

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/redis-doc/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/redis-doc/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Redis documentation

Clients

All clients are listed in the clients.json file.
Each key in the JSON object represents a single client library.
For example:

"Rediska": {

 # A programming language should be specified.
 "language": "PHP",

 # If the project has a website of its own, put it here.
 # Otherwise, lose the "url" key.
 "url": "http://rediska.geometria-lab.net",

 # A URL pointing to the repository where users can
 # find the code.
 "repository": "http://github.com/Shumkov/Rediska",

 # A short, free-text description of the client.
 # Should be objective. The goal is to help users
 # choose the correct client they need.
 "description": "A PHP client",

 # An array of Twitter usernames for the authors
 # and maintainers of the library.
 "authors": ["shumkov"]

}

Commands

Redis commands are described in the commands.json file.

For each command there’s a Markdown file with a complete, human-readable
description.
We process this Markdown to provide a better experience, so some things to take
into account:

	Inside text, all commands should be written in all caps, in between
backticks.
For example: INCR.

	You can use some magic keywords to name common elements in Redis.
For example: @multi-bulk-reply.
These keywords will get expanded and auto-linked to relevant parts of the
documentation.

There should be at least two predefined sections: description and return value.
The return value section is marked using the @return keyword:

Returns all keys matching the given pattern.

@return

@multi-bulk-reply: all the keys that matched the pattern.

Styling guidelines

Please use the following formatting rules:

	Wrap lines to 80 characters.

	Start every sentence on a new line.

Luckily, this repository comes with an automated Markdown formatter.
To only reformat the files you have modified, first stage them using git add
(this makes sure that your changes won’t be lost in case of an error), then run
the formatter:

$ rake format:cached

The formatter has the following dependencies:

	Redcarpet

	Nokogiri

	The par tool

Installation of the Ruby gems:

gem install redcarpet nokogiri

Installation of par (OSX):

brew install par

Installation of par (Ubuntu):

sudo apt-get install par

Checking your work

You should check your changes using Make:

$ make

This will make sure that JSON and Markdown files compile and that all
text files have no typos.

You need to install a few Ruby gems and Aspell [http://aspell.net/] to run these checks.
The gems are listed in the .gems file. Install them with the
following command:

$ gem install $(sed -e 's/ -v /:/' .gems)

The spell checking exceptions should be added to ./wordlist.

 UPDATE: Virtual Memory is deprecated since Redis 2.6, so this documentation
is here only for historical reasons.

Virtual Memory technical specification

This document details the internals of the Redis Virtual Memory subsystem. The intended audience is not the final user but programmers willing to understand or modify the Virtual Memory implementation.

Keys vs Values: what is swapped out?

The goal of the VM subsystem is to free memory transferring Redis Objects from memory to disk. This is a very generic command, but specifically, Redis transfers only objects associated with values. In order to understand better this concept we’ll show, using the DEBUG command, how a key holding a value looks from the point of view of the Redis internals:

redis> set foo bar
OK
redis> debug object foo
Key at:0x100101d00 refcount:1, value at:0x100101ce0 refcount:1 encoding:raw serializedlength:4

As you can see from the above output, the Redis top level hash table maps Redis Objects (keys) to other Redis Objects (values). The Virtual Memory is only able to swap values on disk, the objects associated to keys are always taken in memory: this trade off guarantees very good lookup performances, as one of the main design goals of the Redis VM is to have performances similar to Redis with VM disabled when the part of the dataset frequently used fits in RAM.

How does a swapped value looks like internally

When an object is swapped out, this is what happens in the hash table entry:

	The key continues to hold a Redis Object representing the key.

	The value is set to NULL

So you may wonder where we store the information that a given value (associated to a given key) was swapped out. Just in the key object!

This is how the Redis Object structure robj looks like:

/* The actual Redis Object */
typedef struct redisObject {
 void *ptr;
 unsigned char type;
 unsigned char encoding;
 unsigned char storage; /* If this object is a key, where is the value?
 * REDIS_VM_MEMORY, REDIS_VM_SWAPPED, ... */
 unsigned char vtype; /* If this object is a key, and value is swapped out,
 * this is the type of the swapped out object. */
 int refcount;
 /* VM fields, this are only allocated if VM is active, otherwise the
 * object allocation function will just allocate
 * sizeof(redisObject) minus sizeof(redisObjectVM), so using
 * Redis without VM active will not have any overhead. */
 struct redisObjectVM vm;
} robj;

As you can see there are a few fields about VM. The most important one is storage, that can be one of this values:

	REDIS_VM_MEMORY: the associated value is in memory.

	REDIS_VM_SWAPPED: the associated values is swapped, and the value entry of the hash table is just set to NULL.

	REDIS_VM_LOADING: the value is swapped on disk, the entry is NULL, but there is a job to load the object from the swap to the memory (this field is only used when threaded VM is active).

	REDIS_VM_SWAPPING: the value is in memory, the entry is a pointer to the actual Redis Object, but there is an I/O job in order to transfer this value to the swap file.

If an object is swapped on disk (REDIS_VM_SWAPPED or REDIS_VM_LOADING), how do we know where it is stored, what type it is, and so forth? That’s simple: the vtype field is set to the original type of the Redis object swapped, while the vm field (that is a redisObjectVM structure) holds information about the location of the object. This is the definition of this additional structure:

/* The VM object structure */
struct redisObjectVM {
 off_t page; /* the page at which the object is stored on disk */
 off_t usedpages; /* number of pages used on disk */
 time_t atime; /* Last access time */
} vm;

As you can see the structure contains the page at which the object is located in the swap file, the number of pages used, and the last access time of the object (this is very useful for the algorithm that select what object is a good candidate for swapping, as we want to transfer on disk objects that are rarely accessed).

As you can see, while all the other fields are using unused bytes in the old Redis Object structure (we had some free bit due to natural memory alignment concerns), the vm field is new, and indeed uses additional memory. Should we pay such a memory cost even when VM is disabled? No! This is the code to create a new Redis Object:

... some code ...
 if (server.vm_enabled) {
 pthread_mutex_unlock(&server.obj_freelist_mutex);
 o = zmalloc(sizeof(*o));
 } else {
 o = zmalloc(sizeof(*o)-sizeof(struct redisObjectVM));
 }
... some code ...

As you can see if the VM system is not enabled we allocate just sizeof(*o)-sizeof(struct redisObjectVM) of memory. Given that the vm field is the last in the object structure, and that this fields are never accessed if VM is disabled, we are safe and Redis without VM does not pay the memory overhead.

The Swap File

The next step in order to understand how the VM subsystem works is understanding how objects are stored inside the swap file. The good news is that’s not some kind of special format, we just use the same format used to store the objects in .rdb files, that are the usual dump files produced by Redis using the SAVE command.

The swap file is composed of a given number of pages, where every page size is a given number of bytes. This parameters can be changed in redis.conf, since different Redis instances may work better with different values: it depends on the actual data you store inside it. The following are the default values:

vm-page-size 32
vm-pages 134217728

Redis takes a “bitmap” (an contiguous array of bits set to zero or one) in memory, every bit represent a page of the swap file on disk: if a given bit is set to 1, it represents a page that is already used (there is some Redis Object stored there), while if the corresponding bit is zero, the page is free.

Taking this bitmap (that will call the page table) in memory is a huge win in terms of performances, and the memory used is small: we just need 1 bit for every page on disk. For instance in the example below 134217728 pages of 32 bytes each (4GB swap file) is using just 16 MB of RAM for the page table.

Transferring objects from memory to swap

In order to transfer an object from memory to disk we need to perform the following steps (assuming non threaded VM, just a simple blocking approach):

	Find how many pages are needed in order to store this object on the swap file. This is trivially accomplished just calling the function rdbSavedObjectPages that returns the number of pages used by an object on disk. Note that this function does not duplicate the .rdb saving code just to understand what will be the length after an object will be saved on disk, we use the trick of opening /dev/null and writing the object there, finally calling ftello in order check the amount of bytes required. What we do basically is to save the object on a virtual very fast file, that is, /dev/null.

	Now that we know how many pages are required in the swap file, we need to find this number of contiguous free pages inside the swap file. This task is accomplished by the vmFindContiguousPages function. As you can guess this function may fail if the swap is full, or so fragmented that we can’t easily find the required number of contiguous free pages. When this happens we just abort the swapping of the object, that will continue to live in memory.

	Finally we can write the object on disk, at the specified position, just calling the function vmWriteObjectOnSwap.

As you can guess once the object was correctly written in the swap file, it is freed from memory, the storage field in the associated key is set to REDIS_VM_SWAPPED, and the used pages are marked as used in the page table.

Loading objects back in memory

Loading an object from swap to memory is simpler, as we already know where the object is located and how many pages it is using. We also know the type of the object (the loading functions are required to know this information, as there is no header or any other information about the object type on disk), but this is stored in the vtype field of the associated key as already seen above.

Calling the function vmLoadObject passing the key object associated to the value object we want to load back is enough. The function will also take care of fixing the storage type of the key (that will be REDIS_VM_MEMORY), marking the pages as freed in the page table, and so forth.

The return value of the function is the loaded Redis Object itself, that we’ll have to set again as value in the main hash table (instead of the NULL value we put in place of the object pointer when the value was originally swapped out).

How blocking VM works

Now we have all the building blocks in order to describe how the blocking VM works. First of all, an important detail about configuration. In order to enable blocking VM in Redis server.vm_max_threads must be set to zero.
We’ll see later how this max number of threads info is used in the threaded VM, for now all it’s needed to now is that Redis reverts to fully blocking VM when this is set to zero.

We also need to introduce another important VM parameter, that is, server.vm_max_memory. This parameter is very important as it is used in order to trigger swapping: Redis will try to swap objects only if it is using more memory than the max memory setting, otherwise there is no need to swap as we are matching the user requested memory usage.

Blocking VM swapping

Swapping of object from memory to disk happens in the cron function. This function used to be called every second, while in the recent Redis versions on git it is called every 100 milliseconds (that is, 10 times per second).
If this function detects we are out of memory, that is, the memory used is greater than the vm-max-memory setting, it starts transferring objects from memory to disk in a loop calling the function vmSwapOneObect. This function takes just one argument, if 0 it will swap objects in a blocking way, otherwise if it is 1, I/O threads are used. In the blocking scenario we just call it with zero as argument.

vmSwapOneObject acts performing the following steps:

	The key space in inspected in order to find a good candidate for swapping (we’ll see later what a good candidate for swapping is).

	The associated value is transferred to disk, in a blocking way.

	The key storage field is set to REDIS_VM_SWAPPED, while the vm fields of the object are set to the right values (the page index where the object was swapped, and the number of pages used to swap it).

	Finally the value object is freed and the value entry of the hash table is set to NULL.

The function is called again and again until one of the following happens: there is no way to swap more objects because either the swap file is full or nearly all the objects are already transferred on disk, or simply the memory usage is already under the vm-max-memory parameter.

What values to swap when we are out of memory?

Understanding what’s a good candidate for swapping is not too hard. A few objects at random are sampled, and for each their swappability is commuted as:

swappability = age*log(size_in_memory)

The age is the number of seconds the key was not requested, while size_in_memory is a fast estimation of the amount of memory (in bytes) used by the object in memory. So we try to swap out objects that are rarely accessed, and we try to swap bigger objects over smaller one, but the latter is a less important factor (because of the logarithmic function used). This is because we don’t want bigger objects to be swapped out and in too often as the bigger the object the more I/O and CPU is required in order to transfer it.

Blocking VM loading

What happens if an operation against a key associated with a swapped out object is requested? For instance Redis may just happen to process the following command:

GET foo

If the value object of the foo key is swapped we need to load it back in memory before processing the operation. In Redis the key lookup process is centralized in the lookupKeyRead and lookupKeyWrite functions, this two functions are used in the implementation of all the Redis commands accessing the keyspace, so we have a single point in the code where to handle the loading of the key from the swap file to memory.

So this is what happens:

	The user calls some command having as argument a swapped key

	The command implementation calls the lookup function

	The lookup function search for the key in the top level hash table. If the value associated with the requested key is swapped (we can see that checking the storage field of the key object), we load it back in memory in a blocking way before to return to the user.

This is pretty straightforward, but things will get more interesting with the threads. From the point of view of the blocking VM the only real problem is the saving of the dataset using another process, that is, handling BGSAVE and BGREWRITEAOF commands.

Background saving when VM is active

The default Redis way to persist on disk is to create .rdb files using a child process. Redis calls the fork() system call in order to create a child, that has the exact copy of the in memory dataset, since fork duplicates the whole program memory space (actually thanks to a technique called Copy on Write memory pages are shared between the parent and child process, so the fork() call will not require too much memory).

In the child process we have a copy of the dataset in a given point in the time. Other commands issued by clients will just be served by the parent process and will not modify the child data.

The child process will just store the whole dataset into the dump.rdb file and finally will exit. But what happens when the VM is active? Values can be swapped out so we don’t have all the data in memory, and we need to access the swap file in order to retrieve the swapped values. While child process is saving the swap file is shared between the parent and child process, since:

	The parent process needs to access the swap file in order to load values back into memory if an operation against swapped out values are performed.

	The child process needs to access the swap file in order to retrieve the full dataset while saving the data set on disk.

In order to avoid problems while both the processes are accessing the same swap file we do a simple thing, that is, not allowing values to be swapped out in the parent process while a background saving is in progress. This way both the processes will access the swap file in read only. This approach has the problem that while the child process is saving no new values can be transferred on the swap file even if Redis is using more memory than the max memory parameters dictates. This is usually not a problem as the background saving will terminate in a short amount of time and if still needed a percentage of values will be swapped on disk ASAP.

An alternative to this scenario is to enable the Append Only File that will have this problem only when a log rewrite is performed using the BGREWRITEAOF command.

The problem with the blocking VM

The problem of blocking VM is that... it’s blocking :)
This is not a problem when Redis is used in batch processing activities, but for real-time usage one of the good points of Redis is the low latency. The blocking VM will have bad latency behaviors as when a client is accessing a swapped out value, or when Redis needs to swap out values, no other clients will be served in the meantime.

Swapping out keys should happen in background. Similarly when a client is accessing a swapped out value other clients accessing in memory values should be served mostly as fast as when VM is disabled. Only the clients dealing with swapped out keys should be delayed.

All this limitations called for a non-blocking VM implementation.

Threaded VM

There are basically three main ways to turn the blocking VM into a non blocking one.

	1: One way is obvious, and in my opinion, not a good idea at all, that is, turning Redis itself into a threaded server: if every request is served by a different thread automatically other clients don’t need to wait for blocked ones. Redis is fast, exports atomic operations, has no locks, and is just 10k lines of code, because it is single threaded, so this was not an option for me.

	2: Using non-blocking I/O against the swap file. After all you can think Redis already event-loop based, why don’t just handle disk I/O in a non-blocking fashion? I also discarded this possibility because of two main reasons. One is that non blocking file operations, unlike sockets, are an incompatibility nightmare. It’s not just like calling select, you need to use OS-specific things. The other problem is that the I/O is just one part of the time consumed to handle VM, another big part is the CPU used in order to encode/decode data to/from the swap file. This is I picked option three, that is...

	3: Using I/O threads, that is, a pool of threads handling the swap I/O operations. This is what the Redis VM is using, so let’s detail how this works.

I/O Threads

The threaded VM design goals where the following, in order of importance:

	Simple implementation, little room for race conditions, simple locking, VM system more or less completely decoupled from the rest of Redis code.

	Good performances, no locks for clients accessing values in memory.

	Ability to decode/encode objects in the I/O threads.

The above goals resulted in an implementation where the Redis main thread (the one serving actual clients) and the I/O threads communicate using a queue of jobs, with a single mutex.
Basically when main thread requires some work done in the background by some I/O thread, it pushes an I/O job structure in the server.io_newjobs queue (that is, just a linked list). If there are no active I/O threads, one is started. At this point some I/O thread will process the I/O job, and the result of the processing is pushed in the server.io_processed queue. The I/O thread will send a byte using an UNIX pipe to the main thread in order to signal that a new job was processed and the result is ready to be processed.

This is how the iojob structure looks like:

typedef struct iojob {
 int type; /* Request type, REDIS_IOJOB_* */
 redisDb *db;/* Redis database */
 robj *key; /* This I/O request is about swapping this key */
 robj *val; /* the value to swap for REDIS_IOREQ_*_SWAP, otherwise this
 * field is populated by the I/O thread for REDIS_IOREQ_LOAD. */
 off_t page; /* Swap page where to read/write the object */
 off_t pages; /* Swap pages needed to save object. PREPARE_SWAP return val */
 int canceled; /* True if this command was canceled by blocking side of VM */
 pthread_t thread; /* ID of the thread processing this entry */
} iojob;

There are just three type of jobs that an I/O thread can perform (the type is specified by the type field of the structure):

	REDIS_IOJOB_LOAD: load the value associated to a given key from swap to memory. The object offset inside the swap file is page, the object type is key->vtype. The result of this operation will populate the val field of the structure.

	REDIS_IOJOB_PREPARE_SWAP: compute the number of pages needed in order to save the object pointed by val into the swap. The result of this operation will populate the pages field.

	REDIS_IOJOB_DO_SWAP: Transfer the object pointed by val to the swap file, at page offset page.

The main thread delegates just the above three tasks. All the rest is handled by the main thread itself, for instance finding a suitable range of free pages in the swap file page table (that is a fast operation), deciding what object to swap, altering the storage field of a Redis object to reflect the current state of a value.

Non blocking VM as probabilistic enhancement of blocking VM

So now we have a way to request background jobs dealing with slow VM operations. How to add this to the mix of the rest of the work done by the main thread? While blocking VM was aware that an object was swapped out just when the object was looked up, this is too late for us: in C it is not trivial to start a background job in the middle of the command, leave the function, and re-enter in the same point the computation when the I/O thread finished what we requested (that is, no co-routines or continuations or alike).

Fortunately there was a much, much simpler way to do this. And we love simple things: basically consider the VM implementation a blocking one, but add an optimization (using non the no blocking VM operations we are able to perform) to make the blocking very unlikely.

This is what we do:

	Every time a client sends us a command, before the command is executed, we examine the argument vector of the command in search for swapped keys. After all we know for every command what arguments are keys, as the Redis command format is pretty simple.

	If we detect that at least a key in the requested command is swapped on disk, we block the client instead of really issuing the command. For every swapped value associated to a requested key, an I/O job is created, in order to bring the values back in memory. The main thread continues the execution of the event loop, without caring about the blocked client.

	In the meanwhile, I/O threads are loading values in memory. Every time an I/O thread finished loading a value, it sends a byte to the main thread using an UNIX pipe. The pipe file descriptor has a readable event associated in the main thread event loop, that is the function vmThreadedIOCompletedJob. If this function detects that all the values needed for a blocked client were loaded, the client is restarted and the original command called.

So you can think of this as a blocked VM that almost always happen to have the right keys in memory, since we pause clients that are going to issue commands about swapped out values until this values are loaded.

If the function checking what argument is a key fails in some way, there is no problem: the lookup function will see that a given key is associated to a swapped out value and will block loading it. So our non blocking VM reverts to a blocking one when it is not possible to anticipate what keys are touched.

For instance in the case of the SORT command used together with the GET or BY options, it is not trivial to know beforehand what keys will be requested, so at least in the first implementation, SORT BY/GET resorts to the blocking VM implementation.

Blocking clients on swapped keys

How to block clients? To suspend a client in an event-loop based server is pretty trivial. All we do is canceling its read handler. Sometimes we do something different (for instance for BLPOP) that is just marking the client as blocked, but not processing new data (just accumulating the new data into input buffers).

Aborting I/O jobs

There is something hard to solve about the interactions between our blocking and non blocking VM, that is, what happens if a blocking operation starts about a key that is also “interested” by a non blocking operation at the same time?

For instance while SORT BY is executed, a few keys are being loaded in a blocking manner by the sort command. At the same time, another client may request the same keys with a simple GET key command, that will trigger the creation of an I/O job to load the key in background.

The only simple way to deal with this problem is to be able to kill I/O jobs in the main thread, so that if a key that we want to load or swap in a blocking way is in the REDIS_VM_LOADING or REDIS_VM_SWAPPING state (that is, there is an I/O job about this key), we can just kill the I/O job about this key, and go ahead with the blocking operation we want to perform.

This is not as trivial as it is. In a given moment an I/O job can be in one of the following three queues:

	server.io_newjobs: the job was already queued but no thread is handling it.

	server.io_processing: the job is being processed by an I/O thread.

	server.io_processed: the job was already processed.
The function able to kill an I/O job is vmCancelThreadedIOJob, and this is what it does:

	If the job is in the newjobs queue, that’s simple, removing the iojob structure from the queue is enough as no thread is still executing any operation.

	If the job is in the processing queue, a thread is messing with our job (and possibly with the associated object!). The only thing we can do is waiting for the item to move to the next queue in a blocking way. Fortunately this condition happens very rarely so it’s not a performance problem.

	If the job is in the processed queue, we just mark it as canceled marking setting the canceled field to 1 in the iojob structure. The function processing completed jobs will just ignored and free the job instead of really processing it.

Questions?

This document is in no way complete, the only way to get the whole picture is reading the source code, but it should be a good introduction in order to make the code review / understanding a lot simpler.

Something is not clear about this page? Please leave a comment and I’ll try to address the issue possibly integrating the answer in this document.

Distributed locks with Redis

Distributed locks are a very useful primitive in many environments where
different processes must operate with shared resources in a mutually
exclusive way.

There are a number of libraries and blog posts describing how to implement
a DLM (Distributed Lock Manager) with Redis, but every library uses a different
approach, and many use a simple approach with lower guarantees compared to
what can be achieved with slightly more complex designs.

This page is an attempt to provide a more canonical algorithm to implement
distributed locks with Redis. We propose an algorithm, called Redlock,
which implements a DLM which we believe to be safer than the vanilla single
instance approach. We hope that the community will analyze it, provide
feedback, and use it as a starting point for the implementations or more
complex or alternative designs.

Implementations

Before describing the algorithm, here are a few links to implementations
already available that can be used for reference.

	Redlock-rb [https://github.com/antirez/redlock-rb] (Ruby implementation). There is also a fork of Redlock-rb [https://github.com/leandromoreira/redlock-rb] that adds a gem for easy distribution and perhaps more.

	Redlock-py [https://github.com/SPSCommerce/redlock-py] (Python implementation).

	Aioredlock [https://github.com/joanvila/aioredlock] (Asyncio Python implementation).

	Redlock-php [https://github.com/ronnylt/redlock-php] (PHP implementation).

	PHPRedisMutex [https://github.com/malkusch/lock#phpredismutex] (further PHP implementation)

	cheprasov/php-redis-lock [https://github.com/cheprasov/php-redis-lock] (PHP library for locks)

	Redsync.go [https://github.com/hjr265/redsync.go] (Go implementation).

	Redisson [https://github.com/mrniko/redisson] (Java implementation).

	Redis::DistLock [https://github.com/sbertrang/redis-distlock] (Perl implementation).

	Redlock-cpp [https://github.com/jacket-code/redlock-cpp] (C++ implementation).

	Redlock-cs [https://github.com/kidfashion/redlock-cs] (C#/.NET implementation).

	RedLock.net [https://github.com/samcook/RedLock.net] (C#/.NET implementation). Includes async and lock extension support.

	ScarletLock [https://github.com/psibernetic/scarletlock] (C# .NET implementation with configurable datastore)

	node-redlock [https://github.com/mike-marcacci/node-redlock] (NodeJS implementation). Includes support for lock extension.

Safety and Liveness guarantees

We are going to model our design with just three properties that, from our point of view, are the minimum guarantees needed to use distributed locks in an effective way.

	Safety property: Mutual exclusion. At any given moment, only one client can hold a lock.

	Liveness property A: Deadlock free. Eventually it is always possible to acquire a lock, even if the client that locked a resource crashes or gets partitioned.

	Liveness property B: Fault tolerance. As long as the majority of Redis nodes are up, clients are able to acquire and release locks.

Why failover-based implementations are not enough

To understand what we want to improve, let’s analyze the current state of affairs with most Redis-based distributed lock libraries.

The simplest way to use Redis to lock a resource is to create a key in an instance. The key is usually created with a limited time to live, using the Redis expires feature, so that eventually it will get released (property 2 in our list). When the client needs to release the resource, it deletes the key.

Superficially this works well, but there is a problem: this is a single point of failure in our architecture. What happens if the Redis master goes down?
Well, let’s add a slave! And use it if the master is unavailable. This is unfortunately not viable. By doing so we can’t implement our safety property of mutual exclusion, because Redis replication is asynchronous.

There is an obvious race condition with this model:

	Client A acquires the lock in the master.

	The master crashes before the write to the key is transmitted to the slave.

	The slave gets promoted to master.

	Client B acquires the lock to the same resource A already holds a lock for. SAFETY VIOLATION!

Sometimes it is perfectly fine that under special circumstances, like during a failure, multiple clients can hold the lock at the same time.
If this is the case, you can use your replication based solution. Otherwise we suggest to implement the solution described in this document.

Correct implementation with a single instance

Before trying to overcome the limitation of the single instance setup described above, let’s check how to do it correctly in this simple case, since this is actually a viable solution in applications where a race condition from time to time is acceptable, and because locking into a single instance is the foundation we’ll use for the distributed algorithm described here.

To acquire the lock, the way to go is the following:

 SET resource_name my_random_value NX PX 30000

The command will set the key only if it does not already exist (NX option), with an expire of 30000 milliseconds (PX option).
The key is set to a value “my_random_value”. This value must be unique across all clients and all lock requests.

Basically the random value is used in order to release the lock in a safe way, with a script that tells Redis: remove the key only if it exists and the value stored at the key is exactly the one I expect to be. This is accomplished by the following Lua script:

if redis.call("get",KEYS[1]) == ARGV[1] then
 return redis.call("del",KEYS[1])
else
 return 0
end

This is important in order to avoid removing a lock that was created by another client. For example a client may acquire the lock, get blocked in some operation for longer than the lock validity time (the time at which the key will expire), and later remove the lock, that was already acquired by some other client.
Using just DEL is not safe as a client may remove the lock of another client. With the above script instead every lock is “signed” with a random string, so the lock will be removed only if it is still the one that was set by the client trying to remove it.

What should this random string be? I assume it’s 20 bytes from /dev/urandom, but you can find cheaper ways to make it unique enough for your tasks.
For example a safe pick is to seed RC4 with /dev/urandom, and generate a pseudo random stream from that.
A simpler solution is to use a combination of unix time with microseconds resolution, concatenating it with a client ID, it is not as safe, but probably up to the task in most environments.

The time we use as the key time to live, is called the “lock validity time”. It is both the auto release time, and the time the client has in order to perform the operation required before another client may be able to acquire the lock again, without technically violating the mutual exclusion guarantee, which is only limited to a given window of time from the moment the lock is acquired.

So now we have a good way to acquire and release the lock. The system, reasoning about a non-distributed system composed of a single, always available, instance, is safe. Let’s extend the concept to a distributed system where we don’t have such guarantees.

The Redlock algorithm

In the distributed version of the algorithm we assume we have N Redis masters. Those nodes are totally independent, so we don’t use replication or any other implicit coordination system. We already described how to acquire and release the lock safely in a single instance. We take for granted that the algorithm will use this method to acquire and release the lock in a single instance. In our examples we set N=5, which is a reasonable value, so we need to run 5 Redis masters on different computers or virtual machines in order to ensure that they’ll fail in a mostly independent way.

In order to acquire the lock, the client performs the following operations:

	It gets the current time in milliseconds.

	It tries to acquire the lock in all the N instances sequentially, using the same key name and random value in all the instances. During step 2, when setting the lock in each instance, the client uses a timeout which is small compared to the total lock auto-release time in order to acquire it. For example if the auto-release time is 10 seconds, the timeout could be in the ~ 5-50 milliseconds range. This prevents the client from remaining blocked for a long time trying to talk with a Redis node which is down: if an instance is not available, we should try to talk with the next instance ASAP.

	The client computes how much time elapsed in order to acquire the lock, by subtracting from the current time the timestamp obtained in step 1. If and only if the client was able to acquire the lock in the majority of the instances (at least 3), and the total time elapsed to acquire the lock is less than lock validity time, the lock is considered to be acquired.

	If the lock was acquired, its validity time is considered to be the initial validity time minus the time elapsed, as computed in step 3.

	If the client failed to acquire the lock for some reason (either it was not able to lock N/2+1 instances or the validity time is negative), it will try to unlock all the instances (even the instances it believed it was not able to lock).

Is the algorithm asynchronous?

The algorithm relies on the assumption that while there is no synchronized clock across the processes, still the local time in every process flows approximately at the same rate, with an error which is small compared to the auto-release time of the lock. This assumption closely resembles a real-world computer: every computer has a local clock and we can usually rely on different computers to have a clock drift which is small.

At this point we need to better specify our mutual exclusion rule: it is guaranteed only as long as the client holding the lock will terminate its work within the lock validity time (as obtained in step 3), minus some time (just a few milliseconds in order to compensate for clock drift between processes).

For more information about similar systems requiring a bound clock drift, this paper is an interesting reference: Leases: an efficient fault-tolerant mechanism for distributed file cache consistency [http://dl.acm.org/citation.cfm?id=74870].

Retry on failure

When a client is unable to acquire the lock, it should try again after a random delay in order to try to desynchronize multiple clients trying to acquire the lock for the same resource at the same time (this may result in a split brain condition where nobody wins). Also the faster a client tries to acquire the lock in the majority of Redis instances, the smaller the window for a split brain condition (and the need for a retry), so ideally the client should try to send the SET commands to the N instances at the same time using multiplexing.

It is worth stressing how important it is for clients that fail to acquire the majority of locks, to release the (partially) acquired locks ASAP, so that there is no need to wait for key expiry in order for the lock to be acquired again (however if a network partition happens and the client is no longer able to communicate with the Redis instances, there is an availability penalty to pay as it waits for key expiration).

Releasing the lock

Releasing the lock is simple and involves just releasing the lock in all instances, whether or not the client believes it was able to successfully lock a given instance.

Safety arguments

Is the algorithm safe? We can try to understand what happens in different scenarios.

To start let’s assume that a client is able to acquire the lock in the majority of instances. All the instances will contain a key with the same time to live. However, the key was set at different times, so the keys will also expire at different times. But if the first key was set at worst at time T1 (the time we sample before contacting the first server) and the last key was set at worst at time T2 (the time we obtained the reply from the last server), we are sure that the first key to expire in the set will exist for at least MIN_VALIDITY=TTL-(T2-T1)-CLOCK_DRIFT. All the other keys will expire later, so we are sure that the keys will be simultaneously set for at least this time.

During the time that the majority of keys are set, another client will not be able to acquire the lock, since N/2+1 SET NX operations can’t succeed if N/2+1 keys already exist. So if a lock was acquired, it is not possible to re-acquire it at the same time (violating the mutual exclusion property).

However we want to also make sure that multiple clients trying to acquire the lock at the same time can’t simultaneously succeed.

If a client locked the majority of instances using a time near, or greater, than the lock maximum validity time (the TTL we use for SET basically), it will consider the lock invalid and will unlock the instances, so we only need to consider the case where a client was able to lock the majority of instances in a time which is less than the validity time. In this case for the argument already expressed above, for MIN_VALIDITY no client should be able to re-acquire the lock. So multiple clients will be able to lock N/2+1 instances at the same time (with “time” being the end of Step 2) only when the time to lock the majority was greater than the TTL time, making the lock invalid.

Are you able to provide a formal proof of safety, point to existing algorithms that are similar, or find a bug? That would be greatly appreciated.

Liveness arguments

The system liveness is based on three main features:

	The auto release of the lock (since keys expire): eventually keys are available again to be locked.

	The fact that clients, usually, will cooperate removing the locks when the lock was not acquired, or when the lock was acquired and the work terminated, making it likely that we don’t have to wait for keys to expire to re-acquire the lock.

	The fact that when a client needs to retry a lock, it waits a time which is comparably greater than the time needed to acquire the majority of locks, in order to probabilistically make split brain conditions during resource contention unlikely.

However, we pay an availability penalty equal to TTL time on network partitions, so if there are continuous partitions, we can pay this penalty indefinitely.
This happens every time a client acquires a lock and gets partitioned away before being able to remove the lock.

Basically if there are infinite continuous network partitions, the system may become not available for an infinite amount of time.

Performance, crash-recovery and fsync

Many users using Redis as a lock server need high performance in terms of both latency to acquire and release a lock, and number of acquire / release operations that it is possible to perform per second. In order to meet this requirement, the strategy to talk with the N Redis servers to reduce latency is definitely multiplexing (or poor man’s multiplexing, which is, putting the socket in non-blocking mode, send all the commands, and read all the commands later, assuming that the RTT between the client and each instance is similar).

However there is another consideration to do about persistence if we want to target a crash-recovery system model.

Basically to see the problem here, let’s assume we configure Redis without persistence at all. A client acquires the lock in 3 of 5 instances. One of the instances where the client was able to acquire the lock is restarted, at this point there are again 3 instances that we can lock for the same resource, and another client can lock it again, violating the safety property of exclusivity of lock.

If we enable AOF persistence, things will improve quite a bit. For example we can upgrade a server by sending SHUTDOWN and restarting it. Because Redis expires are semantically implemented so that virtually the time still elapses when the server is off, all our requirements are fine.
However everything is fine as long as it is a clean shutdown. What about a power outage? If Redis is configured, as by default, to fsync on disk every second, it is possible that after a restart our key is missing. In theory, if we want to guarantee the lock safety in the face of any kind of instance restart, we need to enable fsync=always in the persistence setting. This in turn will totally ruin performances to the same level of CP systems that are traditionally used to implement distributed locks in a safe way.

However things are better than what they look like at a first glance. Basically
the algorithm safety is retained as long as when an instance restarts after a
crash, it no longer participates to any currently active lock, so that the
set of currently active locks when the instance restarts, were all obtained
by locking instances other than the one which is rejoining the system.

To guarantee this we just need to make an instance, after a crash, unavailable
for at least a bit more than the max TTL we use, which is, the time needed
for all the keys about the locks that existed when the instance crashed, to
become invalid and be automatically released.

Using delayed restarts it is basically possible to achieve safety even
without any kind of Redis persistence available, however note that this may
translate into an availability penalty. For example if a majority of instances
crash, the system will become globally unavailable for TTL (here globally means
that no resource at all will be lockable during this time).

Making the algorithm more reliable: Extending the lock

If the work performed by clients is composed of small steps, it is possible to
use smaller lock validity times by default, and extend the algorithm implementing
a lock extension mechanism. Basically the client, if in the middle of the
computation while the lock validity is approaching a low value, may extend the
lock by sending a Lua script to all the instances that extends the TTL of the key
if the key exists and its value is still the random value the client assigned
when the lock was acquired.

The client should only consider the lock re-acquired if it was able to extend
the lock into the majority of instances, and within the validity time
(basically the algorithm to use is very similar to the one used when acquiring
the lock).

However this does not technically change the algorithm, so the maximum number
of lock reacquisition attempts should be limited, otherwise one of the liveness
properties is violated.

Want to help?

If you are into distributed systems, it would be great to have your opinion / analysis. Also reference implementations in other languages could be great.

Thanks in advance!

Analysis of Redlock

	Martin Kleppmann analyzed Redlock here [http://martin.kleppmann.com/2016/02/08/how-to-do-distributed-locking.html]. I disagree with the analysis and posted my reply to his analysis here [http://antirez.com/news/101].

Problems with Redis? This is a good starting point.

This page tries to help you about what to do if you have issues with Redis. Part of the Redis project is helping people that are experiencing problems because we don’t like to let people alone with their issues.

	If you have latency problems with Redis, that in some way appears to be idle for some time, read our Redis latency troubleshooting guide.

	Redis stable releases are usually very reliable, however in the rare event you are experiencing crashes the developers can help a lot more if you provide debugging information. Please read our Debugging Redis guide.

	We have a long history of users experiencing crashes with Redis that actually turned out to be servers with broken RAM. Please test your RAM using redis-server –test-memory in case Redis is not stable in your system. Redis built-in memory test is fast and reasonably reliable, but if you can you should reboot your server and use memtest86 [http://memtest86.com].

For every other problem please drop a message to the Redis Google Group [http://groups.google.com/group/redis-db]. We will be glad to help.

List of known critical bugs in Redis 3.0.x, 2.8.x and 2.6.x

To find a list of critical bugs please refer to the changelogs:

	Redis 3.0 Changelog [https://raw.githubusercontent.com/antirez/redis/3.0/00-RELEASENOTES].

	Redis 2.8 Changelog [https://raw.githubusercontent.com/antirez/redis/2.8/00-RELEASENOTES].

	Redis 2.6 Changelog [https://raw.githubusercontent.com/antirez/redis/2.6/00-RELEASENOTES].

Check the upgrade urgency level in each patch release to more easily spot
releases that included important fixes.

List of known Linux related bugs affecting Redis.

	Ubuntu 10.04 and 10.10 have serious bugs (especially 10.10) that cause slow downs if not just instance hangs. Please move away from the default kernels shipped with this distributions. Link to 10.04 bug [https://blog.librato.com/posts/2011/5/16/ec2-users-should-be-cautious-when-booting-ubuntu-1004-amis]. Link to 10.10 bug [https://bugs.launchpad.net/ubuntu/+source/linux/+bug/666211]. Both bugs were reported many times in the context of EC2 instances, but other users confirmed that also native servers are affected (at least by one of the two).

	Certain versions of the Xen hypervisor are known to have very bad fork() performances. See the latency page for more information.

redis-cli, the Redis command line interface

redis-cli is the Redis command line interface, a simple program that allows
to send commands to Redis, and read the replies sent by the server, directly
from the terminal.

It has two main modes: an interactive mode where there is a REPL (Read
Eval Print Loop) where the user types commands and get replies; and another
mode where the command is sent as arguments of redis-cli, executed, and
printed on the standard output.

In interactive mode, redis-cli has basic line editing capabilities to provide
a good typing experience.

However redis-cli is not just that. There are options you can use to launch
the program in order to put it into special modes, so that redis-cli can
definitely do more complex tasks, like simulate a slave and print the
replication stream it receives from the master, check the latency of a Redis
server and show statistics or even an ASCII-art spectrogram of latency
samples and frequencies, and many other things.

This guide will cover the different aspects of redis-cli, starting from the
simplest and ending with the more advanced ones.

If you are going to use Redis extensively, or if you already do, chances are
you happen to use redis-cli a lot. Spending some time to familiarize with
it is likely a very good idea, you’ll see that you’ll work more effectively
with Redis once you know all the tricks of its command line interface.

Command line usage

To just run a command and have its reply printed on the standard output is as
simple as typing the command to execute as separated arguments of redis-cli:

$ redis-cli incr mycounter
(integer) 7

The reply of the command is “7”. Since Redis replies are typed (they can be
strings, arrays, integers, NULL, errors and so forth), you see the type
of the reply between brackets. However that would be not exactly a great idea
when the output of redis-cli must be used as input of another command, or when
we want to redirect it into a file.

Actually redis-cli only shows additional information which improves
readability for humans when it detects the standard output is a tty (a terminal
basically). Otherwise it will auto-enable the raw output mode, like in the
following example:

$ redis-cli incr mycounter > /tmp/output.txt
$ cat /tmp/output.txt
8

This time (integer) was omitted from the output since the CLI detected
the output was no longer written to the terminal. You can force raw output
even on the terminal with the --raw option:

$ redis-cli --raw incr mycounter
9

Similarly, you can force human readable output when writing to a file or in
pipe to other commands by using --no-raw.

Host, port, password and database

By default redis-cli connects to the server at 127.0.0.1 port 6379.
As you can guess, you can easily change this using command line options.
To specify a different host name or an IP address, use -h. In order
to set a different port, use -p.

$ redis-cli -h redis15.localnet.org -p 6390 ping
PONG

If your instance is password protected, the -a <password> option will
preform authentication saving the need of explicitly using the AUTH command:

$ redis-cli -a myUnguessablePazzzzzword123 ping
PONG

Finally, it’s possible to send a command that operates a on a database number
other than the default number zero by using the -n <dbnum> option:

$ redis-cli flushall
OK
$ redis-cli -n 1 incr a
(integer) 1
$ redis-cli -n 1 incr a
(integer) 2
$ redis-cli -n 2 incr a
(integer) 1

Getting input from other programs

There are two ways you can use redis-cli in order to get the input from other
commands (from the standard input, basically). One is to use as last argument
the payload we read from stdin. For example, in order to set a Redis key
to the content of the file /etc/services if my computer, I can use the -x
option:

$ redis-cli -x set foo < /etc/services
OK
$ redis-cli getrange foo 0 50
"#\n# Network services, Internet style\n#\n# Note that "

As you can see in the first line of the above session, the last argument of the
SET command was not specified. The arguments are just SET foo without the
actual value I want my key to be set to.

Instead, the -x option was specified and a file was redirected to the CLI’s
standard input. So the input was read, and was used as the final argument for
the command. This is useful for scripting.

A different approach is to feed redis-cli a sequence of commands written in a
text file:

$ cat /tmp/commands.txt
set foo 100
incr foo
append foo xxx
get foo
$ cat /tmp/commands.txt | redis-cli
OK
(integer) 101
(integer) 6
"101xxx"

All the commands in commands.txt are executed one after the other by
redis-cli as if they were typed by the user interactive. Strings can be
quoted inside the file if needed, so that it’s possible to have single
arguments with spaces or newlines or other special chars inside:

$ cat /tmp/commands.txt
set foo "This is a single argument"
strlen foo
$ cat /tmp/commands.txt | redis-cli
OK
(integer) 25

Continuously run the same command

It is possible to execute the same command a specified number of times
with a user selected pause between the executions. This is useful in
different contexts, for example when we want to continuously monitor some
key content or INFO field output, or when we want to simulate some
recurring write event (like pushing a new item into a list every 5 seconds).

This feature is controlled by two options: -r <count> and -i <delay>.
The first states how many times to run a command, the second configures
the delay between the different command calls, in seconds (with the ability
to specify decimal numbers like 0.1 in order to mean 100 milliseconds).

By default the interval (or delay) is set to 0, so commands are just executed
ASAP:

$ redis-cli -r 5 incr foo
(integer) 1
(integer) 2
(integer) 3
(integer) 4
(integer) 5

To run the same command forever, use -1 as count.
So, in order to monitor over time the RSS memory size it’s possible
to use a command like the following:

$ redis-cli -r -1 -i 1 INFO | grep rss_human
used_memory_rss_human:1.38M
used_memory_rss_human:1.38M
used_memory_rss_human:1.38M
... a new line will be printed each second ...

Mass insertion of data using redis-cli

Mass insert using redis-cli is covered in a separated page since it’s a
worthwhile topic itself. Please refer to our
mass insertion guide.

CSV output

Sometimes you may want to use redis-cli in order to quickly export data from
Redis to an external program. This can be accomplished using the CSV (Comma
Separated Values) output feature:

$ redis-cli lpush mylist a b c d
(integer) 4
$ redis-cli --csv lrange mylist 0 -1
"d","c","b","a"

Currently it’s not possible to export the whole DB like that, but only to run
single commands with CSV output.

Running Lua scripts

The redis-cli has extensive support for using the new Lua debugging facility
of Lua scripting, available starting with Redis 3.2. For this feature, please
refer to the Redis Lua debugger documentation.

However, even without using the debugger, you can use redis-cli to
run scripts from a file in a way more comfortable compared to typing
the script interactively into the shell or as an argument:

$ cat /tmp/script.lua
return redis.call('set',KEYS[1],ARGV[1])
$ redis-cli --eval /tmp/script.lua foo , bar
OK

The Redis EVAL command takes the list of keys the script uses, and the
other non key arguments, as different arrays. When calling EVAL you
provide the number of keys as a number. However with redis-cli and using
the --eval option above, there is no need to specify the number of keys
explicitly. Instead it uses the convention of separating keys and arguments
with a comma. This is why in the above call you see foo , bar as arguments.

So foo will populate the KEYS array, and bar the ARGV array.

The --eval option is useful when writing simple scripts. For more
complex work, using the Lua debugger is definitely more comfortable. It’s
possible to mix the two approaches, since the debugger also uses executing
scripts from an external file.

Interactive mode

So far we explored how to use the Redis CLI as a command line program.
This is very useful for scripts and certain types of testing, however most
people will spend the majority of time in redis-cli using its interactive
mode.

In interactive mode the user types Redis commands at the prompt. The command
is sent to the server, processed, and the reply is parsed back and rendered
into a simpler form to read.

Nothing special is needed for running the CLI in interactive mode -
just lunch it without any arguments and you are in:

$ redis-cli
127.0.0.1:6379> ping
PONG

The string 127.0.0.1:6379> is the prompt. It reminds you that you are
connected to a given Redis instance.

The prompt changes as the server you are connected to changes, or when you
are operating on a database different than the database number zero:

127.0.0.1:6379> select 2
OK
127.0.0.1:6379[2]> dbsize
(integer) 1
127.0.0.1:6379[2]> select 0
OK
127.0.0.1:6379> dbsize
(integer) 503

Handling connections and reconnections

Using the connect command in interactive mode makes it possible to connect
to a different instance, by specifying the hostname and port we want
to connect to:

127.0.0.1:6379> connect metal 6379
metal:6379> ping
PONG

As you can see the prompt changes accordingly. If the user attempts to connect
to an instance that is unreachable, the redis-cli goes into disconnected
mode and attempts to reconnect with each new command:

127.0.0.1:6379> connect 127.0.0.1 9999
Could not connect to Redis at 127.0.0.1:9999: Connection refused
not connected> ping
Could not connect to Redis at 127.0.0.1:9999: Connection refused
not connected> ping
Could not connect to Redis at 127.0.0.1:9999: Connection refused

Generally after a disconnection is detected, the CLI always attempts to
reconnect transparently: if the attempt fails, it shows the error and
enters the disconnected state. The following is an example of disconnection
and reconnection:

127.0.0.1:6379> debug restart
Could not connect to Redis at 127.0.0.1:6379: Connection refused
not connected> ping
PONG
127.0.0.1:6379> (now we are connected again)

When a reconnection is performed, redis-cli automatically re-select the
last database number selected. However, all the other state about the
connection is lost, such as the state of a transaction if we
were in the middle of it:

$ redis-cli
127.0.0.1:6379> multi
OK
127.0.0.1:6379> ping
QUEUED

(here the server is manually restarted)

127.0.0.1:6379> exec
(error) ERR EXEC without MULTI

This is usually not an issue when using the CLI in interactive mode for
testing, but you should be aware of this limitation.

Editing, history and completion

Because redis-cli uses the
linenoise line editing library [http://github.com/antirez/linenoise], it
always has line editing capabilities, without depending on libreadline or
other optional libraries.

You can access an history of commands executed, in order to avoid retyping
them again and again, by pressing the arrow keys (up and down).
The history is preserved between restarts of the CLI, in a file called
.rediscli_history inside the user home directory, as specified
by the HOME environment variable. It is possible to use a different
history filename by setting the REDISCLI_HISTFILE environment variable,
and disable it by setting it to /dev/null.

