

Documentation for redock

Welcome to the documentation for Redock 0.5.8. Redock is a human friendly
wrapper around Docker [http://www.docker.io/], the Linux container engine [http://en.wikipedia.org/wiki/LXC]. Docker implements a
lightweight form of virtualization [http://en.wikipedia.org/wiki/Virtualization] that makes it possible to start and stop
“virtual machines” in less than a second. Redock comes in two parts:

	The command line program redock whose main goal to to be simple to use.

	A Python API for more advanced use cases (for example the command line
program is built on top of the API).

The documentation below also consists of two parts: The readme with
installation and usage instructions and the API documentation.

Introduction & usage

The first part of the documentation is the readme which is targeted at users of
the redock command line program. Here are the topics discussed in the
readme:

	redock: A human friendly wrapper around Docker
	Status

	Usage

	Contact

	License

API documentation

The second part of the documentation is targeted at developers who wish to use
Redock in their own Python projects. Here are the contents of the API
documentation:

	Documentation for the Redock API
	Main Redock API

	Base image handling API

	Bootstrap configuration management system

	Miscellaneous utility functions

redock: A human friendly wrapper around Docker

Redock is a human friendly wrapper around Docker [http://www.docker.io/], the Linux container
engine [http://en.wikipedia.org/wiki/LXC]. Docker implements a lightweight form of virtualization [http://en.wikipedia.org/wiki/Virtualization] that makes it
possible to start and stop “virtual machines” in less than a second. Before
Docker the use of virtualization meant conventional virtual machines with all
of the associated bloat. Docker makes it ridiculously cheap and fast to
start/save/kill containers. This opens up exciting new possibilities for
DevOps:

	Complex build environments can be split up into isolated containers where
each container is concerned with the build requirements of a single project.
If a project’s build goes out of hand you just trash the container and go on
your merry way :-)

	The correctness of automated deployment systems (and distributed systems in
general) can be verified by using containers to host the configuration
management server and agents.

	To be honest, Docker is so fast that I could imagine myself building a test
suite of a complete cluster on top of it.

The last point is the reason why I started working on Redock. In my initial
experiments with Docker [http://www.docker.io/] I found a lot of sharp edges (both in the lack of
documentation and in the implementation of Docker [http://www.docker.io/] and its Python API) but at
the same time my fingers were itching to wrap Docker in an easy to use and
human friendly wrapper to try and unleash its potential.

What Redock gives you is Docker without all the hassle: When you create a
container, Redock will install, configure and start an SSH [http://en.wikipedia.org/wiki/Secure_Shell] server and open
an interactive SSH session to the container. What you do with the container
after that is up to you...

Status

Redock should be considered alpha quality software. So far it has been used by
a single person (me). Right now it’s intended for development work, not
production use. This might change over time, depending on my experiences with
Docker over the coming weeks / months (I’m specifically concerned with
stability and performance).

By the way the same can and should be said about Docker [http://www.docker.io/] (its site says as
much). During heavy testing of Redock I’ve experienced a number of unhandled
kernel mode NULL pointer dereferences that didn’t crash the host system but
certainly also didn’t inspire confidence ;-). It should be noted that these
issues didn’t occur during regular usage; only heavy testing involving the
creation and destruction of dozens of Docker containers would trigger the
issue.

There’s one thing I should probably mention here as a disclaimer: Redock
rewrites your SSH configuration (~/.ssh/config) using update-dotdee [https://pypi.python.org/pypi/update-dotdee]. I’ve
tested this a fair bit, but it’s always a good idea to keep backups (hint).

I’m currently using Redock on Ubuntu 12.04 with Docker 0.6.3 and a Linux 3.8.0
kernel (as suggested in Docker’s installation instructions [http://www.docker.io/gettingstarted/] for Ubuntu). I’ve
only just switched to these versions and it seems they may have solved the
stability issues I mentioned above (time will tell :-).

