
redis-lua Documentation
Release 2.0.8

Julien Kauffmann

October 12, 2016

Contents

1 Quick start 3
1.1 Step-by-step analysis . 3

2 What’s the magic at play here ? 5

3 One step further 7

4 What happens when I make a mistake ? 9

5 What’s next ? 11

6 Table of contents 13
6.1 Basic usage . 13
6.2 Advanced usage . 14
6.3 API . 16

7 Indices and tables 19

i

ii

redis-lua Documentation, Release 2.0.8

redis-lua is a pure-Python library that eases usage of LUA scripts with Redis. It provides script loading and parsing
abilities as well as testing primitives.

Contents 1

redis-lua Documentation, Release 2.0.8

2 Contents

CHAPTER 1

Quick start

A code sample is worth a thousand words:

from redis_lua import load_script

Loads the 'create_foo.lua' in the 'lua' directory.
script = load_script(name='create_foo', path='lua/')

Run the script with the specified arguments.
foo = script.get_runner(client=redis_client)(

members={'john', 'susan', 'bob'},
size=5,

)

1.1 Step-by-step analysis

Let’s go through the code sample step by step.

First we have:

from redis_lua import load_script

We import the only function we need. Nothing too specific here.

The next lines are:

Loads the 'create_foo.lua' in the 'lua' directory.
script = load_script(name='create_foo', path='lua/')

These lines looks for a file named create_foo.lua in the lua directory, relative to the current working directory. This
example actually considers that using the current directory is correct. In a production code, you likely want to make
sure to use a more reliable or absolute path.

The load_script function takes the name of the script to load, without its .lua extension and a path to search
from. It supports sub-directories which means that specifying subdir/foo in the path lua/ will actually look for the file
lua/subdir/foo.lua. It returns a Script instance.

In production code, you will likely want to load several scripts at once. To this intent, you can either use
load_scripts which takes a list of names or load_all_scripts which loads all the scripts it can find in
a given directory. The former gives you better, explicit control over which files you load and the latter in nice in case
where you want to load every script.

Finally we have:

3

redis-lua Documentation, Release 2.0.8

Run the script with the specified arguments.
foo = script.get_runner(client=redis_client)(

members={'john', 'susan', 'bob'},
size=5,

)

This basically tells the specified Redis instance to execute the script with the specified parameters and to give us back
the result. Note how redis_lua translated all the arguments and the return value for you transparently. We will see in a
moment what it takes to reach that level of user-friendlyness.

The Script.get_runner method takes either a Redis connection or a pipeline and returns a callable. This callable
expects in turn the named arguments to call the script with and returns the script’s return value.

4 Chapter 1. Quick start

CHAPTER 2

What’s the magic at play here ?

You may wonder how it is possible for redis_lua to possibly know how to translate the members and size arguments to
something meaningful in LUA.

Let’s take a look at the create_foo.lua file:

%arg size integer
%arg members list
%return dict

local foo_id = redis.call('INCR', 'foo:last_id')
local foo_root_key = string.format('foo:%s', foo_id)
local foo_members_key = foo_root_key .. ':members'
local foo_size_key = foo_root_key .. ':size'

redis.call('SET', foo_size_key, size)
redis.call('SADD', foo_members_key, unpack(members))

return cjson.encode({
id=foo_id,
members=members,
size=size,

})

Notice the %arg and %return lines ? This is where the magic happens.

redis_lua extends the language of LUA scripts with new instructions to instrument your scripts. A %arg instruction
declares a named variable and its type so that it gets converted for you automatically when calling the script. A %return
statement declares the expected return type of the LUA script so that you don’t have to parse it yourself.

You will never have to write things like this anymore:

local size = tonumber(ARGV[1]) -- So size goes first. I'll have to remember
-- that when calling the script.

local members = cjson.decode(ARGV[2]) -- Don't forget to increment ARGV !