The CLI is also able to perform command names completion by pressing the TAB
key, like in the following example:

127.0.0.1:6379> Z<TAB>
127.0.0.1:6379> ZADD<TAB>
127.0.0.1:6379> ZCARD<TAB>

Running the same command N times

It’s possible to run the same command multiple times by prefixing the command
name by a number:

127.0.0.1:6379> 5 incr mycounter
(integer) 1
(integer) 2
(integer) 3
(integer) 4
(integer) 5

Showing help about Redis commands

Redis has a number of commands and sometimes, as you test things,
you may not remember the exact order of arguments. redis-cli provides online
help for most Redis commands, using the help command. The command can be used
in two forms:

	help @<category> shows all the commands about a given category. The
categories are: @generic, @list, @set, @sorted_set, @hash,
@pubsub, @transactions, @connection, @server, @scripting,
@hyperloglog.

	help <commandname> shows specific help for the command given as argument.

For example in order to show help for the PFADD command, use:

127.0.0.1:6379> help PFADD

PFADD key element [element ...]
summary: Adds the specified elements to the specified HyperLogLog.
since: 2.8.9

Note that help supports TAB completion as well.

Clearing the terminal screen

Using the clear command in interactive mode clears the terminal’s screen.

Special modes of operation

So far we saw two main modes of redis-cli.

	Command line execution of Redis commands.

	Interactive “REPL-like” usage.

However the CLI performs other auxiliary tasks related to Redis that
are explained in the next sections:

	Monitoring tool to show continuous stats about a Redis server.

	Scanning a Redis database for very large keys.

	Key space scanner with pattern matching.

	Acting as a Pub/Sub client to subscribe to channels.

	Monitoring the commands executed into a Redis instance.

	Checking the latency of a Redis server in different ways.

	Checking the scheduler latency of the local computer.

	Transferring RDB backups from a remote Redis server locally.

	Acting as a Redis slave for showing what a slave receives.

	Simulating LRU workloads for showing stats about keys hits.

	A client for the Lua debugger.

Continuous stats mode

This is probably one of the lesser known features of redis-cli, and one
very useful in order to monitor Redis instances in real time.
To enable this mode, the --stat option is used.
The output is very clear about the behavior of the CLI in this mode:

$ redis-cli --stat
------- data ------ --------------------- load -------------------- - child -
keys mem clients blocked requests connections
506 1015.00K 1 0 24 (+0) 7
506 1015.00K 1 0 25 (+1) 7
506 3.40M 51 0 60461 (+60436) 57
506 3.40M 51 0 146425 (+85964) 107
507 3.40M 51 0 233844 (+87419) 157
507 3.40M 51 0 321715 (+87871) 207
508 3.40M 51 0 408642 (+86927) 257
508 3.40M 51 0 497038 (+88396) 257

In this mode a new line is printed every second with useful information and
the difference between the old data point. You can easily understand what’s
happening with memory usage, clients connected, and so forth.

The -i <interval> option in this case works as a modifier in order to
change the frequency at which new lines are emitted. The default is one
second.

Scanning for big keys

In this special mode, redis-cli works as a key space analyzer. It scans the
dataset for big keys, but also provides information about the data types
that the data set consists of. This mode is enabled with the --bigkeys option,
and produces quite a verbose output:

$ redis-cli --bigkeys

Scanning the entire keyspace to find biggest keys as well as
average sizes per key type. You can use -i 0.1 to sleep 0.1 sec
per 100 SCAN commands (not usually needed).

[00.00%] Biggest string found so far 'key-419' with 3 bytes
[05.14%] Biggest list found so far 'mylist' with 100004 items
[35.77%] Biggest string found so far 'counter:__rand_int__' with 6 bytes
[73.91%] Biggest hash found so far 'myobject' with 3 fields

-------- summary -------

Sampled 506 keys in the keyspace!
Total key length in bytes is 3452 (avg len 6.82)

Biggest string found 'counter:__rand_int__' has 6 bytes
Biggest list found 'mylist' has 100004 items
Biggest hash found 'myobject' has 3 fields

504 strings with 1403 bytes (99.60% of keys, avg size 2.78)
1 lists with 100004 items (00.20% of keys, avg size 100004.00)
0 sets with 0 members (00.00% of keys, avg size 0.00)
1 hashs with 3 fields (00.20% of keys, avg size 3.00)
0 zsets with 0 members (00.00% of keys, avg size 0.00)

In the first part of the output, each new key larger than the previous larger
key (of the same type) encountered is reported. The summary section
provides general stats about the data inside the Redis instance.

The program uses the SCAN command, so it can be executed against a busy
server without impacting the operations, however the -i option can be
used in order to throttle the scanning process of the specified fraction
of second for each 100 keys requested. For example, -i 0.1 will slow down
the program execution a lot, but will also reduce the load on the server
to a tiny amount.

Note that the summary also reports in a cleaner form the biggest keys found
for each time. The initial output is just to provide some interesting info
ASAP if running against a very large data set.

Getting a list of keys

It is also possible to scan the key space, again in a way that does not
block the Redis server (which does happen when you use a command
like KEYS *), and print all the key names, or filter them for specific
patterns. This mode, like the --bigkeys option, uses the SCAN command,
so keys may be reported multiple times if the dataset is changing, but no
key would ever be missing, if that key was present since the start of the
iteration. Because of the command that it uses this option is called --scan.

$ redis-cli --scan | head -10
key-419
key-71
key-236
key-50
key-38
key-458
key-453
key-499
key-446
key-371

Note that head -10 is used in order to print only the first lines of the
output.

Scanning is able to use the underlying pattern matching capability of
the SCAN command with the --pattern option.

$ redis-cli --scan --pattern '*-11*'
key-114
key-117
key-118
key-113
key-115
key-112
key-119
key-11
key-111
key-110
key-116

Piping the output through the wc command can be used to count specific
kind of objects, by key name:

$ redis-cli --scan --pattern 'user:*' | wc -l
3829433

Pub/sub mode

The CLI is able to publish messages in Redis Pub/Sub channels just using
the PUBLISH command. This is expected since the PUBLISH command is very
similar to any other command. Subscribing to channels in order to receive
messages is different - in this case we need to block and wait for
messages, so this is implemented as a special mode in redis-cli. Unlike
other special modes this mode is not enabled by using a special option,
but simply by using the SUBSCRIBE or PSUBSCRIBE command, both in
interactive or non interactive mode:

$ redis-cli psubscribe '*'
Reading messages... (press Ctrl-C to quit)
1) "psubscribe"
2) "*"
3) (integer) 1

The reading messages message shows that we entered Pub/Sub mode.
When another client publishes some message in some channel, like you
can do using redis-cli PUBLISH mychannel mymessage, the CLI in Pub/Sub
mode will show something such as:

1) "pmessage"
2) "*"
3) "mychannel"
4) "mymessage"

This is very useful for debugging Pub/Sub issues.
To exit the Pub/Sub mode just process CTRL-C.

Monitoring commands executed in Redis

Similarly to the Pub/Sub mode, the monitoring mode is entered automatically
once you use the MONITOR mode. It will print all the commands received
by a Redis instance:

$ redis-cli monitor
OK
1460100081.165665 [0 127.0.0.1:51706] "set" "foo" "bar"
1460100083.053365 [0 127.0.0.1:51707] "get" "foo"

Note that it is possible to use to pipe the output, so you can monitor
for specific patterns using tools such as grep.

Monitoring the latency of Redis instances

Redis is often used in contexts where latency is very critical. Latency
involves multiple moving parts within the application, from the client library
to the network stack, to the Redis instance itself.

The CLI has multiple facilities for studying the latency of a Redis
instance and understanding the latency’s maximum, average and distribution.

The basic latency checking tool is the --latency option. Using this
option the CLI runs a loop where the PING command is sent to the Redis
instance, and the time to get a reply is measured. This happens 100
times per second, and stats are updated in a real time in the console:

$ redis-cli --latency
min: 0, max: 1, avg: 0.19 (427 samples)

The stats are provided in milliseconds. Usually, the average latency of
a very fast instance tends to be overestimated a bit because of the
latency due to the kernel scheduler of the system running redis-cli
itself, so the average latency of 0.19 above may easily be 0.01 or less.
However this is usually not a big problem, since we are interested in
events of a few millisecond or more.

Sometimes it is useful to study how the maximum and average latencies
evolve during time. The --latency-history option is used for that
purpose: it works exactly like --latency, but every 15 seconds (by
default) a new sampling session is started from scratch:

$ redis-cli --latency-history
min: 0, max: 1, avg: 0.14 (1314 samples) -- 15.01 seconds range
min: 0, max: 1, avg: 0.18 (1299 samples) -- 15.00 seconds range
min: 0, max: 1, avg: 0.20 (113 samples)^C

You can change the sampling sessions’ length with the -i <interval> option.

The most advanced latency study tool, but also a bit harder to
interpret for non experienced users, is the ability to use color terminals
to show a spectrum of latencies. You’ll see a colored output that indicate the
different percentages of samples, and different ASCII characters that indicate
different latency figures. This mode is enabled using the --latency-dist
option:

$ redis-cli --latency-dist
(output not displayed, requires a color terminal, try it!)

There is another pretty unusual latency tool implemented inside redis-cli.
It does not check the latency of a Redis instance, but the latency of the
computer you are running redis-cli on. What latency you may ask?
The latency that’s intrinsic to the kernel scheduler, the hypervisor in case
of virtualized instances, and so forth.

We call it intrinsic latency because it’s opaque to the programmer, mostly.
If your Redis instance has bad latency regardless of all the obvious things
that may be the source cause, it’s worth to check what’s the best your system
can do by running redis-cli in this special mode directly in the system you
are running Redis servers on.

By measuring the intrinsic latency, you know that this is the baseline,
and Redis cannot outdo your system. In order to run the CLI
in this mode, use the --intrinsic-latency <test-time>. The test’s time
is in seconds, and specifies how many seconds redis-cli should check the
latency of the system it’s currently running on.

$./redis-cli --intrinsic-latency 5
Max latency so far: 1 microseconds.
Max latency so far: 7 microseconds.
Max latency so far: 9 microseconds.
Max latency so far: 11 microseconds.
Max latency so far: 13 microseconds.
Max latency so far: 15 microseconds.
Max latency so far: 34 microseconds.
Max latency so far: 82 microseconds.
Max latency so far: 586 microseconds.
Max latency so far: 739 microseconds.

65433042 total runs (avg latency: 0.0764 microseconds / 764.14 nanoseconds per run).
Worst run took 9671x longer than the average latency.

IMPORTANT: this command must be executed on the computer you want to run Redis
server on, not on a different host. It does not even connect to a Redis instance
and performs the test only locally.

In the above case, my system cannot do better than 739 microseconds of worst
case latency, so I can expect certain queries to run in a bit less than 1
millisecond from time to time.

Remote backups of RDB files

During Redis replication’s first synchronization, the master and the slave
exchange the whole data set in form of an RDB file. This feature is exploited
by redis-cli in order to provide a remote backup facility, that allows to
transfer an RDB file from any Redis instance to the local computer running
redis-cli. To use this mode, call the CLI with the --rdb <dest-filename>
option:

$ redis-cli --rdb /tmp/dump.rdb
SYNC sent to master, writing 13256 bytes to '/tmp/dump.rdb'
Transfer finished with success.

This is a simple but effective way to make sure you have disaster recovery
RDB backups of your Redis instance. However when using this options in
scripts or cron jobs, make sure to check the return value of the command.
If it is non zero, an error occurred like in the following example:

$ redis-cli --rdb /tmp/dump.rdb
SYNC with master failed: -ERR Can't SYNC while not connected with my master
$ echo $?
1

Slave mode

The slave mode of the CLI is an advanced feature useful for
Redis developers and for debugging operations.
It allows to inspect what a master sends to its slaves in the replication
stream in order to propagate the writes to its replicas. The option
name is simply --slave. This is how it works:

$ redis-cli --slave
SYNC with master, discarding 13256 bytes of bulk transfer...
SYNC done. Logging commands from master.
"PING"
"SELECT","0"
"set","foo","bar"
"PING"
"incr","mycounter"

The command begins by discarding the RDB file of the first synchronization
and then logs each command received as in CSV format.

If you think some of the commands are not replicated correctly in your slaves
this is a good way to check what’s happening, and also useful information
in order to improve the bug report.

Performing an LRU simulation

Redis is often used as a cache with LRU eviction.
Depending on the number of keys and the amount of memory allocated for the
cache (specified via the maxmemory directive), the amount of cache hits
and misses will change. Sometimes, simulating the rate of hits is very
useful to correctly provision your cache.

The CLI has a special mode where it performs a simulation of GET and SET
operations, using an 80-20% power law distribution in the requests pattern.
This means that 20% of keys will be requested 80% of times, which is a
common distribution in caching scenarios.

Theoretically, given the distribution of the requests and the Redis memory
overhead, it should be possible to compute the hit rate analytically with
with a mathematical formula. However, Redis can be configured with
different LRU settings (number of samples) and LRU’s implementation, which
is approximated in Redis, changes a lot between different versions. Similarly
the amount of memory per key may change between versions. That is why this
tool was built: its main motivation was for testing the quality of Redis’ LRU
implementation, but now is also useful in for testing how a given version
behaves with the settings you had in mind for your deployment.

In order to use this mode, you need to specify the amount of keys
in the test. You also need to configure a maxmemory setting that
makes sense as a first try.

IMPORTANT NOTE: Configuring the maxmemory setting in the Redis configuration
is crucial: if there is no cap to the maximum memory usage, the hit will
eventually be 100% since all the keys can be stored in memory. Or if you
specify too many keys and no maximum memory, eventually all the computer
RAM will be used. It is also needed to configure an appropriate
maxmemory policy, most of the times what you want is allkeys-lru.

In the following example I configured a memory limit of 100MB, and an LRU
simulation using 10 million keys.

WARNING: the test uses pipelining and will stress the server, don’t use it
with production instances.

$./redis-cli --lru-test 10000000
156000 Gets/sec | Hits: 4552 (2.92%) | Misses: 151448 (97.08%)
153750 Gets/sec | Hits: 12906 (8.39%) | Misses: 140844 (91.61%)
159250 Gets/sec | Hits: 21811 (13.70%) | Misses: 137439 (86.30%)
151000 Gets/sec | Hits: 27615 (18.29%) | Misses: 123385 (81.71%)
145000 Gets/sec | Hits: 32791 (22.61%) | Misses: 112209 (77.39%)
157750 Gets/sec | Hits: 42178 (26.74%) | Misses: 115572 (73.26%)
154500 Gets/sec | Hits: 47418 (30.69%) | Misses: 107082 (69.31%)
151250 Gets/sec | Hits: 51636 (34.14%) | Misses: 99614 (65.86%)

The program shows stats every second. As you see, in the first seconds
the cache starts to be populated. The misses rate later stabilizes into
the actual figure we can expect in the long time:

120750 Gets/sec | Hits: 48774 (40.39%) | Misses: 71976 (59.61%)
122500 Gets/sec | Hits: 49052 (40.04%) | Misses: 73448 (59.96%)
127000 Gets/sec | Hits: 50870 (40.06%) | Misses: 76130 (59.94%)
124250 Gets/sec | Hits: 50147 (40.36%) | Misses: 74103 (59.64%)

A miss rage of 59% may not be acceptable for our use case. So we know that
100MB of memory are no enough. Let’s try with half gigabyte. After a few
minutes we’ll see the output to stabilize to the following figures:

140000 Gets/sec | Hits: 135376 (96.70%) | Misses: 4624 (3.30%)
141250 Gets/sec | Hits: 136523 (96.65%) | Misses: 4727 (3.35%)
140250 Gets/sec | Hits: 135457 (96.58%) | Misses: 4793 (3.42%)
140500 Gets/sec | Hits: 135947 (96.76%) | Misses: 4553 (3.24%)

So we know that with 500MB we are going well enough for our number of
keys (10 millions) and distribution (80-20 style).

Redis license and trademark information

Redis is open source software released under the terms of the three clause BSD license. Most of the Redis source code was written and is copyrighted by Salvatore Sanfilippo and Pieter Noordhuis. A list of other contributors can be found in the git history.

The Redis trademark and logo are owned by Salvatore Sanfilippo and can be
used in accordance with the Redis Trademark Guidelines.

Three clause BSD license

Every file in the Redis distribution, with the exceptions of third party files specified in the list below, contain the following license:

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of Redis nor the names of its contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Third party files and licenses

Redis uses source code from third parties. All this code contains a BSD or BSD-compatible license. The following is a list of third party files and information about their copyright.

	Redis uses the LHF compression library [http://oldhome.schmorp.de/marc/liblzf.html]. LibLZF is copyright Marc Alexander Lehmann and is released under the terms of the two clause BSD license.

	Redis uses the sha1.c file that is copyright by Steve Reid and released under the public domain. This file is extremely popular and used among open source and proprietary code.

	When compiled on Linux Redis uses the Jemalloc allocator [http://www.canonware.com/jemalloc/], that is copyright by Jason Evans, Mozilla Foundation and Facebook, Inc and is released under the two clause BSD license.

	Inside Jemalloc the file pprof is copyright Google Inc and released under the three clause BSD license.

	Inside Jemalloc the files inttypes.h, stdbool.h, stdint.h, strings.h under the msvc_compat directory are copyright Alexander Chemeris and released under the three clause BSD license.

	The libraries hiredis and linenoise also included inside the Redis distribution are copyright Salvatore Sanfilippo and Pieter Noordhuis and released under the terms respectively of the three clause BSD license and two clause BSD license.

Redis Design Drafts

Redis Design Drafts are a way to make the community aware about the design of
new features before this feature is actually implemented. This is done in the
hope to get good feedback from the user base, that may result in a change
of the design if a flaw or possible improvement was discovered.

The following is the list of published RDDs so far:

	RDD1 – Redis Design Drafts

	RDD2 – RDB version 7 info fields

To get an RDD accepted for publication you need to talk about your idea in
the Redis Google Group [http://groups.google.com/group/redis-db]. Once the
general feature is accepted and/or considered for further exploration you
can write an RDD or ask the current Redis maintainer to write one about the
topic.

Redis TRADEMARK GUIDELINES

	PURPOSE. The Redis trademark and logo identify the Redis community and individual Redis projects. This policy outlines our policy and guidelines about the use of the Redis trademarks and logo by members of the Redis development and user community.

	WHY HAVE TRADEMARK GUIDELINES? The Redis trademarks are a symbol of the quality and community support associated with the Redis open source software. Trademarks protect not only those using the marks, but the entire community as well. Our community members need to know that they can rely on the quality represented by the brand. We also want to provide a level playing field. No one should use the Redis marks in ways that mislead or take advantage of the community, or make unfair use of the trademarks. Also, use of our marks should not be in a disparaging manner because we prefer that our marks not be used to be rude about the Redis open source project or its members.

	OPEN SOURCE LICENSE VS. TRADEMARKS. The three-clause BSD license gives you the right to redistribute and use the software in source and binary forms, with or without modification, under certain conditions. However, open source licenses like the three-clause BSD license do not address trademarks. Redis trademarks and brands need to be used in a way consistent with trademark law, and that is why we have prepared this policy – to help you understand what branding is allowed or required when using our software.

	PROPER USE OF THE Redis TRADEMARKS AND LOGO. We want to encourage a robust community for the Redis open source project. Therefore, you may do any of the following, as long as you do so in a way that does not devalue, dilute, or disparage the Redis brand. In other words, when you do these things, you should behave responsibly and reasonably in the interest of the community, but you do not need a trademark license from us to do them.
	a. Nominative Use. You may engage in “nominative use” of the Redis name, but this does not allow you to use the logo. Nominative use is sometimes called fair use of a trademark, and does not require a trademark license from us. Here are examples:
	a.i. If you develop applications for Redis, you may state that your application is designed to work with Redis, without using the Redis logo. For example, if you are developing a Foobar tool for Redis, acceptable project titles would be “Foobar for Redis” or “Redis-powered Foobar Tool”. We strongly discourage, and likely would consider it a trademark problem, to use a name such as “Redis Foobar.”

	a.ii. If you offer maintenance, support, or hosting services for Redis software, you may accurately state that in your marketing materials or portfolio, without using the Redis logo.

	a.iii. You may modify the Redis software and state that your modified software is “based on the Redis software” or a similar accurate statement, without using the Redis logo.

	a.iv. You may engage in community advocacy. The Redis software is developed by and for its community. We will allow the use of the trademarks in this context, provided:
	a.iv.1. The trademark is used in a manner consistent with this policy

	a.iv.2. There is no commercial purpose behind the use

	a.iv.3. There is no suggestion that your project is approved, sponsored, or affiliated with Redis.

	b. Attribution. Identify the trademarks and logo as trademarks and logo of Redis.

	c. User or Development Groups. You may create Redis user or development groups, and publicize meetings or discussions for those groups. Please consider joining our official group.

	d. Capitalization. “Redis” should be capitalized.

	e. Adjectives. Use the Redis mark as an adjective, not a noun or verb.

	IMPROPER USE OF THE TRADEMARKS AND LOGOS. Use of the logo is reserved solely for use by Redis and its projects in its unaltered form. Examples of unauthorized use of the Redis trademarks include:
	a. Entity Names. You may not form a company, use a company name, or create a software product name that implies any foundational or authorship role. If you have a software product that works with Redis, it is suggested you use terms such as “<product name> for Redis” or “<product name>, Redis Edition”. If you wish to form an entity for a user or developer group, please contact us and we will be glad to discuss a license for a suitable name.

	b. Class or Quality. You may not imply that you are providing a class or quality of Redis (e.g., “enterprise-class” or “commercial quality”) in a way that implies Redis is not of that class, grade or quality, nor that other parties are not of that class, grade, or quality.

	c. False or Misleading Statements. You may not make false or misleading statements regarding your use of Redis (e.g., “we wrote the majority of the code” or “we are major contributors” or “we are committers”).

	d. Domain Names. You must not use Redis or any confusingly similar phrase in a domain name. For instance “www.Redishost.com” is not allowed. If you wish to use such a domain name for a user or developer group, please contact us and we will be glad to discuss a license for a suitable domain name. Because of the many persons who, unfortunately, seek to spoof, swindle or deceive the community by using confusing domain names, we must be very strict about this rule.

	e. Merchandise. You must not manufacture, sell or give away merchandise items, such as T-shirts and mugs, bearing the Redis logo, or create any mascot for Redis. If you wish to use the logo to do this for a user or developer group, please contact us and we will be glad to discuss a license to do this.

	f. Variations, takeoffs or abbreviations. You may not use a variation of the Redis name or logo for any purpose. For example, the following are not acceptable:
	f.i. Red

	f.ii. MyRedis

	f.iii. RedisHost

	g. Endorsement or Sponsorship. You may not use the Redis logo in a manner that would imply Redis’ affiliation with or endorsement, sponsorship, or support of a product or service.

	h. Rebranding. You may not change the brand or logo on unmodified Redis software to your own brand or logo. You may not hold yourself out as the source of the Redis software, except to the extent you have modified it as allowed under the three-clause BSD license, and you make it clear that you are the source only of the modification.

	i. Combination Marks. Do not use our logos or trademarks in combination with any other marks or logos (for example Foobar Redis, or the name of your company or product typeset to look like the Redis logo).

	j. Web Tags. Do not use the Redis trademark in a title or metatag of a web page to influence search engine rankings or result listings, rather than for discussion or advocacy of the Redis project.

	PROPER NOTICE AND ATTRIBUTION. The appropriate trademark symbol (i.e., ®) should appear at least with the first use of the Redis trademarks and all occurrences of the Redis logo. When you use a Redis trademark or logo you should include a statement attributing the trademark to Salvatore Sanfilippo. For example, “Redis, and the Redis logo are the trademarks of Salvatore Sanfilippo in the U.S. and other countries.”

	MORE QUESTIONS? If you have questions about this policy, please contact us at antirez@gmail.com.

Modules API reference

RedisModule_Alloc

void *RedisModule_Alloc(size_t bytes);

Use like malloc(). Memory allocated with this function is reported in
Redis INFO memory, used for keys eviction according to maxmemory settings
and in general is taken into account as memory allocated by Redis.
You should avoid using malloc().

RedisModule_Calloc

void *RedisModule_Calloc(size_t nmemb, size_t size);

Use like calloc(). Memory allocated with this function is reported in
Redis INFO memory, used for keys eviction according to maxmemory settings
and in general is taken into account as memory allocated by Redis.
You should avoid using calloc() directly.

RedisModule_Realloc

void* RedisModule_Realloc(void *ptr, size_t bytes);

Use like realloc() for memory obtained with RedisModule_Alloc().

RedisModule_Free

void RedisModule_Free(void *ptr);

Use like free() for memory obtained by RedisModule_Alloc() and
RedisModule_Realloc(). However you should never try to free with
RedisModule_Free() memory allocated with malloc() inside your module.

RedisModule_Strdup

char *RedisModule_Strdup(const char *str);

Like strdup() but returns memory allocated with RedisModule_Alloc().

RedisModule_PoolAlloc

void *RedisModule_PoolAlloc(RedisModuleCtx *ctx, size_t bytes);

Return heap allocated memory that will be freed automatically when the
module callback function returns. Mostly suitable for small allocations
that are short living and must be released when the callback returns
anyway. The returned memory is aligned to the architecture word size
if at least word size bytes are requested, otherwise it is just
aligned to the next power of two, so for example a 3 bytes request is
4 bytes aligned while a 2 bytes request is 2 bytes aligned.

There is no realloc style function since when this is needed to use the
pool allocator is not a good idea.

The function returns NULL if bytes is 0.

RedisModule_GetApi

int RedisModule_GetApi(const char *funcname, void **targetPtrPtr);

Lookup the requested module API and store the function pointer into the
target pointer. The function returns REDISMODULE_ERR if there is no such
named API, otherwise REDISMODULE_OK.

This function is not meant to be used by modules developer, it is only
used implicitly by including redismodule.h.

RedisModule_IsKeysPositionRequest

int RedisModule_IsKeysPositionRequest(RedisModuleCtx *ctx);

Return non-zero if a module command, that was declared with the
flag “getkeys-api”, is called in a special way to get the keys positions
and not to get executed. Otherwise zero is returned.

RedisModule_KeyAtPos

void RedisModule_KeyAtPos(RedisModuleCtx *ctx, int pos);

When a module command is called in order to obtain the position of
keys, since it was flagged as “getkeys-api” during the registration,
the command implementation checks for this special call using the
RedisModule_IsKeysPositionRequest() API and uses this function in
order to report keys, like in the following example:

if (RedisModule_IsKeysPositionRequest(ctx)) {
 RedisModule_KeyAtPos(ctx,1);
 RedisModule_KeyAtPos(ctx,2);
}

Note: in the example below the get keys API would not be needed since
keys are at fixed positions. This interface is only used for commands
with a more complex structure.

RedisModule_CreateCommand

int RedisModule_CreateCommand(RedisModuleCtx *ctx, const char *name, RedisModuleCmdFunc cmdfunc, const char *strflags, int firstkey, int lastkey, int keystep);

Register a new command in the Redis server, that will be handled by
calling the function pointer ‘func’ using the RedisModule calling
convention. The function returns REDISMODULE_ERR if the specified command
name is already busy or a set of invalid flags were passed, otherwise
REDISMODULE_OK is returned and the new command is registered.

This function must be called during the initialization of the module
inside the RedisModule_OnLoad() function. Calling this function outside
of the initialization function is not defined.

The command function type is the following:

 int MyCommand_RedisCommand(RedisModuleCtx *ctx, RedisModuleString **argv, int argc);

And is supposed to always return REDISMODULE_OK.

The set of flags ‘strflags’ specify the behavior of the command, and should
be passed as a C string compoesd of space separated words, like for
example “write deny-oom”. The set of flags are:

	“write”: The command may modify the data set (it may also read
from it).

	“readonly”: The command returns data from keys but never writes.

	“admin”: The command is an administrative command (may change
replication or perform similar tasks).

	“deny-oom”: The command may use additional memory and should be
denied during out of memory conditions.

	“deny-script”: Don’t allow this command in Lua scripts.

	“allow-loading”: Allow this command while the server is loading data.
Only commands not interacting with the data set
should be allowed to run in this mode. If not sure
don’t use this flag.

	“pubsub”: The command publishes things on Pub/Sub channels.

	“random”: The command may have different outputs even starting
from the same input arguments and key values.

	“allow-stale”: The command is allowed to run on slaves that don’t
serve stale data. Don’t use if you don’t know what
this means.

	“no-monitor”: Don’t propoagate the command on monitor. Use this if
the command has sensible data among the arguments.

	“fast”: The command time complexity is not greater
than O(log(N)) where N is the size of the collection or
anything else representing the normal scalability
issue with the command.

	“getkeys-api”: The command implements the interface to return
the arguments that are keys. Used when start/stop/step
is not enough because of the command syntax.

	“no-cluster”: The command should not register in Redis Cluster
since is not designed to work with it because, for
example, is unable to report the position of the
keys, programmatically creates key names, or any
other reason.

RedisModule_SetModuleAttribs

void RedisModule_SetModuleAttribs(RedisModuleCtx *ctx, const char *name, int ver, int apiver);

Called by RM_Init() to setup the ctx->module structure.

This is an internal function, Redis modules developers don’t need
to use it.

RedisModule_Milliseconds

long long RedisModule_Milliseconds(void);

Return the current UNIX time in milliseconds.

RedisModule_AutoMemory

void RedisModule_AutoMemory(RedisModuleCtx *ctx);

Enable automatic memory management. See API.md for more information.

The function must be called as the first function of a command implementation
that wants to use automatic memory.

RedisModule_CreateString

RedisModuleString *RedisModule_CreateString(RedisModuleCtx *ctx, const char *ptr, size_t len);

Create a new module string object. The returned string must be freed
with RedisModule_FreeString(), unless automatic memory is enabled.

The string is created by copying the len bytes starting
at ptr. No reference is retained to the passed buffer.

RedisModule_CreateStringPrintf

RedisModuleString *RedisModule_CreateStringPrintf(RedisModuleCtx *ctx, const char *fmt, ...);

Create a new module string object from a printf format and arguments.
The returned string must be freed with RedisModule_FreeString(), unless
automatic memory is enabled.

The string is created using the sds formatter function sdscatvprintf().

RedisModule_CreateStringFromLongLong

RedisModuleString *RedisModule_CreateStringFromLongLong(RedisModuleCtx *ctx, long long ll);

Like RedisModule_CreatString(), but creates a string starting from a long long
integer instead of taking a buffer and its length.

The returned string must be released with RedisModule_FreeString() or by
enabling automatic memory management.

RedisModule_CreateStringFromString

RedisModuleString *RedisModule_CreateStringFromString(RedisModuleCtx *ctx, const RedisModuleString *str);

Like RedisModule_CreatString(), but creates a string starting from another
RedisModuleString.

The returned string must be released with RedisModule_FreeString() or by
enabling automatic memory management.

RedisModule_FreeString

void RedisModule_FreeString(RedisModuleCtx *ctx, RedisModuleString *str);

Free a module string object obtained with one of the Redis modules API calls
that return new string objects.

It is possible to call this function even when automatic memory management
is enabled. In that case the string will be released ASAP and removed
from the pool of string to release at the end.

RedisModule_RetainString

void RedisModule_RetainString(RedisModuleCtx *ctx, RedisModuleString *str);

Every call to this function, will make the string ‘str’ requiring
an additional call to RedisModule_FreeString() in order to really
free the string. Note that the automatic freeing of the string obtained
enabling modules automatic memory management counts for one
RedisModule_FreeString() call (it is just executed automatically).

Normally you want to call this function when, at the same time
the following conditions are true:

	You have automatic memory management enabled.

	You want to create string objects.

	Those string objects you create need to live after the callback
function(for example a command implementation) creating them returns.

Usually you want this in order to store the created string object
into your own data structure, for example when implementing a new data
type.

Note that when memory management is turned off, you don’t need
any call to RetainString() since creating a string will always result
into a string that lives after the callback function returns, if
no FreeString() call is performed.

RedisModule_StringPtrLen

const char *RedisModule_StringPtrLen(const RedisModuleString *str, size_t *len);

Given a string module object, this function returns the string pointer
and length of the string. The returned pointer and length should only
be used for read only accesses and never modified.

RedisModule_StringToLongLong

int RedisModule_StringToLongLong(const RedisModuleString *str, long long *ll);

Convert the string into a long long integer, storing it at *ll.
Returns REDISMODULE_OK on success. If the string can’t be parsed
as a valid, strict long long (no spaces before/after), REDISMODULE_ERR
is returned.

RedisModule_StringToDouble

int RedisModule_StringToDouble(const RedisModuleString *str, double *d);

Convert the string into a double, storing it at *d.
Returns REDISMODULE_OK on success or REDISMODULE_ERR if the string is
not a valid string representation of a double value.

RedisModule_StringCompare

int RedisModule_StringCompare(RedisModuleString *a, RedisModuleString *b);

Compare two string objects, returning -1, 0 or 1 respectively if
a < b, a == b, a > b. Strings are compared byte by byte as two
binary blobs without any encoding care / collation attempt.

RedisModule_StringAppendBuffer

int RedisModule_StringAppendBuffer(RedisModuleCtx *ctx, RedisModuleString *str, const char *buf, size_t len);

Append the specified buffere to the string ‘str’. The string must be a
string created by the user that is referenced only a single time, otherwise
REDISMODULE_ERR is returend and the operation is not performed.

RedisModule_WrongArity

int RedisModule_WrongArity(RedisModuleCtx *ctx);

Send an error about the number of arguments given to the command,
citing the command name in the error message.

Example:

if (argc != 3) return RedisModule_WrongArity(ctx);

RedisModule_ReplyWithLongLong

int RedisModule_ReplyWithLongLong(RedisModuleCtx *ctx, long long ll);

Send an integer reply to the client, with the specified long long value.
The function always returns REDISMODULE_OK.

RedisModule_ReplyWithError

int RedisModule_ReplyWithError(RedisModuleCtx *ctx, const char *err);

Reply with the error ‘err’.

Note that ‘err’ must contain all the error, including
the initial error code. The function only provides the initial “-”, so
the usage is, for example:

RedisModule_ReplyWithError(ctx,"ERR Wrong Type");

and not just:

RedisModule_ReplyWithError(ctx,"Wrong Type");

The function always returns REDISMODULE_OK.

RedisModule_ReplyWithSimpleString

int RedisModule_ReplyWithSimpleString(RedisModuleCtx *ctx, const char *msg);

Reply with a simple string (+... \r\n in RESP protocol). This replies
are suitable only when sending a small non-binary string with small
overhead, like “OK” or similar replies.

The function always returns REDISMODULE_OK.

RedisModule_ReplyWithArray

int RedisModule_ReplyWithArray(RedisModuleCtx *ctx, long len);

Reply with an array type of ‘len’ elements. However ‘len’ other calls
to ReplyWith* style functions must follow in order to emit the elements
of the array.

When producing arrays with a number of element that is not known beforehand
the function can be called with the special count
REDISMODULE_POSTPONED_ARRAY_LEN, and the actual number of elements can be
later set with RedisModule_ReplySetArrayLength() (which will set the
latest “open” count if there are multiple ones).

The function always returns REDISMODULE_OK.

RedisModule_ReplySetArrayLength

void RedisModule_ReplySetArrayLength(RedisModuleCtx *ctx, long len);

When RedisModule_ReplyWithArray() is used with the argument
REDISMODULE_POSTPONED_ARRAY_LEN, because we don’t know beforehand the number
of items we are going to output as elements of the array, this function
will take care to set the array length.

Since it is possible to have multiple array replies pending with unknown
length, this function guarantees to always set the latest array length
that was created in a postponed way.

For example in order to output an array like [1,[10,20,30]] we
could write:

 RedisModule_ReplyWithArray(ctx,REDISMODULE_POSTPONED_ARRAY_LEN);
 RedisModule_ReplyWithLongLong(ctx,1);
 RedisModule_ReplyWithArray(ctx,REDISMODULE_POSTPONED_ARRAY_LEN);
 RedisModule_ReplyWithLongLong(ctx,10);
 RedisModule_ReplyWithLongLong(ctx,20);
 RedisModule_ReplyWithLongLong(ctx,30);
 RedisModule_ReplySetArrayLength(ctx,3); // Set len of 10,20,30 array.
 RedisModule_ReplySetArrayLength(ctx,2); // Set len of top array

Note that in the above example there is no reason to postpone the array
length, since we produce a fixed number of elements, but in the practice
the code may use an interator or other ways of creating the output so
that is not easy to calculate in advance the number of elements.

RedisModule_ReplyWithStringBuffer

int RedisModule_ReplyWithStringBuffer(RedisModuleCtx *ctx, const char *buf, size_t len);

Reply with a bulk string, taking in input a C buffer pointer and length.

The function always returns REDISMODULE_OK.

RedisModule_ReplyWithString

int RedisModule_ReplyWithString(RedisModuleCtx *ctx, RedisModuleString *str);

Reply with a bulk string, taking in input a RedisModuleString object.

The function always returns REDISMODULE_OK.

RedisModule_ReplyWithNull

int RedisModule_ReplyWithNull(RedisModuleCtx *ctx);

Reply to the client with a NULL. In the RESP protocol a NULL is encoded
as the string “$-1\r\n”.

The function always returns REDISMODULE_OK.

RedisModule_ReplyWithCallReply

int RedisModule_ReplyWithCallReply(RedisModuleCtx *ctx, RedisModuleCallReply *reply);

Reply exactly what a Redis command returned us with RedisModule_Call().
This function is useful when we use RedisModule_Call() in order to
execute some command, as we want to reply to the client exactly the
same reply we obtained by the command.

The function always returns REDISMODULE_OK.

RedisModule_ReplyWithDouble

int RedisModule_ReplyWithDouble(RedisModuleCtx *ctx, double d);

Send a string reply obtained converting the double ‘d’ into a bulk string.
This function is basically equivalent to converting a double into
a string into a C buffer, and then calling the function
RedisModule_ReplyWithStringBuffer() with the buffer and length.

The function always returns REDISMODULE_OK.

RedisModule_Replicate

int RedisModule_Replicate(RedisModuleCtx *ctx, const char *cmdname, const char *fmt, ...);

Replicate the specified command and arguments to slaves and AOF, as effect
of execution of the calling command implementation.

The replicated commands are always wrapped into the MULTI/EXEC that
contains all the commands replicated in a given module command
execution. However the commands replicated with RedisModule_Call()
are the first items, the ones replicated with RedisModule_Replicate()
will all follow before the EXEC.

Modules should try to use one interface or the other.

This command follows exactly the same interface of RedisModule_Call(),
so a set of format specifiers must be passed, followed by arguments
matching the provided format specifiers.

Please refer to RedisModule_Call() for more information.

The command returns REDISMODULE_ERR if the format specifiers are invalid
or the command name does not belong to a known command.

RedisModule_ReplicateVerbatim

int RedisModule_ReplicateVerbatim(RedisModuleCtx *ctx);

This function will replicate the command exactly as it was invoked
by the client. Note that this function will not wrap the command into
a MULTI/EXEC stanza, so it should not be mixed with other replication
commands.

Basically this form of replication is useful when you want to propagate
the command to the slaves and AOF file exactly as it was called, since
the command can just be re-executed to deterministically re-create the
new state starting from the old one.

The function always returns REDISMODULE_OK.

RedisModule_GetClientId

unsigned long long RedisModule_GetClientId(RedisModuleCtx *ctx);

Return the ID of the current client calling the currently active module
command. The returned ID has a few guarantees:

	The ID is different for each different client, so if the same client
executes a module command multiple times, it can be recognized as
having the same ID, otherwise the ID will be different.

	The ID increases monotonically. Clients connecting to the server later
are guaranteed to get IDs greater than any past ID previously seen.

Valid IDs are from 1 to 2^64-1. If 0 is returned it means there is no way
to fetch the ID in the context the function was currently called.

RedisModule_GetSelectedDb

int RedisModule_GetSelectedDb(RedisModuleCtx *ctx);

Return the currently selected DB.

RedisModule_SelectDb

int RedisModule_SelectDb(RedisModuleCtx *ctx, int newid);

Change the currently selected DB. Returns an error if the id
is out of range.

Note that the client will retain the currently selected DB even after
the Redis command implemented by the module calling this function
returns.

If the module command wishes to change something in a different DB and
returns back to the original one, it should call RedisModule_GetSelectedDb()
before in order to restore the old DB number before returning.

RedisModule_OpenKey

void *RedisModule_OpenKey(RedisModuleCtx *ctx, robj *keyname, int mode);

Return an handle representing a Redis key, so that it is possible
to call other APIs with the key handle as argument to perform
operations on the key.

The return value is the handle repesenting the key, that must be
closed with RM_CloseKey().

If the key does not exist and WRITE mode is requested, the handle
is still returned, since it is possible to perform operations on
a yet not existing key (that will be created, for example, after
a list push operation). If the mode is just READ instead, and the
key does not exist, NULL is returned. However it is still safe to
call RedisModule_CloseKey() and RedisModule_KeyType() on a NULL
value.

RedisModule_CloseKey

void RedisModule_CloseKey(RedisModuleKey *key);

Close a key handle.

RedisModule_KeyType

int RedisModule_KeyType(RedisModuleKey *key);

Return the type of the key. If the key pointer is NULL then
REDISMODULE_KEYTYPE_EMPTY is returned.

RedisModule_ValueLength

size_t RedisModule_ValueLength(RedisModuleKey *key);

Return the length of the value associated with the key.
For strings this is the length of the string. For all the other types
is the number of elements (just counting keys for hashes).

If the key pointer is NULL or the key is empty, zero is returned.

RedisModule_DeleteKey

int RedisModule_DeleteKey(RedisModuleKey *key);

If the key is open for writing, remove it, and setup the key to
accept new writes as an empty key (that will be created on demand).
On success REDISMODULE_OK is returned. If the key is not open for
writing REDISMODULE_ERR is returned.

RedisModule_GetExpire

mstime_t RedisModule_GetExpire(RedisModuleKey *key);

Return the key expire value, as milliseconds of remaining TTL.
If no TTL is associated with the key or if the key is empty,
REDISMODULE_NO_EXPIRE is returned.

RedisModule_SetExpire

int RedisModule_SetExpire(RedisModuleKey *key, mstime_t expire);

Set a new expire for the key. If the special expire
REDISMODULE_NO_EXPIRE is set, the expire is cancelled if there was
one (the same as the PERSIST command).

Note that the expire must be provided as a positive integer representing
the number of milliseconds of TTL the key should have.

The function returns REDISMODULE_OK on success or REDISMODULE_ERR if
the key was not open for writing or is an empty key.

RedisModule_StringSet

int RedisModule_StringSet(RedisModuleKey *key, RedisModuleString *str);

If the key is open for writing, set the specified string ‘str’ as the
value of the key, deleting the old value if any.
On success REDISMODULE_OK is returned. If the key is not open for
writing or there is an active iterator, REDISMODULE_ERR is returned.

RedisModule_StringDMA

char *RedisModule_StringDMA(RedisModuleKey *key, size_t *len, int mode);

Prepare the key associated string value for DMA access, and returns
a pointer and size (by reference), that the user can use to read or
modify the string in-place accessing it directly via pointer.

The ‘mode’ is composed by bitwise OR-ing the following flags:

REDISMODULE_READ -- Read access
REDISMODULE_WRITE -- Write access

If the DMA is not requested for writing, the pointer returned should
only be accessed in a read-only fashion.

On error (wrong type) NULL is returned.

DMA access rules:

	No other key writing function should be called since the moment
the pointer is obtained, for all the time we want to use DMA access
to read or modify the string.

	Each time RM_StringTruncate() is called, to continue with the DMA
access, RM_StringDMA() should be called again to re-obtain
a new pointer and length.

	If the returned pointer is not NULL, but the length is zero, no
byte can be touched (the string is empty, or the key itself is empty)
so a RM_StringTruncate() call should be used if there is to enlarge
the string, and later call StringDMA() again to get the pointer.

RedisModule_StringTruncate

int RedisModule_StringTruncate(RedisModuleKey *key, size_t newlen);

If the string is open for writing and is of string type, resize it, padding
with zero bytes if the new length is greater than the old one.

After this call, RM_StringDMA() must be called again to continue
DMA access with the new pointer.

The function returns REDISMODULE_OK on success, and REDISMODULE_ERR on
error, that is, the key is not open for writing, is not a string
or resizing for more than 512 MB is requested.

If the key is empty, a string key is created with the new string value
unless the new length value requested is zero.

RedisModule_ListPush

int RedisModule_ListPush(RedisModuleKey *key, int where, RedisModuleString *ele);

Push an element into a list, on head or tail depending on ‘where’ argumnet.
If the key pointer is about an empty key opened for writing, the key
is created. On error (key opened for read-only operations or of the wrong
type) REDISMODULE_ERR is returned, otherwise REDISMODULE_OK is returned.

RedisModule_ListPop

RedisModuleString *RedisModule_ListPop(RedisModuleKey *key, int where);

Pop an element from the list, and returns it as a module string object
that the user should be free with RM_FreeString() or by enabling
automatic memory. ‘where’ specifies if the element should be popped from
head or tail. The command returns NULL if:

	The list is empty.

	The key was not open for writing.

	The key is not a list.

RedisModule_ZsetAddFlagsToCoreFlags

int RedisModule_ZsetAddFlagsToCoreFlags(int flags);

Conversion from/to public flags of the Modules API and our private flags,
so that we have everything decoupled.

RedisModule_ZsetAddFlagsFromCoreFlags

int RedisModule_ZsetAddFlagsFromCoreFlags(int flags);

See previous function comment.

RedisModule_ZsetAdd

int RedisModule_ZsetAdd(RedisModuleKey *key, double score, RedisModuleString *ele, int *flagsptr);

Add a new element into a sorted set, with the specified ‘score’.
If the element already exists, the score is updated.

A new sorted set is created at value if the key is an empty open key
setup for writing.

Additional flags can be passed to the function via a pointer, the flags
are both used to receive input and to communicate state when the function
returns. ‘flagsptr’ can be NULL if no special flags are used.

The input flags are:

REDISMODULE_ZADD_XX: Element must already exist. Do nothing otherwise.
REDISMODULE_ZADD_NX: Element must not exist. Do nothing otherwise.

The output flags are:

REDISMODULE_ZADD_ADDED: The new element was added to the sorted set.
REDISMODULE_ZADD_UPDATED: The score of the element was updated.
REDISMODULE_ZADD_NOP: No operation was performed because XX or NX flags.

On success the function returns REDISMODULE_OK. On the following errors
REDISMODULE_ERR is returned:

	The key was not opened for writing.

	The key is of the wrong type.

	‘score’ double value is not a number (NaN).