Usage

You will need to have Docker [http://www.docker.io/] installed before you can use Redock, please refer
to Docker’s installation instructions [http://www.docker.io/gettingstarted/]. You may also want to add your user
account to the docker group so you can connect to Docker without sudo
(this took me a while to realize when I switched to Docker 0.6 :-). After
you’ve installed Docker you can install Redock using the following command:

$ pip install redock

This downloads and installs Redock using pip [http://www.pip-installer.org/] (the Python package manager).
Redock is written in Python so you need to have Python installed. Redock pulls
in a bunch of dependencies [https://github.com/xolox/python-redock/blob/master/requirements.txt] so if you’re familiar with virtual environments [http://www.virtualenv.org/]
you might want to use one :-). Once you’ve installed Docker and Redock, here’s
how you create a container:

$ redock start test

If you run this command interactively and you start a single container, Redock
will start an interactive SSH [http://en.wikipedia.org/wiki/Secure_Shell] session that connects you to the container. In
any case you will now be able to connect to the container over SSH [http://en.wikipedia.org/wiki/Secure_Shell] using the
name you gave to the container suffixed with -container:

$ ssh test-container

This works because your ~/.ssh/config has been updated to include a host
definition for the container. This means you can connect using rsync [http://en.wikipedia.org/wiki/Rsync] or
anything else which works on top of SSH [http://en.wikipedia.org/wiki/Secure_Shell] (e.g. to bootstrap a configuration
management system). When you’re done playing around with the container you can
save your changes with the following command:

$ redock commit test

This command will persist the state of the container’s file system in a Docker
image. The next time you run Redock with the same name it will create a
container based on the existing disk image. To kill and delete a running
container you use the following command:

$ redock kill test

This will discard all changes made to the file system inside the container
since the last time that redock commit was used. The Docker image
associated with a container can be deleted like this:

$ redock delete test

Naming conventions

In the examples above the name test is used. This name is used by Redock to
identify the running container (created with redock start) and any
associated images (created with redock commit). By using multiple names you
can run multiple containers in parallel and you can suspend / resume “long
term” containers.

The names accepted by Redock are expected to be of the form repository:tag
(two words separated by a colon):

	The first part (repository in the example) is a top level name space for
Docker images. For example there is a repository called ubuntu that
contains the official base images. Similarly Redock uses the repository
redock for the base image it creates on the first run.

	The second part (tag in the example) is the name of a specific container
and/or image; I usually just sets it to the host name of the system that
will be running inside the container.

If the colon is missing the repository will be set to your username (based
on the environment variable $USER).

Contact

The latest version of Redock is available on PyPI [https://pypi.python.org/pypi/redock] and GitHub [https://github.com/xolox/python-redock]. The API
documentation is hosted on Read The Docs [https://redock.readthedocs.org/en/latest/]. For bug reports please create an
issue on GitHub [https://github.com/xolox/python-redock]. If you have questions, suggestions, etc. feel free to send me
an e-mail at peter@peterodding.com.

License

This software is licensed under the MIT license [http://en.wikipedia.org/wiki/MIT_License].

© 2013 Peter Odding.

Documentation for the Redock API

Contents

	Documentation for the Redock API
	Main Redock API

	Base image handling API

	Bootstrap configuration management system

	Miscellaneous utility functions

Main Redock API

The redock.api module defines two classes and two exception types:

	Container

	Image

	NoContainerRunning

	SecureShellTimeout

	
class redock.api.Container(image, hostname=None, timeout=10)

	Container is the main entry point to the Redock API. It aims to
provide a simple to use representation of Docker containers (and in
extension Docker images). You’ll probably never need most of the methods
defined in this class; if you’re getting started with Redock you should
focus on these methods:

	Container.start()

	Container.commit()

	Container.kill()

After you create and start a container with Redock you can do with the
container what you want by starting out with an SSH [http://en.wikipedia.org/wiki/Secure_Shell] connection. When
you’re done you either save your changes or discard them and kill the
container. That’s probably all you need from Redock :-)

	
__init__(image, hostname=None, timeout=10)

	Initialize a Container from the given arguments.

