

 Navigation

 	
 index

 	
 next |

 	Reference Pages 0.2 documentation

My Reference Pages

This is my stab at replacing my collections of bookmarks. The goal is
to create expository content surrounding the links which gives them
meaning. As time allows, I’ll be migrating all my bookmarks here under
that format.

The reference pages are collected topically:

	Understanding Python

	Understanding Software

	Advice For PyCon Speakers

Each of these is a stand-alone document.

Ultimately I’d like to have a tool that makes adding to the reference
pages as easy as adding a bookmark is now. All in good time...

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Reference Pages 0.2 documentation

Understanding Python

Contents:

	Python Imports
	A High-level Overview of Python’s import

	Interfaces in Python
	Abstract API Model Approaches

	Data Types

	Protocols

	Abstract Base Classes

	Python’s Dynamic Typing

	Key Concept: LBYL vs. EAFP

	Examples

	Python’s Protocols

	collections.abc

	Writing Your Own ABC

	Controversies

	Python’s Type System
	A High-level Overview of Python’s Type System

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Reference Pages 0.2 documentation

 	Understanding Python

Python Imports

	status:	Work In Progress

An overview of the history and functionality of Python’s import machinery.

This page is an outgrowth of a talk proposal I made for PyCon 2012 [http://us.pycon.org/2012/].
Hopefully it’s helpful as a reference and adds a little perspective on
imports in Python. If you have any suggestions or corrections just let
me know (see the project issue tracker [https://bitbucket.org/ericsnowcurrently/reference_pages/issues?status=new&status=open]).

A High-level Overview of Python’s import

Python’s import statement and the concept of self-contained namespaces
have been a feature of the language since the very beginning. It’s one
of the simple yet powerful ways that Python enables you to write code
you’ll still be able to read in 6 months.

Chances are that you take imports for granted: the simplicity of the
syntax; the whirring and intermeshing going on behing the scenes.
Imports are, to a large measure, what make Python tick. You use them in
every piece of Python code you write.

Why does all this matter? It’s because understanding the lower layers
empowers you to get the most out of the higher ones [1 [http://blip.tv/pycon-us-videos-2009-2010-2011/abstraction-as-leverage-1966769]]. With that
tool in your belt you can fix your problems more quickly. To top it all
off, Python provides a number of import tools that actually make sense
once you wrap your brain around the behind-the-scenes stuff.

So, what makes import tick? Glad you asked...

Pulling It Apart

As implied, Python’s import machinery is made up of many pieces at many
different levels. Why the complexity? Because imports cover a lot of
territory and are called on to do some pretty hairy stuff. By the time
you’re done here, you’ll understand.

Since it’s the point of this document, we’ll be looking at each cog and
sprocket, with a high-level view coming immediately. The principal
piece is the module object, which we’ll discuss next. Later sections
will go more in-depth, while the appendices go all the way.

Imports work at several levels. Recognizing them is key to putting
together the big picture. While we’ll look at each later, here’s a
quick run-down of those layers, from top to bottom:

	the import statement

	builtins.__import__

	PEP 302 finders

	PEP 302 path importers

(and woven throughout is the interpreter’s import state).

What is a Module?

The central piece to imports is the module. A module is the object that
the import machinery spits out. While we may call our files “modules”
sometimes, the file is not the module. Instead, the module object gets
created during import and the file gets executed in the module’s
namespace. It’s a subtle difference, but a crucial one. That’s because
imports are about much more than just files.

Let’s look at how modules fit in.

Note: make sure you understand the difference between running a .py file
as a script and importing the corresponding module (see
Modules vs. Scripts).

What Happens During Import?

With that concept of modules in mind, let’s step down, layer by layer,
through import process.

At the highest level the compiler maps the various forms of the import
statement to a handful of instructions for the interpreter. The end
result is that one or more module has been imported and one or more
names has been bound (in the local namespace).

At the point that the interpreter actually goes to import the module,
it calls the builtins.__import__() function, which does the bulk of the
work. The wasn’t always the case, but thankfully it is now, because we
can take advantage of it to customize the behavior of imports.

When you import a module, you’re actually importing the chain of modules
defined by the dots in the module name. Each of the names is imported,
from left to right, with each imported relative to the previous one (the
parent).

If one of these modules has not already been imported, then the process
described in PEP 302 is used to find it and load it. This is
implemented within builtins.__import__().

First it tries using custom import hooks to find the module. Then the
system falls back to looking in special internal modules. Finally, it
looks across a variety of filesystem paths. Through the API defined by
PEP 302, this part is the last (and deepest) opportunity for
customization. Realistically, it’s also the last chance for a module to
be located during import.

If the module is never located, an ImportError gets raised. Otherwise
the module gets loaded and the process continues.

Python’s Data and Execution Models

Namespaces

...

In the context of imports, there are two important namespaces: modules
and packages. We’ve already talked about modules and how they are the
namespace in which your files are executed. A package is simply a
module associated with a directory rather than a file.

(packages should never be put directly on sys.path (even by the sys.path[0] behavior of the __main__ module))

See the “modules” section of the data model documentation [http://docs.python.org/dev/reference/datamodel.html#the-standard-type-hierarchy].

Execution Blocks

See the execution model documentation [http://docs.python.org/reference/executionmodel.html].

Scope

See the execution model documentation [http://docs.python.org/reference/executionmodel.html].

Modules vs. Scripts

The Import Syntax

http://docs.python.org/dev/reference/simple_stmts.html

For more detail see the appendix.

The import statement

	usage

	effect

The as clause

	usage

	effect

	benefits

The from statement

	usage

	effect

	from ... import *

	dangers

Relative Imports

http://docs.python.org/dev/tutorial/modules.html#intra-package-references

PEP 328 [https://www.python.org/dev/peps/pep-0328]

	usage

	effect

Parentheses

	usage

	effect

Other Semantics

	implicit relative imports

	files (__init__.py, .py, .pyc, .pyo, etc.)

	builtins.__import__()

Note

As noted at the beginning of this section, the appendix provides a more thorough under-the-hood look at the import syntax.

The Import State

http://docs.python.org/library/sys.html

sys.modules

sys.path

	.pth files

(Also see Appendix B)
(Also see I.1 for more on why ‘’, a.k.a. CWD, is added to sys.path)

sys.meta_path

sys.path_hooks

sys.path_importer_cache

site-packages

http://docs.python.org/dev/library/site.html

site-packages
user site-packages

(Also see Appendix B)

The site Module

http://docs.python.org/dev/library/site.html

site.py
sitecustomize.py
usercustomize.py

(Also see Appendix B)

Customizing Import Behavior

We’ll take a look at each layer.

The Import Syntax

Overriding builtins.__import__()

Using PEP 302 Finders (and Loaders)

Manipulating the Path Importer Cache

Using PEP 302 Path Importers

Directly Modifying the Import State

Consenting Adults

.pth Files

Other Resources

Appendices

	annotated step-by-step through the CPython source for the import
process

	orphan:	

Appendix: Import Syntax Under the Hood

Appendix: Import-related Files

	orphan:	

sys.path related

http://docs.python.org/library/sys.html#sys.path
http://docs.python.org/c-api/init.html#Py_GetPath
http://hg.python.org/cpython/file/default/Modules/getpath.c#l21

http://docs.python.org/dev/library/site.html

	calculate the 4 site-packages dirs

	add them to sys.path

	check for and execute .pth files in those site-packages dirs

	calculate user site-packages

site.getsitepackages()

Unix/Mac:

<sys.prefix>/lib/python#.#/site-packages
<sys.exec_prefix>/lib/python#.#/site-packages
<sys.prefix>/lib/site-python
<sys.exec_prefix>/lib/site-python

Windows:

<sys.prefix>/
<sys.exec_prefix>/
<sys.prefix>/lib/site-packages
<sys.exec_prefix>/lib/site-packages

site related

http://docs.python.org/dev/library/site.html

	module: site

	module: sitecustomize

	module: usercustomize

site.getusersitepackages()

Standard Library

Lib/importlib/*.py
Lib/pkgutil.py

Tests

Lib/Test/...

CPython

Python/import.c
Python/importdl.c
Python/importdl.h
Include/import.h
Python/sysmodule.c
Python/pythonrun.c

PyPy

Jython

IronPython

Appendix: An Extended Timeline of Importing in Python

	orphan:	

Some Context

(origins)
http://www.python.org/community/sigs/retired/import-sig/
http://www.python.org/dev/peps/pep-3121/#id11
(1.5) http://www.python.org/doc/essays/packages.html
#http://www.python.org/doc/essays/packages/
Modula-3 influence: http://python-history.blogspot.com/2009/02/adding-support-for-user-defined-classes.html
http://python-history.blogspot.com/2009/01/brief-timeline-of-python.html
http://python-history.blogspot.com/2009/03/dynamically-loaded-modules.html
http://docs.python.org/dev/whatsnew/index.html
http://python.org/download/releases/src/
http://hg.python.org/cpython-fullhistory/tags
http://hg.python.org/cpython-fullhistory/graph/3cd033e6b530?revcount=800
http://hg.python.org/cpython-fullhistory/log/62bdb1cbe0f5/Python/import.c?revcount=120
initial: http://hg.python.org/cpython-fullhistory/file/fc6fcd7df4f7/Python/import.c
0.9.8: http://hg.python.org/cpython-fullhistory/file/17eff686be30/Python/import.c
builtin___import__(), importdl.c: http://hg.python.org/cpython-fullhistory/rev/d7e91437f0a2
PyImport_Import: http://hg.python.org/cpython-fullhistory/rev/292193170da1
highlights of “What’s New”: http://nedbatchelder.com/blog/201109/whats_in_which_python.html
code_swarm: http://vimeo.com/1093745

(ni)
introduced (1.3): http://hg.python.org/cpython-fullhistory/rev/ec0b42889243
deprecated (1.5): http://docs.python.org/release/1.5/lib/node40.html
still lives: http://docs.python.org/library/imputil.html#examples

(ihooks)
introduced (1.3): http://hg.python.org/cpython-fullhistory/rev/ec0b42889243
removed (3.0): http://docs.python.org/release/2.6.2/library/undoc.html#miscellaneous-useful-utilities
http://pydoc.org/2.4.1/ihooks.html

—–

The versions and dates are derived from a post on Guido’s “History of Python” blog. I’ve correlated the entries in section B.1 to versions by either explicit reference or by matching their commits to a version. Section B.2 also maps commits to versions. In both cases, I did my best to determine that mapping, but some may be off by a version.

The Extended Timeline

	Initial Checkin (1990)

	
	Checks sys.modules

	Loads modules from sys.path or current dir (if sys.path is empty)

	Supports IMPORT_NAME and IMPORT_FROM opcodes

	No support for .pyc files

	No support for packages

	No support for C extension modules?

	No ImportError

	Python 0.9.1 (Feb. 1991)

	
	builtin module support (C extention modules)

	Python 1.0 (1994)

	
	Support for extension modules

	Support for .pyc files

	Python 1.2 (1995)

	
	(Python/bltinmodule.c) __import__() builtin introduced

	(Python/import.c) dynamic module support factored out into importdl.c

	Python 1.3 (1995)

	
	“ni” module introduced

	Python 1.4 (1996)

	http://docs.python.org/release/1.4/ref/
*

	Python 1.5 (1998)

	
	Support for packages

	“site-packages” and “site-python” directories introduced

	“__all__” introduced

	“ni” module deprecated

	(Python/import.c) PyImport_Import() introduced

	Python 2.0 (2000)

	
	PEP 221 [https://www.python.org/dev/peps/pep-0221] – Import As

	Python 2.1 (2001)

	
	PEP 235 [https://www.python.org/dev/peps/pep-0235] – Import on Case-Insensitive Platforms

	Python 2.2 (2001)

	
	

	Python 2.3 (2003)

	
	PEP 273 [https://www.python.org/dev/peps/pep-0273] – Import Modules from Zip Archives

	PEP 302 [https://www.python.org/dev/peps/pep-0302] – New Import Hooks

	Python 2.4 (2004)

	
	PEP 328 [https://www.python.org/dev/peps/pep-0328] – Imports: Multi-Line and Absolute/Relative (multi-line portion)

	Python 2.5 (2006)

	
	PEP 328 [https://www.python.org/dev/peps/pep-0328] (relative imports portion)

	PEP 338 [https://www.python.org/dev/peps/pep-0338] – Executing modules as scripts

	Python 2.6/3.0 (2008)

	
	PEP 366 [https://www.python.org/dev/peps/pep-0366] – Main module explicit relative imports

	PEP 370 [https://www.python.org/dev/peps/pep-0370] – Per user site-packages directory

	Python 3.0 (2008)

	
	reload removed from builtins

	ihooks module removed from stdlib

	imputil module removed from stdlib

	Python 3.1 (2009)

	
	importlib module added

	Python 3.2 (2011)

	
	PEP 3147 [https://www.python.org/dev/peps/pep-3147] – PYC Repository Directories

	Python 3.3 (2012)

	
	see appendix D

Appendix: A Timeline of Import-related Commits

	orphan:	

http://hg.python.org/cpython-fullhistory/log/62bdb1cbe0f5/Python/import.c?revcount=120

Python 0.9.0 (1991)

	

Python 0.9.1 (1991)

	

Python 0.9.2 (1991)

	

Python 0.9.4 (1991)

	

Python 0.9.5 (1992)

	

Python 0.9.6 (1992)

	

Python 0.9.7 (1992)

	

Python 0.9.8 (1993)

	

Python 0.9.9 (1993)

	

Python 1.0.0 (1994)

	

Python 1.0.2 (1994)

	

Python 1.0.3 (1994)

	

Python 1.0.4 (1994)

	

Python 1.1 (1994)

	

Python 1.1.1 (1994)

	

Python 1.2 (1995)

	

Python 1.3 (1995)

	

Python 1.4 (1996)

	

Python 1.5 (1998)

	

Python 1.5.1 (1998)

	

Python 1.5.2 (1999)

	

Python 1.6 (2000)

	

Python 2.0 (2000)

	

Python 2.1 (2001)

	

Python 2.2 (2001)

	

Python 2.3 (2003)

	

Python 2.4 (2004)

	

Python 2.5 (2006)

	

Python 2.6 (2008)

	

Python 3.0 (2008)

	

Python 2.7 (2010)

	

Python 3.1 (2010)

	

Python 3.2 (2011)

	

Python 3.3 (2012)

	

Appendix: Ongoing Core Efforts to Improve Importing

	orphan:	

PEPs

	PEP 369 [https://www.python.org/dev/peps/pep-0369] – Post import hooks

	PEP 382 [https://www.python.org/dev/peps/pep-0382] – Namespace Packages

	PEP 395 [https://www.python.org/dev/peps/pep-0395] – Module Aliasing

	PEP 402 [https://www.python.org/dev/peps/pep-0402] – Simplified Package Layout and Partitioning

	PEP ??? – import engine

Rejected PEPs:

	PEP 299 [https://www.python.org/dev/peps/pep-0299] – Special __main__() function in modules

	PEP 3122 [https://www.python.org/dev/peps/pep-3122] – Delineation of the main module

Projects

	importlib.__import__ as the default builtins.__import__

Currently in Python, “builtin___import__()” in Python/bltinmodule.c makes a call to PyImport_ImportModuleLevelObject. Brett Cannon is working on making importlib.__import__ the default import call[1].

	the __experimental__ module

http://mail.python.org/pipermail/python-ideas/2010-June/007357.html
http://mail.python.org/pipermail/python-ideas/2011-August/011278.html

like the __future__ module, but for less-stable APIs that are likely to go in
focus on stdlib (room for experimental syntax too?)
(higher exposure testing)

Appendix: Imports in Alternate Python Implementations

PyPy

http://readthedocs.org/search/project/?q=import&selected_facets=project%3Apypy
http://codespeak.net/pypy/dist/pypy/doc/clr-module.html
http://codespeak.net/pypy/dist/pypy/doc/coding-guide.html
https://bugs.pypy.org/issue367

Jython

http://www.google.com/search?sitesearch=www.jython.org&q=import&Search=Search

IronPython

http://ironpython.codeplex.com/wiki/search?tab=Home&SearchText=import

Appendix: Easter Eggs

The Python devs are a playful lot.

import this

http://www.wefearchange.org/2010/06/import-this-and-zen-of-python.html

import antigravity

http://xkcd.com/353/
http://python-history.blogspot.com/2010/06/import-antigravity.html

from __future__ import flufl

http://www.python.org/dev/peps/pep-0401/
http://sayspy.blogspot.com/2009/03/guido-has-retired-as-bdfl.html

from __future__ import braces

import __hello__

Appendix: Import Examples

	orphan:	

How It Works

	Example: Plain Syntax Handler

	Example: From Name Syntax Handler

	Example: From Star Syntax Handler

	Example: builtins.__import__

Uncategorized

	Example: Naively Track Imports

	Example: Import Tracking, Take 2

	Example: Statement Local Namespaces

	Example: Protecting a High-Latency Filesystem

	Example: Customizing Access to a Specific Module Path

	Example: PEPS 382 and 402 as Import Hooks

	Example: Import Engine as an Import Hook

	Example: lazy imports

	Example: “importing” straight from a file

Appendix: Imports in the Python Community

Appendix: Troubleshooting Imports

	orphan:	

Causes of ImportError

	turn into ImportError subclasses, __cause__

Other Exceptions During Import

	SyntaxError

	IOError?

Common Import-related Problems

	don’t run non-scripts as scripts; import in a test script

	minimize the amount of code in scripts

	relative imports behave a little differently in scripts

	.pyc for <name> is created only for “import <name>”

	caching was turned off

	file is actually in __pycache__ directory

	python run with -O flag (optimized) so .pyc files created

By default the current working directory is first on sys.path. If this is causing trouble, you can move it to the back of the line:

try: sys.path.remove('')
except ValueError: pass
else: sys.path.append('')

Alternatively, you could remove it entirely (don’t append it back on).

http://bugs.python.org/issue8087

If a directory has a pyc file but no matching py file, the module will be loaded from the pyc file directly. Starting with PEP 3147 [https://www.python.org/dev/peps/pep-3147] (Python 3.2), orphaned pyc files in the __pycache__ directory are NOT loaded. The behavior use of pyc files otherwise stays the same. Either way, if you don’t want the module to be loaded from an orphaned pyc file, delete that file. Also see this tracker ticket <orphaned_pyc_files>.

Sometimes it can be helpful to replace sys.modules with a custom dictionary. However, in CPython, this does not affect the underlying dictionary that was originally bound to sys.modules. That is a separate part of the interpreter state. The behavior of the default _builtin___import__(), implemented in Python/import.c, actually uses this underlying dictionary through PyImport_GetModuleDict(), rather than explicitly pulling sys.modules. So your fancy-pantsy sys.modules is never used.

Luckily, importlib does explicitly use sys.modules, so if you switch over to that it should work just fine. This will be an even smaller issue once importlib’s __import__ because the default builtin.

(see http://bugs.python.org/issue12633).

If you have a module file in your sys.path, and you try to import it, sometimes the import will succeed but the module will be the wrong one. This can be both mysterious and perplexing.

The first thing to do is to see if you have a package (directory with a __init__.py) by the same name in the same place as that module file. If so, Python will import from the package instead of the module. To verify this, import the module: “import <name>” and then check the module in sys.modules: “import sys; print(sys.modules[‘<name>’])”. You should see it pointing to the __init__.py of the package instead of the module file you were expecting.

Appendix: Import Tips and Tricks

	orphan:	

block imports on the current working directory

By default Python will look for a module in your current working directory before trying the stdlib. The explicit relative import syntax of 2.7 help with this, but only to an extent.

To completely keep Python from trying the CWD, simply run “sys.path.remove(‘’)” and optionally follow that with “sys.path.append(‘’)”.

So the question remains, when did the empty string get added to (the front of) sys.path, and why?

...