RedisModule_ZsetIncrby

int RedisModule_ZsetIncrby(RedisModuleKey *key, double score, RedisModuleString *ele, int *flagsptr, double *newscore);

This function works exactly like RM_ZsetAdd(), but instead of setting
a new score, the score of the existing element is incremented, or if the
element does not already exist, it is added assuming the old score was
zero.

The input and output flags, and the return value, have the same exact
meaning, with the only difference that this function will return
REDISMODULE_ERR even when ‘score’ is a valid double number, but adding it
to the existing score resuts into a NaN (not a number) condition.

This function has an additional field ‘newscore’, if not NULL is filled
with the new score of the element after the increment, if no error
is returned.

RedisModule_ZsetRem

int RedisModule_ZsetRem(RedisModuleKey *key, RedisModuleString *ele, int *deleted);

Remove the specified element from the sorted set.
The function returns REDISMODULE_OK on success, and REDISMODULE_ERR
on one of the following conditions:

	The key was not opened for writing.

	The key is of the wrong type.

The return value does NOT indicate the fact the element was really
removed (since it existed) or not, just if the function was executed
with success.

In order to know if the element was removed, the additional argument
‘deleted’ must be passed, that populates the integer by reference
setting it to 1 or 0 depending on the outcome of the operation.
The ‘deleted’ argument can be NULL if the caller is not interested
to know if the element was really removed.

Empty keys will be handled correctly by doing nothing.

RedisModule_ZsetScore

int RedisModule_ZsetScore(RedisModuleKey *key, RedisModuleString *ele, double *score);

On success retrieve the double score associated at the sorted set element
‘ele’ and returns REDISMODULE_OK. Otherwise REDISMODULE_ERR is returned
to signal one of the following conditions:

	There is no such element ‘ele’ in the sorted set.

	The key is not a sorted set.

	The key is an open empty key.

RedisModule_ZsetRangeStop

void RedisModule_ZsetRangeStop(RedisModuleKey *key);

Stop a sorted set iteration.

RedisModule_ZsetRangeEndReached

int RedisModule_ZsetRangeEndReached(RedisModuleKey *key);

Return the “End of range” flag value to signal the end of the iteration.

RedisModule_ZsetFirstInScoreRange

int RedisModule_ZsetFirstInScoreRange(RedisModuleKey *key, double min, double max, int minex, int maxex);

Setup a sorted set iterator seeking the first element in the specified
range. Returns REDISMODULE_OK if the iterator was correctly initialized
otherwise REDISMODULE_ERR is returned in the following conditions:

	The value stored at key is not a sorted set or the key is empty.

The range is specified according to the two double values ‘min’ and ‘max’.
Both can be infinite using the following two macros:

REDISMODULE_POSITIVE_INFINITE for positive infinite value
REDISMODULE_NEGATIVE_INFINITE for negative infinite value

‘minex’ and ‘maxex’ parameters, if true, respectively setup a range
where the min and max value are exclusive (not included) instead of
inclusive.

RedisModule_ZsetLastInScoreRange

int RedisModule_ZsetLastInScoreRange(RedisModuleKey *key, double min, double max, int minex, int maxex);

Exactly like RedisModule_ZsetFirstInScoreRange() but the last element of
the range is selected for the start of the iteration instead.

RedisModule_ZsetFirstInLexRange

int RedisModule_ZsetFirstInLexRange(RedisModuleKey *key, RedisModuleString *min, RedisModuleString *max);

Setup a sorted set iterator seeking the first element in the specified
lexicographical range. Returns REDISMODULE_OK if the iterator was correctly
initialized otherwise REDISMODULE_ERR is returned in the
following conditions:

	The value stored at key is not a sorted set or the key is empty.

	The lexicographical range ‘min’ and ‘max’ format is invalid.

‘min’ and ‘max’ should be provided as two RedisModuleString objects
in the same format as the parameters passed to the ZRANGEBYLEX command.
The function does not take ownership of the objects, so they can be released
ASAP after the iterator is setup.

RedisModule_ZsetLastInLexRange

int RedisModule_ZsetLastInLexRange(RedisModuleKey *key, RedisModuleString *min, RedisModuleString *max);

Exactly like RedisModule_ZsetFirstInLexRange() but the last element of
the range is selected for the start of the iteration instead.

RedisModule_ZsetRangeCurrentElement

RedisModuleString *RedisModule_ZsetRangeCurrentElement(RedisModuleKey *key, double *score);

Return the current sorted set element of an active sorted set iterator
or NULL if the range specified in the iterator does not include any
element.

RedisModule_ZsetRangeNext

int RedisModule_ZsetRangeNext(RedisModuleKey *key);

Go to the next element of the sorted set iterator. Returns 1 if there was
a next element, 0 if we are already at the latest element or the range
does not include any item at all.

RedisModule_ZsetRangePrev

int RedisModule_ZsetRangePrev(RedisModuleKey *key);

Go to the previous element of the sorted set iterator. Returns 1 if there was
a previous element, 0 if we are already at the first element or the range
does not include any item at all.

RedisModule_HashSet

int RedisModule_HashSet(RedisModuleKey *key, int flags, ...);

Set the field of the specified hash field to the specified value.
If the key is an empty key open for writing, it is created with an empty
hash value, in order to set the specified field.

The function is variadic and the user must specify pairs of field
names and values, both as RedisModuleString pointers (unless the
CFIELD option is set, see later).

Example to set the hash argv[1] to the value argv[2]:

 RedisModule_HashSet(key,REDISMODULE_HASH_NONE,argv[1],argv[2],NULL);

The function can also be used in order to delete fields (if they exist)
by setting them to the specified value of REDISMODULE_HASH_DELETE:

 RedisModule_HashSet(key,REDISMODULE_HASH_NONE,argv[1],
 REDISMODULE_HASH_DELETE,NULL);

The behavior of the command changes with the specified flags, that can be
set to REDISMODULE_HASH_NONE if no special behavior is needed.

REDISMODULE_HASH_NX: The operation is performed only if the field was not
 already existing in the hash.
REDISMODULE_HASH_XX: The operation is performed only if the field was
 already existing, so that a new value could be
 associated to an existing filed, but no new fields
 are created.
REDISMODULE_HASH_CFIELDS: The field names passed are null terminated C
 strings instead of RedisModuleString objects.

Unless NX is specified, the command overwrites the old field value with
the new one.

When using REDISMODULE_HASH_CFIELDS, field names are reported using
normal C strings, so for example to delete the field “foo” the following
code can be used:

 RedisModule_HashSet(key,REDISMODULE_HASH_CFIELDS,"foo",
 REDISMODULE_HASH_DELETE,NULL);

Return value:

The number of fields updated (that may be less than the number of fields
specified because of the XX or NX options).

In the following case the return value is always zero:

	The key was not open for writing.

	The key was associated with a non Hash value.

RedisModule_HashGet

int RedisModule_HashGet(RedisModuleKey *key, int flags, ...);

Get fields from an hash value. This function is called using a variable
number of arguments, alternating a field name (as a StringRedisModule
pointer) with a pointer to a StringRedisModule pointer, that is set to the
value of the field if the field exist, or NULL if the field did not exist.
At the end of the field/value-ptr pairs, NULL must be specified as last
argument to signal the end of the arguments in the variadic function.

This is an example usage:

 RedisModuleString *first, *second;
 RedisModule_HashGet(mykey,REDISMODULE_HASH_NONE,argv[1],&first,
 argv[2],&second,NULL);

As with RedisModule_HashSet() the behavior of the command can be specified
passing flags different than REDISMODULE_HASH_NONE:

REDISMODULE_HASH_CFIELD: field names as null terminated C strings.

REDISMODULE_HASH_EXISTS: instead of setting the value of the field
expecting a RedisModuleString pointer to pointer, the function just
reports if the field esists or not and expects an integer pointer
as the second element of each pair.

Example of REDISMODULE_HASH_CFIELD:

 RedisModuleString *username, *hashedpass;
 RedisModule_HashGet(mykey,"username",&username,"hp",&hashedpass, NULL);

Example of REDISMODULE_HASH_EXISTS:

 int exists;
 RedisModule_HashGet(mykey,argv[1],&exists,NULL);

The function returns REDISMODULE_OK on success and REDISMODULE_ERR if
the key is not an hash value.

Memory management:

The returned RedisModuleString objects should be released with
RedisModule_FreeString(), or by enabling automatic memory management.

RedisModule_FreeCallReply_Rec

void RedisModule_FreeCallReply_Rec(RedisModuleCallReply *reply, int freenested);

Free a Call reply and all the nested replies it contains if it’s an
array.

RedisModule_FreeCallReply

void RedisModule_FreeCallReply(RedisModuleCallReply *reply);

Wrapper for the recursive free reply function. This is needed in order
to have the first level function to return on nested replies, but only
if called by the module API.

RedisModule_CallReplyType

int RedisModule_CallReplyType(RedisModuleCallReply *reply);

Return the reply type.

RedisModule_CallReplyLength

size_t RedisModule_CallReplyLength(RedisModuleCallReply *reply);

Return the reply type length, where applicable.

RedisModule_CallReplyArrayElement

RedisModuleCallReply *RedisModule_CallReplyArrayElement(RedisModuleCallReply *reply, size_t idx);

Return the ‘idx’-th nested call reply element of an array reply, or NULL
if the reply type is wrong or the index is out of range.

RedisModule_CallReplyInteger

long long RedisModule_CallReplyInteger(RedisModuleCallReply *reply);

Return the long long of an integer reply.

RedisModule_CallReplyStringPtr

const char *RedisModule_CallReplyStringPtr(RedisModuleCallReply *reply, size_t *len);

Return the pointer and length of a string or error reply.

RedisModule_CreateStringFromCallReply

RedisModuleString *RedisModule_CreateStringFromCallReply(RedisModuleCallReply *reply);

Return a new string object from a call reply of type string, error or
integer. Otherwise (wrong reply type) return NULL.

RedisModule_Call

RedisModuleCallReply *RedisModule_Call(RedisModuleCtx *ctx, const char *cmdname, const char *fmt, ...);

Exported API to call any Redis command from modules.
On success a RedisModuleCallReply object is returned, otherwise
NULL is returned and errno is set to the following values:

EINVAL: command non existing, wrong arity, wrong format specifier.
EPERM: operation in Cluster instance with key in non local slot.

RedisModule_CallReplyProto

const char *RedisModule_CallReplyProto(RedisModuleCallReply *reply, size_t *len);

Return a pointer, and a length, to the protocol returned by the command
that returned the reply object.

RedisModule_CreateDataType

moduleType *RedisModule_CreateDataType(RedisModuleCtx *ctx, const char *name, int encver, void *typemethods_ptr);

Register a new data type exported by the module. The parameters are the
following. Please for in depth documentation check the modules API
documentation, especially the TYPES.md file.

	name: A 9 characters data type name that MUST be unique in the Redis
Modules ecosystem. Be creative... and there will be no collisions. Use
the charset A-Z a-z 9-0, plus the two “-_” characters. A good
idea is to use, for example <typename>-<vendor>. For example
“tree-AntZ” may mean “Tree data structure by @antirez”. To use both
lower case and upper case letters helps in order to prevent collisions.

	encver: Encoding version, which is, the version of the serialization
that a module used in order to persist data. As long as the “name”
matches, the RDB loading will be dispatched to the type callbacks
whatever ‘encver’ is used, however the module can understand if
the encoding it must load are of an older version of the module.
For example the module “tree-AntZ” initially used encver=0. Later
after an upgrade, it started to serialize data in a different format
and to register the type with encver=1. However this module may
still load old data produced by an older version if the rdb_load
callback is able to check the encver value and act accordingly.
The encver must be a positive value between 0 and 1023.

	typemethods_ptr is a pointer to a RedisModuleTypeMethods structure
that should be populated with the methods callbacks and structure
version, like in the following example:

RedisModuleTypeMethods tm = {
.version = REDISMODULE_TYPE_METHOD_VERSION,
.rdb_load = myType_RDBLoadCallBack,
.rdb_save = myType_RDBSaveCallBack,
.aof_rewrite = myType_AOFRewriteCallBack,
.free = myType_FreeCallBack,

 // Optional fields
 .digest = myType_DigestCallBack,
 .mem_usage = myType_MemUsageCallBack,

}

	rdb_load: A callback function pointer that loads data from RDB files.

	rdb_save: A callback function pointer that saves data to RDB files.

	aof_rewrite: A callback function pointer that rewrites data as commands.

	digest: A callback function pointer that is used for DEBUG DIGEST.

	free: A callback function pointer that can free a type value.

The **digest* and mem_usage methods should currently be omitted since
they are not yet implemented inside the Redis modules core.

Note: the module name “AAAAAAAAA” is reserved and produces an error, it
happens to be pretty lame as well.

If there is already a module registering a type with the same name,
and if the module name or encver is invalid, NULL is returned.
Otherwise the new type is registered into Redis, and a reference of
type RedisModuleType is returned: the caller of the function should store
this reference into a gobal variable to make future use of it in the
modules type API, since a single module may register multiple types.
Example code fragment:

 static RedisModuleType *BalancedTreeType;

 int RedisModule_OnLoad(RedisModuleCtx *ctx) {
 // some code here ...
 BalancedTreeType = RM_CreateDataType(...);
 }

RedisModule_ModuleTypeSetValue

int RedisModule_ModuleTypeSetValue(RedisModuleKey *key, moduleType *mt, void *value);

If the key is open for writing, set the specified module type object
as the value of the key, deleting the old value if any.
On success REDISMODULE_OK is returned. If the key is not open for
writing or there is an active iterator, REDISMODULE_ERR is returned.

RedisModule_ModuleTypeGetType

moduleType *RedisModule_ModuleTypeGetType(RedisModuleKey *key);

Assuming RedisModule_KeyType() returned REDISMODULE_KEYTYPE_MODULE on
the key, returns the moduel type pointer of the value stored at key.

If the key is NULL, is not associated with a module type, or is empty,
then NULL is returned instead.

RedisModule_ModuleTypeGetValue

void *RedisModule_ModuleTypeGetValue(RedisModuleKey *key);

Assuming RedisModule_KeyType() returned REDISMODULE_KEYTYPE_MODULE on
the key, returns the module type low-level value stored at key, as
it was set by the user via RedisModule_ModuleTypeSet().

If the key is NULL, is not associated with a module type, or is empty,
then NULL is returned instead.

RedisModule_SaveUnsigned

void RedisModule_SaveUnsigned(RedisModuleIO *io, uint64_t value);

Save an unsigned 64 bit value into the RDB file. This function should only
be called in the context of the rdb_save method of modules implementing new
data types.

RedisModule_LoadUnsigned

uint64_t RedisModule_LoadUnsigned(RedisModuleIO *io);

Load an unsigned 64 bit value from the RDB file. This function should only
be called in the context of the rdb_load method of modules implementing
new data types.

RedisModule_SaveSigned

void RedisModule_SaveSigned(RedisModuleIO *io, int64_t value);

Like RedisModule_SaveUnsigned() but for signed 64 bit values.

RedisModule_LoadSigned

int64_t RedisModule_LoadSigned(RedisModuleIO *io);

Like RedisModule_LoadUnsigned() but for signed 64 bit values.

RedisModule_SaveString

void RedisModule_SaveString(RedisModuleIO *io, RedisModuleString *s);

In the context of the rdb_save method of a module type, saves a
string into the RDB file taking as input a RedisModuleString.

The string can be later loaded with RedisModule_LoadString() or
other Load family functions expecting a serialized string inside
the RDB file.

RedisModule_SaveStringBuffer

void RedisModule_SaveStringBuffer(RedisModuleIO *io, const char *str, size_t len);

Like RedisModule_SaveString() but takes a raw C pointer and length
as input.

RedisModule_LoadString

RedisModuleString *RedisModule_LoadString(RedisModuleIO *io);

In the context of the rdb_load method of a module data type, loads a string
from the RDB file, that was previously saved with RedisModule_SaveString()
functions family.

The returned string is a newly allocated RedisModuleString object, and
the user should at some point free it with a call to RedisModule_FreeString().

If the data structure does not store strings as RedisModuleString objects,
the similar function RedisModule_LoadStringBuffer() could be used instead.

RedisModule_LoadStringBuffer

char *RedisModule_LoadStringBuffer(RedisModuleIO *io, size_t *lenptr);

Like RedisModule_LoadString() but returns an heap allocated string that
was allocated with RedisModule_Alloc(), and can be resized or freed with
RedisModule_Realloc() or RedisModule_Free().

The size of the string is stored at ‘*lenptr’ if not NULL.
The returned string is not automatically NULL termianted, it is loaded
exactly as it was stored inisde the RDB file.

RedisModule_SaveDouble

void RedisModule_SaveDouble(RedisModuleIO *io, double value);

In the context of the rdb_save method of a module data type, saves a double
value to the RDB file. The double can be a valid number, a NaN or infinity.
It is possible to load back the value with RedisModule_LoadDouble().

RedisModule_LoadDouble

double RedisModule_LoadDouble(RedisModuleIO *io);

In the context of the rdb_save method of a module data type, loads back the
double value saved by RedisModule_SaveDouble().

RedisModule_SaveFloat

void RedisModule_SaveFloat(RedisModuleIO *io, float value);

In the context of the rdb_save method of a module data type, saves a float
value to the RDB file. The float can be a valid number, a NaN or infinity.
It is possible to load back the value with RedisModule_LoadFloat().

RedisModule_LoadFloat

float RedisModule_LoadFloat(RedisModuleIO *io);

In the context of the rdb_save method of a module data type, loads back the
float value saved by RedisModule_SaveFloat().

RedisModule_DigestAddStringBuffer

void RedisModule_DigestAddStringBuffer(RedisModuleDigest *md, unsigned char *ele, size_t len);

Add a new element to the digest. This function can be called multiple times
one element after the other, for all the elements that constitute a given
data structure. The function call must be followed by the call to
RedisModule_DigestEndSequence eventually, when all the elements that are
always in a given order are added. See the Redis Modules data types
documentation for more info. However this is a quick example that uses Redis
data types as an example.

To add a sequence of unordered elements (for example in the case of a Redis
Set), the pattern to use is:

foreach element {
 AddElement(element);
 EndSequence();
}

Because Sets are not ordered, so every element added has a position that
does not depend from the other. However if instead our elements are
ordered in pairs, like field-value pairs of an Hash, then one should
use:

foreach key,value {
 AddElement(key);
 AddElement(value);
 EndSquence();
}

Because the key and value will be always in the above order, while instead
the single key-value pairs, can appear in any position into a Redis hash.

A list of ordered elements would be implemented with:

foreach element {
 AddElement(element);
}
EndSequence();

RedisModule_DigestAddLongLong

void RedisModule_DigestAddLongLong(RedisModuleDigest *md, long long ll);

Like RedisModule_DigestAddStringBuffer() but takes a long long as input
that gets converted into a string before adding it to the digest.

RedisModule_DigestEndSequence

void RedisModule_DigestEndSequence(RedisModuleDigest *md);

See the doucmnetation for RedisModule_DigestAddElement().

RedisModule_EmitAOF

void RedisModule_EmitAOF(RedisModuleIO *io, const char *cmdname, const char *fmt, ...);

Emits a command into the AOF during the AOF rewriting process. This function
is only called in the context of the aof_rewrite method of data types exported
by a module. The command works exactly like RedisModule_Call() in the way
the parameters are passed, but it does not return anything as the error
handling is performed by Redis itself.

RedisModule_LogRaw

void RedisModule_LogRaw(RedisModule *module, const char *levelstr, const char *fmt, va_list ap);

This is the low level function implementing both:

 RM_Log()
 RM_LogIOError()

RedisModule_Log

void RedisModule_Log(RedisModuleCtx *ctx, const char *levelstr, const char *fmt, ...);

Produces a log message to the standard Redis log, the format accepts
printf-alike specifiers, while level is a string describing the log
level to use when emitting the log, and must be one of the following:

	“debug”

	“verbose”

	“notice”

	“warning”

If the specified log level is invalid, verbose is used by default.
There is a fixed limit to the length of the log line this function is able
to emit, this limti is not specified but is guaranteed to be more than
a few lines of text.

RedisModule_LogIOError

void RedisModule_LogIOError(RedisModuleIO *io, const char *levelstr, const char *fmt, ...);

Log errors from RDB / AOF serialization callbacks.

This function should be used when a callback is returning a critical
error to the caller since cannot load or save the data for some
critical reason.

RedisModule_BlockClient

RedisModuleBlockedClient *RedisModule_BlockClient(RedisModuleCtx *ctx, RedisModuleCmdFunc reply_callback, RedisModuleCmdFunc timeout_callback, void (*free_privdata)(void*), long long timeout_ms);

Block a client in the context of a blocking command, returning an handle
which will be used, later, in order to block the client with a call to
RedisModule_UnblockClient(). The arguments specify callback functions
and a timeout after which the client is unblocked.

The callbacks are called in the following contexts:

reply_callback: called after a successful RedisModule_UnblockClient()
 call in order to reply to the client and unblock it.

reply_timeout: called when the timeout is reached in order to send an
 error to the client.

free_privdata: called in order to free the privata data that is passed
 by RedisModule_UnblockClient() call.

RedisModule_UnblockClient

int RedisModule_UnblockClient(RedisModuleBlockedClient *bc, void *privdata);

Unblock a client blocked by RedisModule_BlockedClient. This will trigger
the reply callbacks to be called in order to reply to the client.
The ‘privdata’ argument will be accessible by the reply callback, so
the caller of this function can pass any value that is needed in order to
actually reply to the client.

A common usage for ‘privdata’ is a thread that computes something that
needs to be passed to the client, included but not limited some slow
to compute reply or some reply obtained via networking.

Note: this function can be called from threads spawned by the module.

RedisModule_AbortBlock

int RedisModule_AbortBlock(RedisModuleBlockedClient *bc);

Abort a blocked client blocking operation: the client will be unblocked
without firing the reply callback.

RedisModule_IsBlockedReplyRequest

int RedisModule_IsBlockedReplyRequest(RedisModuleCtx *ctx);

Return non-zero if a module command was called in order to fill the
reply for a blocked client.

RedisModule_IsBlockedTimeoutRequest

int RedisModule_IsBlockedTimeoutRequest(RedisModuleCtx *ctx);

Return non-zero if a module command was called in order to fill the
reply for a blocked client that timed out.

RedisModule_GetBlockedClientPrivateData

void *RedisModule_GetBlockedClientPrivateData(RedisModuleCtx *ctx);

Get the privata data set by RedisModule_UnblockClient()

RedisModule_GetThreadSafeContext

RedisModuleCtx *RedisModule_GetThreadSafeContext(RedisModuleBlockedClient *bc);

Return a context which can be used inside threads to make Redis context
calls with certain modules APIs. If ‘bc’ is not NULL then the module will
be bound to a blocked client, and it will be possible to use the
``RedisModule_Reply* family of functions to accumulate a reply for when the
client will be unblocked. Otherwise the thread safe context will be
detached by a specific client.

To call non-reply APIs, the thread safe context must be prepared with:

RedisModule_ThreadSafeCallStart(ctx);
... make your call here ...
RedisModule_ThreadSafeCallStop(ctx);

This is not needed when using ``RedisModule_Reply* functions, assuming
that a blocked client was used when the context was created, otherwise
no RedisModule_Reply* call should be made at all.

TODO: thread safe contexts do not inherit the blocked client
selected database.

RedisModule_FreeThreadSafeContext

void RedisModule_FreeThreadSafeContext(RedisModuleCtx *ctx);

Release a thread safe context.

RedisModule_ThreadSafeContextLock

void RedisModule_ThreadSafeContextLock(RedisModuleCtx *ctx);

Acquire the server lock before executing a thread safe API call.
This is not needed for ``RedisModule_Reply* calls when there is
a blocked client connected to the thread safe context.

RedisModule_ThreadSafeContextUnlock

void RedisModule_ThreadSafeContextUnlock(RedisModuleCtx *ctx);

Release the server lock after a thread safe API call was executed.

Replication

At the base of Redis replication there is a very simple to use and configure
master-slave replication that allows slave Redis servers to be exact copies of
master servers. The slave will automatically reconnect to the master every
time the link breaks, and will attempt to be an exact copy of it regardless
of what happens to the master.

This system works using three main mechanisms:

	When a master and a slave instance are well-connected, the master keeps the slave updated by sending a stream of commands in order to replicate the effects on the dataset happening in the master dataset: client writes, keys expiring or evicted, and so forth.

	When the link between the master and the slave breaks, for network issues or because a timeout is sensed in the master or the slave, the slave reconnects and attempts to proceed with a partial resynchronization: it means that it will try to just obtain the part of the stream of commands it missed during the disconnection.

	When a partial resynchronization is not possible, the slave will ask for a full resynchronization. This will involve a more complex process in which the master needs to create a snapshot of all its data, send it to the slave, and then continue sending the stream of commands as the dataset changes.

Redis uses by default asynchronous replication, which being high latency and
high performance, is the natural replication mode for the vast majority of Redis
use cases. However Redis slaves asynchronously acknowledge the amount of data
the received periodically with the master.

Synchronous replication of certain data can be requested by the clients using
the WAIT command. However WAIT is only able to ensure that there are the
specified number of acknowledged copies in the other Redis instances: acknowledged
writes can still be lost during a failover for different reasons during a
failover or depending on the exact configuration of the Redis persistence.
You could check the Sentinel or Redis Cluster documentation for more information
about high availability and failover. The rest of this document mainly describe the basic characteristics of Redis basic replication.

The following are some very important facts about Redis replication:

	Redis uses asynchronous replication, with asynchronous slave-to-master acknowledges of the amount of data processed.

	A master can have multiple slaves.

	Slaves are able to accept connections from other slaves. Aside from
connecting a number of slaves to the same master, slaves can also be
connected to other slaves in a cascading-like structure. Since Redis 4.0, all the sub-slaves will receive exactly the same replication stream from the master.

	Redis replication is non-blocking on the master side. This means that
the master will continue to handle queries when one or more slaves perform
the initial synchronization or a partial resynchronization.

	Replication is also largely non-blocking on the slave side. While the slave is performing the initial synchronization, it can handle queries using the old version of the dataset, assuming you configured Redis to do so in redis.conf.
Otherwise, you can configure Redis slaves to return an error to clients if the
replication stream is down. However, after the initial sync, the old dataset
must be deleted and the new one must be loaded. The slave will block incoming
connections during this brief window (that can be as long as many seconds for very large datasets). Since Redis 4.0 it is possible to configure Redis so that the deletion of the old data set happens in a different thread, however loading the new initial dataset will still happen in the main thread and block the slave.

	Replication can be used both for scalability, in order to have
multiple slaves for read-only queries (for example, slow O(N)
operations can be offloaded to slaves), or simply for data safety.

	It is possible to use replication to avoid the cost of having the master write the full dataset to disk: a typical technique involves configuring your master redis.conf to avoid persisting to disk at all, then connect a slave configured to save from time to time, or with AOF enabled. However this setup must be handled with care, since a restarting master will start with an empty dataset: if the slave tries to synchronized with it, the slave will be emptied as well.

Safety of replication when master has persistence turned off

In setups where Redis replication is used, it is strongly advised to have
persistence turned on in the master and in the slaves. When this is not possible,
for example because of latency concerns due to very slow disks, instances should
be configured to avoid restarting automatically after a reboot.

To better understand why masters with persistence turned off configured to
auto restart are dangerous, check the following failure mode where data
is wiped from the master and all its slaves:

	We have a setup with node A acting as master, with persistence turned down, and nodes B and C replicating from node A.

	Node A crashes, however it has some auto-restart system, that restarts the process. However since persistence is turned off, the node restarts with an empty data set.

	Nodes B and C will replicate from node A, which is empty, so they’ll effectively destroy their copy of the data.

When Redis Sentinel is used for high availability, also turning off persistence
on the master, together with auto restart of the process, is dangerous. For example the master can restart fast enough for Sentinel to don’t detect a failure, so that the failure mode described above happens.

Every time data safety is important, and replication is used with master configured without persistence, auto restart of instances should be disabled.

How Redis replication works

Every Redis master has a replication ID: it is a large pseudo random string
that marks a given story of the dataset. Each master also takes an offset that
increments for every byte of replication stream that it is produced to be
sent to slaves, in order to update the state of the slaves with the new changes
modifying the dataset. The replication offset is incremented even if no slave
is actually connected, so basically every given pair of:

Replication ID, offset

Identifies an exact version of the dataset of a master.

When slaves connects to master, they use the PSYNC command in order to send
their old master replication ID and the offsets they processed so far. This way
the master can send just the incremental part needed. However if there is not
enough backlog in the master buffers, or if the slave is referring to an
history (replication ID) which is no longer known, than a full resynchronization
happens: in this case the slave will get a full copy of the dataset, from scratch.

This is how a full synchronization works in more details:

The master starts a background saving process in order to produce an RDB file. At the same time it starts to buffer all new write commands received from the clients. When the background saving is complete, the master transfers the database file to the slave, which saves it on disk, and then loads it into memory. The master will then send all buffered commands to the slave. This is done as a stream of commands and is in the same format of the Redis protocol itself.

You can try it yourself via telnet. Connect to the Redis port while the
server is doing some work and issue the SYNC command. You’ll see a bulk
transfer and then every command received by the master will be re-issued
in the telnet session. Actually SYNC is an old protocol no longer used by
newer Redis instances, but is still there for backward compatibility: it does
not allow partial resynchronizations, so now PSYNC is used instead.

As already said, slaves are able to automatically reconnect when the master-slave link goes down for some reason. If the master receives multiple concurrent slave synchronization requests, it performs a single background save in order to serve all of them.

Diskless replication

Normally a full resynchronization requires to create an RDB file on disk,
then reload the same RDB from disk in order to feed the slaves with the data.

With slow disks this can be a very stressing operation for the master.
Redis version 2.8.18 is the first version to have support for diskless
replication. In this setup the child process directly sends the
RDB over the wire to slaves, without using the disk as intermediate storage.

Configuration

To configure basic Redis replication is trivial: just add the following line to the slave configuration file:

slaveof 192.168.1.1 6379

Of course you need to replace 192.168.1.1 6379 with your master IP address (or
hostname) and port. Alternatively, you can call the SLAVEOF command and the
master host will start a sync with the slave.

There are also a few parameters for tuning the replication backlog taken
in memory by the master to perform the partial resynchronization. See the example
redis.conf shipped with the Redis distribution for more information.

Diskless replication can be enabled using the repl-diskless-sync configuration
parameter. The delay to start the transfer in order to wait more slaves to
arrive after the first one, is controlled by the repl-diskless-sync-delay
parameter. Please refer to the example redis.conf file in the Redis distribution
for more details.

Read-only slave

Since Redis 2.6, slaves support a read-only mode that is enabled by default.
This behavior is controlled by the slave-read-only option in the redis.conf file, and can be enabled and disabled at runtime using CONFIG SET.

Read-only slaves will reject all write commands, so that it is not possible to write to a slave because of a mistake. This does not mean that the feature is intended to expose a slave instance to the internet or more generally to a network where untrusted clients exist, because administrative commands like DEBUG or CONFIG are still enabled. However, security of read-only instances can be improved by disabling commands in redis.conf using the rename-command directive.

You may wonder why it is possible to revert the read-only setting
and have slave instances that can be targeted by write operations.
While those writes will be discarded if the slave and the master
resynchronize or if the slave is restarted, there are a few legitimate
use case for storing ephemeral data in writable slaves.

For example computing slow Set or Sorted set operations and storing them into local keys is an use case for writable slaves that was observed multiple times.

However note that writable slaves before version 4.0 were incapable of expiring keys with a time to live set. This means that if you use EXPIRE or other commands that set a maximum TTL for a key, the key will leak, and while you may no longer see it while accessing it with read commands, you will see it in the count of keys and it will still use memory. So in general mixing writable slaves (previous version 4.0) and keys with TTL is going to create issues.

Redis 4.0 RC3 and greater versions totally solve this problem and now writable
slaves are able to evict keys with TTL as masters do, with the exceptions
of keys written in DB numbers greater than 63 (but by default Redis instances
only have 16 databases).

Also note that since Redis 4.0 slave writes are only local, and are not propagated to sub-slaves attached to the instance. Sub slaves instead will always receive the replication stream identical to the one sent by the top-level master to the intermediate slaves. So for example in the following setup:

A ---> B ---> C

Even if B is writable, C will not see B writes and will instead have identical dataset as the master instance A.

Setting a slave to authenticate to a master

If your master has a password via requirepass, it’s trivial to configure the
slave to use that password in all sync operations.

To do it on a running instance, use redis-cli and type:

config set masterauth <password>

To set it permanently, add this to your config file:

masterauth <password>

Allow writes only with N attached replicas

Starting with Redis 2.8, it is possible to configure a Redis master to
accept write queries only if at least N slaves are currently connected to the
master.

However, because Redis uses asynchronous replication it is not possible to ensure
the slave actually received a given write, so there is always a window for data
loss.

This is how the feature works:

	Redis slaves ping the master every second, acknowledging the amount of replication stream processed.

	Redis masters will remember the last time it received a ping from every slave.

	The user can configure a minimum number of slaves that have a lag not greater than a maximum number of seconds.

If there are at least N slaves, with a lag less than M seconds, then the write will be accepted.

You may think of it as a best effort data safety mechanism, where consistency is not ensured for a given write, but at least the time window for data loss is restricted to a given number of seconds. In general bound data loss is better than unbound one.

If the conditions are not met, the master will instead reply with an error and the write will not be accepted.

There are two configuration parameters for this feature:

	min-slaves-to-write <number of slaves>

	min-slaves-max-lag <number of seconds>

For more information, please check the example redis.conf file shipped with the
Redis source distribution.

How Redis replication deals with expires on keys

Redis expires allow keys to have a limited time to live. Such a feature depends
on the ability of an instance to count the time, however Redis slaves correctly
replicate keys with expires, even when such keys are altered using Lua
scripts.

To implement such a feature Redis cannot rely on the ability of the master and
slave to have synchronized clocks, since this is a problem that cannot be solved
and would result into race conditions and diverging data sets, so Redis
uses three main techniques in order to make the replication of expired keys
able to work:

	Slaves don’t expire keys, instead they wait for masters to expire the keys. When a master expires a key (or evict it because of LRU), it synthesizes a DEL command which is transmitted to all the slaves.

	However because of master-driven expire, sometimes slaves may still have in memory keys that are already logically expired, since the master was not able to provide the DEL command in time. In order to deal with that the slave uses its logical clock in order to report that a key does not exist only for read operations that don’t violate the consistency of the data set (as new commands from the master will arrive). In this way slaves avoid to report logically expired keys are still existing. In practical terms, an HTML fragments cache that uses slaves to scale will avoid returning items that are already older than the desired time to live.

	During Lua scripts executions no keys expires are performed. As a Lua script runs, conceptually the time in the master is frozen, so that a given key will either exist or not for all the time the script runs. This prevents keys to expire in the middle of a script, and is needed in order to send the same script to the slave in a way that is guaranteed to have the same effects in the data set.

Once a slave is promoted to a master it will start to expire keys independently, and will not require any help from its old master.

Configuring replication in Docker and NAT

When Docker, or other types of containers using port forwarding, or Network Address Translation is used, Redis replication needs some extra care, especially when using Redis Sentinel or other systems where the master INFO or ROLE commands output are scanned in order to discover slaves addresses.

The problem is that the ROLE command, and the replication section of
the INFO output, when issued into a master instance, will show slaves
as having the IP address they use to connect to the master, which, in
environments using NAT may be different compared to the logical address of the
slave instance (the one that clients should use to connect to slaves).

Similarly the slaves will be listed with the listening port configured
into redis.conf, that may be different than the forwarded port in case
the port is remapped.

In order to fix both issues, it is possible, since Redis 3.2.2, to force
a slave to announce an arbitrary pair of IP and port to the master.
The two configurations directives to use are:

slave-announce-ip 5.5.5.5
slave-announce-port 1234

And are documented in the example redis.conf of recent Redis distributions.

The INFO and ROLE command

There are two Redis commands that provide a lot of information on the current
replication parameters of master and slave instances. One is INFO. If the
command is called with the replication argument as INFO replication only
information relevant to the replication are displayed. Another more
computer-friendly command is ROLE, that provides the replication status of
masters and slaves together with their replication offsets, list of connected
slaves and so forth.

Partial resynchronizations after restarts and failovers

Since Redis 4.0, when an instance is promoted to master after a failover,
it will be still able to perform a partial resynchronization with the slaves
of the old master. To do so, the slave remembers the old replication ID and
offset of its former master, so can provide part of the backlog to the connecting
slaves even if they ask for the old replication ID.

However the new replication ID of the promoted slave will be different, since it
constitutes a different history of the data set. For example, the master can
return available and can continue accepting writes for some time, so using the
same replication ID in the promoted slave would violate the rule that a
of replication ID and offset pair identifies only a single data set.

Moreover slaves when powered off gently and restarted, are able to store in the
RDB file the information needed in order to resynchronize with their master.
This is useful in case of upgrades. When this is needed, it is better to use
the SHUTDOWN command in order to perform a save & quit operation on the slave.

 WARNING: This document is a draft and the guidelines that it contains may change in the future as the Sentinel project evolves.

Guidelines for Redis clients with support for Redis Sentinel

Redis Sentinel is a monitoring solution for Redis instances that handles
automatic failover of Redis masters and service discovery (who is the current
master for a given group of instances?). Since Sentinel is both responsible
to reconfigure instances during failovers, and to provide configurations to
clients connecting to Redis masters or slaves, clients require to have
explicit support for Redis Sentinel.

This document is targeted at Redis clients developers that want to support Sentinel in their clients implementation with the following goals:

	Automatic configuration of clients via Sentinel.

	Improved safety of Redis Sentinel automatic failover.

For details about how Redis Sentinel works, please check the Redis Documentation, as this document only contains information needed for Redis client developers, and it is expected that readers are familiar with the way Redis Sentinel works.

Redis service discovery via Sentinel

Redis Sentinel identify every master with a name like “stats” or “cache”.
Every name actually identifies a group of instances, composed of a master
and a variable number of slaves.

The address of the Redis master that is used for a specific purpose inside a network may change after events like an automatic failover, a manually triggered failover (for instance in order to upgrade a Redis instance), and other reasons.

Normally Redis clients have some kind of hard-coded configuration that specifies the address of a Redis master instance within a network as IP address and port number. However if the master address changes, manual intervention in every client is needed.

A Redis client supporting Sentinel can automatically discover the address of a Redis master from the master name using Redis Sentinel. So instead of a hard coded IP address and port, a client supporting Sentinel should optionally be able to take as input:

	A list of ip:port pairs pointing to known Sentinel instances.

	The name of the service, like “cache” or “timelines”.

This is the procedure a client should follow in order to obtain the master address starting from the list of Sentinels and the service name.

Step 1: connecting to the first Sentinel

The client should iterate the list of Sentinel addresses. For every address it should try to connect to the Sentinel, using a short timeout (in the order of a few hundreds of milliseconds). On errors or timeouts the next Sentinel address should be tried.

If all the Sentinel addresses were tried without success, an error should be returned to the client.

The first Sentinel replying to the client request should be put at the start of the list, so that at the next reconnection, we’ll try first the Sentinel that was reachable in the previous connection attempt, minimizing latency.

Step 2: ask for master address

Once a connection with a Sentinel is established, the client should retry to execute the following command on the Sentinel:

SENTINEL get-master-addr-by-name master-name

Where master-name should be replaced with the actual service name specified by the user.

The result from this call can be one of the following two replies:

	An ip:port pair.

	A null reply. This means Sentinel does not know this master.

If an ip:port pair is received, this address should be used to connect to the Redis master. Otherwise if a null reply is received, the client should try the next Sentinel in the list.

Step 3: call the ROLE command in the target instance

Once the client discovered the address of the master instance, it should
attempt a connection with the master, and call the ROLE command in order
to verify the role of the instance is actually a master.

If the ROLE commands is not available (it was introduced in Redis 2.8.12), a client may resort to the INFO replication command parsing the role: field of the output.

If the instance is not a master as expected, the client should wait a short amount of time (a few hundreds of milliseconds) and should try again starting from Step 1.

Handling reconnections

Once the service name is resolved into the master address and a connection is established with the Redis master instance, every time a reconnection is needed, the client should resolve again the address using Sentinels restarting from Step 1. For instance Sentinel should contacted again the following cases:

	If the client reconnects after a timeout or socket error.

	If the client reconnects because it was explicitly closed or reconnected by the user.

In the above cases and any other case where the client lost the connection with the Redis server, the client should resolve the master address again.

Sentinel failover disconnection

Starting with Redis 2.8.12, when Redis Sentinel changes the configuration of
an instance, for example promoting a slave to a master, demoting a master to
replicate to the new master after a failover, or simply changing the master
address of a stale slave instance, it sends a CLIENT KILL type normal
command to the instance in order to make sure all the clients are disconnected
from the reconfigured instance. This will force clients to resolve the master
address again.

If the client will contact a Sentinel with yet not updated information, the verification of the Redis instance role via the ROLE command will fail, allowing the client to detect that the contacted Sentinel provided stale information, and will try again.

Note: it is possible that a stale master returns online at the same time a client contacts a stale Sentinel instance, so the client may connect with a stale master, and yet the ROLE output will match. However when the master is back again Sentinel will try to demote it to slave, triggering a new disconnection. The same reasoning applies to connecting to stale slaves that will get reconfigured to replicate with a different master.

Connecting to slaves

Sometimes clients are interested to connect to slaves, for example in order to scale read requests. This protocol supports connecting to slaves by modifying step 2 slightly. Instead of calling the following command:

SENTINEL get-master-addr-by-name master-name

The clients should call instead:

SENTINEL slaves master-name

In order to retrieve a list of slave instances.

Symmetrically the client should verify with the ROLE command that the
instance is actually a slave, in order to avoid scaling read queries with
the master.

Connection pools

For clients implementing connection pools, on reconnection of a single connection, the Sentinel should be contacted again, and in case of a master address change all the existing connections should be closed and connected to the new address.

Error reporting

The client should correctly return the information to the user in case of errors. Specifically:

	If no Sentinel can be contacted (so that the client was never able to get the reply to SENTINEL get-master-addr-by-name), an error that clearly states that Redis Sentinel is unreachable should be returned.

	If all the Sentinels in the pool replied with a null reply, the user should be informed with an error that Sentinels don’t know this master name.

Sentinels list automatic refresh

Optionally once a successful reply to get-master-addr-by-name is received, a client may update its internal list of Sentinel nodes following this procedure:

	Obtain a list of other Sentinels for this master using the command SENTINEL sentinels <master-name>.

	Add every ip:port pair not already existing in our list at the end of the list.

It is not needed for a client to be able to make the list persistent updating its own configuration. The ability to upgrade the in-memory representation of the list of Sentinels can be already useful to improve reliability.

Subscribe to Sentinel events to improve responsiveness

The Sentinel documentation shows how clients can connect to
Sentinel instances using Pub/Sub in order to subscribe to changes in the
Redis instances configurations.

This mechanism can be used in order to speedup the reconfiguration of clients,
that is, clients may listen to Pub/Sub in order to know when a configuration
change happened in order to run the three steps protocol explained in this
document in order to resolve the new Redis master (or slave) address.

However update messages received via Pub/Sub should not substitute the
above procedure, since there is no guarantee that a client is able to
receive all the update messages.

Additional information

For additional information or to discuss specific aspects of this guidelines, please drop a message to the Redis Google Group [https://groups.google.com/group/redis-db].

Secondary indexing with Redis

Redis is not exactly a key-value store, since values can be complex data structures. However it has an external key-value shell: at API level data is addressed by the key name. It is fair to say that, natively, Redis only offers primary key access. However since Redis is a data structures server, its capabilities can be used for indexing, in order to create secondary indexes of different kinds, including composite (multi-column) indexes.

This document explains how it is possible to create indexes in Redis using the following data structures:

	Sorted sets to create secondary indexes by ID or other numerical fields.

	Sorted sets with lexicographical ranges for creating more advanced secondary indexes, composite indexes and graph traversal indexes.

	Sets for creating random indexes.

	Lists for creating simple iterable indexes and last N items indexes.

Implementing and maintaining indexes with Redis is an advanced topic, so most
users that need to perform complex queries on data should understand if they
are better served by a relational store. However often, especially in caching
scenarios, there is the explicit need to store indexed data into Redis in order to speedup common queries which require some form of indexing in order to be executed.

Simple numerical indexes with sorted sets

The simplest secondary index you can create with Redis is by using the
sorted set data type, which is a data structure representing a set of
elements ordered by a floating point number which is the score of
each element. Elements are ordered from the smallest to the highest score.

Since the score is a double precision float, indexes you can build with
vanilla sorted sets are limited to things where the indexing field is a number
within a given range.

The two commands to build these kind of indexes are ZADD and
ZRANGEBYSCORE to respectively add items and retrieve items within a
specified range.

For instance, it is possible to index a set of person names by their
age by adding element to a sorted set. The element will be the name of the
person and the score will be the age.

ZADD myindex 25 Manuel
ZADD myindex 18 Anna
ZADD myindex 35 Jon
ZADD myindex 67 Helen

In order to retrieve all persons with an age between 20 and 40, the following
command can be used:

ZRANGEBYSCORE myindex 20 40
1) "Manuel"
2) "Jon"

By using the WITHSCORES option of ZRANGEBYSCORE it is also possible
to obtain the scores associated with the returned elements.

The ZCOUNT command can be used in order to retrieve the number of elements
within a given range, without actually fetching the elements, which is also
useful, especially given the fact the operation is executed in logarithmic
time regardless of the size of the range.

Ranges can be inclusive or exclusive, please refer to the ZRANGEBYSCORE
command documentation for more information.

Note: Using the ZREVRANGEBYSCORE it is possible to query a range in
reversed order, which is often useful when data is indexed in a given
direction (ascending or descending) but we want to retrieve information
the other way around.

Using objects IDs as associated values

In the above example we associated names to ages. However in general we
may want to index some field of an object which is stored elsewhere.
Instead of using the sorted set value directly to store the data associated
with the indexed field, it is possible to store just the ID of the object.

For example I may have Redis hashes representing users. Each user is
represented by a single key, directly accessible by ID:

HMSET user:1 id 1 username antirez ctime 1444809424 age 38
HMSET user:2 id 2 username maria ctime 1444808132 age 42
HMSET user:3 id 3 username jballard ctime 1443246218 age 33

If I want to create an index in order to query users by their age, I
could do:

ZADD user.age.index 38 1
ZADD user.age.index 42 2
ZADD user.age.index 33 3

This time the value associated with the score in the sorted set is the
ID of the object. So once I query the index with ZRANGEBYSCORE I’ll
also have to retrieve the information I need with HGETALL or similar
commands. The obvious advantage is that objects can change without touching
the index, as long as we don’t change the indexed field.

In the next examples we’ll almost always use IDs as values associated with
the index, since this is usually the more sounding design, with a few
exceptions.