	Parameters:	
	image – The repository and tag of the container’s image (in the
format expected by Image.coerce()).

	hostname – The host name to use inside the container. If none is
given, the image’s tag is used.

	timeout – The timeout in seconds while waiting for a container to
become reachable over SSH [http://en.wikipedia.org/wiki/Secure_Shell] (a couple of seconds should
be plenty).

	
check_active()

	Check if the Container is associated with a running Docker
container. If no running Docker container is found,
NoContainerRunning is raised.

	
commit(message=None, author=None)

	Commit any changes to the running container to the associated image.
Corresponds to the docker commit command.

Raises NoContainerRunning if an associated Docker container
is not already running.

	Parameters:	
	message – A short message describing the commit (a string).

	author – The name of the author (a string).

	
delete()

	Delete the image associated with the container (if any). The data in
the image will be lost.

	
expand_id(short_id, candidate_ids)

	docker.Client.create_container() and
docker.Client.commit() report short ids (12 characters)
while docker.Client.containers() and
docker.Client.images() report long ids (65 characters). I’d
rather use the full ids where possible. This method translates short
ids into long ids at the expense of an additional API call (who
cares).

Raises exceptions.Exception if no long id corresponding to
the short id can be matched (this might well be a purely theoretical
problem, it certainly shouldn’t happen during regular use).

	Parameters:	
	short_id – A short id of 12 characters.

	candidate_ids – A list of available long ids.

	Returns:	The long id corresponding to the given short id.

	
find_container()

	Check to see if the current Container has an associated
Docker container that is currently running.

	Returns:	True when a running container exists, False
otherwise.

	
find_image(image_to_find)

	Find the most recent Docker image with the given repository and tag.

	Parameters:	image_to_find – The Image we’re looking for.

	Returns:	The most recent Image available, or None if
no images were matched.

	
get_ssh_client_command(ip_address=None, port_number=None)

	Generate an SSH [http://en.wikipedia.org/wiki/Secure_Shell] client command line that connects to the container
(assumed to be running).

	Parameters:	
	ip_address – This optional argument overrides the default IP
address (which is otherwise automatically
discovered).

	port_number – This optional argument overrides the default port
number (which is otherwise automatically
discovered).

	Returns:	The SSH client command line as a list of strings containing
the command and its arguments.

	
kill()

	Kill and remove the container. All changes since the last time that
Container.commit() was called will be lost.

	
revoke_ssh_access()

	Remove the container’s SSH [http://en.wikipedia.org/wiki/Secure_Shell] client configuration from
~/.ssh/config.

	
setup_ssh_access()

	Update ~/.ssh/config to make it easy to connect to the container
over SSH [http://en.wikipedia.org/wiki/Secure_Shell] from the host system. This generates a host definition to
include in the SSH client configuration file and uses update-dotdee [https://pypi.python.org/pypi/update-dotdee] to
merge the generated host definition with the user’s existing SSH client
configuration file.

	
ssh_alias

	Get the SSH [http://en.wikipedia.org/wiki/Secure_Shell] alias that should be used to connect to the container.

	
ssh_config_file

	Get the pathname of the SSH [http://en.wikipedia.org/wiki/Secure_Shell] client configuration for the container.

	
ssh_endpoint

	Wait for the container to become reachable over SSH [http://en.wikipedia.org/wiki/Secure_Shell] and get a tuple
with the IP address and port number that can be used to connect to the
container over SSH.

	
start()

	Create and start the Docker container. On the first run of Redock this
creates a base image using redock.base.create_base_image().

	
start_supervisor()

	Starts the container and runs Supervisor inside the container.

	
class redock.api.Image(repository, tag, id=None)

	Simple representation of Docker images.