Appendix: Other Import-related Resources

Online References

	orphan:	

Dr. Brett Cannon gave a talk at PyCon 2010 <http://python.mirocommunity.org/video/1491> and PyCon 2008 (can’t find video).

importlib extensions: http://packages.python.org/importers/

flowchart: http://svn.python.org/view/sandbox/trunk/import_in_py/docs/

http://mail.python.org/mailman/listinfo/import-sig
http://docs.python.org/dev/reference/simple_stmts.html#the-import-statement
http://docs.python.org/dev/reference/simple_stmts.html#future-statements
http://docs.python.org/dev/reference/toplevel_components.html
http://docs.python.org/dev/reference/executionmodel.html#naming-and-binding
http://docs.python.org/dev/reference/datamodel.html#the-standard-type-hierarchy (modules)

http://docs.python.org/dev/tutorial/modules.html
http://docs.python.org/release/1.5.1p1/tut/modules.html
http://docs.python.org/release/1.4/tut/node41.html#SECTION00700000000000000000
http://docs.python.org/dev/library/modules.html
http://docs.python.org/dev/faq/programming.html#what-are-the-best-practices-for-using-import-in-a-module
http://docs.python.org/dev/faq/programming.html#how-can-i-have-modules-that-mutually-import-each-other
http://docs.python.org/dev/faq/programming.html#import-x-y-z-returns-module-x-how-do-i-get-z
http://docs.python.org/dev/faq/programming.html#when-i-edit-an-imported-module-and-reimport-it-the-changes-don-t-show-up-why-does-this-happen

http://docs.python.org/dev/library/py_compile.html
http://docs.python.org/dev/library/compileall.html

http://www.doughellmann.com/PyMOTW/sys/imports.html

http://lucumr.pocoo.org/2011/9/21/python-import-blackbox/

http://code.google.com/p/backport/
http://mirnazim.org/writings/python-ecosystem-introduction/
http://nedbatchelder.com/blog/201112/duplicitous_django_settings.html

http://lucumr.pocoo.org/2011/12/7/thoughts-on-python3/
http://pythonic.pocoo.org/2009/3/4/imports-in-functions-you-sure-about-that

Open bugs:
http://bugs.python.org/issue?%40search_text=import&ignore=file%3Acontent&title=&%40columns=title&id=&%40columns=id&stage=&creation=&%40columns=creation&%40sort=creation&creator=&activity=&%40columns=activity&actor=&nosy=&type=&components=&versions=&dependencies=&assignee=&keywords=&priority=&status=1&%40columns=status&%40group=status&resolution=&nosy_count=&message_count=&%40pagesize=50&%40startwith=0&%40queryname=&%40old-queryname=&%40action=search

Not closed:
http://bugs.python.org/issue?%40search_text=&ignore=file%3Acontent&title=&%40columns=title&id=&%40columns=id&stage=&creation=&%40columns=creation&%40sort=creation&creator=&activity=&%40columns=activity&actor=&nosy=&type=&components=&versions=&dependencies=&assignee=&keywords=&priority=&status=-1%2C1%2C3&%40columns=status&%40group=status&resolution=&nosy_count=&message_count=&%40pagesize=50&%40startwith=0&%40queryname=&%40old-queryname=&%40action=search

Closed:
http://bugs.python.org/issue?%40search_text=&ignore=file%3Acontent&title=&%40columns=title&id=&%40columns=id&stage=&creation=&%40columns=creation&%40sort=creation&creator=&activity=&%40columns=activity&actor=&nosy=&type=&components=&versions=&dependencies=&assignee=&keywords=&priority=&status=2&%40columns=status&%40group=status&resolution=&nosy_count=&message_count=&%40pagesize=50&%40startwith=0&%40queryname=&%40old-queryname=&%40action=search

<stack overflow>

http://stackoverflow.com/questions/279237/python-import-a-module-from-a-folder

<cookbook recipes>

<others>

https://github.com/zacharyvoase/metaspace

http://www.youtube.com/watch?v=DkW5CSZ_VII
http://aroberge.blogspot.com/2006/02/python-wish-new-meaning-for-import-as.html

Import Who’s Who

	orphan:	

People who have been involved with Python’s imports (incomplete):

“experts”: Brett Cannon, Nick Coghlan

Brett Cannon (importlib)
Just van Rossum (PEP 302 [https://www.python.org/dev/peps/pep-0302])
Paul Moore (PEP 302 [https://www.python.org/dev/peps/pep-0302])
Aahz (PEP 328 [https://www.python.org/dev/peps/pep-0328])
Martin v. Loewis (PEP 382 [https://www.python.org/dev/peps/pep-0382])
P.J. Eby (PEP 402 [https://www.python.org/dev/peps/pep-0402])
James C. Ahlstrom (PEP 273 [https://www.python.org/dev/peps/pep-0273])
Nick Coghlan (PEP 338 [https://www.python.org/dev/peps/pep-0338], PEP 366 [https://www.python.org/dev/peps/pep-0366], PEP 395 [https://www.python.org/dev/peps/pep-0395])
Christian Heimes (PEP 370 [https://www.python.org/dev/peps/pep-0370])
Thomas Wouters (PEP 221 [https://www.python.org/dev/peps/pep-0221])
Barry Warsaw (PEP 3147 [https://www.python.org/dev/peps/pep-3147])
Tim Peters (PEP 225 [https://www.python.org/dev/peps/pep-0225])
Guido van Rossum (pretty much everything else <wink>)

Glossary

	orphan:	

The terminology surrounding imports can get
confusing. This glossary should help.

	import hook

	...

	finder

	An object with a find() method that conforms to PEP 302 [https://www.python.org/dev/peps/pep-0302]. May also
refer to the class of such an object.

	loader

	An object with a load() method that conforms to PEP 302 [https://www.python.org/dev/peps/pep-0302]. May also
refer to the class of such an object.

	importer

	Mostly synonymous with path importer.

	path importer

	An object, class, or other code that may be plugged into the PEP 302 [https://www.python.org/dev/peps/pep-0302]
import machinery. Often this term refers specifically to those that
are used with sys.path_hooks.

	module

	The object generated at the highest level of the import process. In
the normal import statement, it is the object bound to the name.

	module name

	The value bound to the __name__ attribute of the corresponding
module object. This will be the full qualified name relative to the
sys.path value at import time.

	package

	A module corresponding to a directory. The module is populated with
the results of evaluating the __init__.py file in the directory.
Other .py files and directories in the directory may be imported as
submodules of the package.

	namespace package

	A package, possibly without its own module execution, into which
subpackages are aggregated according to a single namespace. The
“zope” package is a good example.

	package portion

	...

	Index

	Search Page

	Index

	Search Page

The import Statement

The import statement is the syntactic mechanism you use to invoke
Python’s powerful import machinery. It has two forms: the
regular import and
from-import. In a moment we’ll walk through the ins
and outs of both forms.

When you use the import statement in either form, you identify a
module and its parent modules together as a
module name. By default, each successive parent module is
imported from the outside in, followed by the actual module you wanted.
After that the appropriate name is bound in the current local namespace.
Most imports are going to happen at the module level where the name will
be bound in that module’s [global] namespace.

A module object is the result of importing. We use the term “module” to
refer to this object as well as to the thing that Python used to create
the object, usually a file. A package is a special kind of module.
Where a normal module corresponds to a file, a package corresponds to a
directory.

Changing the Import Behavior

You can override the full import machinery by overriding builtins.__import__().

Prior to Python 2.3 the only way to override the import behavior was by replacing builtins.__import__() with some other function that did what you wanted. This changed with PEP PEP 302 [https://www.python.org/dev/peps/pep-0302].

Now you can add special “loader” objects to a couple of different places in the sys module to take control of imports in more targeted ways. A loader translates a module name into a “finder” object, if it can. The finder, in turn, converts the module name into the corresponding module object, which it sticks into sys.modules.

This entire process is explained much more in-depth in a later section and in the appendix.

Import State

All the Python variables related to the default import behavior is stored in the sys module. This includes sys.path, sys.modules, sys.meta_path, and sys.path_hooks.

	http://docs.python.org/library/sys.html

	http://www.doughellmann.com/PyMOTW/sys/imports.html

ImportError

What It Means

When It Happens and When Not

PEP 302

With the release of Python 3.2 [http://docs.python.org/release/2.3/whatsnew/section-pep302.html], a powerful way of customizing imports
became available with PEP 302 [https://www.python.org/dev/peps/pep-0302].

Finders

Loaders

The Default Import Process

See the appendix.

Implicit Finders

Builtin Modules

Frozen Modules

Zipped Modules

The Python Path Finder

Implementations

The imp Module

	iterative

	Python/import.c

PyImport_GetModuleDict() used to get sys.modules (see J.3.9).

	Python/bltinmodule.c - _builtin___import__()

This is the default handler for the import statement. In 2.7 it is __builtin__.__import__().

The importlib Module

	recursive

	Lib/importlib/

sys.modules used to get sys.modules.

	importlib.__import__()

	importlib.import_module()

Import-related Modules

http://docs.python.org/dev/library/modules.html

	pkgutil

	runpy

	modulefinder and zipimport

.pth Files

See the site module documentation [http://docs.python.org/library/site.html].

More in Appendix B.

A History of Python’s import Statement

A Brief History of Python

The Origins of Python’s import

http://python-history.blogspot.com/2009/02/adding-support-for-user-defined-classes.html
http://www.python.org/doc/essays/foreword/
http://python-history.blogspot.com/2009/01/brief-timeline-of-python.html

The import statement has been a part of Python since the very beginning, though with more limited behavior.

Like many things in Python, the syntax for the import statement has its roots in Modula-3.

Early Changes

	builtins.__import__()

	ni.py

	ihooks.py

The Intervening Years

	PEP 302 [https://www.python.org/dev/peps/pep-0302]

Recent Changes

	

 Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Reference Pages 0.2 documentation

 	Understanding Python

Interfaces in Python

A work-in-progress reference all about interfaces in Python.

Feel free to give me feedback on the project page [https://bitbucket.org/ericsnowcurrently/reference_pages]

	My PyCon talk on interfaces:

	slides <https://docs.google.com/present/...>
on the PyCon site <https://us.pycon.org/2012/schedule/presentation/126/>

understanding_software/interfaces

Abstract API Model Approaches

Python

Informally specified protocols, facilitated by duck-typing, have been
the mainstay of Python since the beginning. Since 2.6/3.0 abstract base
classes have been available as a formal means of specifying interfaces.
Other proposals have come and gone.

Python also makes it pretty easy to build-your-own interface system, as
evidenced by the variety of solutions out there.

Data Types

Python

Python is a strongly-typed, dynamically-typed, interpreted language.
Let’s take a look at the data model a bit more.

Class-based Approaches

Protocols

Python

This is the bread and butter of Python’s interfaces.

Abstract Base Classes

Python

Abstract base classes have been a part of Python since the Py3k efforts
led to PEP 3119 [https://www.python.org/dev/peps/pep-3119] in 2007.

Adaptation

http://www.python.org/dev/peps/pep-0246/

http://pythonnotes.blogspot.com/2004/11/what-is-adaptation.html

Traits

http://en.wikipedia.org/wiki/Trait_(computer_programming)

http://scg.unibe.ch/research/traits/

http://pypi.python.org/pypi/strait/0.5.1

http://code.enthought.com/projects/traits/

Interfaces in Python

http://dirtsimple.org/2004/12/python-interfaces-are-not-java.html

http://nedbatchelder.com/text/interfaces.html

http://nedbatchelder.com/text/pythonic-interfaces.html

http://stackoverflow.com/questions/372042/difference-between-abstract-class-and-interface-in-python

http://www.rexx.com/~dkuhlman/python_comments.html#interfaces

http://pydanny.blogspot.com/2008/08/thoughts-on-python-interfaces.html

http://www.eecho.info/Echo/python/interfaces-python/

http://www.google.com/search?hl=en&rlz=1C1SNNT_enUS421US421&biw=1920&bih=989&q=+site:mail.python.org+python+interfaces

http://mail.python.org/pipermail/tutor/2006-June/047508.html

http://mail.python.org/pipermail/tutor/2006-June/047648.html

http://www.velocityreviews.com/forums/t570039-python-interfaces.html

(http://mail.python.org/pipermail/python-list/2008-January/523116.html)

History

	the Great Adaptation Debate of 2005

Third-party Libraries

	Zope

	twisted

	peak

http://peak.telecommunity.com/PyProtocols.html

http://twistedmatrix.com/documents/11.0.0/api/twisted.python.components.html

http://twistedmatrix.com/documents/current/core/upgrades/2.0/components.html

http://wiki.zope.org/Interfaces/FrontPage

http://apidoc.zope.org/++apidoc++/

http://docs.zope.org/zope2/zdgbook/ComponentsAndInterfaces.html

http://pypi.python.org/pypi/zope.interface

http://twistedmatrix.com/documents/current/core/howto/components.html

Python’s Data Model

http://docs.python.org/dev/reference/datamodel.html:

Objects are Python.s abstraction for data. All data in a Python
program is represented by objects or by relations between objects.

So, everything is an object in Python, including modules, classes, and
literals. Every object is an instance of the base object type or of a
subclass thereof:

class X:
 pass

isinstance(object(), object) == True
isinstance(object, object) == True
isinstance("abc", object) == True
isinstance(1, object) == True
isinstance(X, object) == True
isinstance(X(), object) == True
isinstance(type, object) == True

Every object has a type and every type is an instance of the base type:

class MetaY(type):
 pass
class Y(metaclass=MetaY)

type(object()) == object
type(object) == type
isinstance(object, type) == True

type("abc") == str
isinstance(str, type) == True

type(1) == int
isinstance(int, type) == True

type(X()) == X
type(X) == type
isinstance(X, type) == True

type(Y) == MetaY
isinstance(Y, type) == True

type(type) == type
isinstance(type, type) == True

Be sure to notice the special-cased nature of the base object and base type:

type(type) == type
isinstance(type, object) == True

type(object) == type
isinstance(object, object) == True

Python’s Dynamic Typing

Names don’t have type declarations, like they do in statically-typed
languages. You could also look at it like all names have the same
implicit type declaration: object. Either way, any object can be bound
to any valid name (including as a function argument).

Objects are bound to names. Names are not bound to objects. As a
consequence, objects do not “know” the names to which they are bound.

Duck-typing

“Polymorphism without inheritance”

http://en.wikipedia.org/wiki/Duck_typing

Duck-typing is polymorphism by capability, as opposed to polymorphism
by type.

	“signature-based” polymorphism <http://zephyrfalcon.org/labs/beginners_mistakes.html>

	Requiring a specific interface instead of a specific type. <>

	Determining an object’s type by inspection of its method / attribute
signature rather than by explicit relationship to some type object. <>

	Even without formal interface declarations, good practice mostly
depends on conformant interfaces rather than subclassing to determine
an object’s type. <>

Python has always been about what an object can do, rather than its
type. This has changed somewhat with the advent of abstract base
classes (see PEP 3119 [https://www.python.org/dev/peps/pep-3119]), where isinstance checks lessen the
performance hit of LBYL (see below).

http://dobesland.wordpress.com/2007/10/07/python-isinstance-considered-useful/

http://stackoverflow.com/questions/1549801/differences-between-isinstance-and-type-in-python

http://www.shindich.com/sources/patterns/implied.html

http://www.canonical.org/~kragen/isinstance/

http://www.voidspace.org.uk/python/articles/duck_typing.shtml

http://www.themacaque.com/?p=155

Key Concept: LBYL vs. EAFP

LBYL: look before you leap
EAFP: easier to ask forgiveness than get permission

EAFP is more pythonic.

http://docs.python.org/glossary.html#term-eafp

http://mail.python.org/pipermail/python-list/2003-May/203039.html

http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html#eafp-vs-lbyl

http://sayspy.blogspot.com/2008/12/why-explicit-type-checking-is-mostly.html

http://mail.python.org/pipermail/python-3000/2006-May/001909.html

http://stackoverflow.com/questions/5589532/try-catch-or-validation-for-speed

http://mail.python.org/pipermail/python-ideas/2012-January/013510.html

Examples

Duck-typing is all about the attributes an object has and what that
object can do. For example:

LBYL
if hasattr(obj, "quack"):
 obj.quack()

#EAFP
try:
 quack = obj.quack
except Exception:
 ...
quack()

#EAFP - just try it
obj.quack()

This is not duck-typing (though perfectly valid):

LBYL
if isinstance(obj, Duck):
 obj.quack()

LBYL
if implements(obj, Duck):
 obj.quack()

Python’s Protocols

While duck-typing is an integral part of writing Python, the application
of it in the language itself is a key part of understanding how Python
works under the hood.

...

Abstract Base Classes in Python

http://docs.python.org/dev/library/abc.html
http://stackoverflow.com/questions/3570796/why-use-abstract-base-classes-in-python
http://www.doughellmann.com/PyMOTW/abc/
http://mail.python.org/pipermail/python-ideas/2011-October/012075.html
http://sayspy.blogspot.com/2009/12/how-to-handle-multiple-inheritance-of.html
http://www.python.org/dev/peps/pep-3119/#abcs-vs-alternatives
http://docs.python.org/whatsnew/2.6.html#pep-3119-abstract-base-classes

Duck-typing is focused on protocols.
ABC/Interface is focused on formal interfaces.

ABC/Interface vs. duck-typing – means LBYL vs. EAFP?

	Test for IX w/o using it. Tests for all of it
vs.

	Test for IX by using a part of it, when you need it. Only use what you need.

http://stackoverflow.com/questions/5589532/try-catch-or-validation-for-speed/5591737#5591737

collections.abc

Writing Your Own ABC

Controversies

Interfaces throughout Python’s History

Python’s Native Protocols

In-the-wild Examples of Abstract Base Classes

Third-Party Python Interface Libraries

Interfaces in Different Languages

Interface Use Cases

/understanding_software/concurrency

	Index

	Search Page

 Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Reference Pages 0.2 documentation

 	Understanding Python

Python’s Type System

	status:	Work In Progress

An overview of the history and functionality of Python’s type system.

This page is an outgrowth of a work I’ve been doing for adding a C
version of collections.OrderedDict [http://docs.python.org/3/library/collections.html#collections.OrderedDict] to CPython. It also relates to
the SimpleNamespace [http://docs.python.org/3/library/types.html#types.SimpleNamespace] type I added for sys.implementation [http://docs.python.org/3/library/sys.html#sys.implementation].

A High-level Overview of Python’s Type System

<TBD>

Other Resources

CPython’s PyTypeObject

<TBD>

	Index

	Search Page

 Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Reference Pages 0.2 documentation

Understanding Software

This is a big part of my life, so it covers a lot of my attention...

Contents:

	Interfaces
	What are Interfaces?

	Appendices

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Reference Pages 0.2 documentation

 	Understanding Software

Interfaces

An interface is just an abstraction of expected interactions with some
bit of code, sometimes formalized syntactically. Class/function/module
APIs are the general case. Before anything else, let’s look at how you
might use interfaces:

Interface Use Cases

What are Interfaces?

An interface is simply a description of how a programmer should expect
to be able to interact with block of code. Generally this focuses on
functions. However, in an object-oriented context, object state may
also be considered a part of an interface.

As an alternatve, interfaces could also be called “Abstract API Models”.
All programming languages have at least one means of modeling APIs.

The most common form of interface aims at describing how functions
should be used. This includes type declarations for function parameters
and return values, a staple of many languages. However, such
declarations only capture one aspect of a function’s interface. In most
languages, regardless of type system, each function is essentially an
API wrapping a block of code.

Functions don’t have the interface market cornered, either. Most
languages have a means of encapsulating program state, usually as part
of an object-oriented type system. When the topic of interfaces comes
up, it tends to refer to formal definitions of what functions and
attributes an object (and abstractly, it’s type) should provide.

However, in all cases, interfaces are still just specifications of
how one should interact with a block of code.

More references:

http://en.wikipedia.org/wiki/Interface_(computing)

http://en.wikipedia.org/wiki/Interface_(object-oriented_programming)

Abstract API Model Approaches

To the extent that interfaces are a means of definining expected
interactions, they can be approached in a variety of ways. This bears
out across the many programming languages in the wild today.

Below is a list of several ways interfaces may be done. Each of these
is treated more thoroughly in following sections.

	Classes

	Interfaces/Protocols

	Abstract Base Classes

	Adaptation

	Multiple-dispatch/Generics

	Roles

	Traits

	Design by Contract

When are Interfaces Appropriate?

class vs. interface

ABC vs. interface

mixins vs. multiple inheritance

inheritance vs. delegation

inheritance vs. composition

Appendices

	adaptation

	transforming wrappers

 Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Reference Pages 0.2 documentation

Advice For PyCon Speakers

This page is a consequence of my inexperience at speaking at technical
conferences (read: none). It’s a combination of content provided by
others, small bit of editorial discretion, and various resources from ye
ol’ internet. Finally, it’s a work-in-progress and I will gladly take
feedback [https://bitbucket.org/ericsnowcurrently/reference_pages/issues?component=Advice%20For%20PyCon%20Speakers&status=open].
Ultimately, my intention is to get a form of this page up on the
official PyCon site, if people find it helpful.

Mainly, a bunch of folks in the Python community were very generous with
their time and shared some great advice. Most of the content on this
page is just a compilation of what they had to say. The value here is
that their perspective is collectively quite appropriate to the Python
community. You might go as far as to call it pythonic. :)

The whole point it to focus on the practical advice of people that know
what speaking at PyCon is all about. PyCon is it’s own creature and who
would understand it better?

Some of the contributers provided links to things they have written on
their blogs. These, along with other more general public speaking links,
can be found below in the Resources section.

May this be as helpful to you as it has been to me!

Talk Proposals

It’s a little late for this one...

Preparing

To start off, here’s a great bit of general advice from one of the
contributers, inspired by Dale Carnegie:

Talk about something you know well; speak passionately about it;
speak to the audience as you would your friends (they want to hear
what you have to say).

Know Your Stuff

	Make sure you’re genuinely interested in your topic and just have fun
with it.

	Know your material. Don’t give a talk on something you only vaguely
know about. Don’t think that the few months you have between
submission time and the talk will be enough for you to learn about the
topic.

Building Your Talk

	One approach: structure the talk as you would a story, where each
section leads naturally into the next, building in complexity.

	Another approach: write out every word you plan to say, and time
yourself saying. Then turn it into an outline and throw away the text
before you actually speak. This way you’ll have the precise words
somewhere in your head, but you won’t be reading from a paper. Your
outline can help guide you.

	An overarching mindset: “Entertain, Educate, Practice”. (See this blog post [http://nedbatchelder.com/text/presentationtips.html].) Remember, play
to your strengths.

	Treat your “PyCon presentation [as] be a trailer for your expertise.”
(See this blog post [http://nedbatchelder.com/blog/201102/pycon_presentations_hollywood_style.html].)

	Often you should try to avoid introducing concepts if you will have to
say things like “and I will explain that more in a few slides.” Making
“forward references” like that breaks the linear flow and makes it
more difficult for the audience to concentrate on what you are saying
now, since they start worrying about what you will be saying in a
minute. It isn’t always possible to be completely linear, but consider
starting with that as a goal.

	A lot of “intro to X” talks start by doing a live demo and installing
the tool. Seriously avoid that. No one cares about how easy it is to
install a tool until they have seen why they care about using it, at
which point they can look at the instructions on the project web site.
Instead, jump in and get right to something interesting to grab the
audience’s attention, or they are going to go back to checking email.

	“Tell em what you are going to tell em, tell em, and then tell em that
you told em.”

	Keep the talks short and focused. Explain to the audience why they
should also be passionate about the subject. GET THEM HUNGRY.

	If you are funny, use it. Good, geeky tech jokes == good.

	Gender references and sexual/racy refs are right out. Don’t. Just
don’t.

	If in doubt, err on the side of not talking long enough. It’s better
to have the audience thinking “That talk left me wanting more. I need
to go talk to the presenter/download the package/go to the BoF,” than
“That talk stretched 15 minutes of material into an hour. What a
waste of time.”

	Don’t waste time on introductory material, e.g. explaining Python’s
syntax, explaining XML for fifteen slides.

	Have your important research done before you start trying to prepare
the talk. If you run out of preparation time, don’t skimp on
rehearsal; instead, cut scope from the talk, or make do with a simple
but readable visual design.

	Don’t think of talk length as an indicator of value. There is a
reason why the most popular sessions of the entire conference are the
lightning talks. Less is More.

All About Slides

	The slides are primarily to support your talk.

	Slides should not be too “busy”. Keep them short, effectively as
“reminders what to say”.

	If a bullet point gets up to 15 words, consider breaking it up.

	Group related points.

	Only hit the most important points on the slides. Expand as you speak
if there’s audience interest.

	Presentations look best when the slide size is the same as the
projector’s native resolution. For the conference this year, that is
????x???.

	The most important thing about slides is that the audience needs to be
able to read them. That seems obvious, but all too often the slides
are hard to read.

	Many people have trouble reading light text on a dark background. It
may work for you on your laptop screen, but projected in front of the
audience in a dark room is a completely different story. Use a white
or other light background color with high contrast dark text in a
large font.

	Background colors that look great on a laptop or monitor screen often
lose something in the transition to a projector. You can’t predict
what the venue will give you in regards to quality/brand of projector,
so why take unnecessary risks?

	Strongly consider using the default font of the slide software. Maybe
its not fancy or artistic, but your message won’t be obfuscated by
forcing people to squint to see slides reinforcing what you’re saying.

	Use more slides with less code per slide in order to increase your
font size. Wrapping lines to make them less than 80 columns helps with
the size, too.