5

redis-lua Documentation, Release 2.0.8

6 Chapter 2. What’s the magic at play here ?

CHAPTER 3

One step further

Aren’t you tired of duplicating logic in your LUA scripts just because the require instruction isn’t available in Redis
LUA ?

Well, you won’t have to do that anymore: redis_lua not only supports named arguments but also recursive %include
directives ! Split your scripts in as many files as you want and simply assemble them using the appropriate %include
statements ! redis_lua will take care of concatening the different scripts for you automatically.

7

redis-lua Documentation, Release 2.0.8

8 Chapter 3. One step further

CHAPTER 4

What happens when I make a mistake ?

At this point, you might be afraid that extending the language with new instructions and include capabilities causes
you troubles when something wrong happens in your LUA script. Fear no longer: redis_lua not only extends the
langage but also improves the debugging and testing tools.

Let’s introduce a problem in our script and look at the resulting exception:

redis_lua.exceptions.ScriptError: Script attempted to access unexisting global variable 'foo_size_key'
LUA Traceback (most recent script last):

Script "<user-code>", line 8
local foo_size_key = foo_size_key .. ':size'

The LUA scripting error was detected as usual by redispy but redis_lua was able to enhance it with more contextual
information: the script in which the error occured, the line at which it occured and the offending code. Had the error
happened in a sub-script (via an %include directive), the traceback of the different scripts would have been shown as
well. Simple, reliable and efficient.

9

redis-lua Documentation, Release 2.0.8

10 Chapter 4. What happens when I make a mistake ?

CHAPTER 5

What’s next ?

Check out the API for more details about the available functions.

11

redis-lua Documentation, Release 2.0.8

12 Chapter 5. What’s next ?

CHAPTER 6

Table of contents

6.1 Basic usage

6.1.1 Files layout

It is recommended to create dedicated folder in your project for your LUA scripts.

A good convention is to name it lua as it is both obvious and short to type.

You can then organize your scripts in whichever structure you want: with or without subfolders, one for each function
or several functions per file. It’s really up to you. Just make sure you stay consistent.

A common pattern to get a variable that points to that root folder for scripts is to write:

LUA_SCRIPTS_PATH = os.path.join(
os.path.dirname(os.path.abspath(__file__)),
'lua',

)

6.1.2 Initialization

In a typical case, you want to load all your scripts in the initialization of your executable or service. The easiest way
to achieve that is to simply call:

from redis_lua import load_all_scripts

scripts = load_all_scripts(path=LUA_SEARCH_PATH)

6.1.3 Calling scripts

Calling a script is easy:

result = scripts['foo'].get_runner(client=client)(
my_key='my_key',
my_arg='my_arg',

)

result will contain the result as given by the LUA script.

13

redis-lua Documentation, Release 2.0.8

6.2 Advanced usage

redis_lua does not only provide helpers to deal with LUA scripts but also extends the LUA syntax to add new features.

6.2.1 Keys, arguments and return values

redis_lua helps you calling LUA scripts by allowing you to name your keys and arguments.

To do that, you can use the %key and %arg instructions. Both are pretty similar but don’t have the exact same syntax.

Keys

The %key instruction takes one mandatory parameter that is the name of the key. Keys and arguments share the same
namespace which means you can only have one key or argument with a given name. To avoid ambiguity on the Python
side, it is recommended that you suffix your keys with _key as to make it obvious you are dealing with a Redis key.

Here is an example of usage of the %key instruction:

%key player_key

This exposes a player_key function argument on the Python side which expects to be set with a Redis key (a string).

Arguments

The %arg instructions takes one mandatory parameter which is the name of the argument, like %key, and one optional
parameter, which is the type of the argument.

Here is an example of usage of the %arg instruction:

%arg count int

This exposes a count function argument on the Python side which expects to be set with a Python integer value.

Here is a list of the supported types:

Aliases Python type LUA type
int int number
integer int number
string str string
str str string
bool bool number
boolean bool number
dict dict array (dict)
dictionary dict array (dict)
list list array
array list array

If no type is specified, the argument is transfered as-is to the script using the default argument conversion of pyredis.
It is unspecified what this conversion does exactly.

