push

jupyter-repo2docker command line
option, 8

-ref <ref>
jupyter-repo2docker command line

option, 7
-subdir <subdir>

jupyter-repo2docker command line
option, 8

-target-repo-dir <target_repo_dir>
jupyter-repo2docker command line

option, 8
-user-id <user_id>

jupyter-repo2docker command line
option, 8

-user-name <user_name>
jupyter-repo2docker command line

option, 8
-version

jupyter-repo2docker command line
option, 8

-volume <volumes>, -v <volumes>
jupyter-repo2docker command line

option, 8
-h, -help

jupyter-repo2docker command line
option, 7

C
cmd

jupyter-repo2docker command line
option, 7

J
jupyter-repo2docker command line

55

repo2docker Documentation, Release 0.9.0

option
-appendix <appendix>, 8
-build-memory-limit

<build_memory_limit>, 7
-cache-from <cache_from>, 8
-config <config>, 7
-debug, 7
-editable, -E, 8
-env <environment>, -e

<environment>, 8
-image-name <image_name>, 7
-json-logs, 7
-no-build, 7
-no-clean, 8
-no-run, 7
-publish <ports>, -p <ports>, 7
-publish-all, -P, 8
-push, 8
-ref <ref>, 7
-subdir <subdir>, 8
-target-repo-dir <target_repo_dir>,

8
-user-id <user_id>, 8
-user-name <user_name>, 8
-version, 8
-volume <volumes>, -v <volumes>, 8
-h, -help, 7
cmd, 7
repo, 7

R
repo

jupyter-repo2docker command line
option, 7

56 Index

	Installing repo2docker
	Prerequisite: Docker
	Installing with pip
	Installing from source code
	Windows support

	Using repo2docker
	Calling repo2docker
	Building a specific branch, commit or tag
	Where to put configuration files
	Debugging repo2docker with --debug and --no-build
	Command line API

	Frequently Asked Questions (FAQ)
	How should I specify another version of Python?
	What versions of Python (or R or Julia…) are supported?
	Why is my repository is failing to build with ResolvePackageNotFound ?
	Can I add executable files to the user’s PATH?
	How do I set environment variables?
	Can I use repo2docker to bootstrap my own Dockerfile?
	Can I use repo2docker to edit a local host repository within a Docker environment?
	Why is my R shiny app not launching?
	Why does repo2docker need to exist? Why not use tool like source2image?

	Configure the user interface
	JupyterLab
	nteract
	RStudio
	Shiny
	Stencila

	Choose languages for your environment
	Python
	The R Language
	Julia
	Languages not covered here
	Using multiple languages at once

	How to automatically create a environment.yml that works with repo2docker
	The challenge
	The solution

	Share JupyterLab Workspaces with a repository
	Build JupyterHub-ready images
	Using repo2docker as part of your Continuous Integration
	Getting Started

	Configuration Files
	environment.yml - Install a Python environment
	requirements.txt - Install a Python environment
	setup.py - Install Python packages
	Project.toml - Install a Julia environment
	REQUIRE - Install a Julia environment (legacy)
	install.R - Install an R/RStudio environment
	apt.txt - Install packages with apt-get
	DESCRIPTION - Install an R package
	manifest.xml - Install Stencila
	postBuild - Run code after installing the environment
	start - Run code before the user sessions starts
	runtime.txt - Specifying runtimes
	default.nix - the nix package manager
	Dockerfile - Advanced environments

	The Reproducible Execution Environment Specification
	Contributing to repo2docker development
	Types of contribution
	Process for making a contribution
	Guidelines to getting a Pull Request merged
	Setting up for Local Development

	The repo2docker roadmap
	Using the roadmap
	The roadmap proper

	Architecture of repo2docker
	Buildpack
	Build base environment
	Copy repository contents
	Assemble repository environment
	Push
	Run

	Design of repo2docker
	Deterministic output
	Reproducibility and version stability
	Unix principles “do one thing well”
	Composability
	Pareto principle (The 80-20 Rule)

	Common tasks
	Running tests
	Update and Freeze BuildPack Dependencies
	Creating a Release

	Adding a new buildpack to repo2docker
	Criteria to balance and consider
	Adding libraries or UI to existing buildpacks

	Changelog
	Version x.x.x
	Version 0.9.0
	Version 0.8.0
	Version 0.7.0
	Version 0.6
	Version 0.5
	Version 0.4.1
	Version 0.2
	Version 0.1.1
	Version 0.1