	If all of the slides show code and output, there probably isn’t enough
visual reinforcement of whatever framing story you are using to tie
everything together. Use pictures to reinforce concepts, without
simply throwing keywords up on a bullet list. Use diagrams to explain
the architecture of the thing you are describing.

	Try to finish your slides way before the conference. It’s tempting to
put them off, but the more you go through them, the more secure you’ll
be with your timing and your content.

	One way to make the slides and the talk work together is to ramble
through your talk a few times, recording it, then organize your slides
off of that.

	Aim for big text, clear images, good contrast. Stand about five feet
from your laptop screen – can you see the text from that distance?

	PyCon does not have a published volume of proceedings, but the slides
and other materials for talks are often made available on-line.
Therefore, be sure your presentation can be turned into a format
suitable for online viewing. While PDF is permitted, HTML is better.
Keep graphics reasonably sized for web access.

	Hopefully your slides are finished up in advance of the conference.
Consider uploading the presentation to the conference talk proposal
system or to a page linked from your talk’s page on the PyCon site.
This gives the audience more information in choosing which talks to
attend, and people can refer to the slides if they miss something
during your talk.

	Don’t try to squeeze more than 10 lines of code onto the slide; if the
font gets too small, the code will just be a meaningless set of
squiggles to people in the back of the auditorium.

	If possible, view your slides on a projector and see if they’re
readable. Are the font sizes large enough? Is there enough contrast
between the text and the background?

	Plan on spending absolutely no more than 60 seconds on any slide.

	Conversely, only a few seconds for a slide may be too little.

	Above all, try to be consistent about how long you spend on each
slide. The audience will respond well to consistency.

Demos

	As noted above, don’t do a demo of how to install a tool.

	Be hesitant to rely on live demos. Fumbling around on stage changing
between a code editor and a terminal where the code is running takes
time that could be spent telling the audience something else
interesting. They believe you can type and they believe you can run
programs. Just show them the meaty bits.

	Phrased another way, don’t do live demos.

Practice, Practice, Practice

	(Try to find all the references to practice that you’ve already read.)

	If it is you first time around, it may be worth going to a local
interest group or somesuch to practice your talk in front of a small
audience.

	Everyone you’ll see at Pycon giving “good” talks has also given their
fair share of bad talks. It just takes practice. The best way to
practice is just to give talks.

	Video yourself (even just for part of your talk) and see yourself “in
action” as others see you.

	Giving a talk is not a writing problem or a design problem. It is a
performance problem. If you are a new speaker, you should probably
spend more time practicing your presentation than you spend writing
and designing the slides.

	Practice! Go through your talk at least twice just to yourself.
You’ll find yourself much more confident if you know the talk well
enough not to worry about forgetting it or what you will say next. It
just flows better and you’ll feel much more relaxed.

What to Bring

	Bring your own dongle, and your presentation on a thumb drive, in
several formats.

Somewhat More Officially

For a 30-minute slot, you have 25 minutes to talk plus 5 minutes for
questions. 45-minute slots mean you have 40 minutes to talk and 5
minutes for questions. Time your talk accordingly.

At the Talk

Before You Get Started

	Make sure you got a good night sleep (yeah right).

	In fact, be rested, fed, and sober (not somber) for your talk. Skip
the late night party and get a good night’s rest. The day of the talk
eat food that makes you feel physically better.

	The backdrops are generally black so don’t wear dark clothes. On video
it can look like you it is just your head bobbing around by itself.
Steve Jobs can get away with it because he has a professional lighting
crew, you don’t.

	Remove your conference lanyard. It can distract you, you will play
with it, or it will get caught in your wireless microphone and cause
problems.

	Turn off or silence your own mobile phone and in general remove any
large objects from your pockets which make it look like you are hiding
your next bottle of beer in there.

	If you don’t need wifi for your talk, disconnect yourself from the
network, shutdown all applications besides the presentation software.
Temporarily turn off any notifications, or sources of notifications as
the popups can sometimes cause presentation software such as KeyNote
to drop out of presenter mode. The audience also doesn’t want to hear
all the tones as people mention you on live Twitter streams saying how
cool or lame your talk is.

	Try to verify ahead of time that your computer works with the AV
system. If you are going to rely on speaker’s notes, consider
printing them out ahead of time in case you can’t use your laptop
screen for some reason. Remember Murphy.

	Be in the room a few minutes early if you can, and chat to people
already in the room as you prepare.

	Introduce yourself to your session chairperson no later than the break
before your talk. Once the presentations start the chair will be
focused on managing the session.

DOs and DON’Ts During

	DON’T give a talk with any kind of pen in your hand. You might just
end up with ink all over your shirt.

	For that matter, be conscientious that having anything in your hands
could be a distraction, to the audience or to you.

	DON’T move around. Stand still. See this blog post [http://therealkatie.net/blog/2011/sep/19/tip-speakers/].

	DO take the podium... then move to the side. Make sure the audience
can see you. This is a good thing. We like seeing the whole person.
Once you’re out there, stand still. Don’t sway. Try not to lean.
Keep your hand movements to, maybe, one every five minutes. This
works really well if you’re actually calm and well-rested.

	If you’re tired, stay behind the podium and grab it. This isn’t the
best thing in the world, as it weakens your visual presence, but it
also won’t be distracting your audience.

	DO speak loudly! This naturally makes you slow down and enunciate
your words more clearly. It also makes you seem and feel more
confident. It’s very hard to listen to a talk, even from a very
knowledgeable person, who is talking too quietly and mumbling words.
It’s amazing what effect it has on your confidence too.

	DON’T just read the slides. People came to hear what you have to
say.

	What you should be doing is using the slides to remind yourself of
your next point. Think of them as notes for your speech, not the
speech itself.

	DO remember about the microphone, whether it’s attached to your
lapel or is on the podium in front of you. Some speakers will turn to
point at the display and talk away from the microphone; be sure to
point and then turn back.

	Never, ever do a live demo, or depend on the wireless.

About the Audience

	Unlike some academic conferences, PyCon is not an adversarial
environment–you’re not going to be attacked afterwards.

	Just flat-out realize you will be presenting to hundreds of people
(even at worst case of 10% of the conference, that’s 150 people). But
presenting to a lot of people is actually easier than a small group at
a users group. Why? Smaller venue means more attentive attendees.

	When you present at PyCon you have to realize a huge portion of people
will be on their laptops, staring at their screens. This doesn’t mean
they are not listening, but it can be disconcerting as you won’t be
able to use the audience to easily judge how engaging you are being.

	Said one contributer: “I have presented and thought I sucked and then
later have tell people they loved my presentation, even with
essentially no one laughing at my jokes.”

	Look around at your audience and pay attention to their body language.

	Check that the audience is hearing you (“Can you hear me at the
back?”) and understanding you (“Does that make sense to everyone?”;
“Are there any questions about that?”).

	It takes people about 10 seconds to realize you have asked a question,
so if you ask if people are understanding you need to wait that long
for it to be effective, else just always assume that someone will
speak up if you are being confusing.

	Encourage the audience to fill all available seats, rather than
standing/sitting in the aisles or by the door.

	Open Space, BoF, and Followup. Don’t forget to invite your audiance
to a BoF or Open Space followup! The part of your audience which is
passionate (or has become passionate due to your presentation) are
encouraged to continue the conversation, and you the presenter are a
key part of that.

Question Time

	There may be that one smart aleck who tries to point out some bad
design decision or mistake or something that is really not important
or your fault. Feel free to answer them succinctly to get them off
the microphone.

	Someone will ask you a tough question that you can’t answer on the
spot, so just ask them to catch you after the talk.

	If someone asks on the mic a very specific question that is really
only helpful to them, ask them to talk to you after so you can get to
more questions that are helpful to the whole audience.

	Have a prepped response for when you just don’t know an answer. It’s
okay to say ‘I haven’t run into that’ or ‘I’m not familiar with that’.
It’s not okay to bumble and fake it.

	During the Q&A portion of the talk, always repeat any questions that
were asked without a microphone - otherwise many people in the
audience won’t hear the question.

	Consider finishing your talk early for extra question time. Then
prepare some bonus material in case people run out of questions. See
this blog comment [http://pydanny.blogspot.com/2011/02/my-tips-for-speaking.html?showComment=1298707361851#c1683303240097254596].

	Be nice to people who come up to you after a talk. You never know who
is that new person who comes up to you, and you might regret it later.
Be nice to them and you’ll find out. Try to find time to talk to
everyone, even if for just a minute each.

Handling Nervousness

	Remember, they’re more scared of you than you are of them!

	You shouldn’t get all worried about “being remembered for a bad talk”.
The honest truth of the matter is that almost nobody is going to
remember much about the actual presentation of your talk. So, don’t
sweat it.

	If you’re nervous, thinking that if you screw up that you’ll forever
ruin your reputation in the community due to fidgeting a tiny bit too
much? Chill out. We’re all still working on our talks.

	Take a deep breath and relax. One contributer said, “I’ve yet to see
a talk where someone was booed off the stage, and I’ve seen some
horrific talks.”

	If you are nervous, there’s nothing wrong with admitting that. The
information you present is your talk’s primary value. PyCon audiences
are very forgiving.

	Take time to yourself before you speak. Deep breathing is always good
preparation. Your nervousness will be less apparent than you suppose.

	And again, the best remedy for nervousness is to practice, practice,
practice.

Resources

http://therealkatie.net/blog/2011/sep/19/tip-speakers/

http://nedbatchelder.com/text/presentationtips.html

http://nedbatchelder.com/blog/201002/25_minutes_is_a_bitch.html

http://nedbatchelder.com/blog/201102/pycon_presentations_hollywood_style.html

http://web.archive.org/web/20100212084133/http://us.pycon.org/TX2007/HelpForSpeakers

http://pydanny.blogspot.com/2011/02/my-tips-for-speaking.html

http://dalecarnegielesson.blogspot.com/2011/06/12-ways-to-minimize-fear-and-anxiety.html

http://perl.plover.com/yak/presentation/

http://web.archive.org/web/20060628122618/http://www.sage.org/presentation/

http://pages.cs.wisc.edu/~markhill/conference-talk.html

http://solarsail.hcs.harvard.edu/~krstic/08-2005-giving-talks.pdf

http://web.archive.org/web/20110204154428/http://ite.org/meetcon/speech.asp

http://shop.oreilly.com/product/9780596802004.do

Acknowledgements

Finally, a big thank-you to the folks that have contributed (in no
particular order):
* Raymond Hettinger,
* Katie Cunningham,
* David Beazley,
* Brett Cannon,
* Doug Hellmann,
* C. Titus Brown,
* Michael Foord,
* Ned Batchelder,
* Danny Greedfield,
* Graham Dumpleton (from comments [http://therealkatie.net/blog/2011/sep/19/tip-speakers/]),
* Doug Napoleone (from comments [http://nedbatchelder.com/blog/201002/25_minutes_is_a_bitch.html]).
* Jacob Kaplan-Moss (from comments [http://pydanny.blogspot.com/2011/02/my-tips-for-speaking.html?showComment=1298707361851#c1683303240097254596]).

 Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Reference Pages 0.2 documentation

Index

 A
 | F
 | I
 | L
 | M
 | N
 | P

A

 	

 	adaptation

F

 	

 	finder, [1], [2]

I

 	

 	import hook, [1], [2]

 	

 	importer, [1], [2]

L

 	

 	loader, [1], [2]

M

 	

 	module, [1], [2]

 	

 	module name, [1], [2]

N

 	

 	namespace package, [1], [2]

P

 	

 	package, [1], [2]

 	package portion, [1], [2]

 	

 	path importer, [1], [2]

 	
 Python Enhancement Proposals

 	

 	PEP 221, [1], [2], [3], [4], [5]

 	PEP 225, [1], [2]

 	PEP 227

 	PEP 235, [1], [2]

 	PEP 236

 	PEP 238

 	PEP 245

 	PEP 246

 	PEP 255

 	PEP 273, [1], [2], [3], [4], [5]

 	PEP 299, [1], [2]

 	PEP 302, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21]

 	PEP 3105

 	PEP 3107

 	PEP 3112

 	PEP 3119, [1], [2]

 	PEP 3122, [1], [2]

 	PEP 3124

 	PEP 3133

 	PEP 3147, [1], [2], [3], [4], [5], [6], [7], [8]

 	PEP 328, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]

 	PEP 338, [1], [2], [3], [4], [5]

 	PEP 343

 	PEP 366, [1], [2], [3], [4], [5]

 	PEP 369, [1], [2]

 	PEP 370, [1], [2], [3], [4], [5]

 	PEP 382, [1], [2], [3], [4], [5], [6]

 	PEP 395, [1], [2], [3], [4], [5]

 	PEP 402, [1], [2], [3], [4], [5], [6]

 Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

understanding_python/build_tools/index.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/documentation/index.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/interfaces/pycon2012/annotated.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/interfaces/pycon2012/proposal.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

Interfaces and Python

Summary

In 2.6, Python introduced the Abstract Base Classes. Before that we had
“protocols” (and we still do). In this talk we’ll look at the how the
general concept of interfaces fits into today’s Python. We’ll also look
at some of the alternate proposals of the past, some of the
controversies around ABCs, and the direction interfaces might go in the
future.

Abstract

Talk Outline:

		What are Interfaces? (3 min)
- modeling strict abstraction
- precedents in other languages

		Interfaces in Python (6 min)
- duck-typing
- Python “protocols”
- past proposals (PEP 245)
- how Python “interfaces” are different

		Newer Interface Support (11 min)
- annotations
- Abstract Base Classes
- why run-time validation?
- ABC vs. duck-typing

		Third-party Libraries (5 min)
- Peak’s PyProtocols
- zope.interface
- Twisted

		What Next? (3 min)
- strict interfaces
- compile-time validation
- an example interface library

For more comprehensive coverage of interfaces in Python, check out
this reference page. (Broken Link)

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/up.png

understanding_python/interfaces/pycon2012/_proposal.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

Summary

In 2.6, Python introduced the Abstract Base Classes. Before that we had
“protocols” (and we still do). In this talk we’ll look at the how the
general concept of interfaces fits into today’s Python. We’ll also look
at some of the alternate proposals of the past, some of the
controversies around ABCs, and the direction interfaces might go in the
future.

Abstract

Talk Outline:

		What are Interfaces? (3 min)
- modeling strict abstraction
- precedents in other languages

		Interfaces in Python (6 min)
- duck-typing
- Python “protocols”
- past proposals (PEP 245)
- how Python “interfaces” are different

		Newer Interface Support (11 min)
- annotations
- Abstract Base Classes
- why run-time validation?
- ABC vs. duck-typing

		Third-party Libraries (5 min)
- Peak’s PyProtocols
- zope.interface
- Twisted

		What Next? (3 min)
- strict interfaces
- compile-time validation
- an example interface library

For more comprehensive coverage of interfaces in Python, check out
this reference page. (Broken Link)

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

_static/minus.png

understanding_python/type_system/dict_implementation.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/interfaces/pycon2012/index.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

understanding_python/interfaces/pycon2012/description.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

Interfaces and Python

This is a talk that I am presenting at PyCon 2012 [https://us.pycon.org/2012/schedule/presentation/126/].

Summary

In 2.6, Python introduced the Abstract Base Classes. Before that we had
“protocols” (and we still do). In this talk we’ll look at the how the
general concept of interfaces fits into today’s Python. We’ll also look
at some of the alternate proposals of the past, some of the
controversies around ABCs, and the direction interfaces might go in the
future.

Abstract

Talk Outline:

		What are Interfaces? (3 min)
- modeling strict abstraction
- precedents in other languages

		Interfaces in Python (6 min)
- duck-typing
- Python “protocols”
- past proposals (PEP 245)
- how Python “interfaces” are different

		Newer Interface Support (11 min)
- annotations
- Abstract Base Classes
- why run-time validation?
- ABC vs. duck-typing

		Third-party Libraries (5 min)
- Peak’s PyProtocols
- zope.interface
- Twisted

		What Next? (3 min)
- strict interfaces
- compile-time validation
- an example interface library

Supplemental Information

For more comprehensive coverage of interfaces in Python, check out my
referece page on interfaces in Python [http://reference-pages.rtfd.org/interfaces].

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

_static/file.png

understanding_python/type_system/PyTypeObject.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

CPython’s PyTypeObject

CPython includes a powerful C-API by which you can heavily customize
Python. This includes creating custom types. Though you can create new
types directly in Python now, this wasn’t always the case. Python has a
strong heritage of tapping into C to produce new types. One consequence
is that creating new Python types in C affords you more functionality
than you’ll find in pure Python.

In this reference page we’ll be looking at the details surrounding
PyTypeObject, which is the linchpin of Python types written in C.

The CPython C-API

One important thing to note is that CPython’s C-API provides a number of
interfaces for efficiently interacting with Python objects in C. Those
functions fall into one of two groups:

		the abstract object API (e.g. PyObject_*)

		the concrete object API (e.g. PyDict_*)

The concrete APIs take advantage of the implementation details of their
respective types to get improved efficiency and functionality. However,
this comes at the cost of ignoring implementations in subtypes. The dict
concrete API is a prime example of this, as it make direct calls to
static methods in the implementation, skipping a lookup of the relevant
implementation on the type. This situation likely won’t change anytime
soon due to the challenge of accommodating subtypes without damaging
performance or functionality.

PyTypeObject, the Base Type Struct

The PyTypeObject, exposed in Python as type, is the cornerstone of the
type system implementation in CPython.

Note: A “dynamic” type is one created through the class statement in
Python (i.e. by calling type(), or some other metaclass).

Creating a Python Type in C

Defining a Python type in C involves populating the fields of a
PyTypeObject struct with the values you care about. We call each of
those fields a “slot”.

One the definition is ready, we pass it into the PyType_Ready()
function, which does a number of things, inclulding exposing most of the
type definition to Python’s attribute lookup mechanism.

PyTypeObject Slots

If a slot is not required it can be set to NULL.

Here is a table of the slots described in the docs [2]. It
does not include the slots provided by PyObject_VAR_HEAD, etc., nor
those added onto the end for the COUNT_ALLOCS macro.

Legend:
* A slot name in parentheses means is is reserved or deprecated.
* The “Req” column indicates that the slot is required.
* The “Inh” column indicates that the slot is inherited by subclasses.
* The “Rdy” column indicates that the slot is populated by PyType_Ready().
* The “Mem” column indicates that the slot is memory-management-related.
* For each of these columns, “X” indicates an affirmative.
* For “Req”, “T” means it may be ignored for types that never be deallocated (a rare case).
* For “Rdy”, “U”means it’s used by PyType_Ready().

		PyTypeObject Slot
		R
e
q
		R
d
y
		M
e
m
		Description

		tp_name
		X
		
		
		The class’s name, possibly
fully qualified.

		tp_basicsize
		X
		
		X
		Base memory size of instances.

		tp_itemsize
		
		
		X
		Per-item size, if any.

		tp_dealloc
		T
		
		X
		Instance memory deallocator.

		(tp_print)
		
		
		
		Special stringification for
writing to real files.

		(tp_getattr)
		
		
		
		tp_getattro using strings.

		(tp_setattr)
		
		
		
		tp_setattro using strings.

		(tp_reserved)
		
		
		
		(Was tp_compare.)

		tp_repr
		
		
		
		User-friendly representation.

		tp_as_number
		
		U
		
		See PyNumberMethods.

		tp_as_sequence
		
		U
		
		See PySequenceMethods.

		tp_as_mapping
		
		U
		
		See PyMappingMethods.

		tp_hash
		
		
		
		Get the hash of an instance.

		tp_call
		
		
		
		“Run” an instance.

		tp_str
		
		
		
		Stringify an instance.

		tp_getattro
		
		
		
		Get an attribute’s value.

		tp_setattro
		
		
		
		Set an attribute’s value or
remove the attribute.

		tp_as_buffer
		
		U
		
		See PyBufferProcs.

		tp_flags
		
		X
		
		A bit mask of various flags.

		tp_doc
		
		
		
		The class’s docstring.

		tp_traverse
		
		
		X
		GC helper for detecting cycles.

		tp_clear
		
		
		X
		GC helper for breaking cycles.

		tp_richcompare
		
		
		
		Same as the old __cmp__().

		tp_weaklistoffset
		
		U
		
		Offset into instance struct
for a list of weak refs.

		tp_iter
		
		
		
		Get an iterator for an instance.

		tp_iternext
		
		
		
		Iterate an instance.

		tp_methods
		
		U
		
		Regular methods of the type.

		tp_members
		
		U
		
		Regular data attributes.

		tp_getset
		
		U
		
		The same as properties.

		tp_base
		
		U
		
		The base type for inheritance.

		tp_dict
		
		X
		
		The class’s dict, if any.

		tp_descr_get
		
		
		
		__get__ for the class.

		tp_descr_set
		
		
		
		__set__ & __del__ for the class.

		tp_dictoffset
		
		U
		
		Offset into instance struct for
instance namespace.

		tp_init
		
		
		
		Initialize an instance.

		tp_alloc
		
		
		X
		Get memory block for an instance.

		tp_new
		
		
		
		Return a new instance.

		tp_free
		
		
		X
		Release memory block for an obj.

		tp_is_gc
		
		
		X
		For when Py_TPFLAGS_HAVE_GC
isn’t good enough.

		tp_bases
		
		X
		
		Tuple of bases classes.
(dynamic type only)

		tp_mro
		
		X
		
		Calculated MRO tuple.

		tp_cache
		
		X
		
		(Not used.)

		tp_subclasses
		
		X
		
		List of weak refs to subclasses.

		tp_weaklist
		
		X
		
		List of weak refs to the type.

		tp_del
		
		
		
		Deletion-time instance handling.

Note: None of the slots populated by PyType_Ready() should be set when
defining a type, except for tp_flags.

Note: various flag bits in tp_flags may cause certain slots to be
ignored.

Note: tp_print is effectively deprecated, so don’t use it.

Note: PyType_Ready() will build the new type with consideration for
the various inherited slots. Thus, it effectively makes use of those
slots.

Inheritance

Python types written in C still enjoy inheritance, but it’s a little
different than in Python. For one thing, only single-inheritance is
supported at the C level. For another, at the C level PyTypeReady
facilitates a form of inheritance-by-copy. This is where inherited
values are actually copied into the subclass.

Attribute lookup works the same either way, however. This means that
values which PyType_Ready did not copy into the subclass are still
available as long as they are exposed vi the base class’s __dict__.

Here’s a look at how inheritance-by-copy works for the various
PyTypeObject slots:

Legend:
* The “Inh” column is more complicated:

"*": not inherited but the value's items are.
"?": contained values *may* be inherited.

		The “Grp” column indicates inheritance dependencies:

<N>: not inherited unless all matching slots are NULL.

