

 Navigation

 	
 index

 	
 next |

 	redislite-hotqueue latest documentation

HotQueue

HotQueue is a Python library that allows you to use Redis [http://code.google.com/p/redis/] as a FIFO message queue within your Python programs. Using HotQueue looks a little bit like this…

Establishing a queue:

>>> queue = HotQueue("myqueue")

Putting messages onto the queue:

>>> queue.put("my message")
>>> queue.put({'name': "Richard Henry", 'eyes': "blue"})

Getting messages off the queue:

>>> queue.get()
"my message"
>>> queue.get()
{'name': 'Richard Henry', 'eyes': 'blue'}

Iterating over a queue indefinitely, waiting if nothing is available:

>>> for item in queue.consume():
... print item

More advanced features that make it easy to work with queues are available. To go deeper, you should read the HotQueue Tutorial.

The main advantage of the HotQueue model is that there is no queue server to run since the redislite module will
handle starting/stopping a redis server automatically as needed. Plus, Redis is really fast!

Installation

To install it, run:

pip install -U redislite-hotqueue

It also works with easy_install, if that’s your jam. You can download versioned packages directly from PyPI [http://pypi.python.org/pypi/hotqueue].

The source code is available on GitHub [http://github.com/dwighthubbard/hotqueue] and is a fork of the
code available at`GitHub <http://github.com/richardhenry/hotqueue>`_.

To get help with HotQueue, use the HotQueue Users mailing list [http://groups.google.com/group/hotqueue-users].

Documentation

	HotQueue Tutorial
	Connecting to Redis

	Putting Items Onto the Queue

	Getting Items Off the Queue

	Consuming the Queue

	Writing a Queue Worker

	Custom Serialization (JSON, etc)

	Disabling Serialization

	Monitoring

	API Reference

	Contributing
	Testing

	Code Analysis/Linting

	Style Check/PEP8

	Documentation

	Changelog
	Changes in v1.3.0

	Changes in v0.2.7

	Changes in v0.2.6

	Changes in v0.2.5

	Changes in v0.2.4

	Changes in v0.2.3

	Changes in v0.2.2

	Changes in v0.2.1

	Changes in v0.2.0

	Changes in v0.1.0

Requirements

	Python 2.7+ (tested on versions 2.7.10, 3.4.3, and pyp 2.6.1)

	redislite [http://github.com/yahoo/redislite/] 1.0.254+

 Copyright 2012, Richard Henry.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	redislite-hotqueue latest documentation

HotQueue Tutorial

A HotQueue is a simple FIFO queue that maps to a list key in Redis. The following is a brief introduction explaining how you can use HotQueue in practice with a simple example.

Connecting to Redis

Creating a queue is as simple as creating a HotQueue instance:

>>> from hotqueue import HotQueue
>>> queue = HotQueue("myqueue", dbfilename="/tmp/redis.rdb")

In this example, the queue will be stored as a Redis list named hotqueue:myqueue, on the redislite server.
The dbfilename argument is optional; if none are given the redislite default setings will be used.

Putting Items Onto the Queue

Then you may have one (or many) Python programs pushing to the queue using hotqueue.HotQueue.put():

>>> queue.put(4)
>>> queue.put(5)

You can push more than one item onto the queue at once:

>>> queue.put(6, "my message", 7)

You can safely push any Python object that can be pickled [http://docs.python.org/library/pickle.html]. Let’s use Python’s built-in Decimal as an example:

>>> from decimal import Decimal
>>> queue.put(Decimal('1.4'))

Getting Items Off the Queue

You can then pull items off the queue using hotqueue.HotQueue.get(). You would usually do this in another Python program, but you can do it wherever you like.

>>> queue.get()
4
>>> queue.get()
5
>>> queue.get()
6
>>> queue.get()
'my message'
>>> queue.get()
7
>>> dec = queue.get()
>>> dec
Decimal('1.4')
>>> dec + Decimal('0.3')
Decimal('1.7')

Consuming the Queue

A better way to pull items off the queue is to use hotqueue.HotQueue.consume(), which returns a generator that yields whenever an item is on the queue and blocks otherwise. Here’s an example:

>>> for item in queue.consume():
... print item

If you push to the queue using hotqueue.HotQueue.put() in another Python program, you will see this program print the message then wait indefinitely for another. Replace the print statement with something more interesting, like saving a record to a database, and you’ve created an asynchronous task.