	
__init__(repository, tag, id=None)

	Initialize an Image instance from the given arguments.

	Parameters:	
	repository – The name of the image’s repository.

	tag – The image’s tag (name).

	id – The unique hash of the image (optional).

	
static coerce(value)

	Coerce strings to Image objects.

Raises exceptions.ValueError when a string with an
incorrect format is given.

	Parameters:	value – The name of the image, expected to be a string of the
form repository:tag. If an Image object
is given it is returned unmodified.

	Returns:	An Image object.

	
key

	Get a tuple with the image’s repository and tag.

	
name

	Get the human readable name of an Image as a string of the
form repository:tag.

	
unique_name

	Get the machine readable unique name of an Image. If the
image has a unique hash that will be used, otherwise a string of the
form repository:tag is returned.

	
exception redock.api.NoContainerRunning

	Raised by Container.check_active() when a Container
doesn’t have an associated Docker container running.

	
exception redock.api.SecureShellTimeout

	Raised by Container.ssh_endpoint when Redock fails to connect to
the Docker container within a reasonable amount of time (10 seconds by
default).

	
class redock.api.Session

	Dumb object to hold session variables associated with a running Docker
container.

	
__init__()

	

	
reset()

	Reset all known session variables to None.

Base image handling API

The redock.base module implements the initialization of the base
image used by Redock. You’ll probably never need to use this module directly
because redock.api.Container.start() calls
find_base_image() and create_base_image() as needed.

	
redock.base.create_base_image(client)

	Create the base image that’s used by Redock to create new containers. This
base image differs from the ubuntu:precise [https://index.docker.io/_/ubuntu/] image (on which it is based) on
a couple of points:

	Automatic installation of recommended packages is disabled to conserve
disk space.

	The Ubuntu package mirror is set to a geographically close location to
speed up downloading of system packages (see
redock.utils.select_ubuntu_mirror()).

	The package list is updated to make sure apt-get [http://manpages.ubuntu.com/manpages/precise/man8/apt-get.8.html] installs the most up to
date packages.

	The following system packages are installed:

	language-pack-en-base [http://packages.ubuntu.com/precise/language-pack-en-base]

	In a base Docker Ubuntu 12.04 image lots of commands complain loudly
about the locale [http://en.wikipedia.org/wiki/Locale]. This silences the warnings by fixing the problem
(if you want to call it that).

	openssh-server [http://packages.ubuntu.com/precise/openssh-server]

	After creating a new container Redock will connect to it over SSH [http://en.wikipedia.org/wiki/Secure_Shell],
so having an SSH server installed is a good start :-)

	supervisor [http://packages.ubuntu.com/precise/supervisor]

	The base Docker Ubuntu 12.04 image has init [http://manpages.ubuntu.com/manpages/precise/man8/init.8.html] (upstart [http://packages.ubuntu.com/precise/upstart]) disabled.
Indeed we don’t need all of the bagage that comes with init but it is
nice to have a process runner for the SSH [http://en.wikipedia.org/wiki/Secure_Shell] server (and eventually maybe
more).

	The initscripts [http://packages.ubuntu.com/precise/initscripts] and upstart [http://packages.ubuntu.com/precise/upstart] system packages are marked ‘on hold’ so
that apt-get [http://manpages.ubuntu.com/manpages/precise/man8/apt-get.8.html] will not upgrade them. This makes it possible to run
apt-get dist-upgrade inside containers.

	An SSH [http://en.wikipedia.org/wiki/Secure_Shell] key pair is generated and the SSH public key is installed inside
the base image so that Redock can connect to the container over SSH (you
need ssh-keygen [http://manpages.ubuntu.com/manpages/precise/man1/ssh-keygen.1.html] installed).

	Supervisor [http://packages.ubuntu.com/precise/supervisor] is configured to automatically start the SSH [http://en.wikipedia.org/wiki/Secure_Shell] server.