		PyTypeObject Slot
		I
n
h
		G
r
p
		Notes

		tp_name
		
		
		

		tp_basicsize
		X
		
		

		tp_itemsize
		X
		
		

		tp_dealloc
		X
		
		

		(tp_print)
		X
		
		

		(tp_getattr)
		X
		1
		

		(tp_setattr)
		X
		2
		

		(tp_reserved)
		
		
		

		tp_repr
		X
		
		

		tp_as_number
		
		

		
		

		tp_as_sequence
		
		

		
		

		tp_as_mapping
		
		

		
		

		tp_hash
		X
		3
		

		tp_call
		X
		
		

		tp_str
		X
		
		

		tp_getattro
		X
		1
		

		tp_setattro
		X
		2
		

		tp_as_buffer
		
		

		
		

		tp_flags
		?
		4
		

		tp_doc
		
		
		

		tp_traverse
		X
		4
		

		tp_clear
		X
		4
		

		tp_richcompare
		X
		3
		

		tp_weaklistoffset
		X
		
		

		tp_iter
		X
		
		

		tp_iternext
		X
		
		

		tp_methods
		
		
		available through attr lookup

		tp_members
		
		
		available through attr lookup

		tp_getset
		
		
		available through attr lookup

		tp_base
		
		
		

		tp_dict
		
		
		available through attr lookup

		tp_descr_get
		X
		
		

		tp_descr_set
		X
		
		

		tp_dictoffset
		X
		
		

		tp_init
		X
		
		

		tp_alloc
		?
		
		static types only

		tp_new
		?
		
		not static subtypes with the default tp_base

		tp_free
		?
		
		static types only

		tp_is_gc
		X
		
		

		tp_bases
		
		
		

		tp_mro
		
		
		

		tp_cache
		
		
		

		tp_subclasses
		
		
		

		tp_weaklist
		
		
		

		tp_del
		x
		
		

Note: Group 4 depends on the Py_TPFLAGS_HAVE_GC flag bit in tp_flags.

Defaults

A number of the PyTypeObject slots have default values, either by
inheritance or by explicit setting (PyType_Ready). Here is a breakdown
of what slots have defaults, where they come from, and what those values
are:

		PyTypeObject Slot
		Default Source
		Value

		tp_name
		—
		

		tp_basicsize
		PyBaseObject_Type.tp_basicsize
		sizeof(PyObject)

		tp_itemsize
		—
		

		tp_dealloc
		PyBaseObject_Type.tp_dealloc
		object_dealloc

		(tp_print)
		—
		

		(tp_getattr)
		—
		

		(tp_setattr)
		—
		

		(tp_reserved)
		—
		

		tp_repr
		PyBaseObject_Type.tp_repr
		object_repr

		tp_as_number
		—
		

		tp_as_sequence
		—
		

		tp_as_mapping
		—
		

		tp_hash
		PyBaseObject_Type.tp_hash
		_Py_HashPointer

		tp_call
		—
		

		tp_str
		PyBaseObject_Type.tp_str
		object_str

		tp_getattro
		PyBaseObject_Type.tp_getattro
		PyObj_GenericGetAttr

		tp_setattro
		PyBaseObject_Type.tp_setattro
		PyObj_GenericSetAttr

		tp_as_buffer
		—
		

		tp_flags
		PyBaseObject_Type.tp_flags
		Py_TPFLAGS_DEFAULT
Py_TPFLAGS_BASETYPE

		tp_doc
		—
		

		tp_traverse
		—
		

		tp_clear
		—
		

		tp_richcompare
		PyBaseObject_Type.tp_richcompare
		object_richcompare

		tp_weaklistoffset
		—
		

		tp_iter
		—
		

		tp_iternext
		—
		

		tp_methods
		—
		

		tp_members
		—
		

		tp_getset
		—
		

		tp_base
		call to PyType_Ready
		PyBaseObject_Type

		tp_dict
		—
		

		tp_descr_get
		—
		

		tp_descr_set
		—
		

		tp_dictoffset
		—
		

		tp_init
		PyBaseObject_Type.tp_init
		object_init

		tp_alloc
		(st) PyBaseObject_Type.tp_alloc
(dyn) call to type.__new__
		PyType_GenericAlloc
PyType_GenericAlloc

		tp_new
		PyBaseObject_Type.tp_new
		object_new

		tp_free
		(st) PyBaseObject_Type.tp_free
(dyn) call to type.__new__
		PyObject_Del
<compatible f>

		tp_is_gc
		—
		

		tp_bases
		—
		

		tp_mro
		—
		

		tp_cache
		—
		

		tp_subclasses
		—
		

		tp_weaklist
		—
		

		tp_del
		—
		

PyTypeObject Slot Types

Naturally each slot has a type. Some of the slots have a normal int/
long/pointer type. However, most of them have function pointers. Each
of these function “types” (e.g. reprfunc) is actually a macro for a
particular function pointer cast.

Consequently, each function you set in your type definition must be cast
using that macro:

PyTypeObject MyType = {
 ...
 (reprfunc)my_repr, /* tp_repr */
 ...
};

For each of those slots the following table indicates the function’s
parameters and return type. For non-function slots, just the slot’s
type is populated and “—” is found in the parameters column.

For functions that return a PyObject *, it’s always a new reference.
For functions that store a value (like tp_getattr), the value is never
“borrowed”.

Note: visitproc is a function that takes PyObject * and returns int.

		PyTypeObject Slot
		Type
		Parameter Types
		Return Type

		tp_name
		char *
		—
		

		tp_basicsize
		int
		—
		

		tp_itemsize
		int
		—
		

		tp_dealloc
		destructor
		<localobject> *
		void

		tp_print
		printfunc
		PyObject *
FILE *
int
		int

		(tp_getattr)
		getattrfunc
		PyObject *
const char *
		PyObject *

		(tp_setattr)
		setattrfunc
		PyObject *
const char *
PyObject *
		int

		(tp_reserved)
		void*
		—
		

		tp_repr
		reprfunc
		PyObject *
		PyObject *

		tp_as_number
		PyNumberMethods *
		—
		

		tp_as_sequence
		PySequenceMethods *
		—
		

		tp_as_mapping
		PyMappingMethods *
		—
		

		tp_hash
		hashfunc
		PyObject *
		Py_hash_t

		tp_call
		ternaryfunc
		PyObject *
PyObject *
PyObject *
		PyObject *

		tp_str
		reprfunc
		PyObject *
		PyObject *

		tp_getattro
		getattrofunc
		PyObject *
PyObject *
		PyObject *

		tp_setattro
		setattrofunc
		PyObject *
PyObject *
PyObject *
		int

		tp_as_buffer
		PyBufferProcs *
		—
		

		tp_flags
		long
		—
		

		tp_doc
		char *
		—
		

		tp_traverse
		traverseproc
		<localobject> *
“visitproc”
void *
		int

		tp_clear
		inquiry
		<localobject> *
		int

		tp_richcompare
		richcmpfunc
		PyObject *
PyObject *
int
		PyObject *

		tp_weaklistoffset
		long
		—
		

		tp_iter
		getiterfunc
		PyObject *
		PyObject *

		tp_iternext
		iternextfunc
		PyObject *
		PyObject *

		tp_methods
		PyMethodDef[]
		—
		

		tp_members
		PyMemberDef[]
		—
		

		tp_getset
		PyGetSetDef[]
		—
		

		tp_base
		PyTypeObject *
		—
		

		tp_dict
		PyObject *
		—
		

		tp_descr_get
		descrgetfunc
		PyObject *
PyObject *
PyObject *
		PyObject *

		tp_descr_set
		descrsetfunc
		PyObject *
PyObject *
PyObject *
		int

		tp_dictoffset
		long
		—
		

		tp_init
		initproc
		PyObject *
PyObject *
PyObject *
		int

		tp_alloc
		allocfunc
		PyTypeObject *
Py_ssize_t
		PyObject *

		tp_new
		newfunc
		PyTypeObject *
PyObject *
PyObject *
		PyObject *

		tp_free
		freefunc
		void *
		void

		tp_is_gc
		inquiry
		void *
		int

		tp_bases
		PyObject *
		—
		

		tp_mro
		PyObject *
		—
		

		tp_cache
		PyObject *
		—
		

		tp_subclasses
		PyObject *
		—
		

		tp_weaklist
		PyObject *
		—
		

		tp_del
		destructor
		PyObject *
		int

Helper functions/macros:

		sizeof() - use to calculate tp_basicsize

		PyDoc_STRVAR - preps a string for tp_doc

Specialized Slot Types

Some of the PyTypeObject slots are themselves structs. This way the
main struct doesn’t have to get bigger than it already is. Also,
types that don’t need the extra slots don’t need to take up as much
memory.

		PyNumberMethods Slot
		Type
		Parameter Types
		Return Type

		nb_add
		binaryfunc
		PyObject *
PyObject *
		PyObject *

		nb_subtract
		binaryfunc
		PyObject *
PyObject *
		PyObject *

		nb_multiply
		binaryfunc
		PyObject *
PyObject *
		PyObject *

		nb_remainder
		binaryfunc
		PyObject *
PyObject *
		PyObject *

		nb_divmod
		binaryfunc
		PyObject *
PyObject *
		PyObject *

		nb_power
		ternaryfunc
		PyObject *
PyObject *
PyObject *
		PyObject *

		nb_negative
		unaryfunc
		PyObject *
		PyObject *

		nb_positive
		unaryfunc
		PyObject *
		PyObject *

		nb_absolute
		unaryfunc
		PyObject *
		PyObject *

		nb_bool
		inquiry
		PyObject *
		int

		nb_invert
		unaryfunc
		PyObject *
		PyObject *

		nb_lshift
		binaryfunc
		PyObject *
PyObject *
		PyObject *

		nb_rshift
		binaryfunc
		PyObject *
PyObject *
		PyObject *

		nb_and
		binaryfunc
		PyObject *
PyObject *
		PyObject *

		nb_xor
		binaryfunc
		PyObject *
PyObject *
		PyObject *

		nb_or
		binaryfunc
		PyObject *
PyObject *
		PyObject *

		nb_int
		unaryfunc
		PyObject *
		PyObject *

		nb_reserved
		void *
		—
		

		nb_float
		unaryfunc
		PyObject *
		PyObject *

		nb_inplace_add
		binaryfunc
		PyObject *
PyObject *
		PyObject *

		nb_inplace_subtract
		binaryfunc
		PyObject *
PyObject *
		PyObject *

		nb_inplace_multiply
		binaryfunc
		PyObject *
PyObject *
		PyObject *

		nb_inplace_remainder
		binaryfunc
		PyObject *
PyObject *
		PyObject *

		nb_inplace_power
		ternaryfunc
		PyObject *
PyObject *
PyObject *
		PyObject *

		nb_inplace_lshift
		binaryfunc
		PyObject *
PyObject *
		PyObject *

		nb_inplace_rshift
		binaryfunc
		PyObject *
PyObject *
		PyObject *

		nb_inplace_and
		binaryfunc
		PyObject *
PyObject *
		PyObject *

		nb_inplace_xor
		binaryfunc
		PyObject *
PyObject *
		PyObject *

		nb_inplace_or
		binaryfunc
		PyObject *
PyObject *
		PyObject *

		nb_floor_divide
		binaryfunc
		PyObject *
PyObject *
		PyObject *

		nb_true_divide
		binaryfunc
		PyObject *
PyObject *
		PyObject *

		
		nb_inplace_floor_divide | binaryfunc

		

		PyObject *
PyObject *
		PyObject *

		
		nb_inplace_true_divide | binaryfunc

		

		PyObject *
PyObject *
		PyObject *

		nb_index
		unaryfunc
		PyObject *
		PyObject *

		PySequenceMethods Slot
		Type
		Parameter Types
		Return Type

		sq_length
		lenfunc
		PyObject *
		Py_ssize_t

		sq_concat
		binaryfunc
		PyObject *
PyObject *
		PyObject *

		sq_repeat
		ssizeargfunc
		PyObject *
Py_ssize_t
		PyObject *

		sq_item
		ssizeargfunc
		PyObject *
Py_ssize_t
		PyObject *

		sq_ass_item
		ssizeobjargproc
		PyObject *
Py_ssize_t
		int

		sq_contains
		objobjproc
		PyObject *
PyObject *
		int

		sq_inplace_concat
		binaryfunc
		PyObject *
PyObject *
		PyObject *

		sq_inplace_repeat
		ssizeargfunc
		PyObject *
Py_ssize_t
		PyObject *

		PyMappingMethods Slot
		Type
		Parameter Types
		Return Type

		mp_length
		lenfunc
		PyObject *
		Py_ssize_t

		mp_subscript
		binaryfunc
		PyObject *
PyObject *
		PyObject *

		mp_ass_subscript
		objobjargproc
		PyObject *
PyObject *
PyObject *
		int

		PyBufferProcs Slot
		Type
		Parameter Types
		Return Type

		bf_get_buffer
		getbufferproc
		PyObject *
PyBuffer *
int
		int

		bf_release_buffer
		releasebufferproc
		PyObject *
PyBuffer *
		void

PyTypeObject and Special Methods

Python’s flavor of operator overloading is achieved through “special
methods”, a.k.a dunder methods, a.k.a magic methods [1].
They provide a simple and straightforward mechanism without getting in
the way when you don’t need them. Likely you’re already familiar with a
few of them: __init__(), __new__(), __str__(), and __repr__().

The CPython C-API, particularly PyTypeObject [2], provides
a likewise (relatively) straightforward mechanism. Here we are
exploring how the special methods relate to the Python types defined in C.

PyType_Ready() populates each type’s __dict__ with a wrappers around
the various type slots. Not all of them are available on instances of
the type.

One thing to note is that when __slots__ or __weakref__ are defined for
a type, special handling happens for the time which impacts memory use.
The creation/use of __dict__ is also impacted. It’s worth taking a
little time to understand, though that’s outside the scope of this
reference page.

Here’s a break-down of the slots that are exposed via Python attributes.
Also, this table shows likewise exposed attributes that don’t actually
correspond to type slots.

Legend:
* The “Obj” column indicates if the method is available on instances.
* The “Rdy” column indicates that the value is exposed by PyType_Ready().
* A slot name in parentheses means is is reserved or deprecated.

		PyTypeObject Slot
		Special Method
		O
b
j
		R
d
y
		Notes

		tp_name
		__name__
		
		
		PyType_Type.tp_getset

		tp_basicsize
		__basicsize__
		
		
		PyType_Type.tp_members

		tp_itemsize
		__itemsize__
		
		
		PyType_Type.tp_members

		tp_dealloc
		
		
		
		

		tp_print
		
		
		
		

		(tp_getattr)
		__getattribute__
__getattr__
		X
		X
		

		(tp_setattr)
		__setattr__
__delattr__
		X
		X
		

		(tp_reserved)
		
		
		
		

		tp_repr
		__repr__
		X
		X
		

		tp_as_number
		(see below)
		
		

		X
		

		tp_as_sequence
		(see below)
		
		

		X
		

		tp_as_mapping
		(see below)
		
		

		X
		

		tp_hash
		__hash__
		X
		X
		

		tp_call
		__call__
		X
		X
		

		tp_str
		__str__
		X
		X
		

		tp_getattro
		__getattribute__
__getattr__
		X
		X
		

		tp_setattro
		__setattr__
__delattr__
		X
		X
		

		tp_as_buffer
		(see below)
		
		
		

		tp_flags
		__flags__
		
		
		PyType_Type.tp_members

		tp_doc
		__doc__
		X
		
		PyType_Type.tp_getset

		tp_traverse
		
		
		
		

		tp_clear
		
		
		
		

		tp_richcompare
		__eq__
__ne__
__lt__
__gt__
__le__
__ge__
		X
		X
		

		tp_weaklistoffset
		__weakrefoffset__
		
		
		PyType_Type.tp_members

		tp_iter
		__iter__
		X
		X
		

		tp_iternext
		__next__
		X
		X
		

		tp_methods
		(__dict__)
		
		

		X
		

		tp_members
		(__dict__)
		
		

		X
		

		tp_getset
		(__dict__)
		
		

		X
		

		tp_base
		__base__
		
		
		PyType_Type.tp_members

		tp_dict
		__dict__
		
		
		PyType_Type.tp_getset

		tp_descr_get
		__get__
		X
		X
		

		tp_descr_set
		__set__
__delete__
		X
		X
		

		tp_dictoffset
		__dictoffset__
		
		
		PyType_Type.tp_members

		tp_init
		__init__
		X
		X
		

		tp_alloc
		
		
		
		

		tp_new
		__new__
		X
		X
		

		tp_free
		
		
		
		

		tp_is_gc
		
		
		
		

		tp_bases
		__bases__
		
		
		PyType_Type.tp_getset

		tp_mro
		__mro__
		
		
		PyType_Type.tp_members

		tp_cache
		
		
		
		

		tp_subclasses
		__subclasses__
		
		
		PyType_Type.tp_methods

		tp_weaklist
		__weakref__
		X
		
		dynamic types or manual

		tp_del
		__del__
		X
		X
		

		
		__qualname__
		
		
		PyType_Type.tp_getset

		
		__module__
		
		
		PyType_Type.tp_getset

		
		__abstractmethods__
		
		
		PyType_Type.tp_getset

		
		mro
		
		
		PyType_Type.tp_methods

		
		__prepare__
		
		
		PyType_Type.tp_methods

		
		__instancecheck__
		
		
		PyType_Type.tp_methods

		
		__subclasscheck__
		
		
		PyType_Type.tp_methods

		
		__dir__
		
		
		PyType_Type.tp_methods

		
		__sizeof__
		
		
		PyType_Type.tp_methods

		PyNumberMethods Slot
		Special Method
		Usage

		nb_add
		__add__
__radd__
		

		nb_subtract
		__sub__
__rsub__
		

		nb_multiply
		__mul__
__rmul__
		

		nb_remainder
		__mod__
__rmod__
		

		nb_divmod
		__divmod__
__rdivmod__
		

		nb_power
		__pow__
__rpow__
		

		nb_negative
		__neg__
		

		nb_positive
		__pos__
		

		nb_absolute
		__abs__
		

		nb_bool
		__bool__
		

		nb_invert
		__invert__
		

		nb_lshift
		__lshift__
__rlshift__
		

		nb_rshift
		__rshift__
__rrshift__
		

		nb_and
		__and__
__rand__
		

		nb_xor
		__xor__
__rxor__
		

		nb_or
		__or__
__ror__
		

		nb_int
		__int__
		

		nb_reserved
		—
		

		nb_float
		__float__
		

		nb_inplace_add
		__iadd__
		

		nb_inplace_subtract
		__isub__
		

		nb_inplace_multiply
		__imul__
		

		nb_inplace_remainder
		__imod__
		

		nb_inplace_power
		__ipow__
		

		nb_inplace_lshift
		__ilshift__
		

		nb_inplace_rshift
		__irshift__
		

		nb_inplace_and
		__iand__
		

		nb_inplace_xor
		__ixor__
		

		nb_inplace_or
		__ior__
		

		nb_floor_divide
		__floordiv__
__rfloordiv__
		

		nb_true_divide
		__truediv__
__rtruediv__
		

		nb_inplace_floor_divide
		__ifloordiv__
		

		nb_inplace_true_divide
		__itruediv__
		

		nb_index
		__index__
		

		PySequenceMethods Slot
		Special Method
		Notes

		sq_length
		__len__
		

		sq_concat
		__add__
		

		sq_repeat
		__mul__
__rmul__
		

		sq_item
		__getitem__
		

		sq_ass_item
		__setitem__
__delitem__
		

		sq_contains
		__contains__
		

		sq_inplace_concat
		__iadd__
		

		sq_inplace_repeat
		__imul__
		

		PyMappingMethods Slot
		Special Method
		Notes

		mp_length
		__len__
		

		mp_subscript
		__getitem__
		

		mp_ass_subscript
		__setitem__
__getitem__
		

		PyBufferProcs Slot
		Special Method
		Notes

		bf_get_buffer
		—
		

		bf_release_buffer
		—
		

How They Get Used by the Interpreter

The usage of tp_print falls back to str(obj).