Updating simple sorted set indexes

Often we index things which change over time. In the above
example, the age of the user changes every year. In such a case it would
make sense to use the birth date as index instead of the age itself,
but there are other cases where we simple want some field to change from
time to time, and the index to reflect this change.

The ZADD command makes updating simple indexes a very trivial operation
since re-adding back an element with a different score and the same value
will simply update the score and move the element at the right position,
so if the user antirez turned 39 years old, in order to update the
data in the hash representing the user, and in the index as well, we need
to execute the following two commands:

HSET user:1 age 39
ZADD user.age.index 39 1

The operation may be wrapped in a MULTI/EXEC transaction in order to
make sure both fields are updated or none.

Turning multi dimensional data into linear data

Indexes created with sorted sets are able to index only a single numerical
value. Because of this you may think it is impossible to index something
which has multiple dimensions using this kind of indexes, but actually this
is not always true. If you can efficiently represent something
multi-dimensional in a linear way, they it is often possible to use a simple
sorted set for indexing.

For example the Redis geo indexing API uses a sorted
set to index places by latitude and longitude using a technique called
Geo hash [https://en.wikipedia.org/wiki/Geohash]. The sorted set score
represents alternating bits of longitude and latitude, so that we map the
linear score of a sorted set to many small squares in the earth surface.
By doing an 8+1 style center plus neighborhoods search it is possible to
retrieve elements by radius.

Limits of the score

Sorted set elements scores are double precision integers. It means that
they can represent different decimal or integer values with different
errors, because they use an exponential representation internally.
However what is interesting for indexing purposes is that the score is
always able to represent without any error numbers between -9007199254740992
and 9007199254740992, which is -/+ 2^53.

When representing much larger numbers, you need a different form of indexing
that is able to index numbers at any precision, called a lexicographical
index.

Lexicographical indexes

Redis sorted sets have an interesting property. When elements are added
with the same score, they are sorted lexicographically, comparing the
strings as binary data with the memcmp() function.

For people that don’t know the C language nor the memcmp function, what
it means is that elements with the same score are sorted comparing the
raw values of their bytes, byte after byte. If the first byte is the same,
the second is checked and so forth. If the common prefix of two strings is
the same then the longer string is considered the greater of the two,
so “foobar” is greater than “foo”.

There are commands such as ZRANGEBYLEX and ZLEXCOUNT that
are able to query and count ranges in a lexicographically fashion, assuming
they are used with sorted sets where all the elements have the same score.

This Redis feature is basically equivalent to a b-tree data structure which
is often used in order to implement indexes with traditional databases.
As you can guess, because of this, it is possible to use this Redis data
structure in order to implement pretty fancy indexes.

Before we dive into using lexicographical indexes, let’s check how
sorted sets behave in this special mode of operation. Since we need to
add elements with the same score, we’ll always use the special score of
zero.

ZADD myindex 0 baaa
ZADD myindex 0 abbb
ZADD myindex 0 aaaa
ZADD myindex 0 bbbb

Fetching all the elements from the sorted set immediately reveals that they
are ordered lexicographically.

ZRANGE myindex 0 -1
1) "aaaa"
2) "abbb"
3) "baaa"
4) "bbbb"

Now we can use ZRANGEBYLEX in order to perform range queries.

ZRANGEBYLEX myindex [a (b
1) "aaaa"
2) "abbb"

Note that in the range queries we prefixed the min and max elements
identifying the range with the special characters [and (.
This prefixes are mandatory, and they specify if the elements
of the range are inclusive or exclusive. So the range [a (b means give me
all the elements lexicographically between a inclusive and b exclusive,
which are all the elements starting with a.

There are also two more special characters indicating the infinitely negative
string and the infinitely positive string, which are - and +.

ZRANGEBYLEX myindex [b +
1) "baaa"
2) "bbbb"

That’s it basically. Let’s see how to use these features to build indexes.

A first example: completion

An interesting application of indexing is completion. Completion is what
happens when you start typing your query into a search engine: the user
interface will anticipate what you are likely typing, providing common
queries that start with the same characters.

A naive approach to completion is to just add every single query we
get from the user into the index. For example if the user searches banana
we’ll just do:

ZADD myindex 0 banana

And so forth for each search query ever encountered. Then when we want to
complete the user input, we execute a range query using ZRANGEBYLEX.
Imagine the user is typing “bit” inside the search form, and we want to
offer possible search keywords starting for “bit”. We send Redis a command
like that:

ZRANGEBYLEX myindex "[bit" "[bit\xff"

Basically we create a range using the string the user is typing right now
as start, and the same string plus a trailing byte set to 255, which is \xff in the example, as the end of the range. This way we get all the strings that start for the string the user is typing.

Note that we don’t want too many items returned, so we may use the LIMIT option in order to reduce the number of results.

Adding frequency into the mix

The above approach is a bit naive, because all the user searches are the same
in this way. In a real system we want to complete strings according to their
frequency: very popular searches will be proposed with an higher probability
compared to search strings typed very rarely.

In order to implement something which depends on the frequency, and at the
same time automatically adapts to future inputs, by purging searches that
are no longer popular, we can use a very simple streaming algorithm.

To start, we modify our index in order to store not just the search term,
but also the frequency the term is associated with. So instead of just adding
banana we add banana:1, where 1 is the frequency.

ZADD myindex 0 banana:1

We also need logic in order to increment the index if the search term
already exists in the index, so what we’ll actually do is something like
that:

ZRANGEBYLEX myindex "[banana:" + LIMIT 1 1
1) "banana:1"

This will return the single entry of banana if it exists. Then we
can increment the associated frequency and send the following two
commands:

ZREM myindex 0 banana:1
ZADD myindex 0 banana:2

Note that because it is possible that there are concurrent updates, the
above three commands should be send via a Lua script
instead, so that the Lua script will atomically get the old count and
re-add the item with incremented score.

So the result will be that, every time a user searches for banana we’ll
get our entry updated.

There is more: our goal is to just have items searched very frequently.
So we need some form of purging. When we actually query the index
in order to complete the user input, we may see something like that:

ZRANGEBYLEX myindex "[banana:" + LIMIT 1 10
1) "banana:123"
2) "banahhh:1"
3) "banned user:49"
4) "banning:89"

Apparently nobody searches for “banahhh”, for example, but the query was
performed a single time, so we end presenting it to the user.

This is what we can do. Out of the returned items, we pick a random one,
decrement its score by one, and re-add it with the new score.
However if the score reaches 0, we simply remove the item from the list.
You can use much more advanced systems, but the idea is that the index in
the long run will contain top searches, and if top searches will change over
the time it will adapt automatically.

A refinement to this algorithm is to pick entries in the list according to
their weight: the higher the score, the less likely entries are picked
in order to decrement its score, or evict them.

Normalizing strings for case and accents

In the completion examples we always used lowercase strings. However
reality is much more complex than that: languages have capitalized names,
accents, and so forth.

One simple way do deal with this issues is to actually normalize the
string the user searches. Whatever the user searches for “Banana”,
“BANANA” or “Ba’nana” we may always turn it into “banana”.

However sometimes we may like to present the user with the original
item typed, even if we normalize the string for indexing. In order to
do this, what we do is to change the format of the index so that instead
of just storing term:frequency we store normalized:frequency:original
like in the following example:

ZADD myindex 0 banana:273:Banana

Basically we add another field that we’ll extract and use only for
visualization. Ranges will always be computed using the normalized strings
instead. This is a common trick which has multiple applications.

Adding auxiliary information in the index

When using a sorted set in a direct way, we have two different attributes
for each object: the score, which we use as an index, and an associated
value. When using lexicographical indexes instead, the score is always
set to 0 and basically not used at all. We are left with a single string,
which is the element itself.

Like we did in the previous completion examples, we are still able to
store associated data using separators. For example we used the colon in
order to add the frequency and the original word for completion.

In general we can add any kind of associated value to our indexing key.
In order to use a lexicographical index to implement a simple key-value store
we just store the entry as key:value:

ZADD myindex 0 mykey:myvalue

And search for the key with:

ZRANGEBYLEX myindex mykey: + LIMIT 1 1
1) "mykey:myvalue"

Then we extract the part after the colon to retrieve the value.
However a problem to solve in this case is collisions. The colon character
may be part of the key itself, so it must be chosen in order to never
collide with the key we add.

Since lexicographical ranges in Redis are binary safe you can use any
byte or any sequence of bytes. However if you receive untrusted user
input, it is better to use some form of escaping in order to guarantee
that the separator will never happen to be part of the key.

For example if you use two null bytes as separator "\0\0", you may
want to always escape null bytes into two bytes sequences in your strings.

Numerical padding

Lexicographical indexes may look like good only when the problem at hand
is to index strings. Actually it is very simple to use this kind of index
in order to perform indexing of arbitrary precision numbers.

In the ASCII character set, digits appear in the order from 0 to 9, so
if we left-pad numbers with leading zeroes, the result is that comparing
them as strings will order them by their numerical value.

ZADD myindex 0 00324823481:foo
ZADD myindex 0 12838349234:bar
ZADD myindex 0 00000000111:zap

ZRANGE myindex 0 -1
1) "00000000111:zap"
2) "00324823481:foo"
3) "12838349234:bar"

We effectively created an index using a numerical field which can be as
big as we want. This also works with floating point numbers of any precision
by making sure we left pad the numerical part with leading zeroes and the
decimal part with trailing zeroes like in the following list of numbers:

 01000000000000.11000000000000
 01000000000000.02200000000000
 00000002121241.34893482930000
 00999999999999.00000000000000

Using numbers in binary form

Storing numbers in decimal may use too much memory. An alternative approach
is just to store numbers, for example 128 bit integers, directly in their
binary form. However for this to work, you need to store the numbers in
big endian format, so that the most significant bytes are stored before
the least significant bytes. This way when Redis compares the strings with
memcmp(), it will effectively sort the numbers by their value.

Keep in mind that data stored in binary format is less observable for
debugging, harder to parse and export. So it is definitely a trade off.

Composite indexes

So far we explored ways to index single fields. However we all know that
SQL stores are able to create indexes using multiple fields. For example
I may index products in a very large store by room number and price.

I need to run queries in order to retrieve all the products in a given
room having a given price range. What I can do is to index each product
in the following way:

ZADD myindex 0 0056:0028.44:90
ZADD myindex 0 0034:0011.00:832

Here the fields are room:price:product_id. I used just four digits padding
in the example for simplicity. The auxiliary data (the product ID) does not
need any padding.

With an index like that, to get all the products in room 56 having a price
between 10 and 30 dollars is very easy. We can just run the following
command:

ZRANGEBYLEX myindex [0056:0010.00 [0056:0030.00

The above is called a composed index. Its effectiveness depends on the
order of the fields and the queries I want to run. For example the above
index cannot be used efficiently in order to get all the products having
a specific price range regardless of the room number. However I can use
the primary key in order to run queries regardless of the price, like
give me all the products in room 44.

Composite indexes are very powerful, and are used in traditional stores
in order to optimize complex queries. In Redis they could be useful both
to implement a very fast in-memory Redis index of something stored into
a traditional data store, or in order to directly index Redis data.

Updating lexicographical indexes

The value of the index in a lexicographical index can get pretty fancy
and hard or slow to rebuild from what we store about the object. So one
approach to simplify the handling of the index, at the cost of using more
memory, is to also take alongside to the sorted set representing the index
a hash mapping the object ID to the current index value.

So for example, when we index we also add to a hash:

MULTI
ZADD myindex 0 0056:0028.44:90
HSET index.content 90 0056:0028.44:90
EXEC

This is not always needed, but simplifies the operations of updating
the index. In order to remove the old information we indexed for the object
ID 90, regardless of the current fields values of the object, we just
have to retrieve the hash value by object ID and ZREM it in the sorted
set view.

Representing and querying graphs using an hexastore

One cool thing about composite indexes is that they are handy in order
to represent graphs, using a data structure which is called
Hexastore [http://www.vldb.org/pvldb/1/1453965.pdf].

The hexastore provides a representation for relations between objects,
formed by a subject, a predicate and an object.
A simple relation between objects could be:

antirez is-friend-of matteocollina

In order to represent this relation I can store the following element
in my lexicographical index:

ZADD myindex 0 spo:antirez:is-friend-of:matteocollina

Note that I prefixed my item with the string spo. It means that
the item represents a subject,predicate,object relation.

In can add 5 more entries for the same relation, but in a different order:

ZADD myindex 0 sop:antirez:matteocollina:is-friend-of
ZADD myindex 0 ops:matteocollina:is-friend-of:antirez
ZADD myindex 0 osp:matteocollina:antirez:is-friend-of
ZADD myindex 0 pso:is-friend-of:antirez:matteocollina
ZADD myindex 0 pos:is-friend-of:matteocollina:antirez

Now things start to be interesting, and I can query the graph in many
different ways. For example, who are all the people antirez
is friend of?

ZRANGEBYLEX myindex "[spo:antirez:is-friend-of:" "[spo:antirez:is-friend-of:\xff"
1) "spo:antirez:is-friend-of:matteocollina"
2) "spo:antirez:is-friend-of:wonderwoman"
3) "spo:antirez:is-friend-of:spiderman"

Or, what are all the relationships antirez and matteocollina have where
the first is the subject and the second is the object?

ZRANGEBYLEX myindex "[sop:antirez:matteocollina:" "[sop:antirez:matteocollina:\xff"
1) "sop:antirez:matteocollina:is-friend-of"
2) "sop:antirez:matteocollina:was-at-conference-with"
3) "sop:antirez:matteocollina:talked-with"

By combining different queries, I can ask fancy questions. For example:
Who are all my friends that, like beer, live in Barcelona, and matteocollina consider friends as well?
To get this information I start with an spo query to find all the people
I’m friend with. Then for each result I get I perform an spo query
to check if they like beer, removing the ones for which I can’t find
this relation. I do it again to filter by city. Finally I perform an ops
query to find, of the list I obtained, who is considered friend by
matteocollina.

Make sure to check Matteo Collina’s slides about Levelgraph [http://nodejsconfit.levelgraph.io/] in order to better understand these ideas.

Multi dimensional indexes

A more complex type of index is an index that allows you to perform queries
where two or more variables are queried at the same time for specific
ranges. For example I may have a data set representing persons age and
salary, and I want to retrieve all the people between 50 and 55 years old
having a salary between 70000 and 85000.

This query may be performed with a multi column index, but this requires
us to select the first variable and then scan the second, which means we
may do a lot more work than needed. It is possible to perform these kinds of
queries involving multiple variables using different data structures.
For example, multi-dimensional trees such as k-d trees or r-trees are
sometimes used. Here we’ll describe a different way to index data into
multiple dimensions, using a representation trick that allows us to perform
the query in a very efficient way using Redis lexicographical ranges.

Let’s start by visualizing the problem. In this picture we have points
in the space, which represent our data samples, where x and y are
our coordinates. Both variables max value is 400.

The blue box in the picture represents our query. We want all the points
where x is between 50 and 100, and where y is between 100 and 300.

[image: Points in the space]

In order to represent data that makes these kinds of queries fast to perform,
we start by padding our numbers with 0. So for example imagine we want to
add the point 10,25 (x,y) to our index. Given that the maximum range in the
example is 400 we can just pad to three digits, so we obtain:

x = 010
y = 025

Now what we do is to interleave the digits, taking the leftmost digit
in x, and the leftmost digit in y, and so forth, in order to create a single
number:

001205

This is our index, however in order to more easily reconstruct the original
representation, if we want (at the cost of space), we may also add the
original values as additional columns:

001205:10:25

Now, let’s reason about this representation and why it is useful in the
context of range queries. For example let’s take the center of our blue
box, which is at x=75 and y=200. We can encode this number as we did
earlier by interleaving the digits, obtaining:

027050

What happens if we substitute the last two digits respectively with 00 and 99?
We obtain a range which is lexicographically continuous:

027000 to 027099

What this maps to is to a square representing all values where the x
variable is between 70 and 79, and the y variable is between 200 and 209.
We can write random points in this interval, in order to identify this
specific area:

[image: Small area]

So the above lexicographic query allows us to easily query for points in
a specific square in the picture. However the square may be too small for
the box we are searching, so that too many queries are needed.
So we can do the same but instead of replacing the last two digits with 00
and 99, we can do it for the last four digits, obtaining the following
range:

020000 029999

This time the range represents all the points where x is between 0 and 99
and y is between 200 and 299. Drawing random points in this interval
shows us this larger area:

[image: Large area]

Oops now our area is ways too big for our query, and still our search box is
not completely included. We need more granularity, but we can easily obtain
it by representing our numbers in binary form. This time, when we replace
digits instead of getting squares which are ten times bigger, we get squares
which are just two times bigger.

Our numbers in binary form, assuming we need just 9 bits for each variable
(in order to represent numbers up to 400 in value) would be:

x = 75 -> 001001011
y = 200 -> 011001000

So by interleaving digits, our representation in the index would be:

000111000011001010:75:200

Let’s see what are our ranges as we substitute the last 2, 4, 6, 8, ...
bits with 0s ad 1s in the interleaved representation:

2 bits: x between 70 and 75, y between 200 and 201 (range=2)
4 bits: x between 72 and 75, y between 200 and 203 (range=4)
6 bits: x between 72 and 79, y between 200 and 207 (range=8)
8 bits: x between 64 and 79, y between 192 and 207 (range=16)

And so forth. Now we have definitely better granularity!
As you can see substituting N bits from the index gives us
search boxes of side 2^(N/2).

So what we do is check the dimension where our search box is smaller,
and check the nearest power of two to this number. Our search box
was 50,100 to 100,300, so it has a width of 50 and an height of 200.
We take the smaller of the two, 50, and check the nearest power of two
which is 64. 64 is 2^6, so we would work with indexes obtained replacing
the latest 12 bits from the interleaved representation (so that we end
replacing just 6 bits of each variable).

However single squares may not cover all our search, so we may need more.
What we do is to start with the left bottom corner of our search box,
which is 50,100, and find the first range by substituting the last 6 bits
in each number with 0. Then we do the same with the right top corner.

With two trivial nested for loops where we increment only the significant
bits, we can find all the squares between these two. For each square we
convert the two numbers into our interleaved representation, and create
the range using the converted representation as our start, and the same
representation but with the latest 12 bits turned on as end range.

For each square found we perform our query and get the elements inside,
removing the elements which are outside our search box.

Turning this into code is simple. Here is a Ruby example:

def spacequery(x0,y0,x1,y1,exp)
 bits=exp*2
 x_start = x0/(2**exp)
 x_end = x1/(2**exp)
 y_start = y0/(2**exp)
 y_end = y1/(2**exp)
 (x_start..x_end).each{|x|
 (y_start..y_end).each{|y|
 x_range_start = x*(2**exp)
 x_range_end = x_range_start | ((2**exp)-1)
 y_range_start = y*(2**exp)
 y_range_end = y_range_start | ((2**exp)-1)
 puts "#{x},#{y} x from #{x_range_start} to #{x_range_end}, y from #{y_range_start} to #{y_range_end}"

 # Turn it into interleaved form for ZRANGEBYLEX query.
 # We assume we need 9 bits for each integer, so the final
 # interleaved representation will be 18 bits.
 xbin = x_range_start.to_s(2).rjust(9,'0')
 ybin = y_range_start.to_s(2).rjust(9,'0')
 s = xbin.split("").zip(ybin.split("")).flatten.compact.join("")
 # Now that we have the start of the range, calculate the end
 # by replacing the specified number of bits from 0 to 1.
 e = s[0..-(bits+1)]+("1"*bits)
 puts "ZRANGEBYLEX myindex [#{s} [#{e}"
 }
 }
end

spacequery(50,100,100,300,6)

While non immediately trivial this is a very useful indexing strategy that
in the future may be implemented in Redis in a native way.
For now, the good thing is that the complexity may be easily encapsulated
inside a library that can be used in order to perform indexing and queries.
One example of such library is Redimension [https://github.com/antirez/redimension], a proof of concept Ruby library which indexes N-dimensional data inside Redis using the technique described here.

Multi dimensional indexes with negative or floating point numbers

The simplest way to represent negative values is just to work with unsigned
integers and represent them using an offset, so that when you index, before
translating numbers in the indexed representation, you add the absolute value
of your smaller negative integer.

For floating point numbers, the simplest approach is probably to convert them
to integers by multiplying the integer for a power of ten proportional to the
number of digits after the dot you want to retain.

Non range indexes

So far we checked indexes which are useful to query by range or by single
item. However other Redis data structures such as Sets or Lists can be used
in order to build other kind of indexes. They are very commonly used but
maybe we don’t always realize they are actually a form of indexing.

For instance I can index object IDs into a Set data type in order to use
the get random elements operation via SRANDMEMBER in order to retrieve
a set of random objects. Sets can also be used to check for existence when
all I need is to test if a given item exists or not or has a single boolean
property or not.

Similarly lists can be used in order to index items into a fixed order.
I can add all my items into a Redis list and rotate the list with
RPOPLPUSH using the same key name as source and destination. This is useful
when I want to process a given set of items again and again forever in the
same order. Think of an RSS feed system that needs to refresh the local copy
periodically.

Another popular index often used with Redis is a capped list, where items
are added with LPUSH and trimmed with LTRIM, in order to create a view
with just the latest N items encountered, in the same order they were
seen.

Index inconsistency

Keeping the index updated may be challenging, in the course of months
or years it is possible that inconsistencies are added because of software
bugs, network partitions or other events.

Different strategies could be used. If the index data is outside Redis
read repair can be a solution, where data is fixed in a lazy way when
it is requested. When we index data which is stored in Redis itself
the SCAN family of commands can be used in order to verify, update or
rebuild the index from scratch, incrementally.

Redis Quick Start

This is a quick start document that targets people without prior experience
with Redis. Reading this document will help you:

	Download and compile Redis to start hacking.

	Use redis-cli to access the server.

	Use Redis from your application.

	Understand how Redis persistence works.

	Install Redis more properly.

	Find out what to read next to understand more about Redis.

Installing Redis

The suggested way of installing Redis is compiling it from sources as
Redis has no dependencies other than a working GCC compiler and libc.
Installing it using the package manager of your Linux distribution is somewhat
discouraged as usually the available version is not the latest.

You can either download the latest Redis tar ball from the redis.io [http://redis.io] web site, or you can alternatively use this special URL that always points to the latest stable Redis version, that is, http://download.redis.io/redis-stable.tar.gz.

In order to compile Redis follow this simple steps:

wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make

At this point you can try if your build works correctly by typing make test, but this is an optional step. After the compilation the src directory inside the Redis distribution is populated with the different executables that are part of Redis:

	redis-server is the Redis Server itself.

	redis-sentinel is the Redis Sentinel executable (monitoring and failover).

	redis-cli is the command line interface utility to talk with Redis.

	redis-benchmark is used to check Redis performances.

	redis-check-aof and redis-check-dump are useful in the rare event of corrupted data files.

It is a good idea to copy both the Redis server and the command line interface in proper places, either manually using the following commands:

	sudo cp src/redis-server /usr/local/bin/

	sudo cp src/redis-cli /usr/local/bin/

Or just using sudo make install.

In the following documentation we assume that /usr/local/bin is in your PATH environment variable so that you can execute both the binaries without specifying the full path.

Starting Redis

The simplest way to start the Redis server is just executing the redis-server binary without any argument.

$ redis-server
[28550] 01 Aug 19:29:28 # Warning: no config file specified, using the default config. In order to specify a config file use 'redis-server /path/to/redis.conf'
[28550] 01 Aug 19:29:28 * Server started, Redis version 2.2.12
[28550] 01 Aug 19:29:28 * The server is now ready to accept connections on port 6379
... more logs ...

In the above example Redis was started without any explicit configuration file, so all the parameters will use the internal default.
This is perfectly fine if you are starting Redis just to play a bit with it or for development, but for production environments you should use a configuration file.

In order to start Redis with a configuration file use the full path of the configuration file as first argument, like in the following example: redis-server /etc/redis.conf. You should use the redis.conf file included in the root directory of the Redis source code distribution as a template to write your configuration file.

Check if Redis is working

External programs talk to Redis using a TCP socket and a Redis specific protocol. This protocol is implemented in the Redis client libraries for the different programming languages. However to make hacking with Redis simpler Redis provides a command line utility that can be used to send commands to Redis. This program is called redis-cli.

The first thing to do in order to check if Redis is working properly is sending a PING command using redis-cli:

$ redis-cli ping
PONG

Running redis-cli followed by a command name and its arguments will send this command to the Redis instance running on localhost at port 6379. You can change the host and port used by redis-cli, just try the –help option to check the usage information.

Another interesting way to run redis-cli is without arguments: the program will start in interactive mode, you can type different commands and see their replies.

$ redis-cli
redis 127.0.0.1:6379> ping
PONG
redis 127.0.0.1:6379> set mykey somevalue
OK
redis 127.0.0.1:6379> get mykey
"somevalue"

At this point you are able to talk with Redis. It is the right time to pause a bit with this tutorial and start the fifteen minutes introduction to Redis data types [http://redis.io/topics/data-types-intro] in order to learn a few Redis commands. Otherwise if you already know a few basic Redis commands you can keep reading.

Securing Redis

By default Redis binds to all the interfaces and has no authentication at
all. If you use Redis into a very controlled environment, separated from the
external internet and in general from attackers, that’s fine. However if Redis
without any hardening is exposed to the internet, it is a big security
concern. If you are not 100% sure your environment is secured properly, please
check the following steps in order to make Redis more secure, which are
enlisted in order of increased security.

	Make sure the port Redis uses to listen for connections (by default 6379 and additionally 16379 if you run Redis in cluster mode, plus 26379 for Sentinel) is firewalled, so that it is not possible to contact Redis from the outside world.

	Use a configuration file where the bind directive is set in order to guarantee that Redis listens just in as little network interfaces you are using. For example only the loopback interface (127.0.0.1) if you are accessing Redis just locally from the same computer, and so forth.

	Use the requirepass option in order to add an additional layer of security so that clients will require to authenticate using the AUTH command.

	Use spiped [http://www.tarsnap.com/spiped.html] or another SSL tunnelling software in order to encrypt traffic between Redis servers and Redis clients if your environment requires encryption.

Note that a Redis exposed to the internet without any security is very simple to exploit [http://antirez.com/news/96], so make sure you understand the above and apply at least a firewalling layer. After the firewalling is in place, try to connect with redis-cli from an external host in order to prove yourself the instance is actually not reachable.

Using Redis from your application

Of course using Redis just from the command line interface is not enough as
the goal is to use it from your application. In order to do so you need to
download and install a Redis client library for your programming language.
You’ll find a full list of clients for different languages in this page [http://redis.io/clients].

For instance if you happen to use the Ruby programming language our best advice
is to use the Redis-rb [https://github.com/redis/redis-rb] client.
You can install it using the command gem install redis.

These instructions are Ruby specific but actually many library clients for
popular languages look quite similar: you create a Redis object and execute
commands calling methods. A short interactive example using Ruby:

>> require 'rubygems'
=> false
>> require 'redis'
=> true
>> r = Redis.new
=> #<Redis client v2.2.1 connected to redis://127.0.0.1:6379/0 (Redis v2.3.8)>
>> r.ping
=> "PONG"
>> r.set('foo','bar')
=> "OK"
>> r.get('foo')
=> "bar"

Redis persistence

You can learn how Redis persistence works on this page [http://redis.io/topics/persistence], however what is important to understand for a quick start is that by default, if you start Redis with the default configuration, Redis will spontaneously save the dataset only from time to time (for instance after at least five minutes if you have at least 100 changes in your data), so if you want your database to persist and be reloaded after a restart make sure to call the SAVE command manually every time you want to force a data set snapshot. Otherwise make sure to shutdown the database using the SHUTDOWN command:

$ redis-cli shutdown

This way Redis will make sure to save the data on disk before quitting.
Reading the persistence page [http://redis.io/topics/persistence] is strongly suggested in order to better understand how Redis persistence works.

Installing Redis more properly

Running Redis from the command line is fine just to hack a bit with it or for
development. However at some point you’ll have some actual application to run
on a real server. For this kind of usage you have two different choices:

	Run Redis using screen.

	Install Redis in your Linux box in a proper way using an init script, so that after a restart everything will start again properly.

A proper install using an init script is strongly suggested.
The following instructions can be used to perform a proper installation using the init script shipped with Redis 2.4 in a Debian or Ubuntu based distribution.

We assume you already copied redis-server and redis-cli executables under /usr/local/bin.

	Create a directory where to store your Redis config files and your data:

 sudo mkdir /etc/redis
 sudo mkdir /var/redis

	Copy the init script that you’ll find in the Redis distribution under the utils directory into /etc/init.d. We suggest calling it with the name of the port where you are running this instance of Redis. For example:

 sudo cp utils/redis_init_script /etc/init.d/redis_6379

	Edit the init script.

 sudo vi /etc/init.d/redis_6379

Make sure to modify REDISPORT accordingly to the port you are using.
Both the pid file path and the configuration file name depend on the port number.

	Copy the template configuration file you’ll find in the root directory of the Redis distribution into /etc/redis/ using the port number as name, for instance:

 sudo cp redis.conf /etc/redis/6379.conf

	Create a directory inside /var/redis that will work as data and working directory for this Redis instance:

 sudo mkdir /var/redis/6379

	Edit the configuration file, making sure to perform the following changes:

	Set daemonize to yes (by default it is set to no).

	Set the pidfile to /var/run/redis_6379.pid (modify the port if needed).

	Change the port accordingly. In our example it is not needed as the default port is already 6379.

	Set your preferred loglevel.

	Set the logfile to /var/log/redis_6379.log

	Set the dir to /var/redis/6379 (very important step!)

	Finally add the new Redis init script to all the default runlevels using the following command:

 sudo update-rc.d redis_6379 defaults

You are done! Now you can try running your instance with:

sudo /etc/init.d/redis_6379 start

Make sure that everything is working as expected:

	Try pinging your instance with redis-cli.

	Do a test save with redis-cli save and check that the dump file is correctly stored into /var/redis/6379/ (you should find a file called dump.rdb).

	Check that your Redis instance is correctly logging in the log file.

	If it’s a new machine where you can try it without problems make sure that after a reboot everything is still working.

Note: In the above instructions we skipped many Redis configuration parameters that you would like to change, for instance in order to use AOF persistence instead of RDB persistence, or to setup replication, and so forth.
Make sure to read the example redis.conf file (that is heavily commented) and the other documentation you can find in this web site for more information.

Redis configuration

Redis is able to start without a configuration file using a built-in default
configuration, however this setup is only recommended for testing and
development purposes.

The proper way to configure Redis is by providing a Redis configuration file,
usually called redis.conf.

The redis.conf file contains a number of directives that have a very simple
format:

keyword argument1 argument2 ... argumentN

This is an example of configuration directive:

slaveof 127.0.0.1 6380

It is possible to provide strings containing spaces as arguments using
quotes, as in the following example:

requirepass "hello world"

The list of configuration directives, and their meaning and intended usage
is available in the self documented example redis.conf shipped into the
Redis distribution.

	The self documented redis.conf for Redis 4.0 [https://raw.githubusercontent.com/antirez/redis/4.0/redis.conf].

	The self documented redis.conf for Redis 3.2 [https://raw.githubusercontent.com/antirez/redis/3.2/redis.conf].

	The self documented redis.conf for Redis 3.0 [https://raw.githubusercontent.com/antirez/redis/3.0/redis.conf].

	The self documented redis.conf for Redis 2.8 [https://raw.githubusercontent.com/antirez/redis/2.8/redis.conf].

	The self documented redis.conf for Redis 2.6 [https://raw.githubusercontent.com/antirez/redis/2.6/redis.conf].

	The self documented redis.conf for Redis 2.4 [https://raw.githubusercontent.com/antirez/redis/2.4/redis.conf].

Passing arguments via the command line

Since Redis 2.6 it is possible to also pass Redis configuration parameters
using the command line directly. This is very useful for testing purposes.
The following is an example that starts a new Redis instance using port 6380
as a slave of the instance running at 127.0.0.1 port 6379.

./redis-server --port 6380 --slaveof 127.0.0.1 6379

The format of the arguments passed via the command line is exactly the same
as the one used in the redis.conf file, with the exception that the keyword
is prefixed with --.

Note that internally this generates an in-memory temporary config file
(possibly concatenating the config file passed by the user if any) where
arguments are translated into the format of redis.conf.

Changing Redis configuration while the server is running

It is possible to reconfigure Redis on the fly without stopping and restarting
the service, or querying the current configuration programmatically using the
special commands CONFIG SET and
CONFIG GET

Not all the configuration directives are supported in this way, but most
are supported as expected. Please refer to the
CONFIG SET and CONFIG GET
pages for more information.

Note that modifying the configuration on the fly has no effects on the
redis.conf file so at the next restart of Redis the old configuration will
be used instead.

Make sure to also modify the redis.conf file accordingly to the configuration
you set using CONFIG SET. You can do it manually, or starting with Redis 2.8, you can just use CONFIG REWRITE, which will automatically scan your redis.conf file and update the fields which don’t match the current configuration value. Fields non existing but set to the default value are not added. Comments inside your configuration file are retained.

Configuring Redis as a cache

If you plan to use Redis just as a cache where every key will have an
expire set, you may consider using the following configuration instead
(assuming a max memory limit of 2 megabytes as an example):

maxmemory 2mb
maxmemory-policy allkeys-lru

In this configuration there is no need for the application to set a
time to live for keys using the EXPIRE command (or equivalent) since
all the keys will be evicted using an approximated LRU algorithm as long
as we hit the 2 megabyte memory limit.

Basically in this configuration Redis acts in a similar way to memcached.
We have more extensive documentation about using Redis as an LRU cache.

 IMPORTANT NOTE: Redis VM is now deprecated. Redis 2.4 will be the latest Redis version featuring Virtual Memory (but it also warns you that Virtual Memory usage is discouraged). We found that using VM has several disadvantages and problems. In the future of Redis we want to simply provide the best in-memory database (but persistent on disk as usual) ever, without considering at least for now the support for databases bigger than RAM. Our future efforts are focused into providing scripting, cluster, and better persistence.

Virtual Memory

Redis Virtual Memory is a feature that will appear for the first time in a
stable Redis distribution in Redis 2.0. However Virtual Memory (called VM
starting from now) is already available and stable enough to be tests in the
unstable branch of Redis available on Git [http://github.com/antirez/redis].

Virtual Memory explained in simple words

Redis follows a Key-Value model. You have keys associated with some values.
Usually Redis takes both Keys and associated Values in memory. Sometimes this
is not the best option, and while Keys must be taken in memory by design
(and in order to ensure fast lookups), Values can be swapped out to disk when
they are rarely used.

In practical terms this means that if you have a dataset of 100,000 keys in
memory, but only 10% of this keys are often used, Redis with Virtual Memory
enabled will try to transfer the values associated to the rarely used keys on
disk.

When these values are requested, as a result of a command issued by a client,
the values are loaded back from the swap file to the main memory.

When using Virtual Memory is a good idea

Before using VM you should ask yourself if you really need it. Redis is a disk
backed, in memory database. The right way to use Redis is almost always to have
enough RAM to fit all the data in memory. Still there are scenarios where this
is not possible:

	Data access is very biased. Only a small percentage of keys (for instance
related to active users in your web site) gets the vast majority of accesses.
At the same time there is too much data per key to take everything in memory.

	There is simply not enough memory available to hold all the data in memory,
regardless of the data access pattern, and values are large. In this
configuration Redis can be used as an on-disk DB where keys are in memory, so
the key lookup is fast, but the access to the actual values require accessing
the (slower) disk.

An important concept to take in mind is that Redis is not able to swap the
keys, so if your memory problems are related to the fact you have too much
keys with very small values, VM is not the solution.

However if a good amount of memory is used because values are pretty large (for
example large strings, lists, sets or hashes with many elements), then VM can
be a good idea.

Sometimes you can turn your “many keys with small values” problem into a “few
keys but with very large values” one just using Hashes in order to group
related data into fields of a single key. For example, instead of having a key
for every attribute of your object you have a single key per object where Hash
fields represent the different attributes.

VM Configuration

Configuring the VM is not hard but requires some care to set the best
parameters according to the requirements.

The VM is enabled and configured by editing redis.conf, the first step is
switching it on with:

vm-enabled yes

Many other configuration options are able to change the behavior of VM. The
rule is that you don’t want to run with the default configuration, as every
problem and dataset requires some fine-tuning to get the maximum advantage.

The vm-max-memory setting

The vm-max-memory setting specifies how much memory Redis is free to use
before starting swapping values on disk.

Basically if this memory limit is not reached, no object will be swapped,
Redis will work with all objects in memory as usual. Once this limit is hit
however, enough objects are swapped out to return the memory into just under
the limit.

The swapped objects are primarily the ones with the highest “age” (that is,
the number of seconds since they have not been used), but the “swappability” of
an object is also proportional to the logarithm of it’s size in memory. So
although older objects are preferred, bigger objects are swapped out first when
they are about the same age.

WARNING: Because keys can’t be swapped out, Redis will not be able to honor
the vm-max-memory setting if the keys alone are using more space than the
limit.

The best value for this setting is enough RAM to hold the “working set” of data.
In practical terms, just give Redis as much memory as you can, and swapping will
work better.

Configuring the swap file

In order to transfer data from memory to disk, Redis uses a swap file. The swap
file has nothing to do with the durability of data, and can be removed when a
Redis instance is terminated. However, the swap file should not be moved,
deleted, or altered in any other way while Redis is running.

Because the Redis swap file is used mostly in a random access fashion, to put
the swap file into a Solid State Disk will lead to better performance.

The swap file is divided into “pages”. A value can be swapped into one or
multiple pages, but a single page can’t hold more than a value.

There is no direct way to tell Redis how much bytes of swap file it should be
using. Instead two different values are configured, that when multiplied together
will produce the total number of bytes used. These two values are the number of
pages inside the swap file, and the page size. It is possible to configure these
two parameters in redis.conf.

	The vm-pages configuration directive is used to set the total number of
pages in the swap file.

	the vm-page-size configuration directive is used in order to set the page
size in bytes.

So for instance if the page size is set to the value of 32 bytes, and the total
number of pages is set to 10000000 (10 million), then the swap file can hold a
total of 320 MB of data.

Because a single page can’t be used to hold more than a value (but a value can
be stored into multiple pages), care must be taken in setting these parameters.
Usually the best idea is setting the page size so that the majority of the
values can be swapped using a few pages.

Threaded VM vs Blocking VM

Another very important configuration parameter is vm-max-threads:

The default vm-max-threads configuration
vm-max-threads 4

This is the maximum number of threads used in order to perform I/O from/to the
swap file. A good value is just to match the number of cores in your system.

However the special value of “0” will enable blocking VM. When VM is configured
to be blocking it performs the I/O in a synchronous blocking way. This is what
you can expect from blocking VM:

	Clients accessing swapped out keys will block other clients while reading
from disk, so the latency experienced by clients can be larger, especially
if the disk is slow or busy and/or if there are big values swapped on disk.

	The blocking VM performance is better overall, as there is no time lost
in synchronization, spawning of threads, and resuming blocked clients waiting
for values. So if you are willing to accept an higher latency from time to time,
blocking VM can be a good pick. Especially if swapping happens rarely and most
of your often accessed data happens to fit in your memory.

If instead you have a lot of swap in and swap out operations and you have many
cores that you want to exploit, and in general when you don’t want that clients
dealing with swapped values will block other clients for a few milliseconds (or
more if the swapped value is very big), then it’s better to use threaded VM.

To experiment with your dataset and different configurations is warmly
encouraged...

Random things to know

A good place for the swap file

In many configurations the swap file can be fairly large, amounting to 40GB or
more. Not all kinds of file systems are able to deal with large files in a good
way, especially the Mac OS X file system which tends to be really lame about it.

The recommendation is to use Linux ext3 file system, or any other file system
with good support for sparse files. What are sparse files?

Sparse files are files where a lot of the content happens to be empty. Advanced
file systems like ext2, ext3, ext4, ReiserFS, Reiser4, and many others, are
able to encode these files in a more efficient way and will allocate more space
for the file when needed, that is, when more actual blocks of the file will be
used.

The swap file is obviously pretty sparse, especially if the server is running
since little time or it is much bigger compared to the amount of data swapped
out. A file system not supporting sparse files can at some point block the
Redis process while creating a very big file at once.

For a list of file systems supporting spare files, check this check this
Wikipedia page comparing different files systems [http://en.wikipedia.org/wiki/Comparison_of_file_systems].

Monitoring the VM

Once you have a Redis system with VM enabled up and running, you may be very
interested to know how it’s working: how many objects are swapped in total,
the number of objects swapped and loaded every second, and so forth.

There is an utility that is very handy in checking how the VM is working, that
is part of Redis Tools [http://github.com/antirez/redis-tools]. This tool is
called redis-stat, and using it is pretty straightforward:

$./redis-stat vmstat
--------------- objects --------------- ------ pages ------ ----- memory -----
load-in swap-out swapped delta used delta used delta
138837 1078936 800402 +800402 807620 +807620 209.50M +209.50M
4277 38011 829802 +29400 837441 +29821 206.47M -3.03M
3347 39508 862619 +32817 870340 +32899 202.96M -3.51M
4445 36943 890646 +28027 897925 +27585 199.92M -3.04M
10391 16902 886783 -3863 894104 -3821 200.22M +309.56K
8888 19507 888371 +1588 895678 +1574 200.05M -171.81K
8377 20082 891664 +3293 899850 +4172 200.10M +53.55K
9671 20210 892586 +922 899917 +67 199.82M -285.30K
10861 16723 887638 -4948 895003 -4914 200.13M +312.35K
9541 21945 890618 +2980 898004 +3001 199.94M -197.11K
9689 17257 888345 -2273 896405 -1599 200.27M +337.77K
10087 18784 886771 -1574 894577 -1828 200.36M +91.60K
9330 19350 887411 +640 894817 +240 200.17M -189.72K

The above output is about a redis-server with VM enabled, around 1 million of
keys inside, and a lot of simulated load using the redis-load utility.

As you can see from the output a number of load-in and swap-out operations are
happening every second. Note that the first line reports the actual values
since the server was started, while the next lines are differences compared to
the previous reading.

If you assigned enough memory to hold your working set of data, probably you
should see a lot less dramatic swapping happening, so redis-stat can be a
really valuable tool in order to understand if you need to shop for RAM ;)

Redis with VM enabled: better .rdb files or Append Only File?

When VM is enabled, saving and loading the database are much slower
operations. A DB that usually loads in 2 seconds takes 13 seconds with VM
enabled if the server is configured to use the smallest memory possible (that
is, vm-max-memory set to 0).

So you probably want to switch to a configuration using the Append Only File
for persistence, so that you can perform the BGREWRITEAOF from time to time.

It is important to note that while a BGSAVE or BGREWRITEAOF is in progress
Redis does not swap new values on disk. The VM will be read-only while there
is another child accessing it. So if you have a lot of writes while there is a
child working, the memory usage may grow.

Using as little memory as possible

An interesting setup to turn Redis into an on-disk DB with just keys in memory
is setting vm-max-memory to 0. If you don’t mind some latency more and poorer
performance but want to use very little memory for very big values, this is a
good setup.

In this setup you should first try setting the VM as blocking (vm-max-threads

	as with this configuration and high traffic the number of swap in and swap
out operations will be huge, and threading will consume a lot of resources
compared to a simple blocking implementation.

VM Stability

VM is still experimental code, but over the last few weeks it was tested in many
ways in development environments, and even in some production environment. No
bugs were noticed during this testing period. Still the more obscure bugs may
happen in non-controlled environments where there are setups that we are not
able to reproduce for some reason.

In this stage you are encouraged to try VM in your development environment, and
even in production if your DB is not mission critical, but for instance just a
big persistent cache of data that may go away without too much problems.

Please report any problem you will notice to the Redis Google Group or by IRC
joining the #redis IRC channel on freenode.

Redis Sponsors

Starting from June 2015 the work Salvatore Sanfilippo [http://twitter.com/antirez] is doing in order to develop Redis is sponsored by Redis Labs [https://redislabs.com].

Past sponsorships:

	The Shuttleworth Foundation [http://www.shuttleworthfoundation.org] donated 5000 USD to the Redis project in form of a flash grant. The details will be posted soon on a blog post documenting how the money was used.
[image: Shuttleworth Foundation]

	From May 2013 to June 2015 the work Salvatore Sanfilippo [http://twitter.com/antirez] did in order to develop Redis was sponsored by Pivotal [http://gopivotal.com].

	Before May 2013 the project was sponsored by VMware with the work of Salvatore Sanfilippo [http://twitter.com/antirez] and Pieter Noordhuis [http://twitter.com/pnoordhuis].

	VMware [http://vmware.com] and later Pivotal [http://pivotal.io] provided a 24 GB RAM workstation for me to run the Redis CI test [http://ci.redis.io] and other long running tests. Later I (Salvatore) equipped the server with an SSD drive in order to test in the same hardware with rotating and flash drives.

	Linode [http://linode.com] 15 January 2010, provided Virtual Machines for Redis testing in a virtualized environment.

	Slicehost [http://slicehost.com] 14 January 2010, provided Virtual Machines for Redis testing in a virtualized environment.

	Citrusbyte [http://citrusbyte.com] 18 Dec 2009, part of Virtual Memory. Citrusbyte is also the company developing the Redis-rb bindings for Redis and this very web site.

	Hitmeister [http://www.hitmeister.de/] 15 Dec 2009, part of Redis Cluster.

	Engine Yard [http://engineyard.com] 13 Dec 2009, for blocking POP (BLPOP) and part of the Virtual Memory implementation.

Also thanks to the following people or organizations that donated to the Project:

	Emil Vladev

	Brad Jasper [http://bradjasper.com/]

	Mrkris [http://www.mrkris.com/]

We are grateful to Redis Labs [http://redislabs.com], Pivotal [http://gopivotal.com], VMware [http://vmware.com] and to the other companies and people that donated to the Redis project. Thank you.

redis.io

Citrusbyte [https://citrusbyte.com] sponsored the creation of the official
Redis logo (designed by Carlos Prioglio [http://carlosprioglio.com]) and
transferred its copyright to Salvatore Sanfilippo.

They also sponsored the initial implementation of this site by
Damian Janowski [https://twitter.com/djanowski] and Michel
Martens [https://twitter.com/soveran]. Damian and Michel remain the current
maintainers.

The redis.io domain was donated for a few years to the project by I Want My
Name [https://iwantmyname.com]. Now is sponsored by myself (Salvatore Sanfilippo).

Redis release cycle

Redis is system software, and a type of system software that holds user
data, so it is among the most critical pieces of a software stack.

For this reason our release cycle tries hard to make sure that a stable
release is only released when it reaches a sufficiently high level of
stability, even at the cost of a slower release cycle.

A given version of Redis can be at three different levels of stability:

	unstable

	development

	frozen

	release candidate

	stable

Unstable tree

The unstable version of Redis is always located in the unstable branch in
the Redis GitHub Repository [http://github.com/antirez/redis].

