
HotQueue Documentation
Release 1.3.88

Richard Henry

December 04, 2015

Contents

1 Installation 3

2 Documentation 5
2.1 HotQueue Tutorial . 5
2.2 API Reference . 7
2.3 Contributing . 9
2.4 Changelog . 10

3 Requirements 13

i

ii

HotQueue Documentation, Release 1.3.88

HotQueue is a Python library that allows you to use Redis as a FIFO message queue within your Python programs.
Using HotQueue looks a little bit like this. . .

Establishing a queue:

>>> queue = HotQueue("myqueue")

Putting messages onto the queue:

>>> queue.put("my message")
>>> queue.put({'name': "Richard Henry", 'eyes': "blue"})

Getting messages off the queue:

>>> queue.get()
"my message"
>>> queue.get()
{'name': 'Richard Henry', 'eyes': 'blue'}

Iterating over a queue indefinitely, waiting if nothing is available:

>>> for item in queue.consume():
... print item

More advanced features that make it easy to work with queues are available. To go deeper, you should read the
HotQueue Tutorial.

The main advantage of the HotQueue model is that there is no queue server to run since the redislite module will
handle starting/stopping a redis server automatically as needed. Plus, Redis is really fast!

Contents 1

http://code.google.com/p/redis/

HotQueue Documentation, Release 1.3.88

2 Contents

CHAPTER 1

Installation

To install it, run:

pip install -U redislite-hotqueue

It also works with easy_install, if that’s your jam. You can download versioned packages directly from
PyPI.

The source code is available on GitHub and is a fork of the code available at‘GitHub
<http://github.com/richardhenry/hotqueue>‘_.

To get help with HotQueue, use the HotQueue Users mailing list.

3

http://pypi.python.org/pypi/hotqueue
http://pypi.python.org/pypi/hotqueue
http://github.com/dwighthubbard/hotqueue
http://github.com/richardhenry/hotqueue
http://groups.google.com/group/hotqueue-users

HotQueue Documentation, Release 1.3.88

4 Chapter 1. Installation

CHAPTER 2

Documentation

2.1 HotQueue Tutorial

A HotQueue is a simple FIFO queue that maps to a list key in Redis. The following is a brief introduction
explaining how you can use HotQueue in practice with a simple example.

2.1.1 Connecting to Redis

Creating a queue is as simple as creating a HotQueue instance:

>>> from hotqueue import HotQueue
>>> queue = HotQueue("myqueue", dbfilename="/tmp/redis.rdb")

In this example, the queue will be stored as a Redis list named hotqueue:myqueue, on the redislite server.
The dbfilename argument is optional; if none are given the redislite default setings will be used.

2.1.2 Putting Items Onto the Queue

Then you may have one (or many) Python programs pushing to the queue using
hotqueue.HotQueue.put():

>>> queue.put(4)
>>> queue.put(5)

You can push more than one item onto the queue at once:

>>> queue.put(6, "my message", 7)

You can safely push any Python object that can be pickled. Let’s use Python’s built-in Decimal as an example:

>>> from decimal import Decimal
>>> queue.put(Decimal('1.4'))

2.1.3 Getting Items Off the Queue

You can then pull items off the queue using hotqueue.HotQueue.get(). You would usually do this in
another Python program, but you can do it wherever you like.

>>> queue.get()
4
>>> queue.get()
5
>>> queue.get()
6

5

http://docs.python.org/library/pickle.html

HotQueue Documentation, Release 1.3.88

>>> queue.get()
'my message'
>>> queue.get()
7
>>> dec = queue.get()
>>> dec
Decimal('1.4')
>>> dec + Decimal('0.3')
Decimal('1.7')

2.1.4 Consuming the Queue

A better way to pull items off the queue is to use hotqueue.HotQueue.consume(), which returns a gener-
ator that yields whenever an item is on the queue and blocks otherwise. Here’s an example:

>>> for item in queue.consume():
... print item

If you push to the queue using hotqueue.HotQueue.put() in another Python program, you will see this
program print the message then wait indefinitely for another. Replace the print statement with something more
interesting, like saving a record to a database, and you’ve created an asynchronous task.

2.1.5 Writing a Queue Worker

An even better way to pull items off the queue is to use the hotqueue.HotQueue.worker() decorator.
Using this decorator is like wrapping the decorated function in a hotqueue.HotQueue.consume() loop.
Here’s an example:

from hotqueue import HotQueue

queue = HotQueue("myqueue", dbfilename="/tmp/redis.rdb")

@queue.worker
def square(num):

print num * num

Then run the function:

>>> square()

It will wait indefinitely and print the square of any integers it pulls off the queue. Try pushing some integers to the
queue in another Python program:

>>> queue.put(2, 3, 4)

To distribute the work, run a second instance of square(). You now have two queue workers. You can run as
many workers as you like, and no two workers will ever receive the same message.