		PyTypeObject Slot
		Special Method
		Usage

		tp_name
		__name__
		

		tp_basicsize
		__basicsize__
		

		tp_itemsize
		__itemsize__
		

		tp_dealloc
		
		

		tp_print
		
		

		(tp_getattr)
		__getattribute__
__getattr__
		

		(tp_setattr)
		__setattr__
__delattr__
		

		(tp_reserved)
		
		

		tp_repr
		__repr__
		

		tp_as_number
		(see below)
		

		tp_as_sequence
		(see below)
		

		tp_as_mapping
		(see below)
		

		tp_hash
		__hash__
		

		tp_call
		__call__
		

		tp_str
		__str__
		

		tp_getattro
		__getattribute__
__getattr__
		

		tp_setattro
		__setattr__
__delattr__
		

		tp_as_buffer
		(see below)
		

		tp_flags
		__flags__
		

		tp_doc
		__doc__
		

		tp_traverse
		
		

		tp_clear
		
		

		tp_richcompare
		__eq__
__ne__
__lt__
__gt__
__le__
__ge__
		

		tp_weaklistoffset
		__weakrefoffset__
		

		tp_iter
		__iter__
		

		tp_iternext
		__next__
		

		tp_methods
		(__dict__)
		

		tp_members
		(__dict__)
		

		tp_getset
		(__dict__)
		

		tp_base
		__base__
		

		tp_dict
		__dict__
		

		tp_descr_get
		__get__
		

		tp_descr_set
		__set__
__delete__
		

		tp_dictoffset
		__dictoffset__
		

		tp_init
		__init__
		

		tp_alloc
		
		

		tp_new
		__new__
		

		tp_free
		
		

		tp_is_gc
		
		

		tp_bases
		__bases__
		

		tp_mro
		__mro__
		

		tp_cache
		
		

		tp_subclasses
		__subclasses__
		

		tp_weaklist
		__weakref__
		

		tp_del
		__del__
		

		
		__qualname__
		

		
		__module__
		

		
		__abstractmethods__
		

		
		mro
		

		
		__prepare__
		

		
		__instancecheck__
		

		
		__subclasscheck__
		

		
		__dir__
		

		
		__sizeof__
		

		PyNumberMethods Slot
		Special Method
		Usage

		nb_add
		__add__
__radd__
		

		nb_subtract
		__sub__
__rsub__
		

		nb_multiply
		__mul__
__rmul__
		

		nb_remainder
		__mod__
__rmod__
		

		nb_divmod
		__divmod__
__rdivmod__
		

		nb_power
		__pow__
__rpow__
		

		nb_negative
		__neg__
		

		nb_positive
		__pos__
		

		nb_absolute
		__abs__
		

		nb_bool
		__bool__
		

		nb_invert
		__invert__
		

		nb_lshift
		__lshift__
__rlshift__
		

		nb_rshift
		__rshift__
__rrshift__
		

		nb_and
		__and__
__rand__
		

		nb_xor
		__xor__
__rxor__
		

		nb_or
		__or__
__ror__
		

		nb_int
		__int__
		

		nb_reserved
		—
		

		nb_float
		__float__
		

		nb_inplace_add
		__iadd__
		

		nb_inplace_subtract
		__isub__
		

		nb_inplace_multiply
		__imul__
		

		nb_inplace_remainder
		__imod__
		

		nb_inplace_power
		__ipow__
		

		nb_inplace_lshift
		__ilshift__
		

		nb_inplace_rshift
		__irshift__
		

		nb_inplace_and
		__iand__
		

		nb_inplace_xor
		__ixor__
		

		nb_inplace_or
		__ior__
		

		nb_floor_divide
		__floordiv__
__rfloordiv__
		

		nb_true_divide
		__truediv__
__rtruediv__
		

		nb_inplace_floor_divide
		__ifloordiv__
		

		nb_inplace_true_divide
		__itruediv__
		

		nb_index
		__index__
		

		PySequenceMethods Slot
		Special Method
		Usage

		sq_length
		__len__
		

		sq_concat
		__add__
		

		sq_repeat
		__mul__
__rmul__
		

		sq_item
		__getitem__
		

		sq_ass_item
		__setitem__
__delitem__
		

		sq_contains
		__contains__
		

		sq_inplace_concat
		__iadd__
		

		sq_inplace_repeat
		__imul__
		

		PyMappingMethods Slot
		Special Method
		Usage

		mp_length
		__len__
		

		mp_subscript
		__getitem__
		

		mp_ass_subscript
		__setitem__
__getitem__
		

		PyBufferProcs Slot
		Special Method
		Usage

		bf_get_buffer
		—
		

		bf_release_buffer
		—
		

How They Get Used by Built-in Functions

		PyTypeObject Slot
		Special Method
		Usage

		tp_name
		__name__
		

		tp_basicsize
		__basicsize__
		

		tp_itemsize
		__itemsize__
		

		tp_dealloc
		
		

		tp_print
		
		

		(tp_getattr)
		__getattribute__
__getattr__
		

		(tp_setattr)
		__setattr__
__delattr__
		

		(tp_reserved)
		
		

		tp_repr
		__repr__
		

		tp_as_number
		(see below)
		

		tp_as_sequence
		(see below)
		

		tp_as_mapping
		(see below)
		

		tp_hash
		__hash__
		

		tp_call
		__call__
		

		tp_str
		__str__
		

		tp_getattro
		__getattribute__
__getattr__
		

		tp_setattro
		__setattr__
__delattr__
		

		tp_as_buffer
		(see below)
		

		tp_flags
		__flags__
		

		tp_doc
		__doc__
		

		tp_traverse
		
		

		tp_clear
		
		

		tp_richcompare
		__eq__
__ne__
__lt__
__gt__
__le__
__ge__
		

		tp_weaklistoffset
		__weakrefoffset__
		

		tp_iter
		__iter__
		

		tp_iternext
		__next__
		

		tp_methods
		(__dict__)
		

		tp_members
		(__dict__)
		

		tp_getset
		(__dict__)
		

		tp_base
		__base__
		

		tp_dict
		__dict__
		

		tp_descr_get
		__get__
		

		tp_descr_set
		__set__
__delete__
		

		tp_dictoffset
		__dictoffset__
		

		tp_init
		__init__
		

		tp_alloc
		
		

		tp_new
		__new__
		

		tp_free
		
		

		tp_is_gc
		
		

		tp_bases
		__bases__
		

		tp_mro
		__mro__
		

		tp_cache
		
		

		tp_subclasses
		__subclasses__
		

		tp_weaklist
		__weakref__
		

		tp_del
		__del__
		

		
		__qualname__
		

		
		__module__
		

		
		__abstractmethods__
		

		
		mro
		

		
		__prepare__
		

		
		__instancecheck__
		

		
		__subclasscheck__
		

		
		__dir__
		

		
		__sizeof__
		

		PyNumberMethods Slot
		Special Method
		Usage

		nb_add
		__add__
__radd__
		

		nb_subtract
		__sub__
__rsub__
		

		nb_multiply
		__mul__
__rmul__
		

		nb_remainder
		__mod__
__rmod__
		

		nb_divmod
		__divmod__
__rdivmod__
		

		nb_power
		__pow__
__rpow__
		

		nb_negative
		__neg__
		

		nb_positive
		__pos__
		

		nb_absolute
		__abs__
		

		nb_bool
		__bool__
		

		nb_invert
		__invert__
		

		nb_lshift
		__lshift__
__rlshift__
		

		nb_rshift
		__rshift__
__rrshift__
		

		nb_and
		__and__
__rand__
		

		nb_xor
		__xor__
__rxor__
		

		nb_or
		__or__
__ror__
		

		nb_int
		__int__
		

		nb_reserved
		—
		

		nb_float
		__float__
		

		nb_inplace_add
		__iadd__
		

		nb_inplace_subtract
		__isub__
		

		nb_inplace_multiply
		__imul__
		

		nb_inplace_remainder
		__imod__
		

		nb_inplace_power
		__ipow__
		

		nb_inplace_lshift
		__ilshift__
		

		nb_inplace_rshift
		__irshift__
		

		nb_inplace_and
		__iand__
		

		nb_inplace_xor
		__ixor__
		

		nb_inplace_or
		__ior__
		

		nb_floor_divide
		__floordiv__
__rfloordiv__
		

		nb_true_divide
		__truediv__
__rtruediv__
		

		nb_inplace_floor_divide
		__ifloordiv__
		

		nb_inplace_true_divide
		__itruediv__
		

		nb_index
		__index__
		

		PySequenceMethods Slot
		Special Method
		Usage

		sq_length
		__len__
		

		sq_concat
		__add__
		

		sq_repeat
		__mul__
__rmul__
		

		sq_item
		__getitem__
		

		sq_ass_item
		__setitem__
__delitem__
		

		sq_contains
		__contains__
		

		sq_inplace_concat
		__iadd__
		

		sq_inplace_repeat
		__imul__
		

		PyMappingMethods Slot
		Special Method
		Usage

		mp_length
		__len__
		

		mp_subscript
		__getitem__
		

		mp_ass_subscript
		__setitem__
__getitem__
		

		PyBufferProcs Slot
		Special Method
		Usage

		bf_get_buffer
		—
		

		bf_release_buffer
		—
		

How They Get Used by the C-API

		PyTypeObject Slot
		Special Method
		Usage

		tp_name
		__name__
		

		tp_basicsize
		__basicsize__
		

		tp_itemsize
		__itemsize__
		

		tp_dealloc
		
		

		tp_print
		
		

		(tp_getattr)
		__getattribute__
__getattr__
		

		(tp_setattr)
		__setattr__
__delattr__
		

		(tp_reserved)
		
		

		tp_repr
		__repr__
		

		tp_as_number
		(see below)
		

		tp_as_sequence
		(see below)
		

		tp_as_mapping
		(see below)
		

		tp_hash
		__hash__
		

		tp_call
		__call__
		

		tp_str
		__str__
		

		tp_getattro
		__getattribute__
__getattr__
		

		tp_setattro
		__setattr__
__delattr__
		

		tp_as_buffer
		(see below)
		

		tp_flags
		__flags__
		

		tp_doc
		__doc__
		

		tp_traverse
		
		

		tp_clear
		
		

		tp_richcompare
		__eq__
__ne__
__lt__
__gt__
__le__
__ge__
		

		tp_weaklistoffset
		__weakrefoffset__
		

		tp_iter
		__iter__
		

		tp_iternext
		__next__
		

		tp_methods
		(__dict__)
		

		tp_members
		(__dict__)
		

		tp_getset
		(__dict__)
		

		tp_base
		__base__
		

		tp_dict
		__dict__
		

		tp_descr_get
		__get__
		

		tp_descr_set
		__set__
__delete__
		

		tp_dictoffset
		__dictoffset__
		

		tp_init
		__init__
		

		tp_alloc
		
		

		tp_new
		__new__
		

		tp_free
		
		

		tp_is_gc
		
		

		tp_bases
		__bases__
		

		tp_mro
		__mro__
		

		tp_cache
		
		

		tp_subclasses
		__subclasses__
		

		tp_weaklist
		__weakref__
		

		tp_del
		__del__
		

		
		__qualname__
		

		
		__module__
		

		
		__abstractmethods__
		

		
		mro
		

		
		__prepare__
		

		
		__instancecheck__
		

		
		__subclasscheck__
		

		
		__dir__
		

		
		__sizeof__
		

		PyNumberMethods Slot
		Special Method
		Usage

		nb_add
		__add__
__radd__
		

		nb_subtract
		__sub__
__rsub__
		

		nb_multiply
		__mul__
__rmul__
		

		nb_remainder
		__mod__
__rmod__
		

		nb_divmod
		__divmod__
__rdivmod__
		

		nb_power
		__pow__
__rpow__
		

		nb_negative
		__neg__
		

		nb_positive
		__pos__
		

		nb_absolute
		__abs__
		

		nb_bool
		__bool__
		

		nb_invert
		__invert__
		

		nb_lshift
		__lshift__
__rlshift__
		

		nb_rshift
		__rshift__
__rrshift__
		

		nb_and
		__and__
__rand__
		

		nb_xor
		__xor__
__rxor__
		

		nb_or
		__or__
__ror__
		

		nb_int
		__int__
		

		nb_reserved
		—
		

		nb_float
		__float__
		

		nb_inplace_add
		__iadd__
		

		nb_inplace_subtract
		__isub__
		

		nb_inplace_multiply
		__imul__
		

		nb_inplace_remainder
		__imod__
		

		nb_inplace_power
		__ipow__
		

		nb_inplace_lshift
		__ilshift__
		

		nb_inplace_rshift
		__irshift__
		

		nb_inplace_and
		__iand__
		

		nb_inplace_xor
		__ixor__
		

		nb_inplace_or
		__ior__
		

		nb_floor_divide
		__floordiv__
__rfloordiv__
		

		nb_true_divide
		__truediv__
__rtruediv__
		

		nb_inplace_floor_divide
		__ifloordiv__
		

		nb_inplace_true_divide
		__itruediv__
		

		nb_index
		__index__
		

		PySequenceMethods Slot
		Special Method
		Usage

		sq_length
		__len__
		

		sq_concat
		__add__
		

		sq_repeat
		__mul__
__rmul__
		

		sq_item
		__getitem__
		

		sq_ass_item
		__setitem__
__delitem__
		

		sq_contains
		__contains__
		

		sq_inplace_concat
		__iadd__
		

		sq_inplace_repeat
		__imul__
		

		PyMappingMethods Slot
		Special Method
		Usage

		mp_length
		__len__
		

		mp_subscript
		__getitem__
		

		mp_ass_subscript
		__setitem__
__getitem__
		

		PyBufferProcs Slot
		Special Method
		Usage

		bf_get_buffer
		—
		

		bf_release_buffer
		—
		

Footnotes

		[1]		See http://docs.python.org/3.4/reference/datamodel.html#special-method-names.

		[2]		(1, 2) See http://docs.python.org/3.4/c-api/typeobj.html.

To Do

XXX fill out the “How They Get Used” sections
XXX explain heap types
XXX explicitly outline what PyType_Ready() does

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/type_system/c-api.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/interfaces/existing_abstract_base_classes.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

In-the-wild Examples of Abstract Base Classes

In the Standard Library

In the Cheeseshop

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/interfaces/history.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

Interfaces throughout Python’s History

Like most Python features, the prominance of any proposal of the day
was invariably tied to Guido’s sentiments. As such, we’ll focus the
following walk through time according to those same flights of not-so-
fancy.

A Summary

Proposals

In chronological order:

		http://old.zope.org/Members/jim/PythonInterfaces/Summary

		PEP 245 [https://www.python.org/dev/peps/pep-0245] “Python Interface Syntax”

		PEP 246 [https://www.python.org/dev/peps/pep-0246] “Object Adaptation”

		PEP 3107 [https://www.python.org/dev/peps/pep-3107]

		PEP 3119 [https://www.python.org/dev/peps/pep-3119] “Introducing Abstract Base Classes”

		PEP 3124 [https://www.python.org/dev/peps/pep-3124] “Overloading, Generic Functions, Interfaces, and Adaptation”

		PEP 3133 [https://www.python.org/dev/peps/pep-3133] “Introducing Roles”

In the Beginning...

“protocols”

To the Interface!!!

types-sig
zope.interface

Adapt or Die

“adaptation”

Generically Speaking...

generics

ABC, as Easy as 123

abstract base classes

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/pycon2012_proposals.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

Talk Proposals for PyCon 2012

These are my talk proposals for PyCon 2012 [http://us.pycon.org/2012/]. I feel excited and
humbled to have 2 talks accepted.

These are the actual proposals I submitted throug the PyCon site. The
information may not be up-to-date, particularly for the two accepted
talks. For those two I have linked to the up-to-date pages.

Many of the links below are likely broken. If a broken link has a
working alternative, I’ve noted it. Otherwise I’ve noted that the link
is broken.

Why I Did It

I’ve been ruminating since a bit before PyCon 2011 on how to make it
easier to experiment with the Python language definition. The approach
I’ve come up with is a library that leverages the hooks into the import
machinery to make it easy to create and apply transformations to code.
The name of the library is pylt, and it’s mostly in the idea phase right
now (I’ve been busy with PyCon :).

So when the CFP for PyCon 2012 was announced, I started considering a
talk on pylt for 2013. Going through the proposal process this year
would be a great experience and help me that much more when I proposed
the pylt talk for 2013. And if a talk was accepted, the experience
would be doubly helpful. I even joined the program committee (anyone
can join) to get insight into how the process worked and to help out.

All of this has paid off more than I could have expected! And the
proposals below ended up being more than just see what it’s like. I’ve
been interested and excited about each of them.

About the Proposals

The key for me was to find topics about which I wanted to learn more.
At first I focused on topics that would help me advance my goals with
pylt. However, as I’ll note, the last two would have been really hard
to prepare. More than anything, each of these is a talk that I found
myself wishing someone would give at PyCon that probably noone would.

Here’s a quick summary of the proposals:

Getting the Most Out of Python Imports (Accepted)

This was my favorite of the talk proposals. With a lot of time spent
on the import machinery in the last year, there’s a lot I want to share.

Explicit Handlers to Python Language Features (Rejected)

This was a close second to my accepted imports proposal. This is a
topic for which I’ll be doing a lot of research as I work on pylt.

The Future of Python’s Imports (Rejected)

Originally this was going to be a talk on the history of imports, since
history can give you so much insight. However, I switched it over to
what people are doing to improve imports, to make it more directly
useful.

AST Transformations using PEP 302 (Cancelled)

This one was motivated directly by the ideas behind pylt. However, it
might not have panned out so well since it’s a more practical talk
without a lot of practice to back it up.

Python and Interfaces (Accepted)

Originally I submitted 4 talks, then two more, and finally the last two.
This one is from that second batch. I’d been working on an interfaces
library and the topic is fascinating.

Code Archaeology and Repository Spelunking (Cancelled)

This was probably my least exciting proposal, albeit still very
interesting. It’s all about how to investigate the history of a
project, or even parts of it like (say, imports in CPython), using the
project’s VCS of choice. I also canceled this one.

Running Python in Your Browser with Chrome’s NativeClient (Cancelled)

I really, really, really wanted someone to be giving this talk, but
knew noone would. I even solicited a guy on the NaCl team who had
already worked on this a bunch, but he wasn’t available. Ultimately I
caved to the knowledge that getting this talk ready would consume me.

Python on Android (Cancelled)

Much like the NativeClient talk, this one was one I really wanted to
hear. Jython, IronPython (via Mono) or even PyPy are promising. Still,
this talk would also have demanded a lot of work.

Accepted

The competition for conference slots was huge[1]_. I feel excited and
humbled to have two talks in the lineup.

		[1]		95 talks, over 360 proposals

Getting the Most Out of Python Imports

		orphan:		

Summary

To really take advantage of Python you must understand how imports work
and how to use them effectively. In this talk we’ll discuss both of
these. After a short introduction to imports, we’ll dive right in and
show how you can put PEP 302 import hooks to work for you.

Abstract

Python’s import statement has been a powerful feature since the first release, and only gotten better with age. Understanding how imports work under the hood will let you take advantage of that power.

The key to customizing Python’s imports is the importers introduced by PEP 302. That’s a tool that you want in your belt!

Talk Outline

		Python’s imports (5 min)
- the evolution of the import machinery
- the gears in the machine
- motivation for PEP 302

		Finder Objects (5 min)
- what they’re for
- how to write one
- what to do with it

		Loader Objects (5 min)
- what they’re for
- how to write one
- what to do with it

		sys.meta_path vs. sys.path_hooks (5 min)
- when and how to use them
- example of putting it all together

		Real-life Examples of Import Hooks (7 min)
- Python/import.c
- importlib module
- PyPy
- PyFilesystem

		Other Import Customizations (3 min)
- builtins.__import__
- .pth files
- PEP 402
- import engine

Much more information on Python imports may be found at my
Python Imports [http://ericsnowcurrently.blogspot.com/p/python-imports.html] page.

Python and Interfaces

Summary

In 2.6, Python introduced the Abstract Base Classes. Before that we had
“protocols” (and we still do). In this talk we’ll look at the how the
general concept of interfaces fits into today’s Python. We’ll also look
at some of the alternate proposals of the past, some of the
controversies around ABCs, and the direction interfaces might go in the
future.

Abstract

Talk Outline:

		What are Interfaces? (3 min)
- modeling strict abstraction
- precedents in other languages

		Interfaces in Python (6 min)
- duck-typing
- Python “protocols”
- past proposals (PEP 245)
- how Python “interfaces” are different

		Newer Interface Support (11 min)
- annotations
- Abstract Base Classes
- why run-time validation?
- ABC vs. duck-typing

		Third-party Libraries (5 min)
- Peak’s PyProtocols
- zope.interface
- Twisted

		What Next? (3 min)
- strict interfaces
- compile-time validation
- an example interface library

For more comprehensive coverage of interfaces in Python, check out
this reference page. (Broken Link)

Rejected

There was a good chance that none of my proposals would be accepted,
particularly since I’ve never presented at a conference before. And
with a 2 talk limit I knew that at least 6 of my proposals would not
make it. I think the program committee did a great job this year, in
the face of so many great proposals.

The Future of Python’s Imports

Explicit Handlers to Python Language Features

Summary

Come learn all about how Python’s language features are handled and how
some of that behavior can be customized. We’ll go from the grammar to
AST and on to the functions that handle the behavior.

Abstract

Like all programming languages, Python can be described by the language
features it has and how it handles those features. One of Python’s
strengths is how some of these handlers, like __import__ or __len__, can
be explicitly customized to extend the language.

In this talk we’ll look at Python’s language features and how it handles
them. We’ll trace the path from syntax through AST and beyond. We’ll
also look at the handlers that you can override and what implicit
handlers are candidates to be exposed. This talk will be partly
CPython-specific, but the analytic process applies equally to alternate
implementations.

Talk Outline:

		Language Features and Handlers (3 min)
- what is a language feature?
- what is a handler?
- a comparison across languages of a feature subset

		Python Language Features (7 min)
- Python’s language feature catalog
- a handler for each feature
- examples of implicit handlers
- examples of explicit handlers (special methods)

		From Grammar to AST (6 min)
- mapping features to grammar
- mapping grammar to AST
- some concrete examples
- examining the transformation

		From AST to Handler (9 min)
- via opcodes in CPython
- mapping AST to opcodes (compiler)
- mapping opcodes to handlers
- implicit handlers as an implementation detail
- some concrete examples
- examining the transformation

		Current Implicit Handlers (5 min)
- a look at the handlers that are not customizable
- which ones could be turned into explicit handlers
- the impact of doing so

More information on Language Feature Handlers see my
Python Language Feature Handlers page. (Broken Link)

AST Transformations using PEP 302

Summary

Python’s stdlib offers the ast module, which exposes the AST portion of
the compiler. It’s a powerful tool for manipulating code before
compilation. Combine this with a PEP 302 import hook and you are ready
to do some pretty neat stuff. We’ll use domain-specific languages to
demonstrate the power of this technique.

Abstract

AST + PEP 302 == awesome

First of all, if you want an introduction to the stdlib ast module or
PEP 302 importers, this talk has a lot to offer. If you are interested
in domain-specific languages, we’ll be talking about those too.

The magic of combining the ast module with import hooks is in the that
ability to transform a seemingly invalid module into a valid one. The
end result is compiled python code, as though you had written the module
in legal Python in the first place.

Talk Outline:

		the stdlib ast module (5 min)
- briefly cover CPython’s compiler
- look at the interface of the AST module
- a quick example of using the AST module to modify partially compiled code

		PEP 302 importers (5 min)
- customizing imports and the problem with builtins.import
- what goes into an importer (finders and loaders)
- the default importers
- sys.meta_path vs. sys.path_hooks
- two examples of custom importers

		an example of a domain-specific language (5 min)
- what is a DSL?
- a simple DSL for SQL

		putting it all together (15 min)
- an AST transformer for the DSL
- an importer that intelligently applies the AST transformer
- actually using it with a real database

For more information, go to my pages on Code Transformations in Python,
Python Imports, and Domain-Specific Languages in Python.
(Broken Links)

Code Archaeology and Repository Spelunking

Summary

Come learn about the tools I used and experience I had while peeling
back the layers of CPython’s full repository. We’ll also talk about how
these relate to “code archaeology” in general.

Abstract

The power of version control lies partly in the history it offers.
However, for a large project digging down into the repository to gather
historical artifacts is no trivial matter.

While working on a project related to Python’s history, I needed to look
at commit history and to search through commits/patches. Thankfully
CPython’s repository goes back almost to the beginning (1990). In early
2011 the CPython repository moved to Mercurial, which factors in to the
tools I was able to use in my spelunking.

In this talk we’ll look at the tools and methods I used in my
“archaeology”, with a focus on Mercurial and CPython. However, the
material should be applicable to most VCSs and most projects.

Talk Outline:

		What is Code Archaeology? (3 min)
- motivation (understanding what brought us here)
- why does it matter?

		The Tools (2 min)
- VCS
- mail archives

		Investigating CPython (2 min)
- CPython resources
- mercurial repos
- mail archives

		The Evolution of a Code Base (3 min)
- how projects evolve
- examples from CPython

		The Players (3 min)
- personalities and community play a part
- examples from CPython

		Preparing to Dive In (3 min)
- determine what you care about
- know what to look for (get familiar with the topic)
- examples from CPython

		Extracting Timelines (7 min)
- take a focused approach
- search permutations on the VCS
- supplement with other resources
- examples from CPython

		The Story Behind the Commits (4 min)
- lingering questions (like “why?!?”)
- searching in the mail archives
- timeline offers a target
- examples from CPython

		What Might Have Been (3 min)
- alternate outcomes mostly fade into obscurity
- lessons learned from them
- examples from CPython

		What I learned about the CPython Core Developers (2 min)

For more information go to my Code Archaeology and Repository Spelunking`
page. (Broken Link)

Running Python in Your Browser with Chrome’s NativeClient

Summary

Chrome’s Native Client has gotten a lot of press in the last year. It’s
a tool for compiling C/C++ to native code and running it sandboxed in
your browser. This is a talk about porting Python to run in the Native
Client, and why you’d like that.