This is the source tree where most of the new features are developed and
is not considered to be production ready: it may contain critical bugs,
not entirely ready features, and may be unstable.

However, we try hard to make sure that even the unstable branch is
usable most of the time in a development environment without major
issues.

Forked, Frozen, Release candidate tree

When a new version of Redis starts to be planned, the unstable branch
(or sometimes the currently stable branch) is forked into a new
branch that has the name of the target release.

For instance, when Redis 2.6 was released as stable, the unstable branch
was forked into the 2.8 branch.

This new branch can be at three different levels of stability:
development, frozen, and release candidate.

	Development: new features and bug fixes are committed into the branch, but not everything going into unstable is merged here. Only the features that can become stable in a reasonable time frame are merged.

	Frozen: no new feature is added, unless it is almost guaranteed to have zero stability impacts on the source code, and at the same time for some reason it is a very important feature that must be shipped ASAP. Big code changes are only allowed when they are needed in order to fix bugs.

	Release Candidate: only fixes are committed against this release.

Stable tree

At some point, when a given Redis release is in the Release Candidate state
for enough time, we observe that the frequency at which critical bugs are
signaled starts to decrease, to the point that for a few weeks we don’t have
any serious bugs reported.

When this happens, the release is marked as stable.

Version numbers

Stable releases follow the usual major.minor.patch versioning schema, with the following special rules:

	The minor is even in stable versions of Redis.

	The minor is odd in unstable, development, frozen, release candidates. For instance the unstable version of 2.8.x will have a version number in the form 2.7.x. In general the unstable version of x.y.z will have a version x.(y-1).z.

	As an unstable version of Redis progresses, the patch level is incremented from time to time, so at a given time you may have 2.7.2, and later 2.7.3 and so forth. However when the release candidate state is reached, the patch level starts from 101. So for instance 2.7.101 is the first release candidate for 2.8, 2.7.105 is Release Candidate 5, and so forth.

Support

Older versions are not supported as we try very hard to make the
Redis API mostly backward compatible. Upgrading to newer versions
is usually trivial.

For example, if the current stable release is 2.6.x, we accept bug
reports and provide support for the previous stable release
(2.4.x), but not for older ones such as 2.2.x.

When 2.8 becomes the current stable release, the 2.6.x will be the
oldest supported release.

Partitioning: how to split data among multiple Redis instances.

Partitioning is the process of splitting your data into multiple Redis instances, so that every instance will only contain a subset of your keys. The first part of this document will introduce you to the concept of partitioning, the second part will show you the alternatives for Redis partitioning.

Why partitioning is useful

Partitioning in Redis serves two main goals:

	It allows for much larger databases, using the sum of the memory of many computers. Without partitioning you are limited to the amount of memory a single computer can support.

	It allows scaling the computational power to multiple cores and multiple computers, and the network bandwidth to multiple computers and network adapters.

Partitioning basics

There are different partitioning criteria. Imagine we have four Redis instances R0, R1, R2, R3, and many keys representing users like user:1, user:2, ... and so forth, we can find different ways to select in which instance we store a given key. In other words there are different systems to map a given key to a given Redis server.

One of the simplest ways to perform partitioning is with range partitioning, and is accomplished by mapping ranges of objects into specific Redis instances. For example, I could say users from ID 0 to ID 10000 will go into instance R0, while users form ID 10001 to ID 20000 will go into instance R1 and so forth.

This system works and is actually used in practice, however, it has the disadvantage of requiring a table that maps ranges to instances. This table needs to be managed and a table is needed for every kind of object, so therefore range partitioning in Redis is often undesirable because it is much more inefficient than other alternative partitioning approaches.

An alternative to range partitioning is hash partitioning. This scheme works with any key, without requiring a key in the form object_name:<id>, and is as simple as:

	Take the key name and use a hash function (e.g., the crc32 hash function) to turn it into a number. For example, if the key is foobar, crc32(foobar) will output something like 93024922.

	Use a modulo operation with this number in order to turn it into a number between 0 and 3, so that this number can be mapped to one of my four Redis instances. 93024922 modulo 4 equals 2, so I know my key foobar should be stored into the R2 instance. Note: the modulo operation returns the remainder from a division operation, and is implemented with the % operator in many programming languages.

There are many other ways to perform partitioning, but with these two examples you should get the idea. One advanced form of hash partitioning is called consistent hashing and is implemented by a few Redis clients and proxies.

Different implementations of partitioning

Partitioning can be the responsibility of different parts of a software stack.

	Client side partitioning means that the clients directly select the right node where to write or read a given key. Many Redis clients implement client side partitioning.

	Proxy assisted partitioning means that our clients send requests to a proxy that is able to speak the Redis protocol, instead of sending requests directly to the right Redis instance. The proxy will make sure to forward our request to the right Redis instance accordingly to the configured partitioning schema, and will send the replies back to the client. The Redis and Memcached proxy Twemproxy [https://github.com/twitter/twemproxy] implements proxy assisted partitioning.

	Query routing means that you can send your query to a random instance, and the instance will make sure to forward your query to the right node. Redis Cluster implements an hybrid form of query routing, with the help of the client (the request is not directly forwarded from a Redis instance to another, but the client gets redirected to the right node).

Disadvantages of partitioning

Some features of Redis don’t play very well with partitioning:

	Operations involving multiple keys are usually not supported. For instance you can’t perform the intersection between two sets if they are stored in keys that are mapped to different Redis instances (actually there are ways to do this, but not directly).

	Redis transactions involving multiple keys can not be used.

	The partitioning granularity is the key, so it is not possible to shard a dataset with a single huge key like a very big sorted set.

	When partitioning is used, data handling is more complex, for instance you have to handle multiple RDB / AOF files, and to make a backup of your data you need to aggregate the persistence files from multiple instances and hosts.

	Adding and removing capacity can be complex. For instance Redis Cluster supports mostly transparent rebalancing of data with the ability to add and remove nodes at runtime, but other systems like client side partitioning and proxies don’t support this feature. However a technique called Pre-sharding helps in this regard.

Data store or cache?

Although partitioning in Redis is conceptually the same whether using Redis as a data store or as a cache, there is a significant limitation when using it as a data store. When Redis is used as a data store, a given key must always map to the same Redis instance. When Redis is used as a cache, if a given node is unavailable it is not a big problem if a different node is used, altering the key-instance map as we wish to improve the availability of the system (that is, the ability of the system to reply to our queries).

Consistent hashing implementations are often able to switch to other nodes if the preferred node for a given key is not available. Similarly if you add a new node, part of the new keys will start to be stored on the new node.

The main concept here is the following:

	If Redis is used as a cache scaling up and down using consistent hashing is easy.

	If Redis is used as a store, a fixed keys-to-nodes map is used, so the number of nodes must be fixed and cannot vary. Otherwise, a system is needed that is able to rebalance keys between nodes when nodes are added or removed, and currently only Redis Cluster is able to do this - Redis Cluster is generally available and production-ready as of April 1st, 2015 [https://groups.google.com/d/msg/redis-db/dO0bFyD_THQ/Uoo2GjIx6qgJ].

Presharding

We learned that a problem with partitioning is that, unless we are using Redis as a cache, to add and remove nodes can be tricky, and it is much simpler to use a fixed keys-instances map.

However the data storage needs may vary over the time. Today I can live with 10 Redis nodes (instances), but tomorrow I may need 50 nodes.

Since Redis is extremely small footprint and lightweight (a spare instance uses 1 MB of memory), a simple approach to this problem is to start with a lot of instances since the start. Even if you start with just one server, you can decide to live in a distributed world since your first day, and run multiple Redis instances in your single server, using partitioning.

And you can select this number of instances to be quite big since the start. For example, 32 or 64 instances could do the trick for most users, and will provide enough room for growth.

In this way as your data storage needs increase and you need more Redis servers, what to do is to simply move instances from one server to another. Once you add the first additional server, you will need to move half of the Redis instances from the first server to the second, and so forth.

Using Redis replication you will likely be able to do the move with minimal or no downtime for your users:

	Start empty instances in your new server.

	Move data configuring these new instances as slaves for your source instances.

	Stop your clients.

	Update the configuration of the moved instances with the new server IP address.

	Send the SLAVEOF NO ONE command to the slaves in the new server.

	Restart your clients with the new updated configuration.

	Finally shut down the no longer used instances in the old server.

Implementations of Redis partitioning

So far we covered Redis partitioning in theory, but what about practice? What system should you use?

Redis Cluster

Redis Cluster is the preferred way to get automatic sharding and high availability.
It is generally available and production-ready as of April 1st, 2015 [https://groups.google.com/d/msg/redis-db/dO0bFyD_THQ/Uoo2GjIx6qgJ].
You can get more information about Redis Cluster in the Cluster tutorial.

Once Redis Cluster will be available, and if a Redis Cluster compliant client is available for your language, Redis Cluster will be the de facto standard for Redis partitioning.

Redis Cluster is a mix between query routing and client side partitioning.

Twemproxy

Twemproxy is a proxy developed at Twitter [https://github.com/twitter/twemproxy] for the Memcached ASCII and the Redis protocol. It is single threaded, it is written in C, and is extremely fast. It is open source software released under the terms of the Apache 2.0 license.

Twemproxy supports automatic partitioning among multiple Redis instances, with optional node ejection if a node is not available (this will change the keys-instances map, so you should use this feature only if you are using Redis as a cache).

It is not a single point of failure since you can start multiple proxies and instruct your clients to connect to the first that accepts the connection.

Basically Twemproxy is an intermediate layer between clients and Redis instances, that will reliably handle partitioning for us with minimal additional complexities.

You can read more about Twemproxy in this antirez blog post [http://antirez.com/news/44].

Clients supporting consistent hashing

An alternative to Twemproxy is to use a client that implements client side partitioning via consistent hashing or other similar algorithms. There are multiple Redis clients with support for consistent hashing, notably Redis-rb [https://github.com/redis/redis-rb] and Predis [https://github.com/nrk/predis].

Please check the full list of Redis clients [http://redis.io/clients] to check if there is a mature client with consistent hashing implementation for your language.

Redis Security

This document provides an introduction to the topic of security from the point of
view of Redis: the access control provided by Redis, code security concerns,
attacks that can be triggered from the outside by selecting malicious inputs and
other similar topics are covered.

For security related contacts please open an issue on GitHub, or when you feel it
is really important that the security of the communication is preserved, use the
GPG key at the end of this document.

Redis general security model

Redis is designed to be accessed by trusted clients inside trusted environments.
This means that usually it is not a good idea to expose the Redis instance
directly to the internet or, in general, to an environment where untrusted
clients can directly access the Redis TCP port or UNIX socket.

For instance, in the common context of a web application implemented using Redis
as a database, cache, or messaging system, the clients inside the front-end
(web side) of the application will query Redis to generate pages or
to perform operations requested or triggered by the web application user.

In this case, the web application mediates access between Redis and
untrusted clients (the user browsers accessing the web application).

This is a specific example, but, in general, untrusted access to Redis should
always be mediated by a layer implementing ACLs, validating user input,
and deciding what operations to perform against the Redis instance.

In general, Redis is not optimized for maximum security but for maximum
performance and simplicity.

Network security

Access to the Redis port should be denied to everybody but trusted clients
in the network, so the servers running Redis should be directly accessible
only by the computers implementing the application using Redis.

In the common case of a single computer directly exposed to the internet, such
as a virtualized Linux instance (Linode, EC2, ...), the Redis port should be
firewalled to prevent access from the outside. Clients will still be able to
access Redis using the loopback interface.

Note that it is possible to bind Redis to a single interface by adding a line
like the following to the redis.conf file:

bind 127.0.0.1

Failing to protect the Redis port from the outside can have a big security
impact because of the nature of Redis. For instance, a single FLUSHALL command can be used by an external attacker to delete the whole data set.

Protected mode

Unfortunately many users fail to protect Redis instances from being accessed
from external networks. Many instances are simply left exposed on the
internet with public IPs. For this reasons since version 3.2.0, when Redis is
executed with the default configuration (binding all the interfaces) and
without any password in order to access it, it enters a special mode called
protected mode. In this mode Redis only replies to queries from the
loopback interfaces, and reply to other clients connecting from other
addresses with an error, explaining what is happening and how to configure
Redis properly.

We expect protected mode to seriously decrease the security issues caused
by unprotected Redis instances executed without proper administration, however
the system administrator can still ignore the error given by Redis and
just disable protected mode or manually bind all the interfaces.

Authentication feature

While Redis does not try to implement Access Control, it provides
a tiny layer of authentication that is optionally turned on editing the
redis.conf file.

When the authorization layer is enabled, Redis will refuse any query by
unauthenticated clients. A client can authenticate itself by sending the
AUTH command followed by the password.

The password is set by the system administrator in clear text inside the
redis.conf file. It should be long enough to prevent brute force attacks
for two reasons:

	Redis is very fast at serving queries. Many passwords per second can be tested by an external client.

	The Redis password is stored inside the redis.conf file and inside the client configuration, so it does not need to be remembered by the system administrator, and thus it can be very long.

The goal of the authentication layer is to optionally provide a layer of
redundancy. If firewalling or any other system implemented to protect Redis
from external attackers fail, an external client will still not be able to
access the Redis instance without knowledge of the authentication password.

The AUTH command, like every other Redis command, is sent unencrypted, so it
does not protect against an attacker that has enough access to the network to
perform eavesdropping.

Data encryption support

Redis does not support encryption. In order to implement setups where
trusted parties can access a Redis instance over the internet or other
untrusted networks, an additional layer of protection should be implemented,
such as an SSL proxy. We recommend spiped [http://www.tarsnap.com/spiped.html].

Disabling of specific commands

It is possible to disable commands in Redis or to rename them into an unguessable
name, so that normal clients are limited to a specified set of commands.

For instance, a virtualized server provider may offer a managed Redis instance
service. In this context, normal users should probably not be able to
call the Redis CONFIG command to alter the configuration of the instance,
but the systems that provide and remove instances should be able to do so.

In this case, it is possible to either rename or completely shadow commands from
the command table. This feature is available as a statement that can be used
inside the redis.conf configuration file. For example:

rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52

In the above example, the CONFIG command was renamed into an unguessable name. It is also possible to completely disable it (or any other command) by renaming it to the empty string, like in the following example:

rename-command CONFIG ""

Attacks triggered by carefully selected inputs from external clients

There is a class of attacks that an attacker can trigger from the outside even
without external access to the instance. An example of such attacks are
the ability to insert data into Redis that triggers pathological (worst case)
algorithm complexity on data structures implemented inside Redis internals.

For instance an attacker could supply, via a web form, a set of strings that
is known to hash to the same bucket into a hash table in order to turn the
O(1) expected time (the average time) to the O(N) worst case, consuming more
CPU than expected, and ultimately causing a Denial of Service.

To prevent this specific attack, Redis uses a per-execution pseudo-random
seed to the hash function.

Redis implements the SORT command using the qsort algorithm. Currently,
the algorithm is not randomized, so it is possible to trigger a quadratic
worst-case behavior by carefully selecting the right set of inputs.

String escaping and NoSQL injection

The Redis protocol has no concept of string escaping, so injection
is impossible under normal circumstances using a normal client library.
The protocol uses prefixed-length strings and is completely binary safe.

Lua scripts executed by the EVAL and EVALSHA commands follow the
same rules, and thus those commands are also safe.

While it would be a very strange use case, the application should avoid composing the body of the Lua script using strings obtained from untrusted sources.

Code security

In a classical Redis setup, clients are allowed full access to the command set,
but accessing the instance should never result in the ability to control the
system where Redis is running.

Internally, Redis uses all the well known practices for writing secure code, to
prevent buffer overflows, format bugs and other memory corruption issues.
However, the ability to control the server configuration using the CONFIG
command makes the client able to change the working dir of the program and
the name of the dump file. This allows clients to write RDB Redis files
at random paths, that is a security issue [http://antirez.com/news/96] that may easily lead to the ability to compromise the system and/or run untrusted code as the same user as Redis is running.

Redis does not requires root privileges to run. It is recommended to
run it as an unprivileged redis user that is only used for this purpose.
The Redis authors are currently investigating the possibility of adding a new
configuration parameter to prevent CONFIG SET/GET dir and other similar run-time configuration directives. This would prevent clients from forcing the server to write Redis dump files at arbitrary locations.

GPG key

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.4.13 (Darwin)

mQINBFJ7ouABEAC5HwiDmE+tRCsWyTaPLBFEGDHcWOLWzph5HdrRtB//UUlSVt9P
tTWZpDvZQvq/ujnS2i2c54V+9NcgVqsCEpA0uJ/U1sUZ3RVBGfGO/l+BIMBnM+B+
TzK825TxER57ILeT/2ZNSebZ+xHJf2Bgbun45pq3KaXUrRnuS8HWSysC+XyMoXET
nksApwMmFWEPZy62gbeayf1U/4yxP/YbHfwSaldpEILOKmsZaGp8PAtVYMVYHsie
gOUdS/jO0P3silagq39cPQLiTMSsyYouxaagbmtdbwINUX0cjtoeKddd4AK7PIww
7su/lhqHZ58ZJdlApCORhXPaDCVrXp/uxAQfT2HhEGCJDTpctGyKMFXQbLUhSuzf
IilRKJ4jqjcwy+h5lCfDJUvCNYfwyYApsMCs6OWGmHRd7QSFNSs335wAEbVPpO1n
oBJHtOLywZFPF+qAm3LPV4a0OeLyA260c05QZYO59itakjDCBdHwrwv3EU8Z8hPd
6pMNLZ/H1MNK/wWDVeSL8ZzVJabSPTfADXpc1NSwPPWSETS7JYWssdoK+lXMw5vK
q2mSxabL/y91sQ5uscEDzDyJxEPlToApyc5qOUiqQj/thlA6FYBlo1uuuKrpKU1I
e6AA3Gt3fJHXH9TlIcO6DoHvd5fS/o7/RxyFVxqbRqjUoSKQeBzXos3u+QARAQAB
tChTYWx2YXRvcmUgU2FuZmlsaXBwbyA8YW50aXJlekBnbWFpbC5jb20+iQI+BBMB
AgAoBQJSe6LgAhsDBQld/A8ABgsJCAcDAgYVCAIJCgsEFgIDAQIeAQIXgAAKCRAx
gTcoDlyI1riPD/oDDvyIVHtgHvdHqB8/GnF2EsaZgbNuwbiNZ+ilmqnjXzZpu5Su
kGPXAAo+v+rJVLSU2rjCUoL5PaoSlhznw5PL1xpBosN9QzfynWLvJE42T4i0uNU/
a7a1PQCluShnBchm4Xnb3ohNVthFF2MGFRT4OZ5VvK7UcRLYTZoGRlKRGKi9HWea
2xFvyUd9jSuGZG/MMuoslgEPxei09rhDrKxnDNQzQZQpamm/42MITh/1dzEC5ZRx
8hgh1J70/c+zEU7s6kVSGvmYtqbV49/YkqAbhENIeZQ+bCxcTpojEhfk6HoQkXoJ
oK5m21BkMlUEvf1oTX22c0tuOrAX8k0y1M5oismT2e3bqs2OfezNsSfK2gKbeASk
CyYivnbTjmOSPbkvtb27nDqXjb051q6m2A5d59KHfey8BZVuV9j35Ettx4nrS1Ni
S7QrHWRvqceRrIrqXJKopyetzJ6kYDlbP+EVN9NJ2kz/WG6ermltMJQoC0oMhwAG
dfrttG+QJ8PCOlaYiZLD2bjzkDfdfanE74EKYWt+cseenZUf0tsncltRbNdeGTQb
1/GHfwJ+nbA1uKhcHCQ2WrEeGiYpvwKv2/nxBWZ3gwaiAwsz/kI6DQlPZqJoMea9
8gDK2rQigMgbE88vIli4sNhc0yAtm3AbNgAO28NUhzIitB+av/xYxN/W/LkCDQRS
e6LgARAAtdfwe05ZQ0TZYAoeAQXxx2mil4XLzj6ycNjj2JCnFgpYxA8m6nf1gudr
C5V7HDlctp0i9i0wXbf07ubt4Szq4v3ihQCnPQKrZZWfRXxqg0/TOXFfkOdeIoXl
Fl+yC5lUaSTJSg21nxIr8pEq/oPbwpdnWdEGSL9wFanfDUNJExJdzxgyPzD6xubc
OIn2KviV9gbFzQfOIkgkl75V7gn/OA5g2SOLOIPzETLCvQYAGY9ppZrkUz+ji+aT
Tg7HBL6zySt1sCCjyBjFFgNF1RZY4ErtFj5bdBGKCuglyZou4o2ETfA8A5NNpu7x
zkls45UmqRTbmsTD2FU8Id77EaXxDz8nrmjz8f646J0rqn9pGnIg6Lc2PV8j7ACm
/xaTH03taIloOBkTs/Cl01XYeloM0KQwrML43TIm3xSE/AyGF9IGTQo3zmv8SnMO
F+Rv7+55QGlSkfIkXUNCUSm1+dJSBnUhVj/RAjxkekG2di+Jh/y8pkSUxPMDrYEa
OtDoiq2G/roXjVQcbOyOrWA2oB58IVuXO6RzMYi6k6BMpcbmQm0y+TcJqo64tREV
tjogZeIeYDu31eylwijwP67dtbWgiorrFLm2F7+povfXjsDBCQTYhjH4mZgV94ri
hYjP7X2YfLV3tvGyjsMhw3/qLlEyx/f/97gdAaosbpGlVjnhqicAEQEAAYkCJQQY
AQIADwUCUnui4AIbDAUJXfwPAAAKCRAxgTcoDlyI1kAND/sGnXTbMvfHd9AOzv7i
hDX15SSeMDBMWC+8jH/XZASQF/zuHk0jZNTJ01VAdpIxHIVb9dxRrZ3bl56BByyI
8m5DKJiIQWVai+pfjKj6C7p44My3KLodjEeR1oOODXXripGzqJTJNqpW5eCrCxTM
yz1rzO1H1wziJrRNc+ACjVBE3eqcxsZkDZhWN1m8StlX40YgmQmID1CC+kRlV+hg
LUlZLWQIFCGo2UJYoIL/xvUT3Sx4uKD4lpOjyApWzU40mGDaM5+SOsYYrT8rdwvk
nd/efspff64meT9PddX1hi7Cdqbq9woQRu6YhGoCtrHyi/kklGF3EZiw0zWehGAR
2pUeCTD28vsMfJ3ZL1mUGiwlFREUZAcjIlwWDG1RjZDJeZ0NV07KH1N1U8L8aFcu
+CObnlwiavZxOR2yKvwkqmu9c7iXi/R7SVcGQlNao5CWINdzCLHj6/6drPQfGoBS
K/w4JPe7fqmIonMR6O1Gmgkq3Bwl3rz6MWIBN6z+LuUF/b3ODY9rODsJGp21dl2q
xCedf//PAyFnxBNf5NSjyEoPQajKfplfVS3mG8USkS2pafyq6RK9M5wpBR9I1Smm
gon60uMJRIZbxUjQMPLOViGNXbPIilny3FdqbUgMieTBDxrJkE7mtkHfuYw8bERy
vI1sAEeV6ZM/uc4CDI3E2TxEbQ==

Key fingerprint

pub 4096R/0E5C88D6 2013-11-07 [expires: 2063-10-26]
 Key fingerprint = E5F3 DA80 35F0 2EC1 47F9 020F 3181 3728 0E5C 88D6
 uid Salvatore Sanfilippo <antirez@gmail.com>
 sub 4096R/3B34D15F 2013-11-07 [expires: 2063-10-26]

Introduction to Redis

Redis is an open source (BSD licensed), in-memory data structure store, used as a database, cache and message broker. It supports data structures such as
strings, hashes, lists, sets, sorted sets with range queries, bitmaps, hyperloglogs and geospatial indexes with radius queries. Redis has built-in replication, Lua scripting, LRU eviction, transactions and different levels of on-disk persistence, and provides high availability via Redis Sentinel and automatic partitioning with Redis Cluster.

You can run atomic operations
on these types, like appending to a string;
incrementing the value in a hash; pushing an element to a
list; computing set intersection,
union and difference;
or getting the member with highest ranking in a sorted
set.

In order to achieve its outstanding performance, Redis works with an
in-memory dataset. Depending on your use case, you can persist it either
by dumping the dataset to disk
every once in a while, or by appending each command to a
log. Persistence can be optionally
disabled, if you just need a feature-rich, networked, in-memory cache.

Redis also supports trivial-to-setup master-slave asynchronous replication, with very fast non-blocking first synchronization, auto-reconnection with partial resynchronization on net split.

Other features include:

	Transactions

	Pub/Sub

	Lua scripting

	Keys with a limited time-to-live

	LRU eviction of keys

	Automatic failover

You can use Redis from most programming languages out there.

Redis is written in ANSI C and works in most POSIX systems like Linux,
*BSD, OS X without external dependencies. Linux and OS X are the two operating systems where Redis is developed and more tested, and we recommend using Linux for deploying. Redis may work in Solaris-derived systems like SmartOS, but the support is best effort. There
is no official support for Windows builds, but Microsoft develops and
maintains a Win-64 port of Redis [https://github.com/MSOpenTech/redis].

Transactions

MULTI, EXEC, DISCARD and WATCH are the foundation of
transactions in Redis. They allow the execution of a group of commands
in a single step, with two important guarantees:

	All the commands in a transaction are serialized and executed
sequentially. It can never happen that a request issued by another
client is served in the middle of the execution of a Redis
transaction. This guarantees that the commands are executed as a single
isolated operation.

	Either all of the commands or none are processed, so a Redis
transaction is also atomic. The EXEC command
triggers the execution of all the commands in the transaction, so
if a client loses the connection to the server in the context of a
transaction before calling the MULTI command none of the operations
are performed, instead if the EXEC command is called, all the
operations are performed. When using the
append-only file Redis makes sure
to use a single write(2) syscall to write the transaction on disk.
However if the Redis server crashes or is killed by the system administrator
in some hard way it is possible that only a partial number of operations
are registered. Redis will detect this condition at restart, and will exit with an error. Using the redis-check-aof tool it is possible to fix the
append only file that will remove the partial transaction so that the
server can start again.

Starting with version 2.2, Redis allows for an extra guarantee to the
above two, in the form of optimistic locking in a way very similar to a
check-and-set (CAS) operation.
This is documented later on this page.

Usage

A Redis transaction is entered using the MULTI command. The command
always replies with OK. At this point the user can issue multiple
commands. Instead of executing these commands, Redis will queue
them. All the commands are executed once EXEC is called.

Calling DISCARD instead will flush the transaction queue and will exit
the transaction.

The following example increments keys foo and bar atomically.

> MULTI
OK
> INCR foo
QUEUED
> INCR bar
QUEUED
> EXEC
1) (integer) 1
2) (integer) 1

As it is possible to see from the session above, EXEC returns an
array of replies, where every element is the reply of a single command
in the transaction, in the same order the commands were issued.

When a Redis connection is in the context of a MULTI request,
all commands will reply with the string QUEUED (sent as a Status Reply
from the point of view of the Redis protocol). A queued command is
simply scheduled for execution when EXEC is called.

Errors inside a transaction

During a transaction it is possible to encounter two kind of command errors:

	A command may fail to be queued, so there may be an error before EXEC is called. For instance the command may be syntactically wrong (wrong number of arguments, wrong command name, ...), or there may be some critical condition like an out of memory condition (if the server is configured to have a memory limit using the maxmemory directive).

	A command may fail after EXEC is called, for instance since we performed an operation against a key with the wrong value (like calling a list operation against a string value).

Clients used to sense the first kind of errors, happening before the EXEC call, by checking the return value of the queued command: if the command replies with QUEUED it was queued correctly, otherwise Redis returns an error. If there is an error while queueing a command, most clients will abort the transaction discarding it.

However starting with Redis 2.6.5, the server will remember that there was an error during the accumulation of commands, and will refuse to execute the transaction returning also an error during EXEC, and discarding the transaction automatically.

Before Redis 2.6.5 the behavior was to execute the transaction with just the subset of commands queued successfully in case the client called EXEC regardless of previous errors. The new behavior makes it much more simple to mix transactions with pipelining, so that the whole transaction can be sent at once, reading all the replies later at once.

Errors happening after EXEC instead are not handled in a special way: all the other commands will be executed even if some command fails during the transaction.

This is more clear on the protocol level. In the following example one
command will fail when executed even if the syntax is right:

Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
MULTI
+OK
SET a 3
abc
+QUEUED
LPOP a
+QUEUED
EXEC
*2
+OK
-ERR Operation against a key holding the wrong kind of value

EXEC returned two-element @bulk-string-reply where one is an OK code and
the other an -ERR reply. It’s up to the client library to find a
sensible way to provide the error to the user.

It’s important to note that even when a command fails, all the other
commands in the queue are processed – Redis will not stop the
processing of commands.

Another example, again using the wire protocol with telnet, shows how
syntax errors are reported ASAP instead:

MULTI
+OK
INCR a b c
-ERR wrong number of arguments for 'incr' command

This time due to the syntax error the bad INCR command is not queued
at all.

Why Redis does not support roll backs?

If you have a relational databases background, the fact that Redis commands
can fail during a transaction, but still Redis will execute the rest of the
transaction instead of rolling back, may look odd to you.

However there are good opinions for this behavior:

	Redis commands can fail only if called with a wrong syntax (and the problem is not detectable during the command queueing), or against keys holding the wrong data type: this means that in practical terms a failing command is the result of a programming errors, and a kind of error that is very likely to be detected during development, and not in production.

	Redis is internally simplified and faster because it does not need the ability to roll back.

An argument against Redis point of view is that bugs happen, however it should be noted that in general the roll back does not save you from programming errors. For instance if a query increments a key by 2 instead of 1, or increments the wrong key, there is no way for a rollback mechanism to help. Given that no one can save the programmer from his or her errors, and that the kind of errors required for a Redis command to fail are unlikely to enter in production, we selected the simpler and faster approach of not supporting roll backs on errors.

Discarding the command queue

DISCARD can be used in order to abort a transaction. In this case, no
commands are executed and the state of the connection is restored to
normal.

> SET foo 1
OK
> MULTI
OK
> INCR foo
QUEUED
> DISCARD
OK
> GET foo
"1"

[bookmark: cas]

Optimistic locking using check-and-set

WATCH is used to provide a check-and-set (CAS) behavior to Redis
transactions.

WATCHed keys are monitored in order to detect changes against them. If
at least one watched key is modified before the EXEC command, the
whole transaction aborts, and EXEC returns a @nil-reply to notify that
the transaction failed.

For example, imagine we have the need to atomically increment the value
of a key by 1 (let’s suppose Redis doesn’t have INCR).

The first try may be the following:

val = GET mykey
val = val + 1
SET mykey $val

This will work reliably only if we have a single client performing the
operation in a given time. If multiple clients try to increment the key
at about the same time there will be a race condition. For instance,
client A and B will read the old value, for instance, 10. The value will
be incremented to 11 by both the clients, and finally SET as the value
of the key. So the final value will be 11 instead of 12.

Thanks to WATCH we are able to model the problem very well:

WATCH mykey
val = GET mykey
val = val + 1
MULTI
SET mykey $val
EXEC

Using the above code, if there are race conditions and another client
modifies the result of val in the time between our call to WATCH and
our call to EXEC, the transaction will fail.

We just have to repeat the operation hoping this time we’ll not get a
new race. This form of locking is called optimistic locking and is
a very powerful form of locking. In many use cases, multiple clients
will be accessing different keys, so collisions are unlikely – usually
there’s no need to repeat the operation.

WATCH explained

So what is WATCH really about? It is a command that will
make the EXEC conditional: we are asking Redis to perform
the transaction only if none of the WATCHed keys were modified.
(But they might be changed by the same client inside the transaction
without aborting it. More on this [https://github.com/antirez/redis-doc/issues/734].)
Otherwise the transaction is not entered at
all. (Note that if you WATCH a volatile key and Redis expires
the key after you WATCHed it, EXEC will still work. More on
this [http://code.google.com/p/redis/issues/detail?id=270].)

WATCH can be called multiple times. Simply all the WATCH calls will
have the effects to watch for changes starting from the call, up to
the moment EXEC is called. You can also send any number of keys to a
single WATCH call.

When EXEC is called, all keys are UNWATCHed, regardless of whether
the transaction was aborted or not. Also when a client connection is
closed, everything gets UNWATCHed.

It is also possible to use the UNWATCH command (without arguments)
in order to flush all the watched keys. Sometimes this is useful as we
optimistically lock a few keys, since possibly we need to perform a
transaction to alter those keys, but after reading the current content
of the keys we don’t want to proceed. When this happens we just call
UNWATCH so that the connection can already be used freely for new
transactions.

Using WATCH to implement ZPOP

A good example to illustrate how WATCH can be used to create new
atomic operations otherwise not supported by Redis is to implement ZPOP,
that is a command that pops the element with the lower score from a
sorted set in an atomic way. This is the simplest implementation:

WATCH zset
element = ZRANGE zset 0 0
MULTI
ZREM zset element
EXEC

If EXEC fails (i.e. returns a @nil-reply) we just repeat the operation.

Redis scripting and transactions

A Redis script is transactional by definition, so everything
you can do with a Redis transaction, you can also do with a script, and
usually the script will be both simpler and faster.

This duplication is due to the fact that scripting was introduced in Redis 2.6
while transactions already existed long before. However we are unlikely to
remove the support for transactions in the short time because it seems
semantically opportune that even without resorting to Redis scripting it is
still possible to avoid race conditions, especially since the implementation
complexity of Redis transactions is minimal.

However it is not impossible that in a non immediate future we’ll see that the
whole user base is just using scripts. If this happens we may deprecate and
finally remove transactions.

Redis Event Library

Redis implements its own event library. The event library is implemented in ae.c.

The best way to understand how the Redis event library works is to understand how Redis uses it.

Event Loop Initialization

initServer function defined in redis.c initializes the numerous fields of the redisServer structure variable. One such field is the Redis event loop el:

aeEventLoop *el

initServer initializes server.el field by calling aeCreateEventLoop defined in ae.c. The definition of aeEventLoop is below:

typedef struct aeEventLoop
{
 int maxfd;
 long long timeEventNextId;
 aeFileEvent events[AE_SETSIZE]; /* Registered events */
 aeFiredEvent fired[AE_SETSIZE]; /* Fired events */
 aeTimeEvent *timeEventHead;
 int stop;
 void *apidata; /* This is used for polling API specific data */
 aeBeforeSleepProc *beforesleep;
} aeEventLoop;

aeCreateEventLoop

aeCreateEventLoop first mallocs aeEventLoop structure then calls ae_epoll.c:aeApiCreate.

aeApiCreate mallocs aeApiState that has two fields - epfd that holds the epoll file descriptor returned by a call from epoll_create [http://man.cx/epoll_create%282%29] and events that is of type struct epoll_event define by the Linux epoll library. The use of the events field will be described later.

Next is ae.c:aeCreateTimeEvent. But before that initServer call anet.c:anetTcpServer that creates and returns a listening descriptor. The descriptor listens on port 6379 by default. The returned listening descriptor is stored in server.fd field.

aeCreateTimeEvent

aeCreateTimeEvent accepts the following as parameters:

	eventLoop: This is server.el in redis.c

	milliseconds: The number of milliseconds from the current time after which the timer expires.

	proc: Function pointer. Stores the address of the function that has to be called after the timer expires.

	clientData: Mostly NULL.

	finalizerProc: Pointer to the function that has to be called before the timed event is removed from the list of timed events.

initServer calls aeCreateTimeEvent to add a timed event to timeEventHead field of server.el. timeEventHead is a pointer to a list of such timed events. The call to aeCreateTimeEvent from redis.c:initServer function is given below:

aeCreateTimeEvent(server.el /*eventLoop*/, 1 /*milliseconds*/, serverCron /*proc*/, NULL /*clientData*/, NULL /*finalizerProc*/);

redis.c:serverCron performs many operations that helps keep Redis running properly.

aeCreateFileEvent

The essence of aeCreateFileEvent function is to execute epoll_ctl [http://man.cx/epoll_ctl] system call which adds a watch for EPOLLIN event on the listening descriptor create by anetTcpServer and associate it with the epoll descriptor created by a call to aeCreateEventLoop.

Following is an explanation of what precisely aeCreateFileEvent does when called from redis.c:initServer.

initServer passes the following arguments to aeCreateFileEvent:

	server.el: The event loop created by aeCreateEventLoop. The epoll descriptor is got from server.el.

	server.fd: The listening descriptor that also serves as an index to access the relevant file event structure from the eventLoop->events table and store extra information like the callback function.

	AE_READABLE: Signifies that server.fd has to be watched for EPOLLIN event.

	acceptHandler: The function that has to be executed when the event being watched for is ready. This function pointer is stored in eventLoop->events[server.fd]->rfileProc.

This completes the initialization of Redis event loop.

Event Loop Processing

ae.c:aeMain called from redis.c:main does the job of processing the event loop that is initialized in the previous phase.

ae.c:aeMain calls ae.c:aeProcessEvents in a while loop that processes pending time and file events.

aeProcessEvents

ae.c:aeProcessEvents looks for the time event that will be pending in the smallest amount of time by calling ae.c:aeSearchNearestTimer on the event loop. In our case there is only one timer event in the event loop that was created by ae.c:aeCreateTimeEvent.

Remember, that timer event created by aeCreateTimeEvent has by now probably elapsed because it had a expiry time of one millisecond. Since, the timer has already expired the seconds and microseconds fields of the tvp timeval structure variable is initialized to zero.

The tvp structure variable along with the event loop variable is passed to ae_epoll.c:aeApiPoll.

aeApiPoll functions does a epoll_wait [http://man.cx/epoll_wait] on the epoll descriptor and populates the eventLoop->fired table with the details:

	fd: The descriptor that is now ready to do a read/write operation depending on the mask value.

	mask: The read/write event that can now be performed on the corresponding descriptor.

aeApiPoll returns the number of such file events ready for operation. Now to put things in context, if any client has requested for a connection then aeApiPoll would have noticed it and populated the eventLoop->fired table with an entry of the descriptor being the listening descriptor and mask being AE_READABLE.

Now, aeProcessEvents calls the redis.c:acceptHandler registered as the callback. acceptHandler executes accept [http://man.cx/accept] on the listening descriptor returning a connected descriptor with the client. redis.c:createClient adds a file event on the connected descriptor through a call to ae.c:aeCreateFileEvent like below:

if (aeCreateFileEvent(server.el, c->fd, AE_READABLE,
 readQueryFromClient, c) == AE_ERR) {
 freeClient(c);
 return NULL;
}

c is the redisClient structure variable and c->fd is the connected descriptor.

Next the ae.c:aeProcessEvent calls ae.c:processTimeEvents

processTimeEvents

ae.processTimeEvents iterates over list of time events starting at eventLoop->timeEventHead.

For every timed event that has elapsed processTimeEvents calls the registered callback. In this case it calls the only timed event callback registered, that is, redis.c:serverCron. The callback returns the time in milliseconds after which the callback must be called again. This change is recorded via a call to ae.c:aeAddMilliSeconds and will be handled on the next iteration of ae.c:aeMain while loop.

That’s all.

Redis Design Draft 2 – RDB version 7 info fields

	Author: Salvatore Sanfilippo antirez@gmail.com

	GitHub issue #1048 [https://github.com/antirez/redis/issues/1048]

History of revisions

1.0, 10 April 2013 - Initial draft.

Overview

The Redis RDB format lacks a simple way to add info fields to an RDB file
without causing a backward compatibility issue even if the added meta data
is not required in order to load data from the RDB file.

For example thanks to the info fields specified in this document it will
be possible to add to RDB information like file creation time, Redis version
generating the file, and any other useful information, in a way that not
every field is required for an RDB version 7 file to be correctly processed.

Also with minimal changes it will be possible to add RDB version 7 support to
Redis 2.6 without actually supporting the additional fields but just skipping
them when loading an RDB file.

RDB info fields may have semantic meaning if needed, so that the presence
of the field may add information about the data set specified in the RDB
file format, however when an info field is required to be correctly decoded
in order to understand and load the data set content of the RDB file, the
RDB file format must be increased so that previous versions of Redis will not
attempt to load it.

However currently the info fields are designed to only hold additional
information that are not useful to load the dataset, but can better specify
how the RDB file was created.

Info fields representation

The RDB format 6 has the following layout:

	A 9 bytes magic “REDIS0006”

	key-value pairs

	An EOF opcode

	CRC64 checksum

The proposal for RDB format 7 is to add the optional fields immediately
after the first 9 bytes magic, so that the new format will be:

	A 9 bytes magic “REDIS0007”

	Info field 1

	Info field 2

	...

	Info field N

	Info field end-of-fields

	key-value pairs

	An EOF opcode

	CRC64 checksum

Every single info field has the following structure:

	A 16 bit identifier

	A 64 bit data length

	A data section of the exact length as specified

Both the identifier and the data length are stored in little endian byte
ordering.

The special identifier 0 means that there are no other info fields, and that
the remaining of the RDB file contains the key-value pairs.

Handling of info fields

A program can simply skip every info field it does not understand, as long
as the RDB version matches the one that it is capable to load.

Specification of info fields IDs and content.

Info field 0 – End of info fields

This just means there are no longer info fields to process.

Info field 1 – Creation date

This field represents the unix time at which the RDB file was created.
The format of the unix time is a 64 bit little endian integer representing
seconds since 1th January 1970.

Info field 2 – Redis version

This field represents a null-terminated string containing the Redis version
that generated the file, as displayed in the Redis version INFO field.

Redis Clients Handling

This document provides information about how Redis handles clients from the
point of view of the network layer: connections, timeouts, buffers, and
other similar topics are covered here.

The information contained in this document is only applicable to Redis version 2.6 or greater.

How client connections are accepted

Redis accepts clients connections on the configured listening TCP port and
on the Unix socket if enabled. When a new client connection is accepted
the following operations are performed:

	The client socket is put in non-blocking state since Redis uses multiplexing and non-blocking I/O.

	The TCP_NODELAY option is set in order to ensure that we don’t have delays in our connection.

	A readable file event is created so that Redis is able to collect the client queries as soon as new data is available to be read on the socket.

After the client is initialized, Redis checks if we are already at the limit
of the number of clients that it is possible to handle simultaneously
(this is configured using the maxclients configuration directive, see the
next section of this document for further information).

In case it can’t accept the current client because the maximum number of clients
was already accepted, Redis tries to send an error to the client in order to
make it aware of this condition, and closes the connection immediately.
The error message will be able to reach the client even if the connection is
closed immediately by Redis because the new socket output buffer is usually
big enough to contain the error, so the kernel will handle the transmission
of the error.

In what order clients are served

The order is determined by a combination of the client socket file descriptor
number and order in which the kernel reports events, so the order is to be
considered as unspecified.

However Redis does the following two things when serving clients:

	It only performs a single read() system call every time there is something new to read from the client socket, in order to ensure that if we have multiple clients connected, and a few are very demanding clients sending queries at an high rate, other clients are not penalized and will not experience a bad latency figure.

	However once new data is read from a client, all the queries contained in the current buffers are processed sequentially. This improves locality and does not need iterating a second time to see if there are clients that need some processing time.

Maximum number of clients

In Redis 2.4 there was a hard-coded limit for the maximum number of clients
that could be handled simultaneously.

In Redis 2.6 this limit is dynamic: by default it is set to 10000 clients, unless
otherwise stated by the maxclients directive in Redis.conf.

However, Redis checks with the kernel what is the maximum number of file
descriptors that we are able to open (the soft limit is checked). If the
limit is smaller than the maximum number of clients we want to handle, plus
32 (that is the number of file descriptors Redis reserves for internal uses),
then the number of maximum clients is modified by Redis to match the amount
of clients we are really able to handle under the current operating system
limit.

When the configured number of maximum clients can not be honored, the condition
is logged at startup as in the following example:

$./redis-server --maxclients 100000
[41422] 23 Jan 11:28:33.179 # Unable to set the max number of files limit to 100032 (Invalid argument), setting the max clients configuration to 10112.

When Redis is configured in order to handle a specific number of clients it
is a good idea to make sure that the operating system limit to the maximum
number of file descriptors per process is also set accordingly.

Under Linux these limits can be set both in the current session and as a
system-wide setting with the following commands:

	ulimit -Sn 100000 # This will only work if hard limit is big enough.

	sysctl -w fs.file-max=100000

Output buffers limits

Redis needs to handle a variable-length output buffer for every client, since
a command can produce a big amount of data that needs to be transferred to the
client.

However it is possible that a client sends more commands producing more output
to serve at a faster rate at which Redis can send the existing output to the
client. This is especially true with Pub/Sub clients in case a client is not
able to process new messages fast enough.

Both the conditions will cause the client output buffer to grow and consume
more and more memory. For this reason by default Redis sets limits to the
output buffer size for different kind of clients. When the limit is reached
the client connection is closed and the event logged in the Redis log file.

There are two kind of limits Redis uses:

	The hard limit is a fixed limit that when reached will make Redis closing the client connection as soon as possible.

	The soft limit instead is a limit that depends on the time, for instance a soft limit of 32 megabytes per 10 seconds means that if the client has an output buffer bigger than 32 megabytes for, continuously, 10 seconds, the connection gets closed.

Different kind of clients have different default limits:

	Normal clients have a default limit of 0, that means, no limit at all, because most normal clients use blocking implementations sending a single command and waiting for the reply to be completely read before sending the next command, so it is always not desirable to close the connection in case of a normal client.

	Pub/Sub clients have a default hard limit of 32 megabytes and a soft limit of 8 megabytes per 60 seconds.

	Slaves have a default hard limit of 256 megabytes and a soft limit of 64 megabyte per 60 second.

It is possible to change the limit at runtime using the CONFIG SET command or in a permanent way using the Redis configuration file redis.conf. See the example redis.conf in the Redis distribution for more information about how to set the limit.

Query buffer hard limit

Every client is also subject to a query buffer limit. This is a non-configurable hard limit that will close the connection when the client query buffer (that is the buffer we use to accumulate commands from the client) reaches 1 GB, and is actually only an extreme limit to avoid a server crash in case of client or server software bugs.

Client timeouts

By default recent versions of Redis don’t close the connection with the client
if the client is idle for many seconds: the connection will remain open forever.

However if you don’t like this behavior, you can configure a timeout, so that
if the client is idle for more than the specified number of seconds, the client connection will be closed.

You can configure this limit via redis.conf or simply using CONFIG SET timeout <value>.

Note that the timeout only applies to normal clients and it does not apply to Pub/Sub clients, since a Pub/Sub connection is a push style connection so a client that is idle is the norm.

Even if by default connections are not subject to timeout, there are two conditions when it makes sense to set a timeout:

	Mission critical applications where a bug in the client software may saturate the Redis server with idle connections, causing service disruption.

	As a debugging mechanism in order to be able to connect with the server if a bug in the client software saturates the server with idle connections, making it impossible to interact with the server.