Writing a Queue Worker

An even better way to pull items off the queue is to use the hotqueue.HotQueue.worker() decorator. Using this decorator is like wrapping the decorated function in a hotqueue.HotQueue.consume() loop. Here’s an example:

from hotqueue import HotQueue

queue = HotQueue("myqueue", dbfilename="/tmp/redis.rdb")

@queue.worker
def square(num):
 print num * num

Then run the function:

>>> square()

It will wait indefinitely and print the square of any integers it pulls off the queue. Try pushing some integers to the queue in another Python program:

>>> queue.put(2, 3, 4)

To distribute the work, run a second instance of square(). You now have two queue workers. You can run as many workers as you like, and no two workers will ever receive the same message.

To run and manage your worker processes, you could use something like Supervisord [http://supervisord.org/].

Custom Serialization (JSON, etc)

If you don’t want to use the pickle [http://docs.python.org/library/pickle.html] serializer, you can specify any other class or module that has the same API.

To serialize your data as JSON, you can use the json [http://docs.python.org/library/json.html] module. Here’s an example:

>>> import json
>>> from hotqueue import HotQueue
>>> queue = HotQueue("myqueue", serializer=json, dbfilename="/tmp/redis.rdb")
>>> queue.put({'name': "Richard Henry", 'eyes': "blue"})
>>> queue.get()
{'name': 'Richard Henry', 'eyes': 'blue'}

JSON serialization is particularly useful if you will be accessing this Redis list from programming languages other than Python, or want to ensure that your queue can be read between Python versions.

If you can, you should use simplejson [http://pypi.python.org/pypi/simplejson/] instead of json [http://docs.python.org/library/json.html]. It’s updated more frequently, and can be significantly faster than the module that ships with the standard library. You should take a look at jsonpickle [http://jsonpickle.github.com/] if you want to serialize more complex Python data structures to JSON.

Feel free to write your own serializer. Here’s a dummy class to give you an idea of the API required:

class DummySerializer(object):
 """Serialization class that doesn't do anything. Fill in the dumps and
 loads methods with your own code.
 """
 @staticmethod
 def dumps(obj):
 """Serialize the given object."""
 return obj
 @staticmethod
 def loads(data):
 """De-serialize the given data back to an object."""
 return data

Disabling Serialization

If your messages can be converted to plain text without losing any information, then you can get some performance gains by not doing any serialization at all. This is ideal if you’re queueing strings, CSV data, and so on.

To disable serialization, pass None to the serializer argument:

>>> queue = HotQueue("myqueue", serializer=None)
>>> queue.put("my,csv,data")
>>> queue.get()
"my,csv,data"

Monitoring

The following software is available for monitoring your HotQueue queue instances:

	HotWatch [https://github.com/richardhenry/hotwatch]: Command line utility for monitoring the status of HotQueue queue instances.

 Copyright 2012, Richard Henry.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	redislite-hotqueue latest documentation

API Reference

	
class hotqueue.HotQueue(name, serializer=pickle, **kwargs)

	Simple FIFO message queue stored in a Redis list.

	Parameters:	
	name (str [http://python.readthedocs.org/en/latest/library/stdtypes.html#str]) – name of the queue

	max_queue_length (int [http://python.readthedocs.org/en/latest/library/functions.html#int]) – Maximum length the queue can grow to (default is None allows the queue
to grow without any limits.

	serializer (class, module, optional) – the class or module to serialize msgs with, must have
methods or functions named dumps and loads,
pickle [http://docs.python.org/library/pickle.html] is the default,
use None to store messages in plain text (suitable for strings,
integers, etc)

	redis (redis.Redis, redislite.Redis, optional) – redis connection object, defaults to redislite.Redis with fallback to
redis.Redis.

	**kwargs – Additional kwargs to pass to redislite.Redis [http://redislite.readthedocs.org/en/latest/topic/redislite_module.html#redislite.Redis], most commonly
dbfilename.

Examples

>>> from hotqueue import HotQueue
>>> queue = HotQueue("myqueue", dbfilename="queue.rdb")

	
key

	Key in Redis to store the queue

	Returns:	The name of the key containing the queue in redis.

	Return type:	str [http://python.readthedocs.org/en/latest/library/stdtypes.html#str]

	
clear()

	Clear the queue of all messages, by deleting the Redis key.

	
consume(**kwargs)

	A blocking generator that yields whenever a message is waiting in the
queue.

	Parameters:	**kwargs – any arguments that get() can
accept (block will default to True if not given)

	Yields:	object –
The deserialized object from the queue.

Examples

>>> queue = HotQueue("example")
>>> for msg in queue.consume(timeout=1):
... print(msg)
my message
another message

	
get(block=False, timeout=None)

	Get a message from the queue.