Return values

The %return statement indicates the expected return type of the script when converting the value for return on the
Python side. The user is responsible for providing a value that can correctly be cast to the registered return type.

14 Chapter 6. Table of contents

redis-lua Documentation, Release 2.0.8

Here is an example of usage of the %return instruction:

%return dict

This cause the value returned by the script to be interpreted as a JSON-encoded dictionary and converted implicitely
into a Python dict.

Here is a list of the expected LUA types for each type:

Aliases Python type LUA type
int int number
integer int number
string str string
str str string
bool bool number
boolean bool number
dict dict JSON-encoded array (dict)
dictionary dict JSON-encoded array (dict)
list list JSON-encoded array
array list JSON-encoded array

On the LUA side, you may want to use the following pattern for the list and dict return types:

return cjson.encode({
a=1,
b="2",
c={

d=42,
},

})

Warning: There can be at most one %return statement in a given script.

6.2.2 Script inclusion

One of the main problems of Redis LUA scripts is that it doesn’t support the LUA require keyword. To circumvent
that limitation, the LUA script parsing logic in redis_lua handles %include statements, like so:

-- The "foo.lua" script in the same folder defines the "create_foo()"
-- function.

%include "foo"

local t = create_foo(1, "a");

%include takes a single argument, which is the complete name (with any relative path component) of the LUA script
to include, without its .lua extension.

So if you have two scripts foo/a.lua and bar/b.lua each in a different subfolder of the lua directory, you can
include bar/b.lua in foo/a.lua by simply adding the following %include statement:

%include '../bar/b'

Warning: For the inclusion system to work properly, all scripts must either been have loaded by the same call, or
by different calls but using the same script cache.

6.2. Advanced usage 15

redis-lua Documentation, Release 2.0.8

Multiple inclusion

By default, redis-lua allows multiple inclusions of the same file several times. This can cause issues when including
different scripts that include the same subscripts which conflict with each other.

To prevent side-effects caused by multiple inclusion of the same scripts, you can use the following statement, anywhere
in the script:

%pragma once

Note: This behavior is new since version 2.0.0.

In previous versions, the default behavior was as-if %pragma once was defined implicitely in each script.

6.3 API

6.3.1 Script loading functions

These functions are the most common entry points for loading LUA scripts on disk.

redis_lua.load_all_scripts(path, cache=None)
Load all the LUA scripts found at the specified location.

Parameters

• path – A path to search into for LUA scripts.

• cache – A cache of scripts to use to fasten loading. If some names are in the cache, then
they are taken from it.

Returns A list of scripts that were found, in arbitrary order.

redis_lua.load_scripts(names, path, cache=None)
Load several LUA scripts.

Parameters

• names – An iterable of LUA scripts names to load. If some names contain backslashes,
those will be replaced with forward slashes silently.

• path – A path to search into for LUA scripts.

• cache – A cache of scripts to use to fasten loading. If some names are in the cache, then
they are taken from it.

Returns A dict of scripts that were found.

Warning All scripts whose load succeeds are added in the cache immediately. This means that if
some script fails to load and the function call throws, the cache will still have been updated.

redis_lua.load_script(name, path, cache=None, ancestors=None)
Load a LUA script.

Parameters

• name – The name of the LUA script to load, relative to the search path, without the ‘.lua’
extension. If the name contains backslashes, those will be replaced with forward slashes
silently.

• path – A path to search into for LUA scripts.

16 Chapter 6. Table of contents

redis-lua Documentation, Release 2.0.8

• cache – A cache of scripts to use to fasten loading. If name is in the cache, then the result
is the same as calling cache[name].

• ancestors – A list of names to consider as ancestors scripts.

Returns A Script instance.

6.3.2 Script running functions

These functions are using to execute LUA code on Redis servers.

redis_lua.run_code(client, content, path=None, kwargs=None, cache=None)
Run a LUA script on the specified redis instance.