Timeouts are not to be considered very precise: Redis avoids to set timer events or to run O(N) algorithms in order to check idle clients, so the check is performed incrementally from time to time. This means that it is possible that while the timeout is set to 10 seconds, the client connection will be closed, for instance, after 12 seconds if many clients are connected at the same time.

CLIENT command

The Redis client command allows to inspect the state of every connected client, to kill a specific client, to set names to connections. It is a very powerful debugging tool if you use Redis at scale.

CLIENT LIST is used in order to obtain a list of connected clients and their state:

redis 127.0.0.1:6379> client list
addr=127.0.0.1:52555 fd=5 name= age=855 idle=0 flags=N db=0 sub=0 psub=0 multi=-1 qbuf=0 qbuf-free=32768 obl=0 oll=0 omem=0 events=r cmd=client
addr=127.0.0.1:52787 fd=6 name= age=6 idle=5 flags=N db=0 sub=0 psub=0 multi=-1 qbuf=0 qbuf-free=0 obl=0 oll=0 omem=0 events=r cmd=ping

In the above example session two clients are connected to the Redis server. The meaning of a few of the most interesting fields is the following:

	addr: The client address, that is, the client IP and the remote port number it used to connect with the Redis server.

	fd: The client socket file descriptor number.

	name: The client name as set by CLIENT SETNAME.

	age: The number of seconds the connection existed for.

	idle: The number of seconds the connection is idle.

	flags: The kind of client (N means normal client, check the full list of flags [http://redis.io/commands/client-list]).

	omem: The amount of memory used by the client for the output buffer.

	cmd: The last executed command.

See the CLIENT LIST [http://redis.io/commands/client-list] documentation for the full list of fields and their meaning.

Once you have the list of clients, you can easily close the connection with a client using the CLIENT KILL command specifying the client address as argument.

The commands CLIENT SETNAME and CLIENT GETNAME can be used to set and get the connection name. Starting with Redis 4.0, the client name is shown in the
SLOWLOG output, so that it gets simpler to identify clients that are creating
latency issues.

TCP keepalive

Recent versions of Redis (3.2 or greater) have TCP keepalive (SO_KEEPALIVE socket option) enabled by default and set to about 300 seconds. This option is useful in order to detect dead peers (clients that cannot be reached even if they look connected). Moreover, if there is network equipment between clients and servers that need to see some traffic in order to take the connection open, the option will prevent unexpected connection closed events.

Redis Sentinel Documentation

Redis Sentinel is a system designed to help managing Redis instances.
It performs the following three tasks:

	Monitoring. Sentinel constantly check if your master and slave instances are working as expected.

	Notification. Sentinel can notify the system administrator, or another computer program, via an API, that something is wrong with one of the monitored Redis instances.

	Automatic failover. If a master is not working as expected, Sentinel can start a failover process where a slave is promoted to master, the other additional slaves are reconfigured to use the new master, and the applications using the Redis server informed about the new address to use when connecting.

Redis Sentinel is a distributed system, this means that usually you want to run
multiple Sentinel processes across your infrastructure, and this processes
will use agreement protocols in order to understand if a master is down and
to perform the failover.

Redis Sentinel is shipped as a stand-alone executable called redis-sentinel
but actually it is a special execution mode of the Redis server itself, and
can be also invoked using the --sentinel option of the normal redis-sever
executable.

WARNING: Redis Sentinel is currently a work in progress. This document
describes how to use what we is already implemented, and may change as the
Sentinel implementation evolves.

Redis Sentinel is compatible with Redis 2.4.16 or greater, and redis 2.6.0-rc6 or greater.

Obtaining Sentinel

Currently Sentinel is part of the Redis unstable branch at GitHub.
To compile it you need to clone the unstable branch and compile Redis.
You’ll see a redis-sentinel executable in your src directory.

Alternatively you can use directly the redis-server executable itself,
starting it in Sentinel mode as specified in the next paragraph.

Running Sentinel

If you are using the redis-sentinel executable (or if you have a symbolic
link with that name to the redis-server executable) you can run Sentinel
with the following command line:

redis-sentinel /path/to/sentinel.conf

Otherwise you can use directly the redis-server executable starting it in
Sentinel mode:

redis-server /path/to/sentinel.conf --sentinel

Both ways work the same.

Configuring Sentinel

The Redis source distribution contains a file called sentinel.conf
that is a self-documented example configuration file you can use to
configure Sentinel, however a typical minimal configuration file looks like the
following:

sentinel monitor mymaster 127.0.0.1 6379 2
sentinel down-after-milliseconds mymaster 60000
sentinel failover-timeout mymaster 900000
sentinel can-failover mymaster yes
sentinel parallel-syncs mymaster 1

sentinel monitor resque 192.168.1.3 6380 4
sentinel down-after-milliseconds resque 10000
sentinel failover-timeout resque 900000
sentinel can-failover resque yes
sentinel parallel-syncs resque 5

The first line is used to tell Redis to monitor a master called mymaster,
that is at address 127.0.0.1 and port 6379, with a level of agreement needed
to detect this master as failing of 2 sentinels (if the agreement is not reached
the automatic failover does not start).

The other options are almost always in the form:

sentinel <option_name> <master_name> <option_value>

And are used for the following purposes:

	down-after-milliseconds is the time in milliseconds an instance should not be reachable (either does not reply to our PINGs or it is replying with an error) for a Sentinel starting to think it is down. After this time has elapsed the Sentinel will mark an instance as subjectively down (also known as
SDOWN), that is not enough to
start the automatic failover. However if enough instances will think that there
is a subjectively down condition, then the instance is marked as
objectively down. The number of sentinels that needs to agree depends on
the configured agreement for this master.

	can-failover tells this Sentinel if it should start a failover when an
instance is detected as objectively down (also called ODOWN for simplicity).
You may configure all the Sentinels to perform the failover if needed, or you
may have a few Sentinels used only to reach the agreement, and a few more
that are actually in charge to perform the failover.

	parallel-syncs sets the number of slaves that can be reconfigured to use
the new master after a failover at the same time. The lower the number, the
more time it will take for the failover process to complete, however if the
slaves are configured to serve old data, you may not want all the slaves to
resync at the same time with the new master, as while the replication process
is mostly non blocking for a slave, there is a moment when it stops to load
the bulk data from the master during a resync. You may make sure only one
slave at a time is not reachable by setting this option to the value of 1.

The other options are described in the rest of this document and
documented in the example sentinel.conf file shipped with the Redis
distribution.

SDOWN and ODOWN

As already briefly mentioned in this document Redis Sentinel has two different
concepts of being down, one is called a Subjectively Down condition
(SDOWN) and is a down condition that is local to a given Sentinel instance.
Another is called Objectively Down condition (ODOWN) and is reached when
enough Sentinels (at least the number configured as the quorum parameter
of the monitored master) have an SDOWN condition, and get feedback from
other Sentinels using the SENTINEL is-master-down-by-addr command.

From the point of view of a Sentinel an SDOWN condition is reached if we
don’t receive a valid reply to PING requests for the number of seconds
specified in the configuration as is-master-down-after-milliseconds
parameter.

An acceptable reply to PING is one of the following:

	PING replied with +PONG.

	PING replied with -LOADING error.

	PING replied with -MASTERDOWN error.

Any other reply (or no reply) is considered non valid.

Note that SDOWN requires that no acceptable reply is received for the whole
interval configured, so for instance if the interval is 30000 milliseconds
(30 seconds) and we receive an acceptable ping reply every 29 seconds, the
instance is considered to be working.

The ODOWN condition only applies to masters. For other kind of instances
Sentinel don’t require any agreement, so the ODOWN state is never reached
for slaves and other sentinels.

The behavior of Redis Sentinel can be described by a set of rules that every
Sentinel follows. The complete behavior of Sentinel as a distributed system
composed of multiple Sentinels only results from this rules followed by
every single Sentinel instance. The following is the first set of rules.
In the course of this document more rules will be added in the appropriate
sections.

Sentinel Rule #1: Every Sentinel sends a PING request to every known master, slave, and sentinel instance, every second.

Sentinel Rule #2: An instance is Subjectively Down (SDOWN) if the latest valid reply to PING was received more than down-after-milliseconds milliseconds ago. Acceptable PING replies are: +PONG, -LOADING, -MASTERDOWN.

Sentinel Rule #3: Every Sentinel is able to reply to the command SENTINEL is-master-down-by-addr <ip> <port>. This command replies true if the specified address is the one of a master instance, and the master is in SDOWN state.

Sentinel Rule #4: If a master is in SDOWN condition, every other Sentinel also monitoring this master, is queried for confirmation of this state, every second, using the SENTINEL is-master-down-by-addr command.

Sentinel Rule #5: If a master is in SDOWN condition, and enough other Sentinels (to reach the configured quorum) agree about the condition, with a reply to SENTINEL is-master-down-by-addr that is no older than five seconds, then the master is marked as Objectively Down (ODOWN).

Sentinel Rule #6: Every Sentinel sends an INFO request to every known master and slave instance, one time every 10 seconds. If a master is in ODOWN condition, its slaves are asked for INFO every second instead of being asked every 10 seconds.

Sentinel Rule #7: If the first INFO reply a Sentinel receives about a master shows that it is actually a slave, Sentinel will update the configuration to actually monitor the master reported by the INFO output instead. So it is safe to start Sentinel against slaves.

Sentinels and Slaves auto discovery

While Sentinels stay connected with other Sentinels in order to reciprocally
check the availability of each other, and to exchange messages, you don’t
need to configure the other Sentinel addresses in every Sentinel instance you
run, as Sentinel uses the Redis master Pub/Sub capabilities in order to
discover the other Sentinels that are monitoring the same master.

This is obtained by sending Hello Messages into the channel named
__sentinel__:hello.

Similarly you don’t need to configure what is the list of the slaves attached
to a master, as Sentinel will auto discover this list querying Redis.

Sentinel Rule #8: Every Sentinel publishes a message to every monitored master Pub/Sub channel __sentinel__:hello, every five seconds, announcing its presence with ip, port, runid, and ability to failover (accordingly to can-failover configuration directive in sentinel.conf).

Sentinel Rule #9: Every Sentinel is subscribed to the Pub/Sub channel __sentinel__:hello of every master, looking for unknown sentinels. When new sentinels are detected, we add them as sentinels of this master.

Sentinel Rule #10: Before adding a new sentinel to a master a Sentinel always checks if there is already a sentinel with the same runid or the same address (ip and port pair). In that case all the matching sentinels are removed, and the new added.

Sentinel API

By default Sentinel runs using TCP port 26379 (note that 6379 is the normal
Redis port). Sentinels accept commands using the Redis protocol, so you can
use redis-cli or any other unmodified Redis client in order to talk with
Sentinel.

There are two ways to talk with Sentinel: it is possible to directly query
it to check what is the state of the monitored Redis instances from its point
of view, to see what other Sentinels it knows, and so forth.

An alternative is to use Pub/Sub to receive push style notifications from
Sentinels, every time some event happens, like a failover, or an instance
entering an error condition, and so forth.

Sentinel commands

The following is a list of accepted commands:

	PING this command simply returns PONG.

	SENTINEL masters show a list of monitored masters and their state.

	SENTINEL slaves <master name> show a list of slaves for this master, and their state.

	SENTINEL is-master-down-by-addr <ip> <port> return a two elements multi bulk reply where the first is 0 or 1 (0 if the master with that address is known and is in SDOWN state, 1 otherwise). The second element of the reply is the
subjective leader for this master, that is, the runid of the Redis
Sentinel instance that should perform the failover accordingly to the queried
instance.

	SENTINEL get-master-addr-by-name <master name> return the ip and port number of the master with that name. If a failover is in progress or terminated successfully for this master it returns the address and port of the promoted slave.

	SENTINEL reset <pattern> this command will reset all the masters with matching name. The pattern argument is a glob-style pattern. The reset process clears any previous state in a master (including a failover in progress), and removes every slave and sentinel already discovered and associated with the master.

Pub/Sub Messages

A client can use a Sentinel as it was a Redis compatible Pub/Sub server
(but you can’t use PUBLISH) in order to SUBSCRIBE or PSUBSCRIBE to
channels and get notified about specific events.

The channel name is the same as the name of the event. For instance the
channel named +sdown will receive all the notifications related to instances
entering an SDOWN condition.

To get all the messages simply subscribe using PSUBSCRIBE *.

The following is a list of channels and message formats you can receive using
this API. The first word is the channel / event name, the rest is the format of the data.

Note: where instance details is specified it means that the following arguments are provided to identify the target instance:

<instance-type> <name> <ip> <port> @ <master-name> <master-ip> <master-port>

The part identifying the master (from the @ argument to the end) is optional
and is only specified if the instance is not a master itself.

	+reset-master <instance details> – The master was reset.

	+slave <instance details> – A new slave was detected and attached.

	+failover-state-reconf-slaves <instance details> – Failover state changed to reconf-slaves state.

	+failover-detected <instance details> – A failover started by another Sentinel or any other external entity was detected (An attached slave turned into a master).

	+slave-reconf-sent <instance details> – The leader sentinel sent the SLAVEOF command to this instance in order to reconfigure it for the new slave.

	+slave-reconf-inprog <instance details> – The slave being reconfigured showed to be a slave of the new master ip:port pair, but the synchronization process is not yet complete.

	+slave-reconf-done <instance details> – The slave is now synchronized with the new master.

	-dup-sentinel <instance details> – One or more sentinels for the specified master were removed as duplicated (this happens for instance when a Sentinel instance is restarted).

	+sentinel <instance details> – A new sentinel for this master was detected and attached.

	+sdown <instance details> – The specified instance is now in Subjectively Down state.

	-sdown <instance details> – The specified instance is no longer in Subjectively Down state.

	+odown <instance details> – The specified instance is now in Objectively Down state.

	-odown <instance details> – The specified instance is no longer in Objectively Down state.

	+failover-takedown <instance details> – 25% of the configured failover timeout has elapsed, but this sentinel can’t see any progress, and is the new leader. It starts to act as the new leader reconfiguring the remaining slaves to replicate with the new master.

	+failover-triggered <instance details> – We are starting a new failover as a the leader sentinel.

	+failover-state-wait-start <instance details> – New failover state is wait-start: we are waiting a fixed number of seconds, plus a random number of seconds before starting the failover.

	+failover-state-select-slave <instance details> – New failover state is select-slave: we are trying to find a suitable slave for promotion.

	no-good-slave <instance details> – There is no good slave to promote. Currently we’ll try after some time, but probably this will change and the state machine will abort the failover at all in this case.

	selected-slave <instance details> – We found the specified good slave to promote.

	failover-state-send-slaveof-noone <instance details> – We are trying to reconfigure the promoted slave as master, waiting for it to switch.

	failover-end-for-timeout <instance details> – The failover terminated for timeout. If we are the failover leader, we sent a best effort SLAVEOF command to all the slaves yet to reconfigure.

	failover-end <instance details> – The failover terminated with success. All the slaves appears to be reconfigured to replicate with the new master.

	switch-master <master name> <oldip> <oldport> <newip> <newport> – We are starting to monitor the new master, using the same name of the old one. The old master will be completely removed from our tables.

	failover-abort-x-sdown <instance details> – The failover was undone (aborted) because the promoted slave appears to be in extended SDOWN state.

	-slave-reconf-undo <instance details> – The failover aborted so we sent a SLAVEOF command to the specified instance to reconfigure it back to the original master instance.

	+tilt – Tilt mode entered.

	-tilt – Tilt mode exited.

Sentinel failover

The failover process consists on the following steps:

	Recognize that the master is in ODOWN state.

	Understand who is the Sentinel that should start the failover, called The Leader. All the other Sentinels will be The Observers.

	The leader selects a slave to promote to master.

	The promoted slave is turned into a master with the command SLAVEOF NO ONE.

	The observers see that a slave was turned into a master, so they know the failover started. Note: this means that any event that turns one of the slaves of a monitored master into a master (SLAVEOF NO ONE command) will be sensed as the start of a failover process.

	All the other slaves attached to the original master are configured with the SLAVEOF command in order to start the replication process with the new master.

	The leader terminates the failover process when all the slaves are reconfigured. It removes the old master from the table of monitored masters and adds the new master, under the same name of the original master.

	The observers detect the end of the failover process when all the slaves are reconfigured. They remove the old master from the table and start monitoring the new master, exactly as the leader does.

The election of the Leader is performed using the same mechanism used to reach
the ODOWN state, that is, the SENTINEL is-master-down-by-addr command.
It returns the leader from the point of view of the queried Sentinel, we call
it the Subjective Leader, and is selected using the following rule:

	We remove all the Sentinels that can’t failover for configuration (this information is propagated using the Hello Channel to all the Sentinels).

	We remove all the Sentinels in SDOWN, disconnected, or with the last ping reply received more than SENTINEL_INFO_VALIDITY_TIME milliseconds ago (currently defined as 5 seconds).

	Of all the remaining instances, we get the one with the lowest runid, lexicographically (every Redis instance has a Run ID, that is an identifier of every single execution).

For a Sentinel to sense to be the Objective Leader, that is, the Sentinel that should start the failover process, the following conditions are needed.

	It thinks it is the subjective leader itself.

	It receives acknowledges from other Sentinels about the fact it is the leader: at least 50% plus one of all the Sentinels that were able to reply to the SENTINEL is-master-down-by-addr request should agree it is the leader, and additionally we need a total level of agreement at least equal to the configured quorum of the master instance that we are going to failover.

Once a Sentinel things it is the Leader, the failover starts, but there is always a delay of five seconds plus an additional random delay. This is an additional layer of protection because if during this period we see another instance turning a slave into a master, we detect it as another instance staring the failover and turn ourselves into an observer instead. This is just a redundancy layer and should in theory never happen.

Sentinel Rule #11: A Good Slave is a slave with the following requirements:

	It is not in SDOWN nor in ODOWN condition.

	We have a valid connection to it currently (not in DISCONNECTED state).

	Latest PING reply we received from it is not older than five seconds.

	Latest INFO reply we received from it is not older than five seconds.

	The latest INFO reply reported that the link with the master is down for no more than the time elapsed since we saw the master entering SDOWN state, plus ten times the configured down_after_milliseconds parameter. So for instance if a Sentinel is configured to sense the SDOWN condition after 10 seconds, and the master is down since 50 seconds, we accept a slave as a Good Slave only if the replication link was disconnected less than 50+(10*10) seconds (two minutes and half more or less).

	It is not flagged as DEMOTE (see the section about resurrecting masters).

Sentinel Rule #12: A Subjective Leader from the point of view of a Sentinel, is the Sentinel (including itself) with the lower runid monitoring a given master, that also replied to PING less than 5 seconds ago, reported to be able to do the failover via Pub/Sub hello channel, and is not in DISCONNECTED state.

Sentinel Rule #12: If a master is down we ask SENTINEL is-master-down-by-addr to every other connected Sentinel as explained in Sentinel Rule #4. This command will also reply with the runid of the Subjective Leader from the point of view of the asked Sentinel. A given Sentinel believes to be the Objective Leader of a master if it is reported to be the subjective leader by N Sentinels (including itself), where:

	N must be equal or greater to the configured quorum for this master.

	N mast be equal or greater to the majority of the voters (num_votres/2+1), considering only the Sentinels that also reported the master to be down.

Sentinel Rule #13: A Sentinel starts the failover as a Leader (that is, the Sentinel actually sending the commands to reconfigure the Redis servers) if the following conditions are true at the same time:

	The master is in ODOWN condition.

	The Sentinel is configured to perform the failover with can-failover set to yes.

	There is at least a Good Slave from the point of view of the Sentinel.

	The Sentinel believes to be the Objective Leader.

	There is no failover in progress already detected for this master.

Sentinel Rule #14: A Sentinel detects a failover as an Observer (that is, the Sentinel just follows the failover generating the appropriate events in the log file and Pub/Sub interface, but without actively reconfiguring instances) if the following conditions are true at the same time:

	There is no failover already in progress.

	A slave instance of the monitored master turned into a master.
However the failover will NOT be sensed as started if the slave instance turns into a master and at the same time the runid has changed from the previous one. This means the instance turned into a master because of a restart, and is not a valid condition to consider it a slave election.

Sentinel Rule #15: A Sentinel starting a failover as leader does not immediately starts it. It enters a state called wait-start, that lasts a random amount of time between 5 seconds and 15 seconds. During this time Sentinel Rule #14 still applies: if a valid slave promotion is detected the failover as leader is aborted and the failover as observer is detected.

End of failover

The failover process is considered terminated from the point of view of a
single Sentinel if:

	The promoted slave is not in SDOWN condition.

	A slave was promoted as new master.

	All the other slaves are configured to use the new master.

Note: Slaves that are in SDOWN state are ignored.

Also the failover state is considered terminate if:

	The promoted slave is not in SDOWN condition.

	A slave was promoted as new master.

	At least failover-timeout milliseconds elapsed since the last progress.

The failover-timeout value can be configured in sentinel.conf for every
different slave.

Note that when a leader terminates a failover for timeout, it sends a
SLAVEOF command in a best-effort way to all the slaves yet to be
configured, in the hope that they’ll receive the command and replicate
with the new master eventually.

Sentinel Rule #16 A failover is considered complete if for a leader or observer if:

	One slave was promoted to master (and the Sentinel can detect that this actually happened via INFO output), and all the additional slaves are all configured to replicate with the new slave (again, the sentinel needs to sense it using the INFO output).

	There is already a correctly promoted slave, but the configured failover-timeout time has already elapsed without any progress in the reconfiguration of the additional slaves. In this case a leader sends a best effort SLAVEOF command is sent to all the not yet configured slaves.
In both the two above conditions the promoted slave must be reachable (not in SDOWN state), otherwise a failover is never considered to be complete.

Leader failing during failover

If the leader fails when it has yet to promote the slave into a master, and it
fails in a way that makes it in SDOWN state from the point of view of the other
Sentinels, if enough Sentinels remained to reach the quorum the failover
will automatically continue using a new leader (the subjective leader of
all the remaining Sentinels will change because of the SDOWN state of the
previous leader).

If the failover was already in progress and the slave
was already promoted, and possibly a few other slaves were already reconfigured,
an observer that is the new objective leader will continue the failover in
case no progresses are made for more than 25% of the time specified by the
failover-timeout configuration option.

Note that this is safe as multiple Sentinels trying to reconfigure slaves
with duplicated SLAVEOF commands do not create any race condition, but at the
same time we want to be sure that all the slaves are reconfigured in the
case the original leader is no longer working.

Sentinel Rule #17 A Sentinel that is an observer for a failover in progress
will turn itself into a failover leader, continuing the configuration of the
additional slaves, if all the following conditions are true:

	A failover is in progress, and this Sentinel is an observer.

	It detects to be an objective leader (so likely the previous leader is no longer reachable by other sentinels).

	At least 25% of the configured failover-timeout has elapsed without any progress in the observed failover process.

Promoted slave failing during failover

If the promoted slave has an active SDOWN condition, a Sentinel will never
sense the failover as terminated.

Additionally if there is an extended SDOWN condition (that is an SDOWN that
lasts for more than ten times down-after-milliseconds milliseconds) the
failover is aborted (this happens for leaders and observers), and the master
starts to be monitored again as usually, so that a new failover can start with
a different slave in case the master is still failing.

Note that when this happens it is possible that there are a few slaves already
configured to replicate from the (now failing) promoted slave, so when the
leader sentinel aborts a failover it sends a SLAVEOF command to all the
slaves already reconfigured or in the process of being reconfigured to switch
the configuration back to the original master.

Sentinel Rule #18 A Sentinel will consider the failover process aborted, both when acting as leader and when acting as an observer, in the following conditions are true:

	A failover is in progress and a slave to promote was already selected (or in the case of the observer was already detected as master).

	The promoted slave is in Extended SDOWN condition (continually in SDOWN condition for at least ten times the configured down-after-milliseconds).

Resurrecting master

After the failover, at some point the old master may return back online. Starting with Redis 2.6.13 Sentinel is able to handle this condition by automatically reconfiguring the old master as a slave of the new master.

This happens in the following way:

	After the failover has started from the point of view of a Sentinel, either as a leader, or as an observer that detected the promotion of a slave, the old master is put in the list of slaves of the new master, but with a special DEMOTE flag (the flag can be seen in the SENTINEL SLAVES command output).

	Once the master is back online and it is possible to contact it again, if it still claims to be a master (from INFO output) Sentinels will send a SLAVEOF command trying to reconfigure it. Once the instance claims to be a slave, the DEMOTE flag is cleared.

There is no single Sentinel in charge of turning the old master into a slave, so the process is resistant against failing sentinels. At the same time instances with the DEMOTE flag set are never selected as promotable slaves.

In this specific case the +slave event is only generated only when the old master will report to be actually a slave again in its INFO output.

Sentinel Rule #19: Once the failover starts (either as observer or leader), the old master is added as a slave of the new master, flagged as DEMOTE.

Sentinel Rule #20: A slave instance claiming to be a master, and flagged as DEMOTE, is reconfigured via SLAVEOF every time a Sentinel receives an INFO output where the wrong role is detected.

Sentinel Rule #21: The DEMOTE flag is cleared as soon as an INFO output shows the instance to report itself as a slave.

Manual interactions

	TODO: Manually triggering a failover with SENTINEL FAILOVER.

	TODO: Pausing Sentinels with SENTINEL PAUSE, RESUME.

The failback process

	TODO: Sentinel does not perform automatic Failback.

	TODO: Document correct steps for the failback.

Clients configuration update

Work in progress.

TILT mode

Redis Sentinel is heavily dependent on the computer time: for instance in
order to understand if an instance is available it remembers the time of the
latest successful reply to the PING command, and compares it with the current
time to understand how old it is.

However if the computer time changes in an unexpected way, or if the computer
is very busy, or the process blocked for some reason, Sentinel may start to
behave in an unexpected way.

The TILT mode is a special “protection” mode that a Sentinel can enter when
something odd is detected that can lower the reliability of the system.
The Sentinel timer interrupt is normally called 10 times per second, so we
expect that more or less 100 milliseconds will elapse between two calls
to the timer interrupt.

What a Sentinel does is to register the previous time the timer interrupt
was called, and compare it with the current call: if the time difference
is negative or unexpectedly big (2 seconds or more) the TILT mode is entered
(or if it was already entered the exit from the TILT mode postponed).

When in TILT mode the Sentinel will continue to monitor everything, but:

	It stops acting at all.

	It starts to reply negatively to SENTINEL is-master-down-by-addr requests as the ability to detect a failure is no longer trusted.

If everything appears to be normal for 30 second, the TILT mode is exited.

Handling of -BUSY state

(Warning: Yet not implemented)

The -BUSY error is returned when a script is running for more time than the
configured script time limit. When this happens before triggering a fail over
Redis Sentinel will try to send a “SCRIPT KILL” command, that will only
succeed if the script was read-only.

Notifications via user script

Work in progress.

Suggested setup

Work in progress.

APPENDIX A - Implementation and algorithms

Duplicate Sentinels removal

In order to reach the configured quorum we absolutely want to make sure that
the quorum is reached by different physical Sentinel instances. Under
no circumstance we should get agreement from the same instance that for some
reason appears to be two or multiple distinct Sentinel instances.

This is enforced by an aggressive removal of duplicated Sentinels: every time
a Sentinel sends a message in the Hello Pub/Sub channel with its address
and runid, if we can’t find a perfect match (same runid and address) inside
the Sentinels table for that master, we remove any other Sentinel with the same
runid OR the same address. And later add the new Sentinel.

For instance if a Sentinel instance is restarted, the Run ID will be different,
and the old Sentinel with the same IP address and port pair will be removed.

Selection of the Slave to promote

If a master has multiple slaves, the slave to promote to master is selected
checking the slave priority (a new configuration option of Redis instances
that is propagated via INFO output, still not implemented), and picking the
one with lower priority value (it is an integer similar to the one of the
MX field of the DNS system).

All the slaves that appears to be disconnected from the master for a long
time are discarded.

If slaves with the same priority exist, the one with the lexicographically
smaller Run ID is selected.

Note: because currently slave priority is not implemented, the selection is
performed only discarding unreachable slaves and picking the one with the
lower Run ID.

Sentinel Rule #22: A Sentinel performing the failover as leader will select the slave to promote, among the existing Good Slaves (See rule #11), taking the one with the lower slave priority. When priority is the same the slave with lexicographically lower runid is preferred.

APPENDIX B - Get started with Sentinel in five minutes

If you want to try Redis Sentinel, please follow this steps:

	Clone the unstable branch of the Redis repository at github (it is the default branch).

	Compile it with “make”.

	Start a few normal Redis instances, using the redis-server compiled in the unstable branch. One master and one slave is enough.

	Use the redis-sentinel executable to start three instances of Sentinel, with redis-sentinel /path/to/config.

To create the three configurations just create three files where you put something like that:

port 26379
sentinel monitor mymaster 127.0.0.1 6379 2
sentinel down-after-milliseconds mymaster 5000
sentinel failover-timeout mymaster 900000
sentinel can-failover mymaster yes
sentinel parallel-syncs mymaster 1

Note: where you see port 26379, use 26380 for the second Sentinel, and 26381 for the third Sentinel (any other different non colliding port will do of course). Also note that the down-after-milliseconds configuration option is set to just five seconds, that is a good value to play with Sentinel, but not good for production environments.

At this point you should see something like the following in every Sentinel you are running:

[4747] 23 Jul 14:49:15.883 * +slave slave 127.0.0.1:6380 127.0.0.1 6380 @ mymaster 127.0.0.1 6379
[4747] 23 Jul 14:49:19.645 * +sentinel sentinel 127.0.0.1:26379 127.0.0.1 26379 @ mymaster 127.0.0.1 6379
[4747] 23 Jul 14:49:21.659 * +sentinel sentinel 127.0.0.1:26381 127.0.0.1 26381 @ mymaster 127.0.0.1 6379

redis-cli -p 26379 sentinel masters
1) 1) "name"
 2) "mymaster"
 3) "ip"
 4) "127.0.0.1"
 5) "port"
 6) "6379"
 7) "runid"
 8) "66215809eede5c0fdd20680cfb3dbd3bdf70a6f8"
 9) "flags"
 10) "master"
 11) "pending-commands"
 12) "0"
 13) "last-ok-ping-reply"
 14) "515"
 15) "last-ping-reply"
 16) "515"
 17) "info-refresh"
 18) "5116"
 19) "num-slaves"
 20) "1"
 21) "num-other-sentinels"
 22) "2"
 23) "quorum"
 24) "2"

To see how the failover works, just put down your slave (for instance sending DEBUG SEGFAULT to crash it) and see what happens.

This HOWTO is a work in progress, more information will be added in the near future.

 WARNING: this document is no longer in sync with the implementation of Redis Sentinel and will be removed in the next weeks.

Redis Sentinel design draft 1.3

Changelog:

	1.0 first version.

	1.1 fail over steps modified: slaves are pointed to new master one after the other and not simultaneously. New section about monitoring slaves to ensure they are replicating correctly.

	1.2 Fixed a typo in the fail over section about: critical error is in step 5 and not 6. Added TODO section.

	1.3 Document updated to reflect the actual implementation of the monitoring and leader election.

Introduction

Redis Sentinel is the name of the Redis high availability solution that’s
currently under development. It has nothing to do with Redis Cluster and
is intended to be used by people that don’t need Redis Cluster, but simply
a way to perform automatic fail over when a master instance is not functioning
correctly.

The plan is to provide a usable beta implementation of Redis Sentinel in a
short time, preferably in mid July 2012.

In short this is what Redis Sentinel will be able to do:

	Monitor master and slave instances to see if they are available.

	Promote a slave to master when the master fails.

	Modify clients configurations when a slave is elected.

	Inform the system administrator about incidents using notifications.

So the three different roles of Redis Sentinel can be summarized in the following three big aspects:

	Monitoring.

	Notification.

	Automatic failover.

The following document explains what is the design of Redis Sentinel in order
to accomplish this goals.

Redis Sentinel idea

The idea of Redis Sentinel is to have multiple “monitoring devices” in
different places of your network, monitoring the Redis master instance.

However this independent devices can’t act without agreement with other
sentinels.

Once a Redis master instance is detected as failing, for the failover process
to start, the sentinel must verify that there is a given level of agreement.

The amount of sentinels, their location in the network, and the
configured quorum, select the desired behavior among many possibilities.

Redis Sentinel does not use any proxy: clients reconfiguration is performed
running user-provided executables (for instance a shell script or a
Python program) in a user setup specific way.

In what form it will be shipped

Redis Sentinel is just a special mode of the redis-server executable.

If the redis-server is called with “redis-sentinel” as argv[0] (for instance
using a symbolic link or copying the file), or if –sentinel option is passed,
the Redis instance starts in sentinel mode and will only understand sentinel
related commands. All the other commands will be refused.

The whole implementation of sentinel will live in a separated file sentinel.c
with minimal impact on the rest of the code base. However this solution allows
to use all the facilities already implemented inside Redis without any need
to reimplement them or to maintain a separated code base for Redis Sentinel.

Sentinels networking

All the sentinels take persistent connections with:

	The monitored masters.

	All its slaves, that are discovered using the master’s INFO output.

	All the other Sentinels connected to this master, discovered via Pub/Sub.

Sentinels use the Redis protocol to talk with each other, and to reply to
external clients.

Redis Sentinels export a SENTINEL command. Subcommands of the SENTINEL
command are used in order to perform different actions.

For instance the SENTINEL masters command enumerates all the monitored
masters and their states. However Sentinels can also reply to the PING command
as a normal Redis instance, so that it is possible to monitor a Sentinel
considering it a normal Redis instance.

The list of networking tasks performed by every sentinel is the following:

	A Sentinel PUBLISH its presence using the master Pub/Sub multiple times every five seconds.

	A Sentinel accepts commands using a TCP port. By default the port is 26379.

	A Sentinel constantly monitors masters, slaves, other sentinels sending PING commands.

	A Sentinel sends INFO commands to the masters and slaves every ten seconds in order to take a fresh list of connected slaves, the state of the master, and so forth.

	A Sentinel monitors the sentinel Pub/Sub “hello” channel in order to discover newly connected Sentinels, or to detect no longer connected Sentinels. The channel used is __sentinel__:hello.

Sentinels discovering

To make the configuration of sentinels as simple as possible every sentinel
broadcasts its presence using the Redis master Pub/Sub functionality.

Every sentinel is subscribed to the same channel, and broadcast information
about its existence to the same channel, including the Run ID of the Sentinel,
and the IP address and port where it is listening for commands.

Every sentinel maintains a list of other sentinels Run ID, IP and port.
A sentinel that does no longer announce its presence using Pub/Sub for too
long time is removed from the list, assuming the Master appears to be working well. In that case a notification is delivered to the system administrator.

Detection of failing masters

An instance is not available from the point of view of Redis Sentinel when
it is no longer able to reply to the PING command correctly for longer than
the specified number of seconds, consecutively.

For a PING reply to be considered valid, one of the following conditions
should be true:

	PING replied with +PONG.

	PING replied with -LOADING error.

	PING replied with -MASTERDOWN error.

What is not considered an acceptable reply:

	PING replied with -BUSY error.

	PING replied with -MISCONF error.

	PING reply not received after more than a specified number of milliseconds.

PING should never reply with a different error code than the ones listed above
but any other error code is considered an acceptable reply by Redis Sentinel.

Handling of -BUSY state

The -BUSY error is returned when a script is running for more time than the
configured script time limit. When this happens before triggering a fail over
Redis Sentinel will try to send a “SCRIPT KILL” command, that will only
succeed if the script was read-only.

Subjectively down and Objectively down

From the point of view of a Sentinel there are two different error conditions for a master:

	Subjectively Down (aka S_DOWN) means that a master is down from the point of view of a Sentinel.

	Objectively Down (aka O_DOWN) means that a master is subjectively down from the point of view of enough Sentinels to reach the configured quorum for that master.

How Sentinels agree to mark a master O_DOWN.

Once a Sentinel detects that a master is in S_DOWN condition it starts to
send other sentinels a SENTINEL is-master-down-by-addr request every second.
The reply is stored inside the state that every Sentinel takes in memory.

Ten times every second a Sentinel scans the state and checks if there are
enough Sentinels thinking that a master is down (this is not specific for
this operation, most state checks are performed with this frequency).

If this Sentinel has already an S_DOWN condition for this master, and there
are enough other sentinels that recently reported this condition
(the validity time is currently set to 5 seconds), then the master is marked
as O_DOWN (Objectively Down).

Note that the O_DOWN state is not propagated among Sentinels. Every single
Sentinel can reach independently this state.

The SENTINEL is-master-down-by-addr command

Sentinels ask other Sentinels for the state of a master from their local point
of view using the SENTINEL is-master-down-by-addr command. This command
replies with a boolean value (in the form of a 0 or 1 integer reply, as
a first element of a multi bulk reply).

However in order to avoid false positives, the command acts in the following
way:

	If the specified ip and port is not known, 0 is returned.

	If the specified ip and port are found but don’t belong to a Master instance, 0 is returned.

	If the Sentinel is in TILT mode (see later in this document) 0 is returned.

	The value of 1 is returned only if the instance is known, is a master, is flagged S_DOWN and the Sentinel is in TILT mode.

Duplicate Sentinels removal

In order to reach the configured quorum we absolutely want to make sure that
the quorum is reached by different physical Sentinel instances. Under
no circumstance we should get agreement from the same instance that for some
reason appears to be two or multiple distinct Sentinel instances.

This is enforced by an aggressive removal of duplicated Sentinels: every time
a Sentinel sends a message in the Hello Pub/Sub channel with its address
and runid, if we can’t find a perfect match (same runid and address) inside
the Sentinels table for that master, we remove any other Sentinel with the same
runid OR the same address. And later add the new Sentinel.

For instance if a Sentinel instance is restarted, the Run ID will be different,
and the old Sentinel with the same IP address and port pair will be removed.

Starting the failover: Leaders and Observers

The fact that a master is marked as O_DOWN is not enough to star the
failover process. What Sentinel should start the failover is also to be
decided.

Also Sentinels can be configured in two ways: only as monitors that can’t
perform the fail over, or as Sentinels that can start the failover.

What is desirable is that only a Sentinel will start the failover process,
and this Sentinel should be selected among the Sentinels that are allowed
to perform the failover.

In Sentinel there are two roles during a fail over:

	The Leader Sentinel is the one selected to perform the failover.

	The Observers Sentinels are the other sentinels just following the failover process without doing active operations.

So the condition to start the failover is:

	A Master in O_DOWN condition.

	A Sentinel that is elected Leader.

Leader Sentinel election

The election process works as follows:

	Every Sentinel with a master in O_DOWN condition updates its internal state with frequency of 10 HZ to refresh what is the Subjective Leader from its point of view.

A Subjective Leader is selected in this way by every sentinel.

	Every Sentinel we know about a given master, that is reachable (no S_DOWN state), that is allowed to perform the failover (this Sentinel-specific configuration is propagated using the Hello channel), is a possible candidate.

	Among all the possible candidates, the one with lexicographically smaller Run ID is selected.

Every time a Sentinel replies with to the MASTER is-sentinel-down-by-addr command it also replies with the Run ID of its Subjective Leader.

Every Sentinel with a failing master (O_DOWN) checks its subjective leader
and the subjective leaders of all the other Sentinels with a frequency of
10 HZ, and will flag itself as the Leader if the following conditions happen:

	It is the Subjective Leader of itself.

	At least N-1 other Sentinels that see the master as down, and are reachable, also think that it is the Leader. With N being the quorum configured for this master.

	At least 50% + 1 of all the Sentinels involved in the voting process (that are reachable and that also see the master as failing) should agree on the Leader.

So for instance if there are a total of three sentinels, the master is failing,
and all the three sentinels are able to communicate (no Sentinel is failing)
and the configured quorum for this master is 2, a Sentinel will feel itself
an Objective Leader if at least it and another Sentinel is agreeing that
it is the subjective leader.

Once a Sentinel detects that it is the objective leader, it flags the master
with FAILOVER_IN_PROGRESS and IM_THE_LEADER flags, and starts the failover
process in SENTINEL_FAILOVER_DELAY (5 seconds currently) plus a random
additional time between 0 milliseconds and 10000 milliseconds.

During that time we ask INFO to all the slaves with an increased frequency
of one time per second (usually the period is 10 seconds). If a slave is
turned into a master in the meantime the failover is suspended and the
Leader clears the IM_THE_LEADER flag to turn itself into an observer.

Guarantees of the Leader election process

As you can see for a Sentinel to become a leader the majority is not strictly
required. A user can force the majority to be needed just setting the master
quorum to, for instance, the value of 5 if there are a total of 9 sentinels.

However it is also possible to set the quorum to the value of 2 with 9
sentinels in order to improve the resistance to netsplits or failing Sentinels
or other error conditions. In such a case the protection against race
conditions (multiple Sentinels starting to perform the fail over at the same
time) is given by the random delay used to start the fail over, and the
continuous monitor of the slave instances to detect if another Sentinel
(or a human) started the failover process.

Moreover the slave to promote is selected using a deterministic process to
minimize the chance that two different Sentinels with full vision of the
working slaves may pick two different slaves to promote.

However it is possible to easily imagine netsplits and specific configurations
where two Sentinels may start to act as a leader at the same time, electing two
different slaves as masters, in two different parts of the net that can’t
communicate. The Redis Sentinel user should evaluate the network topology and
select an appropriate quorum considering his or her goals and the different
trade offs.

How observers understand that the failover started

An observer is just a Sentinel that does not believe to be the Leader, but
still sees a master in O_DOWN condition.

The observer is still able to follow and update the internal state based on
what is happening with the failover, but does not directly rely on the
Leader to communicate with it to be informed by progresses. It simply observes
the state of the slaves to understand what is happening.

Specifically the observers flags the master as FAILOVER_IN_PROGRESS if a slave
attached to a master turns into a master (observers can see it in the INFO output). An observer will also consider the failover complete once all the other
reachable slaves appear to be slaves of this slave that was turned into a
master.

If a Slave is in FAILOVER_IN_PROGRESS and the failover is not progressing for
too much time, and at the same time the other Sentinels start claiming that
this Sentinel is the objective leader (because for example the old leader
is no longer reachable), the Sentinel will flag itself as IM_THE_LEADER and
will proceed with the failover.

Note: all the Sentinel state, including the subjective and objective leadership
is a dynamic process that is continuously refreshed with period of 10 HZ.
There is no “one time decision” step in Sentinel.

Selection of the Slave to promote

If a master has multiple slaves, the slave to promote to master is selected
checking the slave priority (a new configuration option of Redis instances
that is propagated via INFO output), and picking the one with lower priority
value (it is an integer similar to the one of the MX field of the DNS system).
All the slaves that appears to be disconnected from the master for a long
time are discarded (stale data).

If slaves with the same priority exist, the one with the lexicographically
smaller Run ID is selected.

If there is no Slave to select because all the salves are failing the failover
is not started at all. Instead if there is no Slave to select because the
master never used to have slaves in the monitoring session, then the
failover is performed nonetheless just calling the user scripts.
However for this to happen a special configuration option must be set for
that master (force-failover-without-slaves).

This is useful because there are configurations where a new Instance can be
provisioned at IP protocol level by the script, but there are no attached
slaves.

Fail over process

The fail over process consists of the following steps:

	
	Turn the selected slave into a master using the SLAVEOF NO ONE command.

	
	Turn all the remaining slaves, if any, to slaves of the new master. This is done incrementally, one slave after the other, waiting for the previous slave to complete the synchronization process before starting with the next one.

	
	Call a user script to inform the clients that the configuration changed.

	
	Completely remove the old failing master from the table, and add the new master with the same name.

If Steps “1” fails, the fail over is aborted.

All the other errors are considered to be non-fatal.

TILT mode

Redis Sentinel is heavily dependent on the computer time: for instance in
order to understand if an instance is available it remembers the time of the
latest successful reply to the PING command, and compares it with the current
time to understand how old it is.

However if the computer time changes in an unexpected way, or if the computer
is very busy, or the process blocked for some reason, Sentinel may start to
behave in an unexpected way.

The TILT mode is a special “protection” mode that a Sentinel can enter when
something odd is detected that can lower the reliability of the system.
The Sentinel timer interrupt is normally called 10 times per second, so we
expect that more or less 100 milliseconds will elapse between two calls
to the timer interrupt.

What a Sentinel does is to register the previous time the timer interrupt
was called, and compare it with the current call: if the time difference
is negative or unexpectedly big (2 seconds or more) the TILT mode is entered
(or if it was already entered the exit from the TILT mode postponed).

When in TILT mode the Sentinel will continue to monitor everything, but:

	It stops acting at all.

	It starts to reply negatively to SENTINEL is-master-down-by-addr requests as the ability to detect a failure is no longer trusted.

If everything appears to be normal for 30 second, the TILT mode is exited.

Sentinels monitoring other sentinels

When a sentinel no longer advertises itself using the Pub/Sub channel for too
much time (30 minutes more the configured timeout for the master), but at the
same time the master appears to work correctly, the Sentinel is removed from
the table of Sentinels for this master, and a notification is sent to the
system administrator.

User provided scripts

Sentinels can optionally call user-provided scripts to perform two tasks:

	Inform clients that the configuration changed.

	Notify the system administrator of problems.

The script to inform clients of a configuration change has the following parameters:

	ip:port of the calling Sentinel.

	old master ip:port.

	new master ip:port.

The script to send notifications is called with the following parameters:

	ip:port of the calling Sentinel.

	The message to deliver to the system administrator is passed writing to the standard input.

Using the ip:port of the calling sentinel, scripts may call SENTINEL subcommands
to get more info if needed.

Concrete implementations of notification scripts will likely use the “mail”
command or some other command to deliver SMS messages, emails, tweets.

Implementations of the script to modify the configuration in web applications
are likely to use HTTP GET requests to force clients to update the
configuration, or any other sensible mechanism for the specific setup in use.

Setup examples

Imaginary setup:

computer A runs the Redis master.
computer B runs the Redis slave and the client software.

In this naive configuration it is possible to place a single sentinel, with
“minimal agreement” set to the value of one (no acknowledge from other
sentinels needed), running on “B”.

If “A” will fail the fail over process will start, the slave will be elected
to master, and the client software will be reconfigured.

Imaginary setup:

computer A runs the Redis master
computer B runs the Redis slave
computer C,D,E,F,G are web servers acting as clients

In this setup it is possible to run five sentinels placed at C,D,E,F,G with
“minimal agreement” set to 3.

In real production environments there is to evaluate how the different
computers are networked together, and to check what happens during net splits
in order to select where to place the sentinels, and the level of minimal
agreement, so that a single arm of the network failing will not trigger a
fail over.

In general if a complex network topology is present, the minimal agreement
should be set to the max number of sentinels existing at the same time in
the same network arm, plus one.

SENTINEL SUBCOMMANDS

	SENTINEL masters, provides a list of configured masters.

	SENTINEL slaves <master name>, provides a list of slaves for the master with the specified name.

	SENTINEL sentinels <master name>, provides a list of sentinels for the master with the specified name.