Abstract

Mark Seaborn from the Chromium project has done a lot of work on getting
CPython to run inside Chrome’s Native Client. In this talk we’ll look at
the work he’s done, what’s left to do, and how you can help.

We’ll also talk about why Python in the NaCl sandbox matters and we’ll
wrap up by discussing the idea of PyPy on Native Client.

Talk Outline:

		What is Native Client? (5 min)
- virtual machine for C/C++
- released on Chrome in 2011
- continued work to port libraries
- uses Python 2.x for a number of tools

		Porting CPython to Native Client (10 min)
- initial work by Mark Seaborn (Jun. 2009)
- trouble with dynamic linking and build tools (Dec. 2010)
- upcoming dynamic linking support and Python bindings in NaCl
- current roadblocks and options

		Possibilities with PyPy (15 min)
- using PyPy’s RPython toolchain to port Python to NaCl
- is a NaCl backend for PyPy pointless?
- porting the toolchain to NaCl
- examples

Python on Android

Summary

Come learn about the present and future of writing Android apps in
Python. We’ll cover SL4A and efforts to port both Jython and PyPy.

Abstract

The Android mobile operating system is a great target for developers.
However, when you write apps for the dalvik virtual machine, you have to
write in Java. Personally, I would rather not. Instead, wouldn’t it be
nice to write Android apps in Python? This has certainly crossed every
Python programmer’s mind who has even thought about Android. So what are
the options?

First of all, in 2008 there was a project called jythonroid that tried
to port Jython to Android. We’ll talk about why it didn’t pan out.

Secondly, in 2010 Google released the “Scripting Layer for Android”
(SL4A) project with Python support; and in 2011 they spun off the Python
portion into its own project. It’s neat to be able to write Python on my
phone. We’ll talk about why this currently isn’t a good solution for
writing Android Apps; and what could make it work better (i.e. a tool
for building wrappers around SL4A scripts).

Finally, two of the Python implementations have already been involved in
discussions on porting Python to Android: Jython and PyPy. We’ll talk
about what happened with past (official) porting efforts for Jython and
where efforts are headed for both projects.

The idea of writing Android apps in Python is both appealing and
elusive. It invites your imagination. So, let’s tap into that! To wrap
up the talk we’ll look at what it would be like to write for Android in
Python and what you can do to help make that a reality.

Talk Outline:

		Programming for Android (2 min)
- Java
- Android API
- an example
- Dalvik is not JVM

		Python on Android: SL4A (5 min)
- summary
- examples
- difference from native Android apps
- why SL4A Isn’t Good Enough
- making it a little better

		Current Efforts in Jython (12 min)
- jythonroid (2009)
- jython-for-android (2011)
- early optimism (2008/2009)
- hints of Android support for 2.5.1 (2009)
- The challenge of dynamic code generation on Android
- PBC (Python bytcode) and Java PBC VM
- performance implications
- examples (theoretical)
- future availability

		Current Efforts in PyPy (8 min)
- acknowledged early (2009)
- JIT backend for ARM (2011)
- examples (theoretical)
- future availability

		Current Efforts in IronPython (3 min)

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/interfaces/libs.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

Third-Party Python Interface Libraries

Zope

http://regebro.wordpress.com/2007/11/16/a-python-component-architecture/

Twisted had its own interface system but later ditched it in favor of
zope.interface.

Peak

PyProtocols
rulesdispatch
PEAK-Rules

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/interfaces/existing_protocols.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

Python’s Native Protocols

The only validation for these is by EAFP (duck-typing).

Many are now encapsulated by ABCs:

http://docs.python.org/dev/library/collections.abc.html

Most of these are invoked in a special way when using builtins:

http://docs.python.org/dev/reference/datamodel.html#special-method-names

http://www.google.com/search?domains=www.python.org&sitesearch=www.python.org&sourceid=google-search&q=protocol&submit=search

Thread: [Python-ideas] __iter__ implies __contains__
| http://mail.python.org/pipermail/python-ideas/2011-October/012023.html
| http://mail.python.org/pipermail/python-ideas/2011-October/012029.html
| http://mail.python.org/pipermail/python-ideas/2011-October/012037.html
| http://mail.python.org/pipermail/python-ideas/2011-October/012043.html
| http://mail.python.org/pipermail/python-ideas/2011-October/012050.html
| http://mail.python.org/pipermail/python-ideas/2011-October/012053.html
| http://mail.python.org/pipermail/python-ideas/2011-October/012055.html
| http://mail.python.org/pipermail/python-ideas/2011-October/012061.html

object protocol

http://docs.python.org/reference/datamodel.html#basic-customization

object.__new__(cls[, ...])

object.__init__([...])

object.__del__()

repr protocol

http://docs.python.org/reference/datamodel.html#basic-customization

object.__repr__()

str protocol

http://docs.python.org/reference/datamodel.html#basic-customization

object.__str__()

object.__unicode__()

comparison protocol

http://docs.python.org/reference/datamodel.html#basic-customization

object.__lt__(other)

object.__le__(other)

object.__eq__(other)

object.__ne__(other)

object.__gt__(other)

object.__ge__(other)

object.__cmp__(other)

hash protocol

http://docs.python.org/reference/datamodel.html#basic-customization

object.__hash__()

bool protocol

http://docs.python.org/reference/datamodel.html#basic-customization

object.__nonzero__()

attribute access protocol

http://docs.python.org/reference/datamodel.html#customizing-attribute-access

object.__getattribute__(name)

object.__getattr__(name)

object.__setattr__(name, value)

object.__delattr__(name)

descriptor protocol

http://docs.python.org/reference/datamodel.html#implementing-descriptors

object.__get__(obj, cls)

object.__set__(obj, value)

object.__delete__(obj)

type protocol

http://docs.python.org/reference/datamodel.html#customizing-instance-and-subclass-checks

class.__instancecheck__(obj)

class.__subclasscheck__(cls)

callable protocol

http://docs.python.org/reference/datamodel.html#emulating-callable-objects

object.__call__([args...])

sequence protocol

http://docs.python.org/reference/datamodel.html#emulating-container-types

object.__len__()

object.__getitem__(key)

object.__setitem__(key, value)

object.__delitem__(key)

object.__reversed__()

object.__contains__(obj)

object.__getslice__(i, j)

object.__setslice__(i, j, value)

object.__delslice__(i, j)

old-style iteration protocol

object.__len__()

object.__getitem__(key)

iterator protocol

object.__iter__()

iterable protocol

http://docs.python.org/library/stdtypes.html#typeiter

object.next()

object.__iter__()

number protocol

http://docs.python.org/reference/datamodel.html#emulating-numeric-types

context manager protocol

http://docs.python.org/reference/datamodel.html#with-statement-context-managers

object.__enter__()

object.__exit__(exc_type, exc_value, traceback)

file protocol

pickle protocol

http://docs.python.org/library/pickle.html#the-pickle-protocol

object.__getinitargs__()

object.__getnewargs__()

object.__getstate__()

object.__setstate__(state)

object.__reduce__()

object.__reduce_ex__(protocol)

copy protocol

http://docs.python.org/library/copy.html
http://docs.python.org/library/pickle.html#id16

object.__copy__()

object.__deepcopy__()

buffer protocol

Python Database API (PEP 249)

http://www.python.org/dev/peps/pep-0249/

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/web/index.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

understanding_python/metaclasses.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

Metaclasses

Feel free to give me feedback on the project page [https://bitbucket.org/ericsnowcurrently/reference_pages]

Keys to grokking metaclasses:

		classes are instances of a type, like all objects in Python. => metaclass

		understand what class definitions do behind the scenes.

		metaclasses are inherited.

		attribute lookup mechanism on objects (normal and for special-methods)

		Index

		Search Page

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/history/index.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_software/datatypes.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

Data Types

Type Systems

Programming languages work by storing most state in memory. The whole
point of data types is to facilitate mapping that state to memory. Two
different concepts combined indicate how a language handles this:

typing: static vs. dynamic

Statically-typed languages require variables (names) to be declared with
a type and only objects of that type (or a subtype for OO languages) may
be assigned to that variable. Names are associated with typed boxes
where data is stored.

Dynamically-typed languages do not have that restriction. There are no
boxes.

Type inference is a related topic.

typing: strong vs. weak

In a strongly-typed language the underlying data has a type and that
type does not change over the lifetime of the data. In a weakly-typed
language the data’s type may change.

Relationship to Interfaces

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/concurrency/index.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_software/dsl.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/security/index.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

_static/down.png

understanding_python/unicode/index.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/imports/_tips.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

block imports on the current working directory

By default Python will look for a module in your current working directory before trying the stdlib. The explicit relative import syntax of 2.7 help with this, but only to an extent.

To completely keep Python from trying the CWD, simply run “sys.path.remove(‘’)” and optionally follow that with “sys.path.append(‘’)”.

So the question remains, when did the empty string get added to (the front of) sys.path, and why?

...

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/imports/_efforts.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

PEPs

		PEP 369 [https://www.python.org/dev/peps/pep-0369] – Post import hooks

		PEP 382 [https://www.python.org/dev/peps/pep-0382] – Namespace Packages

		PEP 395 [https://www.python.org/dev/peps/pep-0395] – Module Aliasing

		PEP 402 [https://www.python.org/dev/peps/pep-0402] – Simplified Package Layout and Partitioning

		PEP ??? – import engine

Rejected PEPs:

		PEP 299 [https://www.python.org/dev/peps/pep-0299] – Special __main__() function in modules

		PEP 3122 [https://www.python.org/dev/peps/pep-3122] – Delineation of the main module

Projects

		importlib.__import__ as the default builtins.__import__

Currently in Python, “builtin___import__()” in Python/bltinmodule.c makes a call to PyImport_ImportModuleLevelObject. Brett Cannon is working on making importlib.__import__ the default import call[1].

		the __experimental__ module

http://mail.python.org/pipermail/python-ideas/2010-June/007357.html
http://mail.python.org/pipermail/python-ideas/2011-August/011278.html

like the __future__ module, but for less-stable APIs that are likely to go in
focus on stdlib (room for experimental syntax too?)
(higher exposure testing)

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/community/index.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_software/models.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

Models

definition model vs. execution model

data model

object model...

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/imports/_whos_who.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 People who have been involved with Python’s imports (incomplete):

“experts”: Brett Cannon, Nick Coghlan

Brett Cannon (importlib)
Just van Rossum (PEP 302 [https://www.python.org/dev/peps/pep-0302])
Paul Moore (PEP 302 [https://www.python.org/dev/peps/pep-0302])
Aahz (PEP 328 [https://www.python.org/dev/peps/pep-0328])
Martin v. Loewis (PEP 382 [https://www.python.org/dev/peps/pep-0382])
P.J. Eby (PEP 402 [https://www.python.org/dev/peps/pep-0402])
James C. Ahlstrom (PEP 273 [https://www.python.org/dev/peps/pep-0273])
Nick Coghlan (PEP 338 [https://www.python.org/dev/peps/pep-0338], PEP 366 [https://www.python.org/dev/peps/pep-0366], PEP 395 [https://www.python.org/dev/peps/pep-0395])
Christian Heimes (PEP 370 [https://www.python.org/dev/peps/pep-0370])
Thomas Wouters (PEP 221 [https://www.python.org/dev/peps/pep-0221])
Barry Warsaw (PEP 3147 [https://www.python.org/dev/peps/pep-3147])
Tim Peters (PEP 225 [https://www.python.org/dev/peps/pep-0225])
Guido van Rossum (pretty much everything else <wink>)

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/imports/_references.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

		orphan:		

Dr. Brett Cannon gave a talk at PyCon 2010 <http://python.mirocommunity.org/video/1491> and PyCon 2008 (can’t find video).

importlib extensions: http://packages.python.org/importers/

flowchart: http://svn.python.org/view/sandbox/trunk/import_in_py/docs/

http://mail.python.org/mailman/listinfo/import-sig
http://docs.python.org/dev/reference/simple_stmts.html#the-import-statement
http://docs.python.org/dev/reference/simple_stmts.html#future-statements
http://docs.python.org/dev/reference/toplevel_components.html
http://docs.python.org/dev/reference/executionmodel.html#naming-and-binding
http://docs.python.org/dev/reference/datamodel.html#the-standard-type-hierarchy (modules)

http://docs.python.org/dev/tutorial/modules.html
http://docs.python.org/release/1.5.1p1/tut/modules.html
http://docs.python.org/release/1.4/tut/node41.html#SECTION00700000000000000000
http://docs.python.org/dev/library/modules.html
http://docs.python.org/dev/faq/programming.html#what-are-the-best-practices-for-using-import-in-a-module
http://docs.python.org/dev/faq/programming.html#how-can-i-have-modules-that-mutually-import-each-other
http://docs.python.org/dev/faq/programming.html#import-x-y-z-returns-module-x-how-do-i-get-z
http://docs.python.org/dev/faq/programming.html#when-i-edit-an-imported-module-and-reimport-it-the-changes-don-t-show-up-why-does-this-happen

http://docs.python.org/dev/library/py_compile.html
http://docs.python.org/dev/library/compileall.html

http://www.doughellmann.com/PyMOTW/sys/imports.html

http://lucumr.pocoo.org/2011/9/21/python-import-blackbox/

http://code.google.com/p/backport/
http://mirnazim.org/writings/python-ecosystem-introduction/
http://nedbatchelder.com/blog/201112/duplicitous_django_settings.html

http://lucumr.pocoo.org/2011/12/7/thoughts-on-python3/
http://pythonic.pocoo.org/2009/3/4/imports-in-functions-you-sure-about-that

Open bugs:
http://bugs.python.org/issue?%40search_text=import&ignore=file%3Acontent&title=&%40columns=title&id=&%40columns=id&stage=&creation=&%40columns=creation&%40sort=creation&creator=&activity=&%40columns=activity&actor=&nosy=&type=&components=&versions=&dependencies=&assignee=&keywords=&priority=&status=1&%40columns=status&%40group=status&resolution=&nosy_count=&message_count=&%40pagesize=50&%40startwith=0&%40queryname=&%40old-queryname=&%40action=search

Not closed:
http://bugs.python.org/issue?%40search_text=&ignore=file%3Acontent&title=&%40columns=title&id=&%40columns=id&stage=&creation=&%40columns=creation&%40sort=creation&creator=&activity=&%40columns=activity&actor=&nosy=&type=&components=&versions=&dependencies=&assignee=&keywords=&priority=&status=-1%2C1%2C3&%40columns=status&%40group=status&resolution=&nosy_count=&message_count=&%40pagesize=50&%40startwith=0&%40queryname=&%40old-queryname=&%40action=search

Closed:
http://bugs.python.org/issue?%40search_text=&ignore=file%3Acontent&title=&%40columns=title&id=&%40columns=id&stage=&creation=&%40columns=creation&%40sort=creation&creator=&activity=&%40columns=activity&actor=&nosy=&type=&components=&versions=&dependencies=&assignee=&keywords=&priority=&status=2&%40columns=status&%40group=status&resolution=&nosy_count=&message_count=&%40pagesize=50&%40startwith=0&%40queryname=&%40old-queryname=&%40action=search

<stack overflow>

http://stackoverflow.com/questions/279237/python-import-a-module-from-a-folder

<cookbook recipes>

<others>

https://github.com/zacharyvoase/metaspace

http://www.youtube.com/watch?v=DkW5CSZ_VII
http://aroberge.blogspot.com/2006/02/python-wish-new-meaning-for-import-as.html

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

_static/plus.png

understanding_python/imports/_syntax.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

Syntactic Permutations

direct import

valid:

import logging

import logging as log_mod
import logging as log_mod, sys

import logging.handlers
import logging.handlers as logh_mod

invalid:

import 5 #invalid identifier
import class #keyword
import (logging) #parentheses not allowed here
import (logging as log_mod) # not here either

indirect import

valid:

from logging import getLogger

from logging import handlers
from logging import handlers as logh_mod

from logging import (handlers)
from logging import (handlers as logh_mod)

invalid:

from logging import 5

universal indirect import

valid:

from logging import *
from logging.handlers import *

relative indirect import

valid:

from . import spam
from . import spam as _spam
from .. import spam
from .spam import ham

Grammar (ASDL)

http://docs.python.org/dev/reference/grammar.html
http://hg.python.org/cpython/file/default/Grammar/Grammar

import_stmt ::= import_name | import_from
import_name ::= 'import' dotted_as_names
import_from ::= ('from' (('.' | '...')* dotted_name | ('.' | '...')+)

This means...

Tokens and Keywords

http://docs.python.org/dev/library/token.html
http://hg.python.org/cpython/file/default/Parser/tokenizer.c#l49
http://hg.python.org/cpython/file/default/Include/token.h

NAME
STAR
DOT
ELLIPSIS
COMMA

keywords:
import
from
as

For a while, import had 3 keywords all to itself!!!

AST

http://docs.python.org/dev/library/ast.html
http://hg.python.org/cpython/file/default/Parser/Python.asdl
http://hg.python.org/cpython/file/default/Include/Python-ast.h

Opcodes

http://docs.python.org/dev/library/dis.html
http://hg.python.org/cpython/file/default/Include/opcode.h
http://hg.python.org/cpython/file/default/Python/compile.c
http://hg.python.org/cpython/file/default/Python/ceval.c

Examples of Looking under the Hood

Each of these examples will use the following code snippets:

		import os

		import os as os_mod

		import os as os_mod, sys

		import os.path:

def f(x):
 print(x)
 return x

Investigate Grammar Using parser Module

From ActiveState Recipe #...:

...

Investigate Grammar Using tokenize Module

From ActiveState Recipe #...:

from io import BytesIO
from tokenize import tokenize
code = """def f(x):
 print(x)
 return x
"""
tokens = tokenize(BytesIO(code.encode('utf-8')).readline)
for toknum, tokval, _, _, _ in tokens:
 print(toknum, tokval)

Investigate AST Using ast Module

From ActiveState Recipe #...:

...

Investigate Opcodes Using dis Module

From ActiveState Recipe #...:

...

The __future__ Module

PEP 236 [https://www.python.org/dev/peps/pep-0236]
http://www.python.org/dev/peps/pep-0236/
http://docs.python.org/dev/library/__future__.html

		feature
		optional in
		mandatory in
		effect

		nested_scopes
		2.1.0b1
		2.2
		PEP 227 [https://www.python.org/dev/peps/pep-0227]:
Statically Nested Scopes

		generators
		2.2.0a1
		2.3
		PEP 255 [https://www.python.org/dev/peps/pep-0255]:
Simple Generators

		division
		2.2.0a2
		3.0
		PEP 238 [https://www.python.org/dev/peps/pep-0238]:
Changing the Division Operator

		absolute_import
		2.5.0a1
		2.7
		PEP 328 [https://www.python.org/dev/peps/pep-0328]:
Imports: Multi-Line and Absolute/Relative

		with_statement
		2.5.0a1
		2.6
		PEP 343 [https://www.python.org/dev/peps/pep-0343]:
The “with” Statement

		print_function
		2.6.0a2
		3.0
		PEP 3105 [https://www.python.org/dev/peps/pep-3105]:
Make print a function

		unicode_literals
		2.6.0a2
		3.0
		PEP 3112 [https://www.python.org/dev/peps/pep-3112]:
Bytes literals in Python 3000

The Default import Handler

As already implied by sections 1.3 and 5.3, the import process is not as complex as you might expect. However, it is opaque enough that a thorough exposition would be worth it. Here is the entire process in one chunk of code:

...

		if a directory contains both a module file and a package directory, the package will be imported for the name and not the module.

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_software/languages/lisp.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/imports/_commits.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

		orphan:		

http://hg.python.org/cpython-fullhistory/log/62bdb1cbe0f5/Python/import.c?revcount=120

Python 0.9.0 (1991)

		

Python 0.9.1 (1991)

		

Python 0.9.2 (1991)

		

Python 0.9.4 (1991)

		

Python 0.9.5 (1992)

		

Python 0.9.6 (1992)

		

Python 0.9.7 (1992)

		

Python 0.9.8 (1993)

		

Python 0.9.9 (1993)

		

Python 1.0.0 (1994)

		

Python 1.0.2 (1994)

		

Python 1.0.3 (1994)

		

Python 1.0.4 (1994)

		

Python 1.1 (1994)

		

Python 1.1.1 (1994)

		

Python 1.2 (1995)

		

Python 1.3 (1995)

		

Python 1.4 (1996)

		

Python 1.5 (1998)

		

Python 1.5.1 (1998)

		

Python 1.5.2 (1999)

		

Python 1.6 (2000)

		

Python 2.0 (2000)

		

Python 2.1 (2001)

		

Python 2.2 (2001)

		

Python 2.3 (2003)

		

Python 2.4 (2004)

		

Python 2.5 (2006)

		

Python 2.6 (2008)

		

Python 3.0 (2008)

		

Python 2.7 (2010)

		

Python 3.1 (2010)

		

Python 3.2 (2011)

		

Python 3.3 (2012)

		

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_software/languages/objective_c.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_software/languages/smalltalk.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_software/languages/cpp.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/imports/_files.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

sys.path related

http://docs.python.org/library/sys.html#sys.path
http://docs.python.org/c-api/init.html#Py_GetPath
http://hg.python.org/cpython/file/default/Modules/getpath.c#l21

http://docs.python.org/dev/library/site.html

		calculate the 4 site-packages dirs

		add them to sys.path

		check for and execute .pth files in those site-packages dirs

		calculate user site-packages

site.getsitepackages()

Unix/Mac:

<sys.prefix>/lib/python#.#/site-packages
<sys.exec_prefix>/lib/python#.#/site-packages
<sys.prefix>/lib/site-python
<sys.exec_prefix>/lib/site-python

Windows:

<sys.prefix>/
<sys.exec_prefix>/
<sys.prefix>/lib/site-packages
<sys.exec_prefix>/lib/site-packages

site related

http://docs.python.org/dev/library/site.html

		module: site

		module: sitecustomize

		module: usercustomize

site.getusersitepackages()

Standard Library

Lib/importlib/*.py
Lib/pkgutil.py

Tests

Lib/Test/...