	Parameters:	client – Connection to Docker (instance of docker.Client)

	Returns:	The unique id of the base image.

	
redock.base.download_image(client, repository, tag)

	Download the requested image. If the image is already available locally it
won’t be downloaded again.

	Parameters:	
	client – Connection to Docker (instance of docker.Client)

	repository – The name of the image’s repository.

	tag – The name of the image’s tag.

	
redock.base.find_base_image(client)

	Find the id of the base image that’s used by Redock to create new
containers. If the image doesn’t exist yet it will be created using
create_base_image().

	Parameters:	client – Connection to Docker (instance of docker.Client)

	Returns:	The unique id of the base image.

	
redock.base.find_named_image(client, repository, tag)

	Find the most recent Docker image with the given repository and tag.

	Parameters:	
	repository – The name of the image’s repository.

	tag – The name of the image’s tag.

	Returns:	The unique id of the most recent image available, or None if
no images were matched.

Bootstrap configuration management system

Bootstrap is a minimal configuration management [http://en.wikipedia.org/wiki/Configuration_management#Operating_System_configuration_management] system. Right now it’s just
a toy module that I may or may not use to extend Redock beyond the existing
redock start, redock commit and redock kill functionality and
commands. Here is the design rationale behind Bootstrap (in its current form):

	Specialized towards Debian

	Bootstrap is specialized towards Debian Linux (and its derivatives) because I
have several years of hands on experience with Debian and Ubuntu Linux and
because Docker currently gravitates to Ubuntu Linux (although this will
probably change over time).

	Based on SSH connections

	SSH [http://en.wikipedia.org/wiki/Secure_Shell] is used to connect to remote hosts because it’s the lowest common
denominator that works with Docker [http://www.docker.io/], VirtualBox [https://www.virtualbox.org/], XenServer [http://www.xenserver.org/] and physical
servers while being secure and easy to use.

	Remote code execution using Python

	The execnet [http://codespeak.net/execnet/] package is used to execute Python code on remote systems because
I prefer the structure of Python code over shell scripts (Python avoids
quoting hell [http://wiki.tcl.tk/1726]). When Bootstrap connects to a remote system it automatically
installs the system package python2.7 on the remote system because this
is required to run execnet [http://codespeak.net/execnet/] (on the other hand, execnet [http://codespeak.net/execnet/] itself does not have
to be installed on the remote system).

	
class redock.bootstrap.Bootstrap(ssh_alias)

	The Bootstrap configuration management system is implemented as the class
Bootstrap.

	
__init__(ssh_alias)

	Initialize the configuration management system by creating an execnet [http://codespeak.net/execnet/]
gateway over an SSH connection. First we make sure the python2.7
package is installed; without it execnet [http://codespeak.net/execnet/] won’t work.

	Parameters:	ssh_alias – Alias of remote host in SSH client configuration.

	
execute(*command, **kw)

	Execute a remote command over SSH so that the output of the remote
command (the standard output and standard error streams) is immediately
visible on the local terminal. If no standard input is given, this
allocates a pseudo-tty [http://en.wikipedia.org/wiki/Pseudo_terminal] (using ssh -t) which means the operator can
interact with the remote system should it prompt for input.

Raises ExternalCommandFailed if the remote command ends with a
nonzero exit code.

	Parameters:	
	command – A list with the remote command and its arguments.

	input – The standard input for the command (expected to be a
string). This is an optional keyword argument. If this
argument is given, no pseudo-tty [http://en.wikipedia.org/wiki/Pseudo_terminal] will be allocated.

	
install_packages(*packages)

	Install the given system packages on the remote system.

	Parameters:	packages – The names of one or more packages to install (strings).

	
rsync(local_directory, remote_directory, cvs_exclude=True, delete=True)

	Copy a directory on the host to the container using rsync over SSH.

Raises ExternalCommandFailed if the remote command ends with a
nonzero exit code.