	SENTINEL is-master-down-by-addr <ip> <port>, returns a two elements multi bulk reply where the first element is :0 or :1, and the second is the Subjective Leader for the failover.

TODO

	More detailed specification of user script error handling, including what return codes may mean, like 0: try again. 1: fatal error. 2: try again, and so forth.

	More detailed specification of what happens when a user script does not return in a given amount of time.

	Add a “push” notification system for configuration changes.

	Document that for every master monitored the configuration specifies a name for the master that is reported by all the SENTINEL commands.

	Make clear that we handle a single Sentinel monitoring multiple masters.

Redis Keyspace Notifications

IMPORTANT Keyspace notifications is a feature available since 2.8.0

Feature overview

Keyspace notifications allows clients to subscribe to Pub/Sub channels in order
to receive events affecting the Redis data set in some way.

Examples of the events that is possible to receive are the following:

	All the commands affecting a given key.

	All the keys receiving an LPUSH operation.

	All the keys expiring in the database 0.

Events are delivered using the normal Pub/Sub layer of Redis, so clients
implementing Pub/Sub are able to use this feature without modifications.

Because Redis Pub/Sub is fire and forget currently there is no way to use this
feature if your application demands reliable notification of events, that is,
if your Pub/Sub client disconnects, and reconnects later, all the events
delivered during the time the client was disconnected are lost.

In the future there are plans to allow for more reliable delivering of
events, but probably this will be addressed at a more general level either
bringing reliability to Pub/Sub itself, or allowing Lua scripts to intercept
Pub/Sub messages to perform operations like pushing the events into a list.

Type of events

Keyspace notifications are implemented sending two distinct type of events
for every operation affecting the Redis data space. For instance a DEL
operation targeting the key named mykey in database 0 will trigger
the delivering of two messages, exactly equivalent to the following two
PUBLISH commands:

PUBLISH __keyspace@0__:mykey del
PUBLISH __keyevent@0__:del mykey

It is easy to see how one channel allows to listen to all the events targeting
the key mykey and the other channel allows to obtain information about
all the keys that are target of a del operation.

The first kind of event, with keyspace prefix in the channel is called
a Key-space notification, while the second, with the keyevent prefix,
is called a Key-event notification.

In the above example a del event was generated for the key mykey.
What happens is that:

	The Key-space channel receives as message the name of the event.

	The Key-event channel receives as message the name of the key.

It is possible to enable only one kind of notification in order to deliver
just the subset of events we are interested in.

Configuration

By default keyspace events notifications are disabled because while not
very sensible the feature uses some CPU power. Notifications are enabled
using the notify-keyspace-events of redis.conf or via the CONFIG SET.

Setting the parameter to the empty string disables notifications.
In order to enable the feature a non-empty string is used, composed of multiple
characters, where every character has a special meaning according to the
following table:

K Keyspace events, published with __keyspace@<db>__ prefix.
E Keyevent events, published with __keyevent@<db>__ prefix.
g Generic commands (non-type specific) like DEL, EXPIRE, RENAME, ...
$ String commands
l List commands
s Set commands
h Hash commands
z Sorted set commands
x Expired events (events generated every time a key expires)
e Evicted events (events generated when a key is evicted for maxmemory)
A Alias for g$lshzxe, so that the "AKE" string means all the events.

At least K or E should be present in the string, otherwise no event
will be delivered regardless of the rest of the string.

For instance to enable just Key-space events for lists, the configuration
parameter must be set to Kl, and so forth.

The string KEA can be used to enable every possible event.

Events generated by different commands

Different commands generate different kind of events according to the following list.

	DEL generates a del event for every deleted key.

	RENAME generates two events, a rename_from event for the source key, and a rename_to event for the destination key.

	EXPIRE generates an expire event when an expire is set to the key, or an expired event every time a positive timeout set on a key results into the key being deleted (see EXPIRE documentation for more info).

	SORT generates a sortstore event when STORE is used to set a new key. If the resulting list is empty, and the STORE option is used, and there was already an existing key with that name, the result is that the key is deleted, so a del event is generated in this condition.

	SET and all its variants (SETEX, SETNX,GETSET) generate set events. However SETEX will also generate an expire events.

	MSET generates a separated set event for every key.

	SETRANGE generates a setrange event.

	INCR, DECR, INCRBY, DECRBY commands all generate incrby events.

	INCRBYFLOAT generates an incrbyfloat events.

	APPEND generates an append event.

	LPUSH and LPUSHX generates a single lpush event, even in the variadic case.

	RPUSH and RPUSHX generates a single rpush event, even in the variadic case.

	RPOP generates an rpop event. Additionally a del event is generated if the key is removed because the last element from the list was popped.

	LPOP generates an lpop event. Additionally a del event is generated if the key is removed because the last element from the list was popped.

	LINSERT generates an linsert event.

	LSET generates an lset event.

	LREM generates an lrem event, and additionally a del event if the resulting list is empty and the key is removed.

	LTRIM generates an ltrim event, and additionally a del event if the resulting list is empty and the key is removed.

	RPOPLPUSH and BRPOPLPUSH generate an rpop event and an lpush event. In both cases the order is guaranteed (the lpush event will always be delivered after the rpop event). Additionally a del event will be generated if the resulting list is zero length and the key is removed.

	HSET, HSETNX and HMSET all generate a single hset event.

	HINCRBY generates an hincrby event.

	HINCRBYFLOAT generates an hincrbyfloat event.

	HDEL generates a single hdel event, and an additional del event if the resulting hash is empty and the key is removed.

	SADD generates a single sadd event, even in the variadic case.

	SREM generates a single srem event, and an additional del event if the resulting set is empty and the key is removed.

	SMOVE generates an srem event for the source key, and an sadd event for the destination key.

	SPOP generates an spop event, and an additional del event if the resulting set is empty and the key is removed.

	SINTERSTORE, SUNIONSTORE, SDIFFSTORE generate sinterstore, sunionostore, sdiffstore events respectively. In the special case the resulting set is empty, and the key where the result is stored already exists, a del event is generated since the key is removed.

	ZINCR generates a zincr event.

	ZADD generates a single zadd event even when multiple elements are added.

	ZREM generates a single zrem event even when multiple elements are deleted. When the resulting sorted set is empty and the key is generated, an additional del event is generated.

	ZREMBYSCORE generates a single zrembyscore event. When the resulting sorted set is empty and the key is generated, an additional del event is generated.

	ZREMBYRANK generates a single zrembyrank event. When the resulting sorted set is empty and the key is generated, an additional del event is generated.

	ZINTERSTORE and ZUNIONSTORE respectively generate zinterstore and zunionstore events. In the special case the resulting sorted set is empty, and the key where the result is stored already exists, a del event is generated since the key is removed.

	Every time a key with a time to live associated is removed from the data set because it expired, an expired event is generated.

	Every time a key is evicted from the data set in order to free memory as a result of the maxmemory policy, an evicted event is generated.

IMPORTANT all the commands generate events only if the target key is really modified. For instance an SREM deleting a non-existing element from a Set will not actually change the value of the key, so no event will be generated.

If in doubt about how events are generated for a given command, the simplest
thing to do is to watch yourself:

$ redis-cli config set notify-keyspace-events KEA
$ redis-cli --csv psubscribe '__key*__:*'
Reading messages... (press Ctrl-C to quit)
"psubscribe","__key*__:*",1

At this point use redis-cli in another terminal to send commands to the
Redis server and watch the events generated:

"pmessage","__key*__:*","__keyspace@0__:foo","set"
"pmessage","__key*__:*","__keyevent@0__:set","foo"
...

Timing of expired events

Keys with a time to live associated are expired by Redis in two ways:

	When the key is accessed by a command and is found to be expired.

	Via a background system that looks for expired keys in background, incrementally, in order to be able to also collect keys that are never accessed.

The expired events are generated when a key is accessed and is found to be expired by one of the above systems, as a result there are no guarantees that the Redis server will be able to generate the expired event at the time the key time to live reaches the value of zero.

If no command targets the key constantly, and there are many keys with a TTL associated, there can be a significant delay between the time the key time to live drops to zero, and the time the expired event is generated.

Basically expired events are generated when the Redis server deletes the key and not when the time to live theoretically reaches the value of zero.

Native types in Redis modules

Redis modules can access Redis built-in data structures both at high level,
by calling Redis commands, and at low level, by manipulating the data structures
directly.

By using these capabilities in order to build new abstractions on top of existing
Redis data structures, or by using strings DMA in order to encode modules
data structures into Redis strings, it is possible to create modules that
feel like they are exporting new data types. However, for more complex
problems, this is not enough, and the implementation of new data structures
inside the module is needed.

We call the ability of Redis modules to implement new data structures that
feel like native Redis ones native types support. This document describes
the API exported by the Redis modules system in order to create new data
structures and handle the serialization in RDB files, the rewriting process
in AOF, the type reporting via the TYPE command, and so forth.

Overview of native types

A module exporting a native type is composed of the following main parts:

	The implementation of some kind of new data structure and of commands operating on the new data structure.

	A set of callbacks that handle: RDB saving, RDB loading, AOF rewriting, releasing of a value associated with a key, calculation of a value digest (hash) to be used with the DEBUG DIGEST command.

	A 9 characters name that is unique to each module native data type.

	An encoding version, used to persist into RDB files a module-specific data version, so that a module will be able to load older representations from RDB files.

While to handle RDB loading, saving and AOF rewriting may look complex as a first glance, the modules API provide very high level function for handling all this, without requiring the user to handle read/write errors, so in practical terms, writing a new data structure for Redis is a simple task.

A very easy to understand but complete example of native type implementation
is available inside the Redis distribution in the /modules/hellotype.c file.
The reader is encouraged to read the documentation by looking at this example
implementation to see how things are applied in the practice.

Registering a new data type

In order to register a new native type into the Redis core, the module needs
to declare a global variable that will hold a reference to the data type.
The API to register the data type will return a data type reference that will
be stored in the global variable.

static RedisModuleType *MyType;
#define MYTYPE_ENCODING_VERSION 0

int RedisModule_OnLoad(RedisModuleCtx *ctx) {
RedisModuleTypeMethods tm = {
 .version = REDISMODULE_TYPE_METHOD_VERSION,
 .rdb_load = MyTypeRDBLoad,
 .rdb_save = MyTypeRDBSave,
 .aof_rewrite = MyTypeAOFRewrite,
 .free = MyTypeFree
};

 MyType = RedisModule_CreateDataType(ctx, "MyType-AZ",
 MYTYPE_ENCODING_VERSION, &tm);
 if (MyType == NULL) return REDISMODULE_ERR;
}

As you can see from the example above, a single API call is needed in order to
register the new type. However a number of function pointers are passed as
arguments. Certain are optionals while some are mandatory. The above set
of methods must be passed, while .digest and .mem_usage are optional
and are currently not actually supported by the modules internals, so for
now you can just ignore them.

The ctx argument is the context that we receive in the OnLoad function.
The type name is a 9 character name in the character set that includes
from A-Z, a-z, 0-9, plus the underscore _ and minus - characters.

Note that this name must be unique for each data type in the Redis
ecosystem, so be creative, use both lower-case and upper case if it makes
sense, and try to use the convention of mixing the type name with the name
of the author of the module, to create a 9 character unique name.

NOTE: It is very important that the name is exactly 9 chars or the
registration of the type will fail. Read more to understand why.

For example if I’m building a b-tree data structure and my name is antirez
I’ll call my type btree1-az. The name, converted to a 64 bit integer,
is stored inside the RDB file when saving the type, and will be used when the
RDB data is loaded in order to resolve what module can load the data. If Redis
finds no matching module, the integer is converted back to a name in order to
provide some clue to the user about what module is missing in order to load
the data.

The type name is also used as a reply for the TYPE command when called
with a key holding the registered type.

The encver argument is the encoding version used by the module to store data
inside the RDB file. For example I can start with an encoding version of 0,
but later when I release version 2.0 of my module, I can switch encoding to
something better. The new module will register with an encoding version of 1,
so when it saves new RDB files, the new version will be stored on disk. However
when loading RDB files, the module rdb_load method will be called even if
there is data found for a different encoding version (and the encoding version
is passed as argument to rdb_load), so that the module can still load old
RDB files.

The last argument is a structure used in order to pass the type methods to the
registration function: rdb_load, rdb_save, aof_rewrite, digest and
free and mem_usage are all callbacks with the following prototypes and uses:

typedef void *(*RedisModuleTypeLoadFunc)(RedisModuleIO *rdb, int encver);
typedef void (*RedisModuleTypeSaveFunc)(RedisModuleIO *rdb, void *value);
typedef void (*RedisModuleTypeRewriteFunc)(RedisModuleIO *aof, RedisModuleString *key, void *value);
typedef size_t (*RedisModuleTypeMemUsageFunc)(void *value);
typedef void (*RedisModuleTypeDigestFunc)(RedisModuleDigest *digest, void *value);
typedef void (*RedisModuleTypeFreeFunc)(void *value);

	rdb_load is called when loading data from the RDB file. It loads data in the same format as rdb_save produces.

	rdb_save is called when saving data to the RDB file.

	aof_rewrite is called when the AOF is being rewritten, and the module needs to tell Redis what is the sequence of commands to recreate the content of a given key.

	digest is called when DEBUG DIGEST is executed and a key holding this module type is found. Currently this is not yet implemented so the function ca be left empty.

	mem_usage is called when the MEMORY command asks for the total memory consumed by a specific key, and is used in order to get the amount of bytes used by the module value.

	free is called when a key with the module native type is deleted via DEL or in any other mean, in order to let the module reclaim the memory associated with such a value.

Ok, but why modules types require a 9 characters name?

Oh, I understand you need to understand this, so here is a very specific
explanation.

When Redis persists to RDB files, modules specific data types require to
be persisted as well. Now RDB files are sequences of key-value pairs
like the following:

[1 byte type] [key] [a type specific value]

The 1 byte type identifies strings, lists, sets, and so forth. In the case
of modules data, it is set to a special value of module data, but of
course this is not enough, we need the information needed to link a specific
value with a specific module type that is able to load and handle it.

So when we save a type specific value about a module, we prefix it with
a 64 bit integer. 64 bits is large enough to store the informations needed
in order to lookup the module that can handle that specific type, but is
short enough that we can prefix each module value we store inside the RDB
without making the final RDB file too big. At the same time, this solution
of prefixing the value with a 64 bit signature does not require to do
strange things like defining in the RDB header a list of modules specific
types. Everything is pretty simple.

So, what you can store in 64 bits in order to identify a given module in
a reliable way? Well if you build a character set of 64 symbols, you can
easily store 9 characters of 6 bits, and you are left with 10 bits, that
are used in order to store the encoding version of the type, so that
the same type can evolve in the future and provide a different and more
efficient or updated serialization format for RDB files.

So the 64 bit prefix stored before each module value is like the following:

6|6|6|6|6|6|6|6|6|10

The first 9 elements are 6-bits characters, the final 10 bits is the
encoding version.

When the RDB file is loaded back, it reads the 64 bit value, masks the final
10 bits, and searches for a matching module in the modules types cache.
When a matching one is found, the method to load the RDB file value is called
with the 10 bits encoding version as argument, so that the module knows
what version of the data layout to load, if it can support multiple versions.

Now the interesting thing about all this is that, if instead the module type
cannot be resolved, since there is no loaded module having this signature,
we can convert back the 64 bit value into a 9 characters name, and print
an error to the user that includes the module type name! So that she or he
immediately realizes what’s wrong.

Setting and getting keys

After registering our new data type in the RedisModule_OnLoad() function,
we also need to be able to set Redis keys having as value our native type.

This normally happens in the context of commands that write data to a key.
The native types API allow to set and get keys to module native data types,
and to test if a given key is already associated to a value of a specific data
type.

The API uses the normal modules RedisModule_OpenKey() low level key access
interface in order to deal with this. This is an eaxmple of setting a
native type private data structure to a Redis key:

RedisModuleKey *key = RedisModule_OpenKey(ctx,keyname,REDISMODULE_WRITE);
struct some_private_struct *data = createMyDataStructure();
RedisModule_ModuleTypeSetValue(key,MyType,data);

The function RedisModule_ModuleTypeSetValue() is used with a key handle open
for writing, and gets three arguments: the key handle, the reference to the
native type, as obtained during the type registration, and finally a void*
pointer that contains the private data implementing the module native type.

Note that Redis has no clues at all about what your data contains. It will
just call the callbacks you provided during the method registration in order
to perform operations on the type.

Similarly we can retrieve the private data from a key using this function:

struct some_private_struct *data;
data = RedisModule_ModuleTypeGetValue(key);

We can also test for a key to have our native type as value:

if (RedisModule_ModuleTypeGetType(key) == MyType) {
 /* ... do something ... */
}

However for the calls to do the right thing, we need to check if the key
is empty, if it contains a value of the right kind, and so forth. So
the idiomatic code to implement a command writing to our native type
is along these lines:

RedisModuleKey *key = RedisModule_OpenKey(ctx,argv[1],
 REDISMODULE_READ|REDISMODULE_WRITE);
int type = RedisModule_KeyType(key);
if (type != REDISMODULE_KEYTYPE_EMPTY &&
 RedisModule_ModuleTypeGetType(key) != MyType)
{
 return RedisModule_ReplyWithError(ctx,REDISMODULE_ERRORMSG_WRONGTYPE);
}

Then if we successfully verified the key is not of the wrong type, and
we are going to write to it, we usually want to create a new data structure if
the key is empty, or retrieve the reference to the value associated to the
key if there is already one:

/* Create an empty value object if the key is currently empty. */
struct some_private_struct *data;
if (type == REDISMODULE_KEYTYPE_EMPTY) {
 data = createMyDataStructure();
 RedisModule_ModuleTypeSetValue(key,MyTyke,data);
} else {
 data = RedisModule_ModuleTypeGetValue(key);
}
/* Do something with 'data'... */

Free method

As already mentioned, when Redis needs to free a key holding a native type
value, it needs help from the module in order to release the memory. This
is the reason why we pass a free callback during the type registration:

typedef void (*RedisModuleTypeFreeFunc)(void *value);

A trivial implementation of the free method can be something like this,
assuming our data structure is composed of a single allocation:

void MyTypeFreeCallback(void *value) {
 RedisModule_Free(value);
}

However a more real world one will call some function that performs a more
complex memory reclaiming, by casting the void pointer to some structure
and freeing all the resources composing the value.

RDB load and save methods

The RDB saving and loading callbacks need to create (and load back) a
representation of the data type on disk. Redis offers an high level API
that can automatically store inside the RDB file the following types:

	Unsigned 64 bit integers.

	Signed 64 bit integers.

	Doubles.

	Strings.

It is up to the module to find a viable representation using the above base
types. However note that while the integer and double values are stored
and loaded in an architecture and endianess agnostic way, if you use
the raw string saving API to, for example, save a structure on disk, you
have to care those details yourself.

This is the list of functions performing RDB saving and loading:

void RedisModule_SaveUnsigned(RedisModuleIO *io, uint64_t value);
uint64_t RedisModule_LoadUnsigned(RedisModuleIO *io);
void RedisModule_SaveSigned(RedisModuleIO *io, int64_t value);
int64_t RedisModule_LoadSigned(RedisModuleIO *io);
void RedisModule_SaveString(RedisModuleIO *io, RedisModuleString *s);
void RedisModule_SaveStringBuffer(RedisModuleIO *io, const char *str, size_t len);
RedisModuleString *RedisModule_LoadString(RedisModuleIO *io);
char *RedisModule_LoadStringBuffer(RedisModuleIO *io, size_t *lenptr);
void RedisModule_SaveDouble(RedisModuleIO *io, double value);
double RedisModule_LoadDouble(RedisModuleIO *io);

The functions don’t require any error checking from the module, that can
always assume calls succeed.

As an example, imagine I’ve a native type that implements an array of
double values, with the following structure:

struct double_array {
 size_t count;
 double *values;
};

My rdb_save method may look like the following:

void DoubleArrayRDBSave(RedisModuleIO *io, void *ptr) {
 struct dobule_array *da = ptr;
 RedisModule_SaveUnsigned(io,da->count);
 for (size_t j = 0; j < da->count; j++)
 RedisModule_SaveDouble(io,da->values[j]);
}

What we did was to store the number of elements followed by each double
value. So when later we’ll have to load the structure in the rdb_load
method we’ll do something like this:

void *DoubleArrayRDBLoad(RedisModuleIO *io, int encver) {
 if (encver != DOUBLE_ARRAY_ENC_VER) {
 /* We should actually log an error here, or try to implement
 the ability to load older versions of our data structure. */
 return NULL;
 }

 struct double_array *da;
 da = RedisModule_Alloc(sizeof(*da));
 da->count = RedisModule_LoadUnsigned(io);
 da->values = RedisModule_Alloc(da->count * sizeof(double));
 for (size_t j = 0; j < da->count; j++)
 da->values = RedisModule_LoadDouble(io);
 return da;
}

The load callback just reconstruct back the data structure from the data
we stored in the RDB file.

Note that while there is no error handling on the API that writes and reads
from disk, still the load callback can return NULL on errors in case what
it reads does not look correct. Redis will just panic in that case.

AOF rewriting

void RedisModule_EmitAOF(RedisModuleIO *io, const char *cmdname, const char *fmt, ...);

Handling multiple encodings

WORK IN PROGRESS

Allocating memory

Modules data types should try to use RedisModule_Alloc() functions family
in order to allocate, reallocate and release heap memory used to implement the native data structures (see the other Redis Modules documentation for detailed information).

This is not just useful in order for Redis to be able to account for the memory used by the module, but there are also more advantages:

	Redis uses the jemalloc allcator, that often prevents fragmentation problems that could be caused by using the libc allocator.

	When loading strings from the RDB file, the native types API is able to return strings allocated directly with RedisModule_Alloc(), so that the module can directly link this memory into the data structure representation, avoiding an useless copy of the data.

Even if you are using external libraries implementing your data structures, the
allocation functions provided by the module API is exactly compatible with
malloc(), realloc(), free() and strdup(), so converting the libraries
in order to use these functions should be trivial.

In case you have an external library that uses libc malloc(), and you want
to avoid replacing manually all the calls with the Redis Modules API calls,
an approach could be to use simple macros in order to replace the libc calls
with the Redis API calls. Something like this could work:

#define malloc RedisModule_Alloc
#define realloc RedisModule_Realloc
#define free RedisModule_Free
#define strdup RedisModule_Strdup

However take in mind that mixing libc calls with Redis API calls will result
into troubles and crashes, so if you replace calls using macros, you need to
make sure that all the calls are correctly replaced, and that the code with
the substituted calls will never, for example, attempt to call
RedisModule_Free() with a pointer allocated using libc malloc().

Using Redis as an LRU cache

When Redis is used as a cache, often it is handy to let it automatically
evict old data as you add new one. This behavior is very well known in the
community of developers, since it is the default behavior of the popular
memcached system.

LRU is actually only one of the supported eviction methods. This page covers
the more general topic of the Redis maxmemory directive that is used in
order to limit the memory usage to a fixed amount, and it also covers in
depth the LRU algorithm used by Redis, that is actually an approximation of
the exact LRU.

Starting with Redis version 4.0, a new LFU (Least Frequently Used) eviction
policy was introduced. This is covered in a separated section of this documentation.

Maxmemory configuration directive

The maxmemory configuration directive is used in order to configure Redis
to use a specified amount of memory for the data set. It is possible to
set the configuration directive using the redis.conf file, or later using
the CONFIG SET command at runtime.

For example in order to configure a memory limit of 100 megabytes, the
following directive can be used inside the redis.conf file.

maxmemory 100mb

Setting maxmemory to zero results into no memory limits. This is the
default behavior for 64 bit systems, while 32 bit systems use an implicit
memory limit of 3GB.

When the specified amount of memory is reached, it is possible to select
among different behaviors, called policies.
Redis can just return errors for commands that could result in more memory
being used, or it can evict some old data in order to return back to the
specified limit every time new data is added.

Eviction policies

The exact behavior Redis follows when the maxmemory limit is reached is
configured using the maxmemory-policy configuration directive.

The following policies are available:

	noeviction: return errors when the memory limit was reached and the client is trying to execute commands that could result in more memory to be used (most write commands, but DEL and a few more exceptions).

	allkeys-lru: evict keys by trying to remove the less recently used (LRU) keys first, in order to make space for the new data added.

	volatile-lru: evict keys by trying to remove the less recently used (LRU) keys first, but only among keys that have an expire set, in order to make space for the new data added.

	allkeys-random: evict keys randomly in order to make space for the new data added.

	volatile-random: evict keys randomly in order to make space for the new data added, but only evict keys with an expire set.

	volatile-ttl: evict keys with an expire set, and try to evict keys with a shorter time to live (TTL) first, in order to make space for the new data added.

The policies volatile-lru, volatile-random and volatile-ttl behave like noeviction if there are no keys to evict matching the prerequisites.

To pick the right eviction policy is important depending on the access pattern
of your application, however you can reconfigure the policy at runtime while
the application is running, and monitor the number of cache misses and hits
using the Redis INFO output in order to tune your setup.

In general as a rule of thumb:

	Use the allkeys-lru policy when you expect a power-law distribution in the popularity of your requests, that is, you expect that a subset of elements will be accessed far more often than the rest. This is a good pick if you are unsure.

	Use the allkeys-random if you have a cyclic access where all the keys are scanned continuously, or when you expect the distribution to be uniform (all elements likely accessed with the same probability).

	Use the volatile-ttl if you want to be able to provide hints to Redis about what are good candidate for expiration by using different TTL values when you create your cache objects.

The volatile-lru and volatile-random policies are mainly useful when you want to use a single instance for both caching and to have a set of persistent keys. However it is usually a better idea to run two Redis instances to solve such a problem.

It is also worth to note that setting an expire to a key costs memory, so using a policy like allkeys-lru is more memory efficient since there is no need to set an expire for the key to be evicted under memory pressure.

How the eviction process works

It is important to understand that the eviction process works like this:

	A client runs a new command, resulting in more data added.

	Redis checks the memory usage, and if it is greater than the maxmemory limit , it evicts keys according to the policy.

	A new command is executed, and so forth.

So we continuously cross the boundaries of the memory limit, by going over it, and then by evicting keys to return back under the limits.

If a command results in a lot of memory being used (like a big set intersection stored into a new key) for some time the memory limit can be surpassed by a noticeable amount.

Approximated LRU algorithm

Redis LRU algorithm is not an exact implementation. This means that Redis is
not able to pick the best candidate for eviction, that is, the access that
was accessed the most in the past. Instead it will try to run an approximation
of the LRU algorithm, by sampling a small number of keys, and evicting the
one that is the best (with the oldest access time) among the sampled keys.

However since Redis 3.0 the algorithm was improved to also take a pool of good
candidates for eviction. This improved the performance of the algorithm, making
it able to approximate more closely the behavior of a real LRU algorithm.

What is important about the Redis LRU algorithm is that you are able to tune the precision of the algorithm by changing the number of samples to check for every eviction. This parameter is controlled by the following configuration directive:

maxmemory-samples 5

The reason why Redis does not use a true LRU implementation is because it
costs more memory. However the approximation is virtually equivalent for the
application using Redis. The following is a graphical comparison of how
the LRU approximation used by Redis compares with true LRU.

[image: LRU comparison]

The test to generate the above graphs filled a Redis server with a given number of keys. The keys were accessed from the first to the last, so that the first keys are the best candidates for eviction using an LRU algorithm. Later more 50% of keys are added, in order to force half of the old keys to be evicted.

You can see three kind of dots in the graphs, forming three distinct bands.

	The light gray band are objects that were evicted.

	The gray band are objects that were not evicted.

	The green band are objects that were added.

In a theoretical LRU implementation we expect that, among the old keys, the first half will be expired. The Redis LRU algorithm will instead only probabilistically expire the older keys.

As you can see Redis 3.0 does a better job with 5 samples compared to Redis 2.8, however most objects that are among the latest accessed are still retained by Redis 2.8. Using a sample size of 10 in Redis 3.0 the approximation is very close to the theoretical performance of Redis 3.0.

Note that LRU is just a model to predict how likely a given key will be accessed in the future. Moreover, if your data access pattern closely
resembles the power law, most of the accesses will be in the set of keys that
the LRU approximated algorithm will be able to handle well.

In simulations we found that using a power law access pattern, the difference between true LRU and Redis approximation were minimal or non-existent.

However you can raise the sample size to 10 at the cost of some additional CPU
usage in order to closely approximate true LRU, and check if this makes a
difference in your cache misses rate.

To experiment in production with different values for the sample size by using
the CONFIG SET maxmemory-samples <count> command, is very simple.

The new LFU mode

Starting with Redis 4.0, a new Least Frequently Used eviction mode [http://antirez.com/news/109] is available. This mode may work better (provide a better
hits/misses ratio) in certain cases, since using LFU Redis will try to track
the frequency of access of items, so that the ones used rarely are evicted while
the one used often have an higher chance of remaining in memory.

If you think at LRU, an item that was recently accessed but is actually almost never requested, will not get expired, so the risk is to evict a key that has an higher chance to be requested in the future. LFU does not have this problem, and in general should adapt better to different access patterns.

To configure the LFU mode, the following policies are available:

	volatile-lfu Evict using approximated LFU among the keys with an expire set.

	allkeys-lfu Evict any key using approximated LFU.

LFU is approximated like LRU: it uses a probabilistic counter, called a Morris counter [https://en.wikipedia.org/wiki/Approximate_counting_algorithm] in order to estimate the object access frequency using just a few bits per object, combined with a decay period so that the counter is reduced over time: at some point we no longer want to consider keys as frequently accessed, even if they were in the past, so that the algorithm can adapt to a shift in the access pattern.

Those informations are sampled similarly to what happens for LRU (as explained in the previous section of this documentation) in order to select a candidate for eviction.

However unlike LRU, LFU has certain tunable parameters: for instance, how fast
should a frequent item lower in rank if it gets no longer accessed? It is also possible to tune the Morris counters range in order to better adapt the algorithm to specific use cases.

By default Redis 4.0 is configured to:

	Saturate the counter at, around, one million requests.

	Decay the counter every one minute.

Those should be reasonable values and were tested experimental, but the user may want to play with these configuration settings in order to pick optimal values.

Instructions about how to tune these parameters can be found inside the example redis.conf file in the source distribution, but briefly, they are:

lfu-log-factor 10
lfu-decay-time 1

The decay time is the obvious one, it is the amount of minutes a counter should be decayed, when sampled and found to be older than that value. A special value of 0 means: always decay the counter every time is scanned, and is rarely useful.

The counter logarithm factor changes how many hits are needed in order to saturate the frequency counter, which is just in the range 0-255. The higher the factor, the more accesses are needed in order to reach the maximum. The lower the factor, the better is the resolution of the counter for low accesses, according to the following table:

+--------+------------+------------+------------+------------+------------+
| factor | 100 hits | 1000 hits | 100K hits | 1M hits | 10M hits |
+--------+------------+------------+------------+------------+------------+
| 0 | 104 | 255 | 255 | 255 | 255 |
+--------+------------+------------+------------+------------+------------+
| 1 | 18 | 49 | 255 | 255 | 255 |
+--------+------------+------------+------------+------------+------------+
| 10 | 10 | 18 | 142 | 255 | 255 |
+--------+------------+------------+------------+------------+------------+
| 100 | 8 | 11 | 49 | 143 | 255 |
+--------+------------+------------+------------+------------+------------+

So basically the factor is a trade off between better distinguishing items with low accesses VS distinguishing items with high accesses. More informations are available in the example redis.conf file self documenting comments.

Since LFU is a new feature, we’ll appreciate any feedback about how it performs in your use case compared to LRU.

Event Library

Why is an Event Library needed at all?

Let us figure it out through a series of Q&As.

Q: What do you expect a network server to be doing all the time?

A: Watch for inbound connections on the port its listening and accept them.

Q: Calling [accept](http://man.cx/accept%282%29 accept) yields a descriptor. What do I do with it?

A: Save the descriptor and do a non-blocking read/write operation on it.

Q: Why does the read/write have to be non-blocking?

A: If the file operation (even a socket in Unix is a file) is blocking how could the server for example accept other connection requests when its blocked in a file I/O operation.

Q: I guess I have to do many such non-blocking operations on the socket to see when it’s ready. Am I right?

A: Yes. That is what an event library does for you. Now you get it.

Q: How do Event Libraries do what they do?

A: They use the operating system’s polling [http://www.devshed.com/c/a/BrainDump/Linux-Files-and-the-Event-Poll-Interface/] facility along with timers.

Q: So are there any open source event libraries that do what you just described?

A: Yes. libevent and libev are two such event libraries that I can recall off the top of my head.

Q: Does Redis use such open source event libraries for handling socket I/O?

A: No. For various reasons [http://groups.google.com/group/redis-db/browse_thread/thread/b52814e9ef15b8d0/] Redis uses its own event library.

Redis Lua scripts debugger

Starting with version 3.2 Redis includes a complete Lua debugger, that can be
used in order to make the task of writing complex Redis scripts much simpler.

Because Redis 3.2 is still in beta, please download the unstable branch of Redis from Github and compile it in order to test the debugger. You can use Redis unstable in order to debug your scripts that you’ll later run in a stable version of Redis, so the debugger is already usable in practical terms.

The Redis Lua debugger, codename LDB, has the following important features:

	It uses a server-client model, so it’s a remote debugger. The Redis server acts as the debugging server, while the default client is redis-cli. However other clients can be developed by following the simple protocol implemented by the server.

	By default every new debugging session is a forked session. It means that while the Redis Lua script is being debugged, the server does not block and is usable for development or in order to execute multiple debugging sessions in parallel. This also means that changes are rolled back after the script debugging session finished, so that’s possible to restart a new debugging session again, using exactly the same Redis data set as the previous debugging session.

	An alternative synchronous (non forked) debugging model is available on demand, so that changes to the dataset can be retained. In this mode the server blocks for the time the debugging session is active.

	Support for step by step execution.

	Support for static and dynamic breakpoints.

	Support from logging the debugged script into the debugger console.

	Inspection of Lua variables.

	Tracing of Redis commands executed by the script.

	Pretty printing of Redis and Lua values.

	Infinite loops and long execution detection, which simulates a breakpoint.

Quick start

A simple way to get started with the Lua debugger is to watch this video
introduction:

 Redis Mass Insertion

Redis Mass Insertion

Sometimes Redis instances need to be loaded with a big amount of preexisting
or user generated data in a short amount of time, so that millions of keys
will be created as fast as possible.

This is called a mass insertion, and the goal of this document is to
provide information about how to feed Redis with data as fast as possible.

Use the protocol, Luke

Using a normal Redis client to perform mass insertion is not a good idea
for a few reasons: the naive approach of sending one command after the other
is slow because you have to pay for the round trip time for every command.
It is possible to use pipelining, but for mass insertion of many records
you need to write new commands while you read replies at the same time to
make sure you are inserting as fast as possible.

Only a small percentage of clients support non-blocking I/O, and not all the
clients are able to parse the replies in an efficient way in order to maximize
throughput. For all this reasons the preferred way to mass import data into
Redis is to generate a text file containing the Redis protocol, in raw format,
in order to call the commands needed to insert the required data.

For instance if I need to generate a large data set where there are billions
of keys in the form: `keyN -> ValueN’ I will create a file containing the
following commands in the Redis protocol format:

SET Key0 Value0
SET Key1 Value1
...
SET KeyN ValueN

Once this file is created, the remaining action is to feed it to Redis
as fast as possible. In the past the way to do this was to use the
netcat with the following command:

(cat data.txt; sleep 10) | nc localhost 6379 > /dev/null

However this is not a very reliable way to perform mass import because netcat
does not really know when all the data was transferred and can’t check for
errors. In 2.6 or later versions of Redis the redis-cli utility
supports a new mode called pipe mode that was designed in order to perform
mass insertion.

Using the pipe mode the command to run looks like the following:

cat data.txt | redis-cli --pipe

That will produce an output similar to this:

All data transferred. Waiting for the last reply...
Last reply received from server.
errors: 0, replies: 1000000

The redis-cli utility will also make sure to only redirect errors received
from the Redis instance to the standard output.

Generating Redis Protocol

The Redis protocol is extremely simple to generate and parse, and is
Documented here. However in order to generate protocol for
the goal of mass insertion you don’t need to understand every detail of the
protocol, but just that every command is represented in the following way:

*<args><cr><lf>
$<len><cr><lf>
<arg0><cr><lf>
<arg1><cr><lf>
...
<argN><cr><lf>

Where <cr> means “\r” (or ASCII character 13) and <lf> means “\n” (or ASCII character 10).

For instance the command SET key value is represented by the following protocol:

*3<cr><lf>
$3<cr><lf>
SET<cr><lf>
$3<cr><lf>
key<cr><lf>
$5<cr><lf>
value<cr><lf>

Or represented as a quoted string:

"*3\r\n$3\r\nSET\r\n$3\r\nkey\r\n$5\r\nvalue\r\n"

The file you need to generate for mass insertion is just composed of commands
represented in the above way, one after the other.

The following Ruby function generates valid protocol:

def gen_redis_proto(*cmd)
 proto = ""
 proto << "*"+cmd.length.to_s+"\r\n"
 cmd.each{|arg|
 proto << "$"+arg.to_s.bytesize.to_s+"\r\n"
 proto << arg.to_s+"\r\n"
 }
 proto
end

puts gen_redis_proto("SET","mykey","Hello World!").inspect

Using the above function it is possible to easily generate the key value pairs
in the above example, with this program:

(0...1000).each{|n|
 STDOUT.write(gen_redis_proto("SET","Key#{n}","Value#{n}"))
}

We can run the program directly in pipe to redis-cli in order to perform our
first mass import session.

$ ruby proto.rb | redis-cli --pipe
All data transferred. Waiting for the last reply...
Last reply received from server.
errors: 0, replies: 1000

How the pipe mode works under the hoods

The magic needed inside the pipe mode of redis-cli is to be as fast as netcat
and still be able to understand when the last reply was sent by the server
at the same time.

This is obtained in the following way:

	redis-cli –pipe tries to send data as fast as possible to the server.

	At the same time it reads data when available, trying to parse it.

	Once there is no more data to read from stdin, it sends a special ECHO command with a random 20 bytes string: we are sure this is the latest command sent, and we are sure we can match the reply checking if we receive the same 20 bytes as a bulk reply.

	Once this special final command is sent, the code receiving replies starts to match replies with this 20 bytes. When the matching reply is reached it can exit with success.

Using this trick we don’t need to parse the protocol we send to the server in order to understand how many commands we are sending, but just the replies.

However while parsing the replies we take a counter of all the replies parsed so that at the end we are able to tell the user the amount of commands transferred to the server by the mass insert session.

 Redis debugging guide

Redis debugging guide

Redis is developed with a great stress on stability: we do our best with
every release to make sure you’ll experience a very stable product and no
crashes. However even with our best efforts it is impossible to avoid all
the critical bugs with 100% success.

When Redis crashes it produces a detailed report of what happened, however
sometimes looking at the crash report is not enough, nor is it possible for
the Redis core team to reproduce the issue independently: in this scenario we
need help from the user that is able to reproduce the issue.

This little guide shows how to use GDB to provide all the information the
Redis developers will need to track the bug more easily.

What is GDB?

GDB is the Gnu Debugger: a program that is able to inspect the internal state
of another program. Usually tracking and fixing a bug is an exercise in
gathering more information about the state of the program at the moment the
bug happens, so GDB is an extremely useful tool.

GDB can be used in two ways:

	It can attach to a running program and inspect the state of it at runtime.

	It can inspect the state of a program that already terminated using what is called a core file, that is, the image of the memory at the time the program was running.

From the point of view of investigating Redis bugs we need to use both of these
GDB modes: the user able to reproduce the bug attaches GDB to their running Redis
instance, and when the crash happens, they create the core file that in
turn the developer will use to inspect the Redis internals at the time of the crash.

This way the developer can perform all the inspections in his or her computer without the help of the user, and the user is free to restart Redis in the production environment.

Compiling Redis without optimizations

By default Redis is compiled with the -O2 switch, this means that compiler
optimizations are enabled. This makes the Redis executable faster, but at the
same time it makes Redis (like any other program) harder to inspect using GDB.

It is better to attach GDB to Redis compiled without optimizations using the
make noopt command to compile it (instead of just using the plain make
command). However if you have an already running Redis in production there is
no need to recompile and restart it if this is going to create problems on
your side. Even if by a lesser extent GDB still works against executables
compiled with optimizations.

It is great if you make sure to recompile Redis with make noopt after the
first crash, so that the next time it will be simpler to track the issue.

You should not be concerned with the loss of performance compiling Redis
without optimizations, it is very unlikely that this will cause problems in
your environment since it is usually just a matter of a small percentage
because Redis is not very CPU-bound (it does a lot of I/O to serve queries).

Attaching GDB to a running process

If you have an already running Redis server, you can attach GDB to it, so that
if Redis crashes it will be possible to both inspect the internals and
generate a core dump file.

After you attach GDB to the Redis process it will continue running as usual without any loss of performance, so this is not a dangerous procedure.

In order to attach GDB the first thing you need is the process ID of the running Redis instance (the pid of the process). You can easily obtain it using redis-cli:

$ redis-cli info | grep process_id
process_id:58414

In the above example the process ID is 58414.

	Login into your Redis server.

	(Optional but recommended) Start screen or tmux or any other program that will make sure that your GDB session will not be closed if your ssh connection will timeout. If you don’t know what screen is do yourself a favor and Read this article [http://www.linuxjournal.com/article/6340]

	Attach GDB to the running Redis server typing:

gdb <path-to-redis-executable> <pid>

For example: gdb /usr/local/bin/redis-server 58414

GDB will start and will attach to the running server printing something like the following:

Reading symbols for shared libraries + done
0x00007fff8d4797e6 in epoll_wait ()
(gdb)

	At this point GDB is attached but your Redis instance is blocked by GDB. In order to let the Redis instance continue the execution just type continue at the GDB prompt, and press enter.

 (gdb) continue
 Continuing.

	Done! Now your Redis instance has GDB attached. You can wait for... the next crash :)

	Now it’s time to detach your screen / tmux session, if you are running GDB using it, pressing the usual Ctrl-a a key combination.

After the crash

Redis has a command to simulate a segmentation fault (in other words a bad
crash) using the DEBUG SEGFAULT command (don’t use it against a real production instance of course ;). So I’ll use this command to crash my instance to show what happens in the GDB side:

(gdb) continue
Continuing.

Program received signal EXC_BAD_ACCESS, Could not access memory.
Reason: KERN_INVALID_ADDRESS at address: 0xffffffffffffffff
debugCommand (c=0x7ffc32005000) at debug.c:220
220 *((char*)-1) = 'x';

As you can see GDB detected that Redis crashed, and was able to show me
even the file name and line number causing the crash. This is already much
better than the Redis crash report back trace (containing just function
names and binary offsets).

Obtaining the stack trace

The first thing to do is to obtain a full stack trace with GDB. This is as
simple as using the bt command: (that is a short for backtrace):

(gdb) bt
#0 debugCommand (c=0x7ffc32005000) at debug.c:220
#1 0x000000010d246d63 in call (c=0x7ffc32005000) at redis.c:1163
#2 0x000000010d247290 in processCommand (c=0x7ffc32005000) at redis.c:1305
#3 0x000000010d251660 in processInputBuffer (c=0x7ffc32005000) at networking.c:959
#4 0x000000010d251872 in readQueryFromClient (el=0x0, fd=5, privdata=0x7fff76f1c0b0, mask=220924512) at networking.c:1021
#5 0x000000010d243523 in aeProcessEvents (eventLoop=0x7fff6ce408d0, flags=220829559) at ae.c:352
#6 0x000000010d24373b in aeMain (eventLoop=0x10d429ef0) at ae.c:397
#7 0x000000010d2494ff in main (argc=1, argv=0x10d2b2900) at redis.c:2046

This shows the backtrace, but we also want to dump the processor registers using the info registers command:

(gdb) info registers
rax 0x0 0
rbx 0x7ffc32005000 140721147367424
rcx 0x10d2b0a60 4515891808
rdx 0x7fff76f1c0b0 140735188943024
rsi 0x10d299777 4515796855
rdi 0x0 0
rbp 0x7fff6ce40730 0x7fff6ce40730
rsp 0x7fff6ce40650 0x7fff6ce40650
r8 0x4f26b3f7 1327936503
r9 0x7fff6ce40718 140735020271384
r10 0x81 129
r11 0x10d430398 4517462936
r12 0x4b7c04f8babc0 1327936503000000
r13 0x10d3350a0 4516434080
r14 0x10d42d9f0 4517452272
r15 0x10d430398 4517462936
rip 0x10d26cfd4 0x10d26cfd4 <debugCommand+68>
eflags 0x10246 66118
cs 0x2b 43
ss 0x0 0
ds 0x0 0
es 0x0 0
fs 0x0 0
gs 0x0 0

Please make sure to include both this outputs in your bug report.

Obtaining the core file

The next step is to generate the core dump, that is the image of the memory of the running Redis process. This is performed using the gcore command:

(gdb) gcore
Saved corefile core.58414

Now you have the core dump to send to the Redis developer, but it is important
to understand that this happens to contain all the data that was inside the
Redis instance at the time of the crash; Redis developers will make sure not to
share the content with anyone else, and will delete the file as soon as it is no
longer used for debugging purposes, but you are warned that by sending the core
file you are sending your data.

If there are sensible stuff in the data set we suggest sending the dump directly
to Salvatore Sanfilippo (that is the guy writing this doc) at the email address
antirez at gmail dot com.

What to send to developers

Finally you can send everything to the Redis core team:

	The Redis executable you are using.

	The stack trace produced by the bt command, and the registers dump.

	The core file you generated with gdb.

	Information about the operating system and GCC version, and Redis version you are using.

Thank you

Your help is extremely important! Many issues can only be tracked this way,
thanks! It is also possible that helping Redis debugging you’ll be among the
winners of the next Redis Moka Award [http://antirez.com/post/redis-moka-awards-2011.html].

 Redis Protocol specification

Redis Protocol specification

Redis clients communicate with the Redis server using a protocol called RESP (REdis Serialization Protocol). While the protocol was designed specifically for Redis, it can be used for other client-server software projects.

RESP is a compromise between the following things:

	Simple to implement.

	Fast to parse.

	Human readable.

RESP can serialize different data types like integers, strings, arrays. There is also a specific type for errors. Requests are sent from the client to the Redis server as arrays of strings representing the arguments of the command to execute. Redis replies with a command-specific data type.

RESP is binary-safe and does not require processing of bulk data transferred from one process to another, because it uses prefixed-length to transfer bulk data.

Note: the protocol outlined here is only used for client-server communication. Redis Cluster uses a different binary protocol in order to exchange messages between nodes.

Networking layer

A client connects to a Redis server creating a TCP connection to the port 6379.

While RESP is technically non-TCP specific, in the context of Redis the protocol is only used with TCP connections (or equivalent stream oriented connections like Unix sockets).