CPython

Python/import.c
Python/importdl.c
Python/importdl.h
Include/import.h
Python/sysmodule.c
Python/pythonrun.c

PyPy

Jython

IronPython

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_software/interfaces/languages.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

Interfaces in Different Languages

C

C++

C#

http://msdn.microsoft.com/en-us/library/ms173156.aspx
http://msdn.microsoft.com/en-us/library/87d83y5b(v=vs.80).aspx
http://blogs.msdn.com/b/curth/archive/2008/11/15/c-dynamic-and-multiple-dispatch.aspx

Eiffel

Haskell

Java

http://en.wikipedia.org/wiki/Interface_(Java)

Objective C

https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/ObjectiveC/Chapters/ocProtocols.html

Perl

PHP

http://php.net/manual/en/language.oop5.interfaces.php

Python

See /understanding_python/interfaces

Ruby

Self

Smalltalk

http://www.smalltalk.org/versions/ANSIStandardSmalltalk.html
http://www.cs.virginia.edu/~evans/cs655/readings/smalltalk.html

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/imports/_timeline.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

		orphan:		

Some Context

(origins)
http://www.python.org/community/sigs/retired/import-sig/
http://www.python.org/dev/peps/pep-3121/#id11
(1.5) http://www.python.org/doc/essays/packages.html
#http://www.python.org/doc/essays/packages/
Modula-3 influence: http://python-history.blogspot.com/2009/02/adding-support-for-user-defined-classes.html
http://python-history.blogspot.com/2009/01/brief-timeline-of-python.html
http://python-history.blogspot.com/2009/03/dynamically-loaded-modules.html
http://docs.python.org/dev/whatsnew/index.html
http://python.org/download/releases/src/
http://hg.python.org/cpython-fullhistory/tags
http://hg.python.org/cpython-fullhistory/graph/3cd033e6b530?revcount=800
http://hg.python.org/cpython-fullhistory/log/62bdb1cbe0f5/Python/import.c?revcount=120
initial: http://hg.python.org/cpython-fullhistory/file/fc6fcd7df4f7/Python/import.c
0.9.8: http://hg.python.org/cpython-fullhistory/file/17eff686be30/Python/import.c
builtin___import__(), importdl.c: http://hg.python.org/cpython-fullhistory/rev/d7e91437f0a2
PyImport_Import: http://hg.python.org/cpython-fullhistory/rev/292193170da1
highlights of “What’s New”: http://nedbatchelder.com/blog/201109/whats_in_which_python.html
code_swarm: http://vimeo.com/1093745

(ni)
introduced (1.3): http://hg.python.org/cpython-fullhistory/rev/ec0b42889243
deprecated (1.5): http://docs.python.org/release/1.5/lib/node40.html
still lives: http://docs.python.org/library/imputil.html#examples

(ihooks)
introduced (1.3): http://hg.python.org/cpython-fullhistory/rev/ec0b42889243
removed (3.0): http://docs.python.org/release/2.6.2/library/undoc.html#miscellaneous-useful-utilities
http://pydoc.org/2.4.1/ihooks.html

—–

The versions and dates are derived from a post on Guido’s “History of Python” blog. I’ve correlated the entries in section B.1 to versions by either explicit reference or by matching their commits to a version. Section B.2 also maps commits to versions. In both cases, I did my best to determine that mapping, but some may be off by a version.

The Extended Timeline

		Initial Checkin (1990)

		
		Checks sys.modules

		Loads modules from sys.path or current dir (if sys.path is empty)

		Supports IMPORT_NAME and IMPORT_FROM opcodes

		No support for .pyc files

		No support for packages

		No support for C extension modules?

		No ImportError

		Python 0.9.1 (Feb. 1991)

		
		builtin module support (C extention modules)

		Python 1.0 (1994)

		
		Support for extension modules

		Support for .pyc files

		Python 1.2 (1995)

		
		(Python/bltinmodule.c) __import__() builtin introduced

		(Python/import.c) dynamic module support factored out into importdl.c

		Python 1.3 (1995)

		
		“ni” module introduced

		Python 1.4 (1996)

		http://docs.python.org/release/1.4/ref/
*

		Python 1.5 (1998)

		
		Support for packages

		“site-packages” and “site-python” directories introduced

		“__all__” introduced

		“ni” module deprecated

		(Python/import.c) PyImport_Import() introduced

		Python 2.0 (2000)

		
		PEP 221 [https://www.python.org/dev/peps/pep-0221] – Import As

		Python 2.1 (2001)

		
		PEP 235 [https://www.python.org/dev/peps/pep-0235] – Import on Case-Insensitive Platforms

		Python 2.2 (2001)

		
		

		Python 2.3 (2003)

		
		PEP 273 [https://www.python.org/dev/peps/pep-0273] – Import Modules from Zip Archives

		PEP 302 [https://www.python.org/dev/peps/pep-0302] – New Import Hooks

		Python 2.4 (2004)

		
		PEP 328 [https://www.python.org/dev/peps/pep-0328] – Imports: Multi-Line and Absolute/Relative (multi-line portion)

		Python 2.5 (2006)

		
		PEP 328 [https://www.python.org/dev/peps/pep-0328] (relative imports portion)

		PEP 338 [https://www.python.org/dev/peps/pep-0338] – Executing modules as scripts

		Python 2.6/3.0 (2008)

		
		PEP 366 [https://www.python.org/dev/peps/pep-0366] – Main module explicit relative imports

		PEP 370 [https://www.python.org/dev/peps/pep-0370] – Per user site-packages directory

		Python 3.0 (2008)

		
		reload removed from builtins

		ihooks module removed from stdlib

		imputil module removed from stdlib

		Python 3.1 (2009)

		
		importlib module added

		Python 3.2 (2011)

		
		PEP 3147 [https://www.python.org/dev/peps/pep-3147] – PYC Repository Directories

		Python 3.3 (2012)

		
		see appendix D

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_software/interfaces/use_cases.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

Interface Use Cases

		API design

		documentation

		testing

		code generation

		validation

		adaptation

		static analysis

		run-time introspection

API design

In truth, API design is simply the process of defining interfaces.

documentation

On the one hand, interfaces defined by your source act as self-
documenting code, explicitly spelling out expectations syntactically.
With appropriate tools, documentation can be generated from that code.

On the other hand, good documentation describes all public interfaces
just as explicitly, though not programmatically. In fact, documentation
is likely to capture aspects of interfaces that may be impractical to
capture with syntax.

testing

With interfaces, the expectations defined therein map directly to test
cases. With sufficient syntactic support, explicit interfaces may be
turned into unit tests directly (even automatically).

With a test-driven development approach, the tests effectively define
the interfaces more explicitly than most syntactic solutions. Of
course, they’re not the best means of communicating an interface.

code generation

Write an interface and then use a tool to generate skeleton code for
implementations of the interface. This is definitely a feature of which
IDEs take advantage.

validation

With programmatic interfaces, making sure some code implements an
interface properly is straight-forward.

adaptation

Programmatic interfaces allow adaptation systems (a la PEP 246) to be
smarter when adapting objects.

static analysis

Interfaces defined in code allow for tools to provide programmatic
analysis. The more detailed the definitions, the better the analysis.
That’s the crux of static-typing and compile-time analysis/optimization.
The idea of “contracts” takes the detail level to a level of its own.

run-time introspection

Defined-by-code interfaces allow for run-time inspection of those
interfaces for dynamic behavior.

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/imports/_appendix.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

		orphan:		

Appendix: Import Syntax Under the Hood

Appendix: Import-related Files

		orphan:		

sys.path related

http://docs.python.org/library/sys.html#sys.path
http://docs.python.org/c-api/init.html#Py_GetPath
http://hg.python.org/cpython/file/default/Modules/getpath.c#l21

http://docs.python.org/dev/library/site.html

		calculate the 4 site-packages dirs

		add them to sys.path

		check for and execute .pth files in those site-packages dirs

		calculate user site-packages

site.getsitepackages()

Unix/Mac:

<sys.prefix>/lib/python#.#/site-packages
<sys.exec_prefix>/lib/python#.#/site-packages
<sys.prefix>/lib/site-python
<sys.exec_prefix>/lib/site-python

Windows:

<sys.prefix>/
<sys.exec_prefix>/
<sys.prefix>/lib/site-packages
<sys.exec_prefix>/lib/site-packages

site related

http://docs.python.org/dev/library/site.html

		module: site

		module: sitecustomize

		module: usercustomize

site.getusersitepackages()

Standard Library

Lib/importlib/*.py
Lib/pkgutil.py

Tests

Lib/Test/...

CPython

Python/import.c
Python/importdl.c
Python/importdl.h
Include/import.h
Python/sysmodule.c
Python/pythonrun.c

PyPy

Jython

IronPython

Appendix: An Extended Timeline of Importing in Python

		orphan:		

Some Context

(origins)
http://www.python.org/community/sigs/retired/import-sig/
http://www.python.org/dev/peps/pep-3121/#id11
(1.5) http://www.python.org/doc/essays/packages.html
#http://www.python.org/doc/essays/packages/
Modula-3 influence: http://python-history.blogspot.com/2009/02/adding-support-for-user-defined-classes.html
http://python-history.blogspot.com/2009/01/brief-timeline-of-python.html
http://python-history.blogspot.com/2009/03/dynamically-loaded-modules.html
http://docs.python.org/dev/whatsnew/index.html
http://python.org/download/releases/src/
http://hg.python.org/cpython-fullhistory/tags
http://hg.python.org/cpython-fullhistory/graph/3cd033e6b530?revcount=800
http://hg.python.org/cpython-fullhistory/log/62bdb1cbe0f5/Python/import.c?revcount=120
initial: http://hg.python.org/cpython-fullhistory/file/fc6fcd7df4f7/Python/import.c
0.9.8: http://hg.python.org/cpython-fullhistory/file/17eff686be30/Python/import.c
builtin___import__(), importdl.c: http://hg.python.org/cpython-fullhistory/rev/d7e91437f0a2
PyImport_Import: http://hg.python.org/cpython-fullhistory/rev/292193170da1
highlights of “What’s New”: http://nedbatchelder.com/blog/201109/whats_in_which_python.html
code_swarm: http://vimeo.com/1093745

(ni)
introduced (1.3): http://hg.python.org/cpython-fullhistory/rev/ec0b42889243
deprecated (1.5): http://docs.python.org/release/1.5/lib/node40.html
still lives: http://docs.python.org/library/imputil.html#examples

(ihooks)
introduced (1.3): http://hg.python.org/cpython-fullhistory/rev/ec0b42889243
removed (3.0): http://docs.python.org/release/2.6.2/library/undoc.html#miscellaneous-useful-utilities
http://pydoc.org/2.4.1/ihooks.html

—–

The versions and dates are derived from a post on Guido’s “History of Python” blog. I’ve correlated the entries in section B.1 to versions by either explicit reference or by matching their commits to a version. Section B.2 also maps commits to versions. In both cases, I did my best to determine that mapping, but some may be off by a version.

The Extended Timeline

		Initial Checkin (1990)

		
		Checks sys.modules

		Loads modules from sys.path or current dir (if sys.path is empty)

		Supports IMPORT_NAME and IMPORT_FROM opcodes

		No support for .pyc files

		No support for packages

		No support for C extension modules?

		No ImportError

		Python 0.9.1 (Feb. 1991)

		
		builtin module support (C extention modules)

		Python 1.0 (1994)

		
		Support for extension modules

		Support for .pyc files

		Python 1.2 (1995)

		
		(Python/bltinmodule.c) __import__() builtin introduced

		(Python/import.c) dynamic module support factored out into importdl.c

		Python 1.3 (1995)

		
		“ni” module introduced

		Python 1.4 (1996)

		http://docs.python.org/release/1.4/ref/
*

		Python 1.5 (1998)

		
		Support for packages

		“site-packages” and “site-python” directories introduced

		“__all__” introduced

		“ni” module deprecated

		(Python/import.c) PyImport_Import() introduced

		Python 2.0 (2000)

		
		PEP 221 [https://www.python.org/dev/peps/pep-0221] – Import As

		Python 2.1 (2001)

		
		PEP 235 [https://www.python.org/dev/peps/pep-0235] – Import on Case-Insensitive Platforms

		Python 2.2 (2001)

		
		

		Python 2.3 (2003)

		
		PEP 273 [https://www.python.org/dev/peps/pep-0273] – Import Modules from Zip Archives

		PEP 302 [https://www.python.org/dev/peps/pep-0302] – New Import Hooks

		Python 2.4 (2004)

		
		PEP 328 [https://www.python.org/dev/peps/pep-0328] – Imports: Multi-Line and Absolute/Relative (multi-line portion)

		Python 2.5 (2006)

		
		PEP 328 [https://www.python.org/dev/peps/pep-0328] (relative imports portion)

		PEP 338 [https://www.python.org/dev/peps/pep-0338] – Executing modules as scripts

		Python 2.6/3.0 (2008)

		
		PEP 366 [https://www.python.org/dev/peps/pep-0366] – Main module explicit relative imports

		PEP 370 [https://www.python.org/dev/peps/pep-0370] – Per user site-packages directory

		Python 3.0 (2008)

		
		reload removed from builtins

		ihooks module removed from stdlib

		imputil module removed from stdlib

		Python 3.1 (2009)

		
		importlib module added

		Python 3.2 (2011)

		
		PEP 3147 [https://www.python.org/dev/peps/pep-3147] – PYC Repository Directories

		Python 3.3 (2012)

		
		see appendix D

Appendix: A Timeline of Import-related Commits

		orphan:		

http://hg.python.org/cpython-fullhistory/log/62bdb1cbe0f5/Python/import.c?revcount=120

Python 0.9.0 (1991)

		

Python 0.9.1 (1991)

		

Python 0.9.2 (1991)

		

Python 0.9.4 (1991)

		

Python 0.9.5 (1992)

		

Python 0.9.6 (1992)

		

Python 0.9.7 (1992)

		

Python 0.9.8 (1993)

		

Python 0.9.9 (1993)

		

Python 1.0.0 (1994)

		

Python 1.0.2 (1994)

		

Python 1.0.3 (1994)

		

Python 1.0.4 (1994)

		

Python 1.1 (1994)

		

Python 1.1.1 (1994)

		

Python 1.2 (1995)

		

Python 1.3 (1995)

		

Python 1.4 (1996)

		

Python 1.5 (1998)

		

Python 1.5.1 (1998)

		

Python 1.5.2 (1999)

		

Python 1.6 (2000)

		

Python 2.0 (2000)

		

Python 2.1 (2001)

		

Python 2.2 (2001)

		

Python 2.3 (2003)

		

Python 2.4 (2004)

		

Python 2.5 (2006)

		

Python 2.6 (2008)

		

Python 3.0 (2008)

		

Python 2.7 (2010)

		

Python 3.1 (2010)

		

Python 3.2 (2011)

		

Python 3.3 (2012)

		

Appendix: Ongoing Core Efforts to Improve Importing

		orphan:		

PEPs

		PEP 369 [https://www.python.org/dev/peps/pep-0369] – Post import hooks

		PEP 382 [https://www.python.org/dev/peps/pep-0382] – Namespace Packages

		PEP 395 [https://www.python.org/dev/peps/pep-0395] – Module Aliasing

		PEP 402 [https://www.python.org/dev/peps/pep-0402] – Simplified Package Layout and Partitioning

		PEP ??? – import engine

Rejected PEPs:

		PEP 299 [https://www.python.org/dev/peps/pep-0299] – Special __main__() function in modules

		PEP 3122 [https://www.python.org/dev/peps/pep-3122] – Delineation of the main module

Projects

		importlib.__import__ as the default builtins.__import__

Currently in Python, “builtin___import__()” in Python/bltinmodule.c makes a call to PyImport_ImportModuleLevelObject. Brett Cannon is working on making importlib.__import__ the default import call[1].

		the __experimental__ module

http://mail.python.org/pipermail/python-ideas/2010-June/007357.html
http://mail.python.org/pipermail/python-ideas/2011-August/011278.html

like the __future__ module, but for less-stable APIs that are likely to go in
focus on stdlib (room for experimental syntax too?)
(higher exposure testing)

Appendix: Imports in Alternate Python Implementations

PyPy

http://readthedocs.org/search/project/?q=import&selected_facets=project%3Apypy
http://codespeak.net/pypy/dist/pypy/doc/clr-module.html
http://codespeak.net/pypy/dist/pypy/doc/coding-guide.html
https://bugs.pypy.org/issue367

Jython

http://www.google.com/search?sitesearch=www.jython.org&q=import&Search=Search

IronPython

http://ironpython.codeplex.com/wiki/search?tab=Home&SearchText=import

Appendix: Easter Eggs

The Python devs are a playful lot.

import this

http://www.wefearchange.org/2010/06/import-this-and-zen-of-python.html

import antigravity

http://xkcd.com/353/
http://python-history.blogspot.com/2010/06/import-antigravity.html

from __future__ import flufl

http://www.python.org/dev/peps/pep-0401/
http://sayspy.blogspot.com/2009/03/guido-has-retired-as-bdfl.html

from __future__ import braces

import __hello__

Appendix: Import Examples

		orphan:		

How It Works

		Example: Plain Syntax Handler

		Example: From Name Syntax Handler

		Example: From Star Syntax Handler

		Example: builtins.__import__

Uncategorized

		Example: Naively Track Imports

		Example: Import Tracking, Take 2

		Example: Statement Local Namespaces

		Example: Protecting a High-Latency Filesystem

		Example: Customizing Access to a Specific Module Path

		Example: PEPS 382 and 402 as Import Hooks

		Example: Import Engine as an Import Hook

		Example: lazy imports

		Example: “importing” straight from a file

Appendix: Imports in the Python Community

Appendix: Troubleshooting Imports

		orphan:		

Causes of ImportError

		turn into ImportError subclasses, __cause__

Other Exceptions During Import

		SyntaxError

		IOError?

Common Import-related Problems

circular imports

module behaves differently when run as script

		don’t run non-scripts as scripts; import in a test script

imports in scripts and at REPL behave differently than expected

		minimize the amount of code in scripts

		relative imports behave a little differently in scripts

reloading modules

no .pyc created

		.pyc for <name> is created only for “import <name>”

		caching was turned off

		file is actually in __pycache__ directory

		python run with -O flag (optimized) so .pyc files created

undesired import conflicts with files in CWD

By default the current working directory is first on sys.path. If this is causing trouble, you can move it to the back of the line:

try: sys.path.remove('')
except ValueError: pass
else: sys.path.append('')

Alternatively, you could remove it entirely (don’t append it back on).

stale code

http://bugs.python.org/issue8087

orphaned pyc file getting used

If a directory has a pyc file but no matching py file, the module will be loaded from the pyc file directly. Starting with PEP 3147 [https://www.python.org/dev/peps/pep-3147] (Python 3.2), orphaned pyc files in the __pycache__ directory are NOT loaded. The behavior use of pyc files otherwise stays the same. Either way, if you don’t want the module to be loaded from an orphaned pyc file, delete that file. Also see this tracker ticket <orphaned_pyc_files>.

alternate sys.modules ignored

Sometimes it can be helpful to replace sys.modules with a custom dictionary. However, in CPython, this does not affect the underlying dictionary that was originally bound to sys.modules. That is a separate part of the interpreter state. The behavior of the default _builtin___import__(), implemented in Python/import.c, actually uses this underlying dictionary through PyImport_GetModuleDict(), rather than explicitly pulling sys.modules. So your fancy-pantsy sys.modules is never used.

Luckily, importlib does explicitly use sys.modules, so if you switch over to that it should work just fine. This will be an even smaller issue once importlib’s __import__ because the default builtin.

(see http://bugs.python.org/issue12633).

import loads some other mysterious module

If you have a module file in your sys.path, and you try to import it, sometimes the import will succeed but the module will be the wrong one. This can be both mysterious and perplexing.

The first thing to do is to see if you have a package (directory with a __init__.py) by the same name in the same place as that module file. If so, Python will import from the package instead of the module. To verify this, import the module: “import <name>” and then check the module in sys.modules: “import sys; print(sys.modules[‘<name>’])”. You should see it pointing to the __init__.py of the package instead of the module file you were expecting.

Appendix: Import Tips and Tricks

		orphan:		

block imports on the current working directory

By default Python will look for a module in your current working directory before trying the stdlib. The explicit relative import syntax of 2.7 help with this, but only to an extent.

To completely keep Python from trying the CWD, simply run “sys.path.remove(‘’)” and optionally follow that with “sys.path.append(‘’)”.

So the question remains, when did the empty string get added to (the front of) sys.path, and why?

...