	Parameters:	
	local_directory – The pathname of the source directory on the host.

	remote_directory – The pathname of the target directory in the container.

	cvs_exclude – Exclude version control files (enabled by default).

	delete – Delete remote files that don’t exist locally (enabled by default).

	
update_system_packages()

	Perform a full upgrade of all system packages on the remote system.

	
upload_file(pathname, contents)

	Create a file on the remote file system.

	Parameters:	
	pathname – The absolute pathname on the remote system.

	contents – The contents of the file (a string).

	
exception redock.bootstrap.ExternalCommandFailed

	Raised by Bootstrap.execute() and Bootstrap.rsync()
when an external command fails (ends with a nonzero exit status).

Miscellaneous utility functions

	
class redock.utils.Config

	Config encapsulates the bits of runtime configuration that
Redock needs to persist to disk (to share state in between runs of Redock).
UNIX file locking is used to guarantee that the datafile is not written to
simultaneously by multiple processes (that could corrupt the state).

To use this class to update the configuration, use it like a context
manager, like this:

>>> config = Config()
>>> with config as state:
... state['containers'].clear()

When used like this, state is a dictionary which is saved to disk when
the with block ends without raising an exception.

	
__init__()

	

	
load(exists=True)

	Load the runtime configuration from disk. If the file doesn’t exist yet
an empty configuration is returned. The configuration contains a
version number which enables graceful upgrades to the format.

	Returns:	A dictionary with runtime configuration data.

	
class redock.utils.RemoteTerminal(container_id)

	Attach to a running Docker container and show the output of the command(s)
inside the container on the host’s terminal. Can be used as a context
manager or by manually calling RemoteTerminal.attach() and
RemoteTerminal.detach().

	
__init__(container_id)

	Initialize the context manager for the docker attach process.

	Parameters:	container_id – The id of the container to attach to (a string).

	
attach()

	Start the docker attach subprocess.

	
detach()

	Kill the docker attach subprocess.

	
redock.utils.apt_get_install(*packages)

	Generate a command to install the given packages with apt-get.

	Parameters:	packages – The names of the package(s) to be installed.

	Returns:	The ap-get command line as a single string.

	
redock.utils.create_configuration_directory()

	Make sure Redock’s local configuration directory exists.

	
redock.utils.find_local_ip_addresses()

	To connect to a running Docker container over TCP we need to connect to a
specific port number on an IP address associated with a local network
interface on the host system (specifically not a loop back interface).

	Returns:	A set of IP addresses associated with local network
interfaces.

	
redock.utils.generate_ssh_key_pair()

	Generate an SSH key pair for communication between the host system and
containers created with Redock. Requires the ssh-keygen program.

	
redock.utils.get_ssh_public_key()

	Get the contents of the SSH public key generated by Redock for use inside
containers. If the SSH key pair hasn’t been generated yet, it will be
generated using generate_ssh_key_pair().

	Returns:	The contents of the id_rsa.pub file.

	
redock.utils.quote_command_line(command)

	Quote the tokens in a shell command line.

	Parameters:	command – A list with the command name and arguments.

	Returns:	The command line as a single string.

	
redock.utils.select_ubuntu_mirror(force=False)

	Find an Ubuntu mirror that is geographically close to the current
location for use inside Docker containers. We remember the choice in a
file on the host system so that we always configure the same mirror in
Docker containers (if you change the mirror, apt-get has to
download all package metadata again, wasting a lot of time).

	
redock.utils.slug(text)

	Convert text to a “slug”. Used by
redock.api.Container.ssh_alias.

	Parameters:	text – The original text, e.g. “Some Random Text!”.

	Returns:	The slug text, e.g. “some-random-text”.

	
redock.utils.summarize_id(id)

	Docker uses hexadecimal strings of 65 characters to uniquely identify
containers, images and other objects. Docker’s API almost always reports
full IDs of 65 characters, but the docker program abbreviates these IDs
to 12 characters in the user interface. We do the same because it makes the
output more user friendly.