To run and manage your worker processes, you could use something like Supervisord.

2.1.6 Custom Serialization (JSON, etc)

If you don’t want to use the pickle serializer, you can specify any other class or module that has the same API.

To serialize your data as JSON, you can use the json module. Here’s an example:

>>> import json
>>> from hotqueue import HotQueue
>>> queue = HotQueue("myqueue", serializer=json, dbfilename="/tmp/redis.rdb")
>>> queue.put({'name': "Richard Henry", 'eyes': "blue"})

6 Chapter 2. Documentation

http://supervisord.org/
http://docs.python.org/library/pickle.html
http://docs.python.org/library/json.html

HotQueue Documentation, Release 1.3.88

>>> queue.get()
{'name': 'Richard Henry', 'eyes': 'blue'}

JSON serialization is particularly useful if you will be accessing this Redis list from programming languages other
than Python, or want to ensure that your queue can be read between Python versions.

If you can, you should use simplejson instead of json. It’s updated more frequently, and can be significantly faster
than the module that ships with the standard library. You should take a look at jsonpickle if you want to serialize
more complex Python data structures to JSON.

Feel free to write your own serializer. Here’s a dummy class to give you an idea of the API required:

class DummySerializer(object):
"""Serialization class that doesn't do anything. Fill in the dumps and
loads methods with your own code.
"""
@staticmethod
def dumps(obj):

"""Serialize the given object."""
return obj

@staticmethod
def loads(data):

"""De-serialize the given data back to an object."""
return data

2.1.7 Disabling Serialization

If your messages can be converted to plain text without losing any information, then you can get some performance
gains by not doing any serialization at all. This is ideal if you’re queueing strings, CSV data, and so on.

To disable serialization, pass None to the serializer argument:

>>> queue = HotQueue("myqueue", serializer=None)
>>> queue.put("my,csv,data")
>>> queue.get()
"my,csv,data"

2.1.8 Monitoring

The following software is available for monitoring your HotQueue queue instances:

• HotWatch: Command line utility for monitoring the status of HotQueue queue instances.

2.2 API Reference

class hotqueue.HotQueue(name, serializer=pickle, **kwargs)
Simple FIFO message queue stored in a Redis list.

Parameters

• name (str) – name of the queue

• max_queue_length (int) – Maximum length the queue can grow to (default is None
allows the queue to grow without any limits.

• serializer (class, module, optional) – the class or module to serialize msgs with,
must have methods or functions named dumps and loads, pickle is the default, use
None to store messages in plain text (suitable for strings, integers, etc)

• redis (redis.Redis, redislite.Redis, optional) – redis connection object, defaults to re-
dislite.Redis with fallback to redis.Redis.

2.2. API Reference 7

http://pypi.python.org/pypi/simplejson/
http://docs.python.org/library/json.html
http://jsonpickle.github.com/
https://github.com/richardhenry/hotwatch
http://python.readthedocs.org/en/latest/library/stdtypes.html#str
http://python.readthedocs.org/en/latest/library/functions.html#int
http://docs.python.org/library/pickle.html

HotQueue Documentation, Release 1.3.88

• **kwargs – Additional kwargs to pass to redislite.Redis, most commonly
dbfilename.

Examples

>>> from hotqueue import HotQueue
>>> queue = HotQueue("myqueue", dbfilename="queue.rdb")

key
Key in Redis to store the queue

Returns The name of the key containing the queue in redis.

Return type str

clear()
Clear the queue of all messages, by deleting the Redis key.

consume(**kwargs)
A blocking generator that yields whenever a message is waiting in the queue.

Parameters **kwargs – any arguments that get() can accept (block will default to
True if not given)

Yields object – The deserialized object from the queue.

Examples

>>> queue = HotQueue("example")
>>> for msg in queue.consume(timeout=1):
... print(msg)
my message
another message

get(block=False, timeout=None)
Get a message from the queue.

Parameters

• block (bool) – whether or not to wait until a msg is available in the queue before
returning; False by default

• timeout (int) – When using block, if no msg is available for timeout in seconds,
give up and return

Returns The deserialized object from the queue.