Appendix: Other Import-related Resources

Online References

		orphan:		

Dr. Brett Cannon gave a talk at PyCon 2010 <http://python.mirocommunity.org/video/1491> and PyCon 2008 (can’t find video).

importlib extensions: http://packages.python.org/importers/

flowchart: http://svn.python.org/view/sandbox/trunk/import_in_py/docs/

http://mail.python.org/mailman/listinfo/import-sig
http://docs.python.org/dev/reference/simple_stmts.html#the-import-statement
http://docs.python.org/dev/reference/simple_stmts.html#future-statements
http://docs.python.org/dev/reference/toplevel_components.html
http://docs.python.org/dev/reference/executionmodel.html#naming-and-binding
http://docs.python.org/dev/reference/datamodel.html#the-standard-type-hierarchy (modules)

http://docs.python.org/dev/tutorial/modules.html
http://docs.python.org/release/1.5.1p1/tut/modules.html
http://docs.python.org/release/1.4/tut/node41.html#SECTION00700000000000000000
http://docs.python.org/dev/library/modules.html
http://docs.python.org/dev/faq/programming.html#what-are-the-best-practices-for-using-import-in-a-module
http://docs.python.org/dev/faq/programming.html#how-can-i-have-modules-that-mutually-import-each-other
http://docs.python.org/dev/faq/programming.html#import-x-y-z-returns-module-x-how-do-i-get-z
http://docs.python.org/dev/faq/programming.html#when-i-edit-an-imported-module-and-reimport-it-the-changes-don-t-show-up-why-does-this-happen

http://docs.python.org/dev/library/py_compile.html
http://docs.python.org/dev/library/compileall.html

http://www.doughellmann.com/PyMOTW/sys/imports.html

http://lucumr.pocoo.org/2011/9/21/python-import-blackbox/

http://code.google.com/p/backport/
http://mirnazim.org/writings/python-ecosystem-introduction/
http://nedbatchelder.com/blog/201112/duplicitous_django_settings.html

http://lucumr.pocoo.org/2011/12/7/thoughts-on-python3/
http://pythonic.pocoo.org/2009/3/4/imports-in-functions-you-sure-about-that

Open bugs:
http://bugs.python.org/issue?%40search_text=import&ignore=file%3Acontent&title=&%40columns=title&id=&%40columns=id&stage=&creation=&%40columns=creation&%40sort=creation&creator=&activity=&%40columns=activity&actor=&nosy=&type=&components=&versions=&dependencies=&assignee=&keywords=&priority=&status=1&%40columns=status&%40group=status&resolution=&nosy_count=&message_count=&%40pagesize=50&%40startwith=0&%40queryname=&%40old-queryname=&%40action=search

Not closed:
http://bugs.python.org/issue?%40search_text=&ignore=file%3Acontent&title=&%40columns=title&id=&%40columns=id&stage=&creation=&%40columns=creation&%40sort=creation&creator=&activity=&%40columns=activity&actor=&nosy=&type=&components=&versions=&dependencies=&assignee=&keywords=&priority=&status=-1%2C1%2C3&%40columns=status&%40group=status&resolution=&nosy_count=&message_count=&%40pagesize=50&%40startwith=0&%40queryname=&%40old-queryname=&%40action=search

Closed:
http://bugs.python.org/issue?%40search_text=&ignore=file%3Acontent&title=&%40columns=title&id=&%40columns=id&stage=&creation=&%40columns=creation&%40sort=creation&creator=&activity=&%40columns=activity&actor=&nosy=&type=&components=&versions=&dependencies=&assignee=&keywords=&priority=&status=2&%40columns=status&%40group=status&resolution=&nosy_count=&message_count=&%40pagesize=50&%40startwith=0&%40queryname=&%40old-queryname=&%40action=search

<stack overflow>

http://stackoverflow.com/questions/279237/python-import-a-module-from-a-folder

<cookbook recipes>

<others>

https://github.com/zacharyvoase/metaspace

http://www.youtube.com/watch?v=DkW5CSZ_VII
http://aroberge.blogspot.com/2006/02/python-wish-new-meaning-for-import-as.html

Import Who’s Who

		orphan:		

People who have been involved with Python’s imports (incomplete):

“experts”: Brett Cannon, Nick Coghlan

Brett Cannon (importlib)
Just van Rossum (PEP 302 [https://www.python.org/dev/peps/pep-0302])
Paul Moore (PEP 302 [https://www.python.org/dev/peps/pep-0302])
Aahz (PEP 328 [https://www.python.org/dev/peps/pep-0328])
Martin v. Loewis (PEP 382 [https://www.python.org/dev/peps/pep-0382])
P.J. Eby (PEP 402 [https://www.python.org/dev/peps/pep-0402])
James C. Ahlstrom (PEP 273 [https://www.python.org/dev/peps/pep-0273])
Nick Coghlan (PEP 338 [https://www.python.org/dev/peps/pep-0338], PEP 366 [https://www.python.org/dev/peps/pep-0366], PEP 395 [https://www.python.org/dev/peps/pep-0395])
Christian Heimes (PEP 370 [https://www.python.org/dev/peps/pep-0370])
Thomas Wouters (PEP 221 [https://www.python.org/dev/peps/pep-0221])
Barry Warsaw (PEP 3147 [https://www.python.org/dev/peps/pep-3147])
Tim Peters (PEP 225 [https://www.python.org/dev/peps/pep-0225])
Guido van Rossum (pretty much everything else <wink>)

Glossary

		orphan:		

The terminology surrounding imports can get
confusing. This glossary should help.

		import hook

		...

		finder

		An object with a find() method that conforms to PEP 302 [https://www.python.org/dev/peps/pep-0302]. May also
refer to the class of such an object.

		loader

		An object with a load() method that conforms to PEP 302 [https://www.python.org/dev/peps/pep-0302]. May also
refer to the class of such an object.

		importer

		Mostly synonymous with path importer.

		path importer

		An object, class, or other code that may be plugged into the PEP 302 [https://www.python.org/dev/peps/pep-0302]
import machinery. Often this term refers specifically to those that
are used with sys.path_hooks.

		module

		The object generated at the highest level of the import process. In
the normal import statement, it is the object bound to the name.

		module name

		The value bound to the __name__ attribute of the corresponding
module object. This will be the full qualified name relative to the
sys.path value at import time.

		package

		A module corresponding to a directory. The module is populated with
the results of evaluating the __init__.py file in the directory.
Other .py files and directories in the directory may be imported as
submodules of the package.

		namespace package

		A package, possibly without its own module execution, into which
subpackages are aggregated according to a single namespace. The
“zope” package is a good example.

		package portion

		...

		Index

		Search Page

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_software/devops/index.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/imports/_community.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

		orphan:		

Community Uses of Import Hooks

http://www.google.com/codesearch#search/&q=sys.meta_path%20lang:%5Epython$%20case:yes&type=cs
http://www.google.com/codesearch#search/&q=sys.meta_path.append%20lang:%5Epython$%20case:yes&type=cs
http://www.google.com/codesearch#search/&q=sys.path_hooks%20lang:%5Epython$%20case:yes&type=cs
http://www.google.com/codesearch#search/&q=sys.path_hooks.append%20lang:%5Epython$%20case:yes&type=cs
http://www.google.com/codesearch#search/&q=sys.path_importer_cache%20lang:%5Epython$%20case:yes&type=cs

http://codespeak.net/pypy/dist/pypy/doc/clr-module.html
http://packages.python.org/fs/expose/importhook.html#module-fs.expose.importhook
http://selenic.com/hg/file/default/mercurial/demandimport.py
https://github.com/ipython/ipython/blob/master/IPython/lib/deepreload.py
http://code.google.com/p/backport/source/browse/backport.py#70

Community Import Solutions

		PyLT

		backport-importlib

		http://doc.pylib.org/en/latest/

		http://selenic.com/hg/file/default/mercurial/demandimport.py

		http://washort.twistedmatrix.com/search/label/exocet

		http://peak.telecommunity.com/DevCenter/Importing

		http://code.activestate.com/recipes/577958/

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_software/interfaces/approaches.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

Approaches to Interfaces

Class-based Approaches

For object-oriented languages, interfaces are meaningful in how they
describe object methods and attributes. The main ideas of interfaces
are often associated with a class-based approach.

http://en.wikipedia.org/wiki/Protocol_(object-oriented_programming)

http://en.wikipedia.org/wiki/Abstract_base_class

Classes

On their own, classes may be used to programmatically describe
interfaces.

Protocols

One informal class-based approach is to simply label a collection of
methods and attributes that have a common purpose. This is a protocol.
A protocol can be formalized or not. An informal protocol, essentially
documentation only, is particularly feasible in languages that allow
duck-typing.

Interfaces

A more specific use of the name “interfaces” is to describe a purely
abstract syntactic device that formally specifies a particular protocol.
When you talk about interfaces, this is likely what developers will
think of first.

Abstract Base Classes

Similar to a formal class interface, an abstract base class defines an
abstract interface. The difference is that it may also have some
would-be abstract portions actually implemented, allowing for those
parts to be mixed in through class inheritance. This implies a
mechanism for marking a method or attribute as purely abstract.

Adaptation

http://www.python.org/dev/peps/pep-0246/

http://pythonnotes.blogspot.com/2004/11/what-is-adaptation.html

Multiple Dispatch

http://en.wikipedia.org/wiki/Multiple_dispatch

Roles

http://en.wikipedia.org/wiki/Role_(computer_science)

http://en.wikipedia.org/wiki/Aspect-oriented_programming

Traits

http://en.wikipedia.org/wiki/Trait_(computer_programming)

http://scg.unibe.ch/research/traits/

http://pypi.python.org/pypi/strait/0.5.1

http://code.enthought.com/projects/traits/

Design by Contract

http://en.wikipedia.org/wiki/Design_by_contract

http://www.eiffel.com/developers/design_by_contract.html

Design by contract is the idea of formally defining constraints on the
state of execution for an application before and after a block of code
is run. One simple example is that of type declarations in many
languages for parameters and return values, respectively.

The Eiffel programming language coined (and trademarked) the term
“Design by Contract”, but the principles certainly predate it and apply
much more broadly. We’ll tend toward that broader sense here.

The contract is effectively the promise, for a given block of code, of
what that block expects and what a consumer of that block should expect.
If you take into consideration the issue of concurrency (where changes
during the block matter), here are the different aspects of this
concept:

		pre-conditions

		concurrent state

		post-conditions (including exceptions)

		side effects

		invariants

In a formal system, each aspect will be defined programmatically and
come with an explanation of what it means. Some programming languages
(like Eiffel) take a syntactically formal approach to these concepts.

Pre-conditions

A pre-condition defines a condition which a part of the execution state
must satisfy prior to the execution of the code block corresponding to
the pre-condition. In effect, it constrains the input for the code
block. For functions, this includes restrictions on parameter type and
value.

Concurrent State

A concurrent state defines a portion of the execution state that may be
externally changed during the block corresponding to the definition.
Like a pre-condition, it describes a de facto input to the code block.
However, in contrast, it doesn’t act as a constraint. Rather, it simply
identifies state that may possibly be changed by some internally or
externally concurrent code. The definition includes a description of
expectations of how the state might be changed, if possible.

While the relevant state may be a variable (value in memory), it can
also refer to a resource not explicitly described in the execution state
(e.g. a file). This implies that such resources must be somehow
encapsulated in the execution state.

Ultimately, concurrent state definitions describe specific external
dependencies of the corresponding code block. That’s useful to know
when building a larger system.

Post-conditions

A post-condition defines a condition which a part of the execution state
must satisfy at the completion of the code block. In the same way that
pre-conditions correspond to input, post-conditions correspond to
output. For functions, this includes restrictions on the return type
and value.

Since exceptions are a kind of return value, they are likewise described
by post-conditions. Since they are exceptional results, a description
of the triggering condition is especially meaningful.

The presence of exceptions here pronounces the idea that the
post-conditions of a code block may be conditional on the pre-conditions
of the block and on changes to the execution state during execution of
the block (see “Concurrency”).

Side Effects

A side effect defines a portion of the execution state involved in
post-conditions that is expected to have an impact on other concurrent
execution. This may include things like writing to a file or printing
to stdout.

In the same way that concurrent state definitions correspond to
pre-conditions, side effects correspond to post-conditions.

Invariants

An invariant defines a condition which is promised to always apply to a
portion of the execution state. This may be limited to a single code
block or to the entire application.

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/imports/_troubleshooting.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

		orphan:		

Causes of ImportError

		turn into ImportError subclasses, __cause__

Other Exceptions During Import

		SyntaxError

		IOError?

Common Import-related Problems

circular imports

module behaves differently when run as script

		don’t run non-scripts as scripts; import in a test script

imports in scripts and at REPL behave differently than expected

		minimize the amount of code in scripts

		relative imports behave a little differently in scripts

reloading modules

no .pyc created

		.pyc for <name> is created only for “import <name>”

		caching was turned off

		file is actually in __pycache__ directory

		python run with -O flag (optimized) so .pyc files created

undesired import conflicts with files in CWD

By default the current working directory is first on sys.path. If this is causing trouble, you can move it to the back of the line:

try: sys.path.remove('')
except ValueError: pass
else: sys.path.append('')

Alternatively, you could remove it entirely (don’t append it back on).

stale code

http://bugs.python.org/issue8087

orphaned pyc file getting used

If a directory has a pyc file but no matching py file, the module will be loaded from the pyc file directly. Starting with PEP 3147 [https://www.python.org/dev/peps/pep-3147] (Python 3.2), orphaned pyc files in the __pycache__ directory are NOT loaded. The behavior use of pyc files otherwise stays the same. Either way, if you don’t want the module to be loaded from an orphaned pyc file, delete that file. Also see this tracker ticket <orphaned_pyc_files>.

alternate sys.modules ignored

Sometimes it can be helpful to replace sys.modules with a custom dictionary. However, in CPython, this does not affect the underlying dictionary that was originally bound to sys.modules. That is a separate part of the interpreter state. The behavior of the default _builtin___import__(), implemented in Python/import.c, actually uses this underlying dictionary through PyImport_GetModuleDict(), rather than explicitly pulling sys.modules. So your fancy-pantsy sys.modules is never used.

Luckily, importlib does explicitly use sys.modules, so if you switch over to that it should work just fine. This will be an even smaller issue once importlib’s __import__ because the default builtin.

(see http://bugs.python.org/issue12633).

import loads some other mysterious module

If you have a module file in your sys.path, and you try to import it, sometimes the import will succeed but the module will be the wrong one. This can be both mysterious and perplexing.

The first thing to do is to see if you have a package (directory with a __init__.py) by the same name in the same place as that module file. If so, Python will import from the package instead of the module. To verify this, import the module: “import <name>” and then check the module in sys.modules: “import sys; print(sys.modules[‘<name>’])”. You should see it pointing to the __init__.py of the package instead of the module file you were expecting.

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/imports/examples/_index.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

How It Works

		Example: Plain Syntax Handler

		Example: From Name Syntax Handler

		Example: From Star Syntax Handler

		Example: builtins.__import__

Uncategorized

		Example: Naively Track Imports

		Example: Import Tracking, Take 2

		Example: Statement Local Namespaces

		Example: Protecting a High-Latency Filesystem

		Example: Customizing Access to a Specific Module Path

		Example: PEPS 382 and 402 as Import Hooks

		Example: Import Engine as an Import Hook

		Example: lazy imports

		Example: “importing” straight from a file

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/imports/_glossary.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 The terminology surrounding imports can get
confusing. This glossary should help.

		import hook

		...

		finder

		An object with a find() method that conforms to PEP 302 [https://www.python.org/dev/peps/pep-0302]. May also
refer to the class of such an object.

		loader

		An object with a load() method that conforms to PEP 302 [https://www.python.org/dev/peps/pep-0302]. May also
refer to the class of such an object.

		importer

		Mostly synonymous with path importer.

		path importer

		An object, class, or other code that may be plugged into the PEP 302 [https://www.python.org/dev/peps/pep-0302]
import machinery. Often this term refers specifically to those that
are used with sys.path_hooks.

		module

		The object generated at the highest level of the import process. In
the normal import statement, it is the object bound to the name.

		module name

		The value bound to the __name__ attribute of the corresponding
module object. This will be the full qualified name relative to the
sys.path value at import time.

		package

		A module corresponding to a directory. The module is populated with
the results of evaluating the __init__.py file in the directory.
Other .py files and directories in the directory may be imported as
submodules of the package.

		namespace package

		A package, possibly without its own module execution, into which
subpackages are aggregated according to a single namespace. The
“zope” package is a good example.

		package portion

		...

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_software/languages/modula3.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/imports/examples/index.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

Import Examples

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_software/objects/index.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/imports/pycon2012/_proposal.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

Summary

To really take advantage of Python you must understand how imports work
and how to use them effectively. In this talk we’ll discuss both of
these. After a short introduction to imports, we’ll dive right in and
show how you can put PEP 302 import hooks to work for you.

Abstract

Python’s import statement has been a powerful feature since the first release, and only gotten better with age. Understanding how imports work under the hood will let you take advantage of that power.

The key to customizing Python’s imports is the importers introduced by PEP 302. That’s a tool that you want in your belt!

Talk Outline

		Python’s imports (5 min)
- the evolution of the import machinery
- the gears in the machine
- motivation for PEP 302

		Finder Objects (5 min)
- what they’re for
- how to write one
- what to do with it

		Loader Objects (5 min)
- what they’re for
- how to write one
- what to do with it

		sys.meta_path vs. sys.path_hooks (5 min)
- when and how to use them
- example of putting it all together

		Real-life Examples of Import Hooks (7 min)
- Python/import.c
- importlib module
- PyPy
- PyFilesystem

		Other Import Customizations (3 min)
- builtins.__import__
- .pth files
- PEP 402
- import engine

Much more information on Python imports may be found at my
Python Imports [http://ericsnowcurrently.blogspot.com/p/python-imports.html] page.

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_software/language_features/index.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_software/concurrency/index.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

A Few Words on Concurrency

Any given executing code will always be operating within a system of
many concurrent, interacting units of execution. For example, an
application is going to be running in an OS-level process, using
resources (files, etc.) available to other processes. The process is
also interacting with facilities provided by the operating system for
interfacing with the physical world via devices like a keyboard,
printer, or monitor. Likewise for networking. As you can see this
model can be described at many levels.

The execution state for an application cannot encapsulate all state that
might affect execution. At a practical level, every programming
language will provide the means for interacting with the difference,
both for reading and changing it. This facilitates capabilities like
persistence and interaction with externally concurrent execution, like
another OS process or even a user.

In some models of internal concurrency provided by a programming
language, like threading, the execution of concurrent code blocks is
effectively non-deterministic, resulting in the execution state changing
during a code block but not because of the code block. A key to
managing the non-determinism is to minimize the block affected by it and
making that block execute atomically.

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/imports/examples/examples.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

Example: Naively Track Imports

Sometimes you may want to track what is getting imported when you make a call. Here’s how you can do it.

import_tracker.py:

import sys
class ImportTracker:
 def __init__(self):
 self.modules = []
 def find_module(name, path=None):
 self.modules.append(name)
 def enable(self):
 sys.meta_path.insert(0, self)
 def disable(self):
 sys.meta_path.remove(self)

some_module.py:

from import_tracker import ImportTracker
tracker = ImportTracker()
tracker.enable()
...
print(tracker.modules)

Example: Import Tracking, Take 2

Check out the code here [http://code.activestate.com/recipes/XXXXX/].

Interestingly, the behavior is different for this example if you use importlib’s __import__ vs. the default builtins.__import__. This is because of how sys.modules is treated differently between the two.

Example: Statement Local Namespaces

Go take a look here [http://code.activestate.com/recipes/XXXXX/].

Example: Protecting a High-Latency Filesystem

Sometimes you have in your sys.path a directory from a network drive (perhaps an NFS mount) or other IO-restricted device. In that case you may to limit how import looks for files to mitigate the number of stat calls. Here’s a simple example of how to do so:

... (placeholder)

? lots of stat calls during normal imports?

Example: Customizing Access to a Specific Module Path

		using sys.path_hooks (placeholder)

Example: PEPS 382 and 402 as Import Hooks

Both of these will work as import hooks

PEP 382 [https://www.python.org/dev/peps/pep-0382] (placeholder)

PEP 402 [https://www.python.org/dev/peps/pep-0402] (placeholder)

Example: Import Engine as an Import Hook

maybe... (placeholder)

Example: lazy imports

Example: “importing” straight from a file

http://code.activestate.com/recipes/577792/

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_software/algorithms/index.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/imports/pycon2012/proposal.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

Talk Proposal: Getting the Most Out of Python Imports

30 August 2011 (Revised to current form 16 October)

https://us.pycon.org/2012/proposal/17/

		status:		Accepted

		orphan:		

Summary

To really take advantage of Python you must understand how imports work
and how to use them effectively. In this talk we’ll discuss both of
these. After a short introduction to imports, we’ll dive right in and
show how you can put PEP 302 import hooks to work for you.

Abstract

Python’s import statement has been a powerful feature since the first release, and only gotten better with age. Understanding how imports work under the hood will let you take advantage of that power.

The key to customizing Python’s imports is the importers introduced by PEP 302. That’s a tool that you want in your belt!

Talk Outline

		Python’s imports (5 min)
- the evolution of the import machinery
- the gears in the machine
- motivation for PEP 302

		Finder Objects (5 min)
- what they’re for
- how to write one
- what to do with it

		Loader Objects (5 min)
- what they’re for
- how to write one
- what to do with it

		sys.meta_path vs. sys.path_hooks (5 min)
- when and how to use them
- example of putting it all together

		Real-life Examples of Import Hooks (7 min)
- Python/import.c
- importlib module
- PyPy
- PyFilesystem

		Other Import Customizations (3 min)
- builtins.__import__
- .pth files
- PEP 402
- import engine

Much more information on Python imports may be found at my
Python Imports [http://ericsnowcurrently.blogspot.com/p/python-imports.html] page.

The Original Proposals

PyCon 2012 Talk: Getting the Most Out of Python Imports

		high-level overview of imports/modules in Python

		history of imports in Python

		introduction to PEP 302 [https://www.python.org/dev/peps/pep-0302] import hooks

		import hook examples

		review of supplemental information

		questions

PyCon 2012 Talk: A History of the Python Import Statement

		high-level overview of imports/modules in Python

		brief history of Python

		influences on the initial import statement

		early additions

		the intervening years

		recent additions

		on-going efforts

		questions

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/imports/pycon2012/index.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/imports/pycon2012/annotated.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_software/projects/index.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/imports/pycon2012/history.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

Talk Proposal: The Future of Python’s Imports

30 August 2011 (Revised to current form 17 October)

https://us.pycon.org/2012/proposal/31/

		status:		Rejected

Summary

The history of Python’s import machinery is one of evolving power since
its humble beginnings in the original Python release. That trend is
continuing with efforts to make Python’s imports even more useful. Come
hear about the current and upcoming project, and learn why it matters to
you.

Abstract

Here’s an outline of the talk:

		Imports in Python (5 min)
- the evolution of the import machinery
- the gears in the machine

		importlib (7 min)
- its introduction in the stdlib
- as the default builtins.__import__
- status

		PEP 382/402 (5 min)
- why “namespace” packages matter
- how it would work
- status

		The Import Engine (5 min)
- consolidating the import state
- how it could help you
- status

		Other PEPs (3 min)
- PEP 369 – Post import hooks
- PEP 395 – Module Aliasing

		And Beyond... (5 min)
- Armin’s Rant
- exocet, mercurial, and PEAK

Much more information on Python imports may be found at my
Python Imports [http://ericsnowcurrently.blogspot.com/p/python-imports.html] page.

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/packaging/index.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/imports/pycon2012/description.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

Getting the Most Out of Python Imports

This is a talk that I am presenting at PyCon 2012 [https://us.pycon.org/2012/schedule/presentation/17/].

Summary

To really take advantage of Python you must understand how imports work
and how to use them effectively. In this talk we’ll discuss both of
these. After a short introduction to imports, we’ll dive right in and
look at how customizing import behavior can make all your wildest dreams
come true.

Abstract

Python’s import statement has been a powerful feature since the first
release, and only gotten better with age. Understanding how imports
work under the hood will let you take advantage of that power.

The key to customizing Python’s imports is the importers introduced by
PEP 302. That’s a tool that you want in your belt! We’ll be covering
those import hooks as well as a couple other customization methods.

Talk Outline

		introduction and overview (3 min)

		under the hood (7 min)
- import syntax
- builtins.__import__
- PEP 302

		3.Customizing Python (20 min)

		
		overview

		generated examples

		examples in the wild

Here’s a list of some of the examples we’ll be covering:

		the default import machinery

		NFS-friendly imports

		a PEP 402 implementation

		PyFilesystem

Supplemental Information

I have a lot more information at my Python Imports [http://reference-pages.rtfd.org/imports] reference page.

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_python/persistence/index.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_software/testing/index.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

understanding_software/patterns/index.html

 Navigation

 		
 index

 		Reference Pages 0.2 documentation »

 © Copyright 2012, Eric Snow.
 Created using Sphinx 1.3.5.