Parameters

• client – The Redis or pipeline instance to execute the script on.

• content – The LUA code to execute.

• path – The path to search for for scripts inclusion. Can be None, in which case, any
included script must exist in the cache.

• kwargs – A dict of arguments to call the script with.

• cache – The script cache to use to fasten script inclusion.

Returns The return value, as given by the script.

6.3.3 Script instances

All loaded scripts are wrapped into a redis_lua.script.Script instance.

class redis_lua.script.Script(name, regions)

get_line_info(line)
Get the line information for the specified line.

Parameters line – The line.

Returns The (real_line, real_line_count, line, line_count, region) tuple or ValueError if no such
line exists.

classmethod get_line_info_for_regions(regions, included_scripts)
Get a list of tuples (first_real_line, real_line, real_line_count, first_line, line, line_count, region) for the
specified list of regions.

Params regions A list of regions to get the line information from.

Params included_scripts A set of scripts that were visited already.

Returns A list of tuples.

get_real_line_content(line)
Get the real line content for the script at the specified line.

Parameters line – The line.

Returns A line content.

get_runner(client)
Get a runner for the script on the specified client.

6.3. API 17

redis-lua Documentation, Release 2.0.8

Parameters client – The Redis instance to call the script on.

Returns The runner, a callable that takes the script named arguments and returns its result. If
client is a pipeline, then the runner returns another callable, through which the resulting value
must be passed to be parsed.

get_scripts_for_line(line)
Get the list of (script, line) by order of traversal for a given line.

Parameters line – The line.

Returns A list of (script, line) that got traversed by that line.

runner(client, **kwargs)
Call the script with its named arguments.

Returns The script result.

6.3.4 Low-level script functions

These functions are useful for people that want to perform more advanced operations, such as parsing a Script file
manually from another source than a file.

redis_lua.read_script(name, path, encoding=None)
Read a LUA script.

Parameters

• name – The name of the LUA script to load, relative to the search paths, without the ‘.lua’
extension. name may contain forward slash path separators to indicate that the script is to
be found in a sub-directory.

• path – A path to search into for LUA scripts.

• encoding – The encoding to use to read the file. If none is specified, UTF-8 is assumed.

Returns The content of the script.

Raises If no such script is found, a ScriptNotFoundError is thrown.

redis_lua.parse_script(name, content, path=None, cache=None, ancestors=None)
Parse a LUA script.

Parameters

• name – The name of the LUA script to parse.

• content – The content of the script.

• path – The path of the script. Can be None if the script was loaded from memory. In this
case, any included script must exist in the cache.

• cache – A dict of scripts that were already parsed. The resulting script is added to the
cache. If the currently parsed script exists in the cache, it will be overriden.

• ancestors – A list of scripts that were called before this one. Used to detect infinite
recursion.

Returns A Script instance.

18 Chapter 6. Table of contents

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

19

redis-lua Documentation, Release 2.0.8

20 Chapter 7. Indices and tables

Index

G
get_line_info() (redis_lua.script.Script method), 17
get_line_info_for_regions() (redis_lua.script.Script class

method), 17
get_real_line_content() (redis_lua.script.Script method),

17
get_runner() (redis_lua.script.Script method), 17
get_scripts_for_line() (redis_lua.script.Script method), 18

L
load_all_scripts() (in module redis_lua), 16
load_script() (in module redis_lua), 16
load_scripts() (in module redis_lua), 16

P
parse_script() (in module redis_lua), 18

R
read_script() (in module redis_lua), 18
run_code() (in module redis_lua), 17
runner() (redis_lua.script.Script method), 18

S
Script (class in redis_lua.script), 17

21

	Quick start
	Step-by-step analysis

	What's the magic at play here ?
	One step further
	What happens when I make a mistake ?
	What's next ?
	Table of contents
	Basic usage
	Advanced usage
	API

	Indices and tables