Return type object

Examples

>>> queue.get()
'my message'
>>> queue.get()
'another message'

put(*msgs)
Put one or more messages onto the queue. Example:

>>> queue.put("my message")
>>> queue.put("another message")

8 Chapter 2. Documentation

http://redislite.readthedocs.org/en/latest/topic/redislite_module.html#redislite.Redis
http://python.readthedocs.org/en/latest/library/stdtypes.html#str
http://python.readthedocs.org/en/latest/library/functions.html#bool
http://python.readthedocs.org/en/latest/library/functions.html#int
http://python.readthedocs.org/en/latest/library/functions.html#object

HotQueue Documentation, Release 1.3.88

To put messages onto the queue in bulk, which can be significantly faster if you have a large number
of messages:

>>> queue.put("my message", "another message", "third message")

worker(*args, **kwargs)
Decorator for using a function as a queue worker. Example:

>>> @queue.worker(timeout=1)
... def printer(msg):
... print(msg)
>>> printer()
my message
another message

You can also use it without passing any keyword arguments:

>>> @queue.worker
... def printer(msg):
... print(msg)
>>> printer()
my message
another message

Parameters kwargs – any arguments that get() can accept (blockwill default to True
if not given)

2.3 Contributing

The source is available on GitHub. To contribute to the project, fork it on GitHub, run the tests, code analysis and
style checks using the instructions below. Then send a pull request, all contributions and suggestions are welcome.

This project is a fork of the source available on GitHub.

2.3.1 Testing

The python tox tool will run the tests in multiple python virtual environments using all supported python inter-
preters installed on the computer system running the tests. To install it, run:

pip install tox

The tests using the redis module require that a redis-server be running with the default configuration. If the redis-
server is not running the py27-redis and py34-redis test environments will fail. To run the tests in using all python
interpreters installed on the system using both the redis and redisliste modules run:

tox

2.3.2 Code Analysis/Linting

The tox tool also is configured with a test envioronment to run the pylint tool. To check the code for common
problems using pylint, run:

tox -e pylint

2.3.3 Style Check/PEP8

The code can be checked for compliance with the Python style guide using the pep8 tool. To do this, run:

2.3. Contributing 9

http://github.com/dwighthubbard/hotqueue
http://github.com/richardhenry/hotqueue

HotQueue Documentation, Release 1.3.88

tox -e pep8

2.3.4 Documentation

To build the package documentation using the tox tool, run:

tox -e build_docs

The resulting documentation will be in the build/sphinx/html directory.

2.4 Changelog

2.4.1 Changes in v1.3.0

• Add support for redislite to allow operation without installing a redis server.

• Implement CI/CD pipeline to automate the build and testing against multiple python versions.

2.4.2 Changes in v0.2.7

• serializer argument of HotQueue.put method now supports None for plain text serialization

• If multiple messages are passed to HotQueue.put they will be sent in the same command for a significant
performance benefit

2.4.3 Changes in v0.2.6

• Removed the HotQueue.__repr__ method as it is no longer supported

2.4.4 Changes in v0.2.5

• Fixed a bug in v0.2.4 that prevented install in some environments

2.4.5 Changes in v0.2.4

• HotQueue.worker decorator method can now be used to decorate a class method

2.4.6 Changes in v0.2.3

• Added support for custom serialization (JSON, etc)

2.4.7 Changes in v0.2.2

• Added key_for_name function

2.4.8 Changes in v0.2.1

• HotQueue.worker decorator method can now be used without any keyword arguments

10 Chapter 2. Documentation

HotQueue Documentation, Release 1.3.88

2.4.9 Changes in v0.2.0

• Renamed HotQueue.dequeue method to get

• Renamed HotQueue.enqueue method to put

• Added HotQueue.worker decorator method

• HotQueue.get method now supports block and timeout arguments

• Added test suite

2.4.10 Changes in v0.1.0

• Initial release

2.4. Changelog 11

HotQueue Documentation, Release 1.3.88

12 Chapter 2. Documentation

CHAPTER 3

Requirements

• Python 2.7+ (tested on versions 2.7.10, 3.4.3, and pyp 2.6.1)

• redislite 1.0.254+

13

http://github.com/yahoo/redislite/

HotQueue Documentation, Release 1.3.88

14 Chapter 3. Requirements

Index

C
clear() (hotqueue.HotQueue method), 8
consume() (hotqueue.HotQueue method), 8

G
get() (hotqueue.HotQueue method), 8

H
HotQueue (class in hotqueue), 7

K
key (hotqueue.HotQueue attribute), 8

P
put() (hotqueue.HotQueue method), 8

W
worker() (hotqueue.HotQueue method), 9

15

	Installation
	Documentation
	HotQueue Tutorial
	API Reference
	Contributing
	Changelog

	Requirements