	Parameters:	
	block (bool [http://python.readthedocs.org/en/latest/library/functions.html#bool]) – whether or not to wait until a msg is available in
the queue before returning; False by default

	timeout (int [http://python.readthedocs.org/en/latest/library/functions.html#int]) – When using block, if no msg is available
for timeout in seconds, give up and return

	Returns:	The deserialized object from the queue.

	Return type:	object [http://python.readthedocs.org/en/latest/library/functions.html#object]

Examples

>>> queue.get()
'my message'
>>> queue.get()
'another message'

	
put(*msgs)

	Put one or more messages onto the queue. Example:

>>> queue.put("my message")
>>> queue.put("another message")

To put messages onto the queue in bulk, which can be significantly
faster if you have a large number of messages:

>>> queue.put("my message", "another message", "third message")

	
worker(*args, **kwargs)

	Decorator for using a function as a queue worker. Example:

>>> @queue.worker(timeout=1)
... def printer(msg):
... print(msg)
>>> printer()
my message
another message

You can also use it without passing any keyword arguments:

>>> @queue.worker
... def printer(msg):
... print(msg)
>>> printer()
my message
another message

	Parameters:	kwargs – any arguments that get() can
accept (block will default to True if not given)

 Copyright 2012, Richard Henry.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	redislite-hotqueue latest documentation

Contributing

The source is available on GitHub [http://github.com/dwighthubbard/hotqueue]. To contribute to the project, fork it
on GitHub, run the tests, code analysis and style checks using the instructions below. Then send a pull request, all
contributions and suggestions are welcome.

This project is a fork of the source available on GitHub [http://github.com/richardhenry/hotqueue].

Testing

The python tox tool will run the tests in multiple python virtual environments using all supported python interpreters
installed on the computer system running the tests. To install it, run:

pip install tox

The tests using the redis module require that a redis-server be running with the default configuration. If the
redis-server is not running the py27-redis and py34-redis test environments will fail. To run the
tests in using all python interpreters installed on the system using both the redis and redisliste modules run:

tox

Code Analysis/Linting

The tox tool also is configured with a test envioronment to run the pylint tool. To check the code for common
problems using pylint, run:

tox -e pylint

Style Check/PEP8

The code can be checked for compliance with the Python style guide using the pep8 tool. To do this, run:

tox -e pep8

Documentation

To build the package documentation using the tox tool, run:

tox -e build_docs

The resulting documentation will be in the build/sphinx/html directory.

 Copyright 2012, Richard Henry.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	redislite-hotqueue latest documentation

Changelog

Changes in v1.3.0

	Add support for redislite to allow operation without installing a redis server.

	Implement CI/CD pipeline to automate the build and testing against multiple python versions.

Changes in v0.2.7

	serializer argument of HotQueue.put method now supports None for plain text serialization

	If multiple messages are passed to HotQueue.put they will be sent in the same command for a significant performance benefit

Changes in v0.2.6

	Removed the HotQueue.__repr__ method as it is no longer supported

Changes in v0.2.5

	Fixed a bug in v0.2.4 that prevented install in some environments

Changes in v0.2.4

	HotQueue.worker decorator method can now be used to decorate a class method

Changes in v0.2.3

	Added support for custom serialization (JSON, etc)

Changes in v0.2.2

	Added key_for_name function

Changes in v0.2.1

	HotQueue.worker decorator method can now be used without any keyword arguments

Changes in v0.2.0

	Renamed HotQueue.dequeue method to get

	Renamed HotQueue.enqueue method to put

	Added HotQueue.worker decorator method

	HotQueue.get method now supports block and timeout arguments

	Added test suite

Changes in v0.1.0

	Initial release

 Copyright 2012, Richard Henry.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	redislite-hotqueue latest documentation

Index

 C
 | G
 | H
 | K
 | P
 | W

C

 	

 	clear() (hotqueue.HotQueue method)

 	

 	consume() (hotqueue.HotQueue method)

G

 	

 	get() (hotqueue.HotQueue method)

H

 	

 	HotQueue (class in hotqueue)

K

 	

 	key (hotqueue.HotQueue attribute)

P

 	

 	put() (hotqueue.HotQueue method)

W

 	

 	worker() (hotqueue.HotQueue method)

 Copyright 2012, Richard Henry.
 Created using Sphinx 1.3.1.

 _static/down-pressed.png

_static/comment-close.png

_static/minus.png

_static/down.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/file.png

_static/plus.png

_static/up-pressed.png

_static/comment.png

search.html

 Navigation

 		
 index

 		redislite-hotqueue latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Richard Henry.
 Created using Sphinx 1.3.1.

_static/up.png

