

 Navigation

 	
 index

 	
 next |

 	RegERMs 0.0.1 documentation

RegERMs.jl

Regularized empirical risk minimization (RegERM) is a general concept that defines a family of optimization problems in machine learning, as, e.g., Support Vector Machine, Logistic Regression, and Ridge Regression.

Contents:

	API
	Loss functions

	Regularizer

	Machine learning methods
	Ridge Regression

	Logistic Regression

	Support Vector Machine

	Let \({\bf x}_i\) be a vector of features describing an instance i and \(y_i\) be its target value. Then, for a given set of n training instances \(\{({\bf x}_i,y_i)\}_{i=1}^n\) the goal is to find a model \({\bf w}\) that minimizes the regularized empirical risk:

	
\[\sum_{i=1}^n \ell({\bf w}, {\bf x}_i, y_i) + \Omega({\bf w}).\]

The loss function \(\ell\) measures the disagreement between the true label \(y\) and the model prediction and the regularizer \(\Omega\) penalizes the model’s complexity.

	
optimize(method::RegERM, λ::Float64, optimizer::Symbol=:l_bfgs)

	Perform the optimization of method for a given regularization parameter λ and return a prediction model that can be used for classification. Stochastic gradient descent (:svg) and Limited-memory BFGS (:l_bfgs) are valid optimizer.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Christoph Sawade.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	RegERMs 0.0.1 documentation

API

The following main concepts are implemented:

	Loss functions

	Regularizer

 Copyright 2014, Christoph Sawade.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	RegERMs 0.0.1 documentation

 	API

Loss functions

Loss functions measure the disagreement between the true label \(y\in\{-1,1\}\) and the prediction.

Loss functions implement the following main methods:

	
value(l::Loss)

	Compute the value of the loss.

	
gradient(l::Loss)

	Compute the gradient of the loss.

The following loss functions are implemented:

	
Logistic(w::Vector, X::Matrix, y::Vector)

	Return a vector of the logistic loss evaluated for all given training instances \(\bf X\) and the labels \(\bf y\)

\[\begin{split}\ell({\bf w}, {\bf x}, y)&=\log(1+exp(-y{\bf x}^T{\bf w})),\end{split}\]

where \({\bf w}\) is the weight vector of the decision function.

Note

The logistic loss corresponds to a likelihood function under an exponential family assumption of the class-conditional distributions \(p({\bf x}|y;{\bf w})\).

	
Squared(w::Vector, X::Matrix, y::Vector)

	Return a vector of the squared loss evaluated for all given training instances \(\bf X\) and the labels \(\bf y\)

\[\begin{split}\ell({\bf w}, {\bf x}, y)&=(y-{\bf x}^T{\bf w})^2,\end{split}\]

where \({\bf w}\) is the weight vector of the decision function.

	
Hinge(w::Vector, X::Matrix, y::Vector)

	Return a vector of the hinge loss evaluated for all given training instances \(\bf X\) and the labels \(\bf y\)

\[\begin{split}\ell({\bf w}, {\bf x}, y)&=\max(0, 1-y{\bf x}^T{\bf w}),\end{split}\]

where \({\bf w}\) is the weight vector of the decision function.

Note

The hinge loss corresponds to a max-margin assumption.

 Copyright 2014, Christoph Sawade.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	RegERMs 0.0.1 documentation

 	API

Regularizer

Regularization prevent overfitting and introduce additional information (prior knowledge) to solve an ill-posed problem.

Regularizers implement the following main methods:

	
value(r::Regularizer)

	Compute the value of the regularizer.

	
gradient(r::Regularizer)

	Compute the gradient of the regularizer.

The following regularizers are implemented:

	
L2reg(w::Vector, λ::Float64)

	Implements an \(L^2\)-norm regularization of the weight vector w of the decision function:

\[\begin{split}\Omega({\bf w})&=\frac{1}{2\lambda}\|{\bf w}\|^2,\end{split}\]

where the regularization parameter \(\lambda\) controls the influence of the regularizer.

Note

The \(L^2\)-norm regularization corresponds to Gaussian prior assumption of \({\bf w}\sim\mathcal{N}({\bf 0},\lambda{\bf I})\).

 Copyright 2014, Christoph Sawade.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	RegERMs 0.0.1 documentation

Machine learning methods

The framework implements the following learning algorithms:

	Ridge Regression

	Logistic Regression

	Support Vector Machine

Implement: optimize

 Copyright 2014, Christoph Sawade.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	RegERMs 0.0.1 documentation

 	Machine learning methods

Ridge Regression

Ridge regression models the relationship between an input variable \({\bf x}\) and a continous output variable \(y\) by fitting a linear function.

	
LinReg(X::Matrix, y::Vector; kernel::Symbol=:linear)

	Initialize a ridge regression object with a data matrix \({\bf X} \in \mathbb{R}^{n\times m}\), a label binary label vector \({\bf y} \in \mathbb{R}^{n}\) of \(n\) \(m\)-dimensional examples, and a kernel function.

Implements: optimize

 Copyright 2014, Christoph Sawade.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	RegERMs 0.0.1 documentation

 	Machine learning methods

Logistic Regression

Logistic regression models the relationship between an input variable \({\bf x}\) and a binary output variable \(y\) by fitting a logistic function.

	
LogReg(X::Matrix, y::Vector; kernel::Symbol=:linear)

	Initialize a logistic regression object with a data matrix \({\bf X} \in \mathbb{R}^{n\times m}\), a label binary label vector \({\bf y} \in \mathbb{R}^{n}\) of \(n\) \(m\)-dimensional examples, and a kernel function.

Implements: optimize

 Copyright 2014, Christoph Sawade.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 previous |

 	RegERMs 0.0.1 documentation

 	Machine learning methods

Support Vector Machine

Support vector machines model the relationship between an input variable \({\bf x}\) and a continous output variable \(y\) by finding a hyperplane separating examples belonging to different classes with maximal margin.

	
SVM(X::Matrix, y::Vector; kernel::Symbol=:linear)

	Initialize an SVM object with a data matrix \({\bf X} \in \mathbb{R}^{n\times m}\), a label binary label vector \({\bf y} \in \mathbb{R}^{n}\) of \(n\) \(m\)-dimensional examples, and a kernel function.

Implements: optimize

 Copyright 2014, Christoph Sawade.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	RegERMs 0.0.1 documentation

Index

 G
 | H
 | L
 | O
 | S
 | V

G

 	

 	gradient() (built-in function), [1]

H

 	

 	Hinge() (built-in function)

L

 	

 	L2reg() (built-in function)

 	LinReg() (built-in function)

 	

 	Logistic() (built-in function)

 	LogReg() (built-in function)

O

 	

 	optimize() (built-in function)

S

 	

 	Squared() (built-in function)

 	

 	SVM() (built-in function)

V

 	

 	value() (built-in function), [1]

 Copyright 2014, Christoph Sawade.
 Created using Sphinx 1.2.2.

 _static/minus.png

_static/comment.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment-bright.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