	Parameters:	id – A hexadecimal ID of 65 characters.

	Returns:	A summarized ID of 12 characters.

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 redock	

 	
 	
 redock.api	

 	
 	
 redock.base	

 	
 	
 redock.bootstrap	

 	
 	
 redock.utils	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | N
 | Q
 | R
 | S
 | U

_

 	
 	__init__() (redock.api.Container method)

 	(redock.api.Image method)

 	(redock.api.Session method)

 	(redock.bootstrap.Bootstrap method)

 	(redock.utils.Config method)

 	(redock.utils.RemoteTerminal method)

A

 	
 	apt_get_install() (in module redock.utils)

 	
 	attach() (redock.utils.RemoteTerminal method)

B

 	
 	Bootstrap (class in redock.bootstrap)

C

 	
 	check_active() (redock.api.Container method)

 	coerce() (redock.api.Image static method)

 	commit() (redock.api.Container method)

 	
 	Config (class in redock.utils)

 	Container (class in redock.api)

 	create_base_image() (in module redock.base)

 	create_configuration_directory() (in module redock.utils)

D

 	
 	delete() (redock.api.Container method)

 	
 	detach() (redock.utils.RemoteTerminal method)

 	download_image() (in module redock.base)

E

 	
 	execute() (redock.bootstrap.Bootstrap method)

 	
 	expand_id() (redock.api.Container method)

 	ExternalCommandFailed

F

 	
 	find_base_image() (in module redock.base)

 	find_container() (redock.api.Container method)

 	
 	find_image() (redock.api.Container method)

 	find_local_ip_addresses() (in module redock.utils)

 	find_named_image() (in module redock.base)

G

 	
 	generate_ssh_key_pair() (in module redock.utils)

 	
 	get_ssh_client_command() (redock.api.Container method)

 	get_ssh_public_key() (in module redock.utils)

I

 	
 	Image (class in redock.api)

 	
 	install_packages() (redock.bootstrap.Bootstrap method)

K

 	
 	key (redock.api.Image attribute)

 	
 	kill() (redock.api.Container method)

L

 	
 	load() (redock.utils.Config method)

N

 	
 	name (redock.api.Image attribute)

 	
 	NoContainerRunning

Q

 	
 	quote_command_line() (in module redock.utils)

R

 	
 	redock.api (module)

 	redock.base (module)

 	redock.bootstrap (module)

 	redock.utils (module)

 	
 	RemoteTerminal (class in redock.utils)

 	reset() (redock.api.Session method)

 	revoke_ssh_access() (redock.api.Container method)

 	rsync() (redock.bootstrap.Bootstrap method)

S

 	
 	SecureShellTimeout

 	select_ubuntu_mirror() (in module redock.utils)

 	Session (class in redock.api)

 	setup_ssh_access() (redock.api.Container method)

 	slug() (in module redock.utils)

 	
 	ssh_alias (redock.api.Container attribute)

 	ssh_config_file (redock.api.Container attribute)

 	ssh_endpoint (redock.api.Container attribute)

 	start() (redock.api.Container method)

 	start_supervisor() (redock.api.Container method)

 	summarize_id() (in module redock.utils)

U

 	
 	unique_name (redock.api.Image attribute)

 	
 	update_system_packages() (redock.bootstrap.Bootstrap method)

 	upload_file() (redock.bootstrap.Bootstrap method)

 nav.xhtml

 Table of Contents

 		Documentation for redock

 		redock: A human friendly wrapper around Docker

 		Status

 		Usage

 		Naming conventions

 		Contact

 		License

 		Documentation for the Redock API

 		Main Redock API

 		Base image handling API

 		Bootstrap configuration management system

 		Miscellaneous utility functions

_static/file.png

_static/plus.png

_static/comment.png

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