Request-Response model

Redis accepts commands composed of different arguments.
Once a command is received, it is processed and a reply is sent back to the client.

This is the simplest model possible, however there are two exceptions:

	Redis supports pipelining (covered later in this document). So it is possible for clients to send multiple commands at once, and wait for replies later.

	When a Redis client subscribes to a Pub/Sub channel, the protocol changes semantics and becomes a push protocol, that is, the client no longer requires to send commands, because the server will automatically send to the client new messages (for the channels the client is subscribed to) as soon as they are received.

Excluding the above two exceptions, the Redis protocol is a simple request-response protocol.

RESP protocol description

The RESP protocol was introduced in Redis 1.2, but it became the
standard way for talking with the Redis server in Redis 2.0.
This is the protocol you should implement in your Redis client.

RESP is actually a serialization protocol that supports the following
data types: Simple Strings, Errors, Integers, Bulk Strings and Arrays.

The way RESP is used in Redis as a request-response protocol is the
following:

	Clients send commands to a Redis server as a RESP Array of Bulk Strings.

	The server replies with one of the RESP types according to the command implementation.

In RESP, the type of some data depends on the first byte:

	For Simple Strings the first byte of the reply is “+”

	For Errors the first byte of the reply is “-“

	For Integers the first byte of the reply is ”:”

	For Bulk Strings the first byte of the reply is “$”

	For Arrays the first byte of the reply is “*“

Additionally RESP is able to represent a Null value using a special variation of Bulk Strings or Array as specified later.

In RESP different parts of the protocol are always terminated with “\r\n” (CRLF).

[bookmark: simple-string-reply]

RESP Simple Strings

Simple Strings are encoded in the following way: a plus character, followed by a string that cannot contain a CR or LF character (no newlines are allowed), terminated by CRLF (that is “\r\n”).

Simple Strings are used to transmit non binary safe strings with minimal overhead. For example many Redis commands reply with just “OK” on success, that as a RESP Simple String is encoded with the following 5 bytes:

"+OK\r\n"

In order to send binary-safe strings, RESP Bulk Strings are used instead.

When Redis replies with a Simple String, a client library should return
to the caller a string composed of the first character after the ‘+’
up to the end of the string, excluding the final CRLF bytes.

[bookmark: error-reply]

RESP Errors

RESP has a specific data type for errors. Actually errors are exactly like
RESP Simple Strings, but the first character is a minus ‘-‘ character instead
of a plus. The real difference between Simple Strings and Errors in RESP is that
errors are treated by clients as exceptions, and the string that composes
the Error type is the error message itself.

The basic format is:

"-Error message\r\n"

Error replies are only sent when something wrong happens, for instance if
you try to perform an operation against the wrong data type, or if the command
does not exist and so forth. An exception should be raised by the library
client when an Error Reply is received.

The following are examples of error replies:

-ERR unknown command 'foobar'
-WRONGTYPE Operation against a key holding the wrong kind of value

The first word after the “-”, up to the first space or newline, represents
the kind of error returned. This is just a convention used by Redis and is not
part of the RESP Error format.

For example, ERR is the generic error, while WRONGTYPE is a more specific
error that implies that the client tried to perform an operation against the
wrong data type. This is called an Error Prefix and is a way to allow
the client to understand the kind of error returned by the server without
to rely on the exact message given, that may change over the time.

A client implementation may return different kind of exceptions for different
errors, or may provide a generic way to trap errors by directly providing
the error name to the caller as a string.

However, such a feature should not be considered vital as it is rarely useful, and a limited client implementation may simply return a generic error condition, such as false.

[bookmark: integer-reply]

RESP Integers

This type is just a CRLF terminated string representing an integer,
prefixed by a ”:” byte. For example ”:0\r\n”, or ”:1000\r\n” are integer
replies.

Many Redis commands return RESP Integers, like INCR, LLEN and LASTSAVE.

There is no special meaning for the returned integer, it is just an
incremental number for INCR, a UNIX time for LASTSAVE and so forth. However,
the returned integer is guaranteed to be in the range of a signed 64 bit
integer.

Integer replies are also extensively used in order to return true or false.
For instance commands like EXISTS or SISMEMBER will return 1 for true
and 0 for false.

Other commands like SADD, SREM and SETNX will return 1 if the operation
was actually performed, 0 otherwise.

The following commands will reply with an integer reply: SETNX, DEL,
EXISTS, INCR, INCRBY, DECR, DECRBY, DBSIZE, LASTSAVE,
RENAMENX, MOVE, LLEN, SADD, SREM, SISMEMBER, SCARD.

[bookmark: nil-reply]
[bookmark: bulk-string-reply]

RESP Bulk Strings

Bulk Strings are used in order to represent a single binary safe
string up to 512 MB in length.

Bulk Strings are encoded in the following way:

	A “$” byte followed by the number of bytes composing the string (a prefixed length), terminated by CRLF.

	The actual string data.

	A final CRLF.

So the string “foobar” is encoded as follows:

"$6\r\nfoobar\r\n"

When an empty string is just:

"$0\r\n\r\n"

RESP Bulk Strings can also be used in order to signal non-existence of a value
using a special format that is used to represent a Null value. In this special
format the length is -1, and there is no data, so a Null is represented as:

"$-1\r\n"

This is called a Null Bulk String.

The client library API should not return an empty string, but a nil object,
when the server replies with a Null Bulk String.
For example a Ruby library should return ‘nil’ while a C library should
return NULL (or set a special flag in the reply object), and so forth.

[bookmark: array-reply]

RESP Arrays

Clients send commands to the Redis server using RESP Arrays. Similarly
certain Redis commands returning collections of elements to the client
use RESP Arrays are reply type. An example is the LRANGE command that
returns elements of a list.

RESP Arrays are sent using the following format:

	A * character as the first byte, followed by the number of elements in the array as a decimal number, followed by CRLF.

	An additional RESP type for every element of the Array.

So an empty Array is just the following:

"*0\r\n"

While an array of two RESP Bulk Strings “foo” and “bar” is encoded as:

"*2\r\n$3\r\nfoo\r\n$3\r\nbar\r\n"

As you can see after the *<count>CRLF part prefixing the array, the other
data types composing the array are just concatenated one after the other.
For example an Array of three integers is encoded as follows:

"*3\r\n:1\r\n:2\r\n:3\r\n"

Arrays can contain mixed types, it’s not necessary for the
elements to be of the same type. For instance, a list of four
integers and a bulk string can be encoded as the follows:

*5\r\n
:1\r\n
:2\r\n
:3\r\n
:4\r\n
$6\r\n
foobar\r\n

(The reply was split into multiple lines for clarity).

The first line the server sent is *5\r\n in order to specify that five
replies will follow. Then every reply constituting the items of the
Multi Bulk reply are transmitted.

The concept of Null Array exists as well, and is an alternative way to
specify a Null value (usually the Null Bulk String is used, but for historical
reasons we have two formats).

For instance when the BLPOP command times out, it returns a Null Array
that has a count of -1 as in the following example:

"*-1\r\n"

A client library API should return a null object and not an empty Array when
Redis replies with a Null Array. This is necessary to distinguish
between an empty list and a different condition (for instance the timeout
condition of the BLPOP command).

Arrays of arrays are possible in RESP. For example an array of two arrays
is encoded as follows:

*2\r\n
*3\r\n
:1\r\n
:2\r\n
:3\r\n
*2\r\n
+Foo\r\n
-Bar\r\n

(The format was split into multiple lines to make it easier to read).

The above RESP data type encodes a two elements Array consisting of an Array that contains three Integers 1, 2, 3 and an array of a Simple String and an Error.

Null elements in Arrays

Single elements of an Array may be Null. This is used in Redis replies in
order to signal that this elements are missing and not empty strings. This
can happen with the SORT command when used with the GET pattern option
when the specified key is missing. Example of an Array reply containing a
Null element:

*3\r\n
$3\r\n
foo\r\n
$-1\r\n
$3\r\n
bar\r\n

The second element is a Null. The client library should return something
like this:

["foo",nil,"bar"]

Note that this is not an exception to what said in the previous sections, but
just an example to further specify the protocol.

Sending commands to a Redis Server

Now that you are familiar with the RESP serialization format, writing an
implementation of a Redis client library will be easy. We can further specify
how the interaction between the client and the server works:

	A client sends to the Redis server a RESP Array consisting of just Bulk Strings.

	A Redis server replies to clients sending any valid RESP data type as reply.

So for example a typical interaction could be the following.

The client sends the command LLEN mylist in order to get the length of the list stored at key mylist, and the server replies with an Integer reply as in the following example (C: is the client, S: the server).

C: *2\r\n
C: $4\r\n
C: LLEN\r\n
C: $6\r\n
C: mylist\r\n

S: :48293\r\n

As usually we separate different parts of the protocol with newlines for simplicity, but the actual interaction is the client sending *2\r\n$4\r\nLLEN\r\n$6\r\nmylist\r\n as a whole.

Multiple commands and pipelining

A client can use the same connection in order to issue multiple commands.
Pipelining is supported so multiple commands can be sent with a single
write operation by the client, without the need to read the server reply
of the previous command before issuing the next one.
All the replies can be read at the end.

For more information please check our page about Pipelining.

Inline Commands

Sometimes you have only telnet in your hands and you need to send a command
to the Redis server. While the Redis protocol is simple to implement it is
not ideal to use in interactive sessions, and redis-cli may not always be
available. For this reason Redis also accepts commands in a special way that
is designed for humans, and is called the inline command format.

The following is an example of a server/client chat using an inline command
(the server chat starts with S:, the client chat with C:)

C: PING
S: +PONG

The following is another example of an inline command returning an integer:

C: EXISTS somekey
S: :0

Basically you simply write space-separated arguments in a telnet session.
Since no command starts with * that is instead used in the unified request
protocol, Redis is able to detect this condition and parse your command.

High performance parser for the Redis protocol

While the Redis protocol is very human readable and easy to implement it can
be implemented with a performance similar to that of a binary protocol.

RESP uses prefixed lengths to transfer bulk data, so there is
never need to scan the payload for special characters like it happens for
instance with JSON, nor to quote the payload that needs to be sent to the
server.

The Bulk and Multi Bulk lengths can be processed with code that performs
a single operation per character while at the same time scanning for the
CR character, like the following C code:

#include <stdio.h>

int main(void) {
 unsigned char *p = "$123\r\n";
 int len = 0;

 p++;
 while(*p != '\r') {
 len = (len*10)+(*p - '0');
 p++;
 }

 /* Now p points at '\r', and the len is in bulk_len. */
 printf("%d\n", len);
 return 0;
}

After the first CR is identified, it can be skipped along with the following
LF without any processing. Then the bulk data can be read using a single
read operation that does not inspect the payload in any way. Finally
the remaining the CR and LF character are discarded without any processing.

While comparable in performance to a binary protocol the Redis protocol is
significantly simpler to implement in most very high level languages,
reducing the number of bugs in client software.

 Redis latency problems troubleshooting

Redis latency problems troubleshooting

This document will help you understand what the problem could be if you
are experiencing latency problems with Redis.

In this context latency is the maximum delay between the time a client
issues a command and the time the reply to the command is received by the
client. Usually Redis processing time is extremely low, in the sub microsecond
range, but there are certain conditions leading to higher latency figures.

I’ve little time, give me the checklist

The following documentation is very important in order to run Redis in
a low latency fashion. However I understand that we are busy people, so
let’s start with a quick checklist. If you fail following these steps, please
return here to read the full documentation.

	Make sure you are not running slow commands that are blocking the server. Use the Redis Slow Log feature to check this.

	For EC2 users, make sure you use HVM based modern EC2 instances, like m3.medium. Otherwise fork() is too slow.

	Transparent huge pages must be disabled from your kernel. Use echo never > /sys/kernel/mm/transparent_hugepage/enabled to disable them, and restart your Redis process.

	If you are using a virtual machine, it is possible that you have an intrinsic latency that has nothing to do with Redis. Check the minimum latency you can expect from your runtime environment using ./redis-cli --intrinsic-latency 100. Note: you need to run this command in the server not in the client.

	Enable and use the Latency monitor feature of Redis in order to get a human readable description of the latency events and causes in your Redis instance.

In general, use the following table for durability VS latency/performance tradeoffs, ordered from stronger safety to better latency.

	AOF + fsync always: this is very slow, you should use it only if you know what you are doing.

	AOF + fsync every second: this is a good compromise.

	AOF + fsync every second + no-appendfsync-on-rewrite option set to yes: this is as the above, but avoids to fsync during rewrites to lower the disk pressure.

	AOF + fsync never. Fsyncing is up to the kernel in this setup, even less disk pressure and risk of latency spikes.

	RDB. Here you have a vast spectrum of tradeoffs depending on the save triggers you configure.

And now for people with 15 minutes to spend, the details...

Measuring latency

If you are experiencing latency problems, probably you know how to measure
it in the context of your application, or maybe your latency problem is very
evident even macroscopically. However redis-cli can be used to measure the
latency of a Redis server in milliseconds, just try:

redis-cli --latency -h `host` -p `port`

Using the internal Redis latency monitoring subsystem

Since Redis 2.8.13, Redis provides latency monitoring capabilities that
are able to sample different execution paths to understand where the
server is blocking. This makes debugging of the problems illustrated in
this documentation much simpler, so we suggest to enable latency monitoring
ASAP. Please refer to the Latency monitor documentation.

While the latency monitoring sampling and reporting capabilities will make
simpler to understand the source of latency in your Redis system, it is still
advised that you read this documentation extensively to better understand
the topic of Redis and latency spikes.

Latency baseline

There is a kind of latency that is inherently part of the environment where
you run Redis, that is the latency provided by your operating system kernel
and, if you are using virtualization, by the hypervisor you are using.

While this latency can’t be removed it is important to study it because
it is the baseline, or in other words, you’ll not be able to achieve a Redis
latency that is better than the latency that every process running in your
environment will experience because of the kernel or hypervisor implementation
or setup.

We call this kind of latency intrinsic latency, and redis-cli starting
from Redis version 2.8.7 is able to measure it. This is an example run
under Linux 3.11.0 running on an entry level server.

Note: the argument 100 is the number of seconds the test will be executed.
The more time we run the test, the more likely we’ll be able to spot
latency spikes. 100 seconds is usually appropriate, however you may want
to perform a few runs at different times. Please note that the test is CPU
intensive and will likely saturate a single core in your system.

$./redis-cli --intrinsic-latency 100
Max latency so far: 1 microseconds.
Max latency so far: 16 microseconds.
Max latency so far: 50 microseconds.
Max latency so far: 53 microseconds.
Max latency so far: 83 microseconds.
Max latency so far: 115 microseconds.

Note: redis-cli in this special case needs to run in the server where you run or plan to run Redis, not in the client. In this special mode redis-cli does no connect to a Redis server at all: it will just try to measure the largest time the kernel does not provide CPU time to run to the redis-cli process itself.

In the above example, the intrinsic latency of the system is just 0.115
milliseconds (or 115 microseconds), which is a good news, however keep in mind
that the intrinsic latency may change over time depending on the load of the
system.

Virtualized environments will not show so good numbers, especially with high
load or if there are noisy neighbors. The following is a run on a Linode 4096
instance running Redis and Apache:

$./redis-cli --intrinsic-latency 100
Max latency so far: 573 microseconds.
Max latency so far: 695 microseconds.
Max latency so far: 919 microseconds.
Max latency so far: 1606 microseconds.
Max latency so far: 3191 microseconds.
Max latency so far: 9243 microseconds.
Max latency so far: 9671 microseconds.

Here we have an intrinsic latency of 9.7 milliseconds: this means that we can’t ask better than that to Redis. However other runs at different times in different virtualization environments with higher load or with noisy neighbors can easily show even worse values. We were able to measured up to 40 milliseconds in
systems otherwise apparently running normally.

Latency induced by network and communication

Clients connect to Redis using a TCP/IP connection or a Unix domain connection.
The typical latency of a 1 Gbit/s network is about 200 us, while the latency
with a Unix domain socket can be as low as 30 us. It actually depends on your
network and system hardware. On top of the communication itself, the system
adds some more latency (due to thread scheduling, CPU caches, NUMA placement,
etc ...). System induced latencies are significantly higher on a virtualized
environment than on a physical machine.

The consequence is even if Redis processes most commands in sub microsecond
range, a client performing many roundtrips to the server will have to pay
for these network and system related latencies.

An efficient client will therefore try to limit the number of roundtrips by
pipelining several commands together. This is fully supported by the servers
and most clients. Aggregated commands like MSET/MGET can be also used for
that purpose. Starting with Redis 2.4, a number of commands also support
variadic parameters for all data types.

Here are some guidelines:

	If you can afford it, prefer a physical machine over a VM to host the server.

	Do not systematically connect/disconnect to the server (especially true
for web based applications). Keep your connections as long lived as possible.

	If your client is on the same host than the server, use Unix domain sockets.

	Prefer to use aggregated commands (MSET/MGET), or commands with variadic
parameters (if possible) over pipelining.

	Prefer to use pipelining (if possible) over sequence of roundtrips.

	Redis supports Lua server-side scripting to cover cases that are not suitable
for raw pipelining (for instance when the result of a command is an input for
the following commands).

On Linux, some people can achieve better latencies by playing with process
placement (taskset), cgroups, real-time priorities (chrt), NUMA
configuration (numactl), or by using a low-latency kernel. Please note
vanilla Redis is not really suitable to be bound on a single CPU core.
Redis can fork background tasks that can be extremely CPU consuming
like bgsave or AOF rewrite. These tasks must never run on the same core
as the main event loop.

In most situations, these kind of system level optimizations are not needed.
Only do them if you require them, and if you are familiar with them.

Single threaded nature of Redis

Redis uses a mostly single threaded design. This means that a single process
serves all the client requests, using a technique called multiplexing.
This means that Redis can serve a single request in every given moment, so
all the requests are served sequentially. This is very similar to how Node.js
works as well. However, both products are often not perceived as being slow.
This is caused in part by the small amount of time to complete a single request,
but primarily because these products are designed to not block on system calls,
such as reading data from or writing data to a socket.

I said that Redis is mostly single threaded since actually from Redis 2.4
we use threads in Redis in order to perform some slow I/O operations in the
background, mainly related to disk I/O, but this does not change the fact
that Redis serves all the requests using a single thread.

Latency generated by slow commands

A consequence of being single thread is that when a request is slow to serve
all the other clients will wait for this request to be served. When executing
normal commands, like GET or SET or LPUSH this is not a problem
at all since this commands are executed in constant (and very small) time.
However there are commands operating on many elements, like SORT, LREM,
SUNION and others. For instance taking the intersection of two big sets
can take a considerable amount of time.

The algorithmic complexity of all commands is documented. A good practice
is to systematically check it when using commands you are not familiar with.

If you have latency concerns you should either not use slow commands against
values composed of many elements, or you should run a replica using Redis
replication where to run all your slow queries.

It is possible to monitor slow commands using the Redis
Slow Log feature.

Additionally, you can use your favorite per-process monitoring program
(top, htop, prstat, etc ...) to quickly check the CPU consumption of the
main Redis process. If it is high while the traffic is not, it is usually
a sign that slow commands are used.

IMPORTANT NOTE: a VERY common source of latency generated by the execution
of slow commands is the use of the KEYS command in production environments.
KEYS, as documented in the Redis documentation, should only be used for
debugging purposes. Since Redis 2.8 a new commands were introduced in order to
iterate the key space and other large collections incrementally, please check
the SCAN, SSCAN, HSCAN and ZSCAN commands for more information.

Latency generated by fork

In order to generate the RDB file in background, or to rewrite the Append Only File if AOF persistence is enabled, Redis has to fork background processes.
The fork operation (running in the main thread) can induce latency by itself.

Forking is an expensive operation on most Unix-like systems, since it involves
copying a good number of objects linked to the process. This is especially
true for the page table associated to the virtual memory mechanism.

For instance on a Linux/AMD64 system, the memory is divided in 4 kB pages.
To convert virtual addresses to physical addresses, each process stores
a page table (actually represented as a tree) containing at least a pointer
per page of the address space of the process. So a large 24 GB Redis instance
requires a page table of 24 GB / 4 kB * 8 = 48 MB.

When a background save is performed, this instance will have to be forked,
which will involve allocating and copying 48 MB of memory. It takes time
and CPU, especially on virtual machines where allocation and initialization
of a large memory chunk can be expensive.

Fork time in different systems

Modern hardware is pretty fast to copy the page table, but Xen is not.
The problem with Xen is not virtualization-specific, but Xen-specific. For instance using VMware or Virtual Box does not result into slow fork time.
The following is a table that compares fork time for different Redis instance
size. Data is obtained performing a BGSAVE and looking at the latest_fork_usec filed in the INFO command output.

However the good news is that new types of EC2 HVM based instances are much
better with fork times, almost on pair with physical servers, so for example
using m3.medium (or better) instances will provide good results.

	Linux beefy VM on VMware 6.0GB RSS forked in 77 milliseconds (12.8 milliseconds per GB).

	Linux running on physical machine (Unknown HW) 6.1GB RSS forked in 80 milliseconds (13.1 milliseconds per GB)

	Linux running on physical machine (Xeon @ 2.27Ghz) 6.9GB RSS forked into 62 milliseconds (9 milliseconds per GB).

	Linux VM on 6sync (KVM) 360 MB RSS forked in 8.2 milliseconds (23.3 milliseconds per GB).

	Linux VM on EC2, old instance types (Xen) 6.1GB RSS forked in 1460 milliseconds (239.3 milliseconds per GB).

	Linux VM on EC2, new instance types (Xen) 1GB RSS forked in 10 milliseconds (10 milliseconds per GB).

	Linux VM on Linode (Xen) 0.9GBRSS forked into 382 milliseconds (424 milliseconds per GB).

As you can see certain VM running on Xen have a performance hit that is between one order to two orders of magnitude. For EC2 users the suggestion is simple: use modern HVM based instances.

Latency induced by transparent huge pages

Unfortunately when a Linux kernel has transparent huge pages enabled, Redis
incurs to a big latency penalty after the fork call is used in order to
persist on disk. Huge pages are the cause of the following issue:

	Fork is called, two processes with shared huge pages are created.

	In a busy instance, a few event loops runs will cause commands to target a few thousand of pages, causing the copy on write of almost the whole process memory.

	This will result in big latency and big memory usage.

Make sure to disable transparent huge pages using the following command:

echo never > /sys/kernel/mm/transparent_hugepage/enabled

Latency induced by swapping (operating system paging)

Linux (and many other modern operating systems) is able to relocate memory
pages from the memory to the disk, and vice versa, in order to use the
system memory efficiently.

If a Redis page is moved by the kernel from the memory to the swap file, when
the data stored in this memory page is used by Redis (for example accessing
a key stored into this memory page) the kernel will stop the Redis process
in order to move the page back into the main memory. This is a slow operation
involving random I/Os (compared to accessing a page that is already in memory)
and will result into anomalous latency experienced by Redis clients.

The kernel relocates Redis memory pages on disk mainly because of three reasons:

	The system is under memory pressure since the running processes are demanding
more physical memory than the amount that is available. The simplest instance of
this problem is simply Redis using more memory than the one available.

	The Redis instance data set, or part of the data set, is mostly completely idle
(never accessed by clients), so the kernel could swap idle memory pages on disk.
This problem is very rare since even a moderately slow instance will touch all
the memory pages often, forcing the kernel to retain all the pages in memory.

	Some processes are generating massive read or write I/Os on the system. Because
files are generally cached, it tends to put pressure on the kernel to increase
the filesystem cache, and therefore generate swapping activity. Please note it
includes Redis RDB and/or AOF background threads which can produce large files.

Fortunately Linux offers good tools to investigate the problem, so the simplest
thing to do is when latency due to swapping is suspected is just to check if
this is the case.

The first thing to do is to checking the amount of Redis memory that is swapped
on disk. In order to do so you need to obtain the Redis instance pid:

$ redis-cli info | grep process_id
process_id:5454

Now enter the /proc file system directory for this process:

$ cd /proc/5454

Here you’ll find a file called smaps that describes the memory layout of
the Redis process (assuming you are using Linux 2.6.16 or newer).
This file contains very detailed information about our process memory maps,
and one field called Swap is exactly what we are looking for. However
there is not just a single swap field since the smaps file contains the
different memory maps of our Redis process (The memory layout of a process
is more complex than a simple linear array of pages).

Since we are interested in all the memory swapped by our process the first thing
to do is to grep for the Swap field across all the file:

$ cat smaps | grep 'Swap:'
Swap: 0 kB
Swap: 0 kB
Swap: 0 kB
Swap: 0 kB
Swap: 0 kB
Swap: 12 kB
Swap: 156 kB
Swap: 8 kB
Swap: 0 kB
Swap: 0 kB
Swap: 0 kB
Swap: 0 kB
Swap: 0 kB
Swap: 0 kB
Swap: 0 kB
Swap: 0 kB
Swap: 0 kB
Swap: 4 kB
Swap: 0 kB
Swap: 0 kB
Swap: 4 kB
Swap: 0 kB
Swap: 0 kB
Swap: 4 kB
Swap: 4 kB
Swap: 0 kB
Swap: 0 kB
Swap: 0 kB
Swap: 0 kB
Swap: 0 kB

If everything is 0 kB, or if there are sporadic 4k entries, everything is
perfectly normal. Actually in our example instance (the one of a real web
site running Redis and serving hundreds of users every second) there are a
few entries that show more swapped pages. To investigate if this is a serious
problem or not we change our command in order to also print the size of the
memory map:

$ cat smaps | egrep '^(Swap|Size)'
Size: 316 kB
Swap: 0 kB
Size: 4 kB
Swap: 0 kB
Size: 8 kB
Swap: 0 kB
Size: 40 kB
Swap: 0 kB
Size: 132 kB
Swap: 0 kB
Size: 720896 kB
Swap: 12 kB
Size: 4096 kB
Swap: 156 kB
Size: 4096 kB
Swap: 8 kB
Size: 4096 kB
Swap: 0 kB
Size: 4 kB
Swap: 0 kB
Size: 1272 kB
Swap: 0 kB
Size: 8 kB
Swap: 0 kB
Size: 4 kB
Swap: 0 kB
Size: 16 kB
Swap: 0 kB
Size: 84 kB
Swap: 0 kB
Size: 4 kB
Swap: 0 kB
Size: 4 kB
Swap: 0 kB
Size: 8 kB
Swap: 4 kB
Size: 8 kB
Swap: 0 kB
Size: 4 kB
Swap: 0 kB
Size: 4 kB
Swap: 4 kB
Size: 144 kB
Swap: 0 kB
Size: 4 kB
Swap: 0 kB
Size: 4 kB
Swap: 4 kB
Size: 12 kB
Swap: 4 kB
Size: 108 kB
Swap: 0 kB
Size: 4 kB
Swap: 0 kB
Size: 4 kB
Swap: 0 kB
Size: 272 kB
Swap: 0 kB
Size: 4 kB
Swap: 0 kB

As you can see from the output, there is a map of 720896 kB
(with just 12 kB swapped) and 156 kB more swapped in another map:
basically a very small amount of our memory is swapped so this is not
going to create any problem at all.

If instead a non trivial amount of the process memory is swapped on disk your
latency problems are likely related to swapping. If this is the case with your
Redis instance you can further verify it using the vmstat command:

$ vmstat 1
procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu----
 r b swpd free buff cache si so bi bo in cs us sy id wa
 0 0 3980 697932 147180 1406456 0 0 2 2 2 0 4 4 91 0
 0 0 3980 697428 147180 1406580 0 0 0 0 19088 16104 9 6 84 0
 0 0 3980 697296 147180 1406616 0 0 0 28 18936 16193 7 6 87 0
 0 0 3980 697048 147180 1406640 0 0 0 0 18613 15987 6 6 88 0
 2 0 3980 696924 147180 1406656 0 0 0 0 18744 16299 6 5 88 0
 0 0 3980 697048 147180 1406688 0 0 0 4 18520 15974 6 6 88 0
^C

The interesting part of the output for our needs are the two columns si
and so, that counts the amount of memory swapped from/to the swap file. If
you see non zero counts in those two columns then there is swapping activity
in your system.

Finally, the iostat command can be used to check the global I/O activity of
the system.

$ iostat -xk 1
avg-cpu: %user %nice %system %iowait %steal %idle
 13.55 0.04 2.92 0.53 0.00 82.95

Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq-sz avgqu-sz await svctm %util
sda 0.77 0.00 0.01 0.00 0.40 0.00 73.65 0.00 3.62 2.58 0.00
sdb 1.27 4.75 0.82 3.54 38.00 32.32 32.19 0.11 24.80 4.24 1.85

If your latency problem is due to Redis memory being swapped on disk you need
to lower the memory pressure in your system, either adding more RAM if Redis
is using more memory than the available, or avoiding running other memory
hungry processes in the same system.

Latency due to AOF and disk I/O

Another source of latency is due to the Append Only File support on Redis.
The AOF basically uses two system calls to accomplish its work. One is
write(2) that is used in order to write data to the append only file, and
the other one is fdatasync(2) that is used in order to flush the kernel
file buffer on disk in order to ensure the durability level specified by
the user.

Both the write(2) and fdatasync(2) calls can be source of latency.
For instance write(2) can block both when there is a system wide sync
in progress, or when the output buffers are full and the kernel requires
to flush on disk in order to accept new writes.

The fdatasync(2) call is a worse source of latency as with many combinations
of kernels and file systems used it can take from a few milliseconds to
a few seconds to complete, especially in the case of some other process
doing I/O. For this reason when possible Redis does the fdatasync(2) call
in a different thread since Redis 2.4.

We’ll see how configuration can affect the amount and source of latency
when using the AOF file.

The AOF can be configured to perform an fsync on disk in three different
ways using the appendfsync configuration option (this setting can be
modified at runtime using the CONFIG SET command).

	When appendfsync is set to the value of no Redis performs no fsync.
In this configuration the only source of latency can be write(2).
When this happens usually there is no solution since simply the disk can’t
cope with the speed at which Redis is receiving data, however this is
uncommon if the disk is not seriously slowed down by other processes doing
I/O.

	When appendfsync is set to the value of everysec Redis performs an
fsync every second. It uses a different thread, and if the fsync is still
in progress Redis uses a buffer to delay the write(2) call up to two seconds
(since write would block on Linux if an fsync is in progress against the
same file). However if the fsync is taking too long Redis will eventually
perform the write(2) call even if the fsync is still in progress, and this
can be a source of latency.

	When appendfsync is set to the value of always an fsync is performed
at every write operation before replying back to the client with an OK code
(actually Redis will try to cluster many commands executed at the same time
into a single fsync). In this mode performances are very low in general and
it is strongly recommended to use a fast disk and a file system implementation
that can perform the fsync in short time.

Most Redis users will use either the no or everysec setting for the
appendfsync configuration directive. The suggestion for minimum latency is
to avoid other processes doing I/O in the same system.
Using an SSD disk can help as well, but usually even non SSD disks perform
well with the append only file if the disk is spare as Redis writes
to the append only file without performing any seek.

If you want to investigate your latency issues related to the append only
file you can use the strace command under Linux:

sudo strace -p $(pidof redis-server) -T -e trace=fdatasync

The above command will show all the fdatasync(2) system calls performed by
Redis in the main thread. With the above command you’ll not see the
fdatasync system calls performed by the background thread when the
appendfsync config option is set to everysec. In order to do so
just add the -f switch to strace.

If you wish you can also see both fdatasync and write system calls with the
following command:

sudo strace -p $(pidof redis-server) -T -e trace=fdatasync,write

However since write(2) is also used in order to write data to the client
sockets this will likely show too many things unrelated to disk I/O.
Apparently there is no way to tell strace to just show slow system calls so
I use the following command:

sudo strace -f -p $(pidof redis-server) -T -e trace=fdatasync,write 2>&1 | grep -v '0.0' | grep -v unfinished

Latency generated by expires

Redis evict expired keys in two ways:

	One lazy way expires a key when it is requested by a command, but it is found to be already expired.

	One active way expires a few keys every 100 milliseconds.

The active expiring is designed to be adaptive. An expire cycle is started every 100 milliseconds (10 times per second), and will do the following:

	Sample ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP keys, evicting all the keys already expired.

	If the more than 25% of the keys were found expired, repeat.

Given that ACTIVE_EXPIRE_CYCLE_LOOKUPS_PER_LOOP is set to 20 by default, and the process is performed ten times per second, usually just 200 keys per second are actively expired. This is enough to clean the DB fast enough even when already expired keys are not accessed for a long time, so that the lazy algorithm does not help. At the same time expiring just 200 keys per second has no effects in the latency a Redis instance.

However the algorithm is adaptive and will loop if it founds more than 25% of keys already expired in the set of sampled keys. But given that we run the algorithm ten times per second, this means that the unlucky event of more than 25% of the keys in our random sample are expiring at least in the same second.

Basically this means that if the database has many many keys expiring in the same second, and these make up at least 25% of the current population of keys with an expire set, Redis can block in order to get the percentage of keys already expired below 25%.

This approach is needed in order to avoid using too much memory for keys that area already expired, and usually is absolutely harmless since it’s strange that a big number of keys are going to expire in the same exact second, but it is not impossible that the user used EXPIREAT extensively with the same Unix time.

In short: be aware that many keys expiring at the same moment can be a source of latency.

Redis software watchdog

Redis 2.6 introduces the Redis Software Watchdog that is a debugging tool
designed to track those latency problems that for one reason or the other
escaped an analysis using normal tools.

The software watchdog is an experimental feature. While it is designed to
be used in production environments care should be taken to backup the database
before proceeding as it could possibly have unexpected interactions with the
normal execution of the Redis server.

It is important to use it only as last resort when there is no way to track the issue by other means.

This is how this feature works:

	The user enables the software watchdog using the CONFIG SET command.

	Redis starts monitoring itself constantly.

	If Redis detects that the server is blocked into some operation that is not returning fast enough, and that may be the source of the latency issue, a low level report about where the server is blocked is dumped on the log file.

	The user contacts the developers writing a message in the Redis Google Group, including the watchdog report in the message.

Note that this feature can not be enabled using the redis.conf file, because it is designed to be enabled only in already running instances and only for debugging purposes.

To enable the feature just use the following:

CONFIG SET watchdog-period 500

The period is specified in milliseconds. In the above example I specified to log latency issues only if the server detects a delay of 500 milliseconds or greater. The minimum configurable period is 200 milliseconds.

When you are done with the software watchdog you can turn it off setting the watchdog-period parameter to 0. Important: remember to do this because keeping the instance with the watchdog turned on for a longer time than needed is generally not a good idea.

The following is an example of what you’ll see printed in the log file once the software watchdog detects a delay longer than the configured one:

[8547 | signal handler] (1333114359)
--- WATCHDOG TIMER EXPIRED ---
/lib/libc.so.6(nanosleep+0x2d) [0x7f16b5c2d39d]
/lib/libpthread.so.0(+0xf8f0) [0x7f16b5f158f0]
/lib/libc.so.6(nanosleep+0x2d) [0x7f16b5c2d39d]
/lib/libc.so.6(usleep+0x34) [0x7f16b5c62844]
./redis-server(debugCommand+0x3e1) [0x43ab41]
./redis-server(call+0x5d) [0x415a9d]
./redis-server(processCommand+0x375) [0x415fc5]
./redis-server(processInputBuffer+0x4f) [0x4203cf]
./redis-server(readQueryFromClient+0xa0) [0x4204e0]
./redis-server(aeProcessEvents+0x128) [0x411b48]
./redis-server(aeMain+0x2b) [0x411dbb]
./redis-server(main+0x2b6) [0x418556]
/lib/libc.so.6(__libc_start_main+0xfd) [0x7f16b5ba1c4d]
./redis-server() [0x411099]

Note: in the example the DEBUG SLEEP command was used in order to block the server. The stack trace is different if the server blocks in a different context.

If you happen to collect multiple watchdog stack traces you are encouraged to send everything to the Redis Google Group: the more traces we obtain, the simpler it will be to understand what the problem with your instance is.

 Redis Sentinel Documentation

Redis Sentinel Documentation

Redis Sentinel provides high availability for Redis. In practical terms this
means that using Sentinel you can create a Redis deployment that resists
without human intervention to certain kind of failures.

Redis Sentinel also provides other collateral tasks such as monitoring,
notifications and acts as a configuration provider for clients.

This is the full list of Sentinel capabilities at a macroscopical level (i.e. the big picture):

	Monitoring. Sentinel constantly checks if your master and slave instances are working as expected.

	Notification. Sentinel can notify the system administrator, another computer programs, via an API, that something is wrong with one of the monitored Redis instances.

	Automatic failover. If a master is not working as expected, Sentinel can start a failover process where a slave is promoted to master, the other additional slaves are reconfigured to use the new master, and the applications using the Redis server informed about the new address to use when connecting.

	Configuration provider. Sentinel acts as a source of authority for clients service discovery: clients connect to Sentinels in order to ask for the address of the current Redis master responsible for a given service. If a failover occurs, Sentinels will report the new address.

Distributed nature of Sentinel

Redis Sentinel is a distributed system:

Sentinel itself is designed to run in a configuration where there are multiple Sentinel processes cooperating together. The advantage of having multiple Sentinel processes cooperating are the following:

	Failure detection is performed when multiple Sentinels agree about the fact a given master is no longer available. This lowers the probability of false positives.

	Sentinel works even if not all the Sentinel processes are working, making the system robust against failures. There is no fun in having a fail over system which is itself a single point of failure, after all.

The sum of Sentinels, Redis instances (masters and slaves) and clients
connecting to Sentinel and Redis, are also a larger distributed system with
specific properties. In this document concepts will be introduced gradually
starting from basic information needed in order to understand the basic
properties of Sentinel, to more complex information (that are optional) in
order to understand how exactly Sentinel works.

Quick Start

Obtaining Sentinel

The current version of Sentinel is called Sentinel 2. It is a rewrite of
the initial Sentinel implementation using stronger and simpler to predict
algorithms (that are explained in this documentation).

A stable release of Redis Sentinel is shipped since Redis 2.8.

New developments are performed in the unstable branch, and new features
sometimes are back ported into the latest stable branch as soon as they are
considered to be stable.

Redis Sentinel version 1, shipped with Redis 2.6, is deprecated and should not be used.

Running Sentinel

If you are using the redis-sentinel executable (or if you have a symbolic
link with that name to the redis-server executable) you can run Sentinel
with the following command line:

redis-sentinel /path/to/sentinel.conf

Otherwise you can use directly the redis-server executable starting it in
Sentinel mode:

redis-server /path/to/sentinel.conf --sentinel

Both ways work the same.

However it is mandatory to use a configuration file when running Sentinel, as this file will be used by the system in order to save the current state that will be reloaded in case of restarts. Sentinel will simply refuse to start if no configuration file is given or if the configuration file path is not writable.

Sentinels by default run listening for connections to TCP port 26379, so
for Sentinels to work, port 26379 of your servers must be open to receive
connections from the IP addresses of the other Sentinel instances.
Otherwise Sentinels can’t talk and can’t agree about what to do, so failover
will never be performed.

Fundamental things to know about Sentinel before deploying

	You need at least three Sentinel instances for a robust deployment.

	The three Sentinel instances should be placed into computers or virtual machines that are believed to fail in an independent way. So for example different physical servers or Virtual Machines executed on different availability zones.

	Sentinel + Redis distributed system does not guarantee that acknowledged writes are retained during failures, since Redis uses asynchronous replication. However there are ways to deploy Sentinel that make the window to lose writes limited to certain moments, while there are other less secure ways to deploy it.

	You need Sentinel support in your clients. Popular client libraries have Sentinel support, but not all.

	There is no HA setup which is safe if you don’t test from time to time in development environments, or even better if you can, in production environments, if they work. You may have a misconfiguration that will become apparent only when it’s too late (at 3am when your master stops working).

	Sentinel, Docker, or other forms of Network Address Translation or Port Mapping should be mixed with care: Docker performs port remapping, breaking Sentinel auto discovery of other Sentinel processes and the list of slaves for a master. Check the section about Sentinel and Docker later in this document for more information.

Configuring Sentinel

The Redis source distribution contains a file called sentinel.conf
that is a self-documented example configuration file you can use to
configure Sentinel, however a typical minimal configuration file looks like the
following:

sentinel monitor mymaster 127.0.0.1 6379 2
sentinel down-after-milliseconds mymaster 60000
sentinel failover-timeout mymaster 180000
sentinel parallel-syncs mymaster 1

sentinel monitor resque 192.168.1.3 6380 4
sentinel down-after-milliseconds resque 10000
sentinel failover-timeout resque 180000
sentinel parallel-syncs resque 5

You only need to specify the masters to monitor, giving to each separated
master (that may have any number of slaves) a different name. There is no
need to specify slaves, which are auto-discovered. Sentinel will update the
configuration automatically with additional information about slaves (in
order to retain the information in case of restart). The configuration is
also rewritten every time a slave is promoted to master during a failover
and every time a new Sentinel is discovered.

The example configuration above, basically monitor two sets of Redis
instances, each composed of a master and an undefined number of slaves.
One set of instances is called mymaster, and the other resque.

The meaning of the arguments of sentinel monitor statements is the following:

sentinel monitor <master-group-name> <ip> <port> <quorum>

For the sake of clarity, let’s check line by line what the configuration
options mean:

The first line is used to tell Redis to monitor a master called mymaster,
that is at address 127.0.0.1 and port 6379, with a quorum of 2. Everything
is pretty obvious but the quorum argument:

	The quorum is the number of Sentinels that need to agree about the fact the master is not reachable, in order for really mark the slave as failing, and eventually start a fail over procedure if possible.

	However the quorum is only used to detect the failure. In order to actually perform a failover, one of the Sentinels need to be elected leader for the failover and be authorized to proceed. This only happens with the vote of the majority of the Sentinel processes.

So for example if you have 5 Sentinel processes, and the quorum for a given
master set to the value of 2, this is what happens:

	If two Sentinels agree at the same time about the master being unreachable, one of the two will try to start a failover.

	If there are at least a total of three Sentinels reachable, the failover will be authorized and will actually start.

In practical terms this means during failures Sentinel never starts a failover if the majority of Sentinel processes are unable to talk (aka no failover in the minority partition).

Other Sentinel options

The other options are almost always in the form:

sentinel <option_name> <master_name> <option_value>

And are used for the following purposes:

	down-after-milliseconds is the time in milliseconds an instance should not
be reachable (either does not reply to our PINGs or it is replying with an
error) for a Sentinel starting to think it is down.

	parallel-syncs sets the number of slaves that can be reconfigured to use
the new master after a failover at the same time. The lower the number, the
more time it will take for the failover process to complete, however if the
slaves are configured to serve old data, you may not want all the slaves to
re-synchronize with the master at the same time. While the replication
process is mostly non blocking for a slave, there is a moment when it stops to
load the bulk data from the master. You may want to make sure only one slave
at a time is not reachable by setting this option to the value of 1.

Additional options are described in the rest of this document and
documented in the example sentinel.conf file shipped with the Redis
distribution.

All the configuration parameters can be modified at runtime using the SENTINEL SET command. See the Reconfiguring Sentinel at runtime section for more information.

Example Sentinel deployments

Now that you know the basic information about Sentinel, you may wonder where
you should place your Sentinel processes, how much Sentinel processes you need
and so forth. This section shows a few example deployments.

We use ASCII art in order to show you configuration examples in a graphical
format, this is what the different symbols means:

+--------------------+
| This is a computer |
| or VM that fails |
| independently. We |
| call it a "box" |
+--------------------+

We write inside the boxes what they are running:

+-------------------+
| Redis master M1 |
| Redis Sentinel S1 |
+-------------------+

Different boxes are connected by lines, to show that they are able to talk:

+-------------+ +-------------+
| Sentinel S1 |---------------| Sentinel S2 |
+-------------+ +-------------+

Network partitions are shown as interrupted lines using slashes:

+-------------+ +-------------+
| Sentinel S1 |------ // ------| Sentinel S2 |
+-------------+ +-------------+

Also note that:

	Masters are called M1, M2, M3, ..., Mn.

	Slaves are called R1, R2, R3, ..., Rn (R stands for replica).

	Sentinels are called S1, S2, S3, ..., Sn.

	Clients are called C1, C2, C3, ..., Cn.

	When an instance changes role because of Sentinel actions, we put it inside square brackets, so [M1] means an instance that is now a master because of Sentinel intervention.

Note that we will never show setups where just two Sentinels are used, since
Sentinels always need to talk with the majority in order to start a
failover.

Example 1: just two Sentinels, DON’T DO THIS

+----+ +----+
| M1 |---------| R1 |
| S1 | | S2 |
+----+ +----+

Configuration: quorum = 1

	In this setup, if the master M1 fails, R1 will be promoted since the two Sentinels can reach agreement about the failure (obviously with quorum set to 1) and can also authorize a failover because the majority is two. So apparently it could superficially work, however check the next points to see why this setup is broken.

	If the box where M1 is running stops working, also S1 stops working. The Sentinel running in the other box S2 will not be able to authorize a failover, so the system will become not available.

Note that a majority is needed in order to order different failovers, and later propagate the latest configuration to all the Sentinels. Also note that the ability to failover in a single side of the above setup, without any agreement, would be very dangerous:

+----+ +------+
| M1 |----//-----| [M1] |
| S1 | | S2 |
+----+ +------+

In the above configuration we created two masters (assuming S2 could failover
without authorization) in a perfectly symmetrical way. Clients may write
indefinitely to both sides, and there is no way to understand when the
partition heals what configuration is the right one, in order to prevent
a permanent split brain condition.

So please deploy at least three Sentinels in three different boxes always.

Example 2: basic setup with three boxes

This is a very simple setup, that has the advantage to be simple to tune
for additional safety. It is based on three boxes, each box running both
a Redis process and a Sentinel process.

 +----+
 | M1 |
 | S1 |
 +----+
 |
+----+ | +----+
| R2 |----+----| R3 |
| S2 | | S3 |
+----+ +----+

Configuration: quorum = 2

If the master M1 fails, S2 and S3 will agree about the failure and will
be able to authorize a failover, making clients able to continue.

In every Sentinel setup, being Redis asynchronously replicated, there is
always the risk of losing some write because a given acknowledged write
may not be able to reach the slave which is promoted to master. However in
the above setup there is an higher risk due to clients partitioned away
with an old master, like in the following picture:

 +----+
 | M1 |
 | S1 | <- C1 (writes will be lost)
 +----+
 |
 /
 /
+------+ | +----+
| [M2] |----+----| R3 |
| S2 | | S3 |
+------+ +----+

In this case a network partition isolated the old master M1, so the
slave R2 is promoted to master. However clients, like C1, that are
in the same partition as the old master, may continue to write data
to the old master. This data will be lost forever since when the partition
will heal, the master will be reconfigured as a slave of the new master,
discarding its data set.

This problem can be mitigated using the following Redis replication
feature, that allows to stop accepting writes if a master detects that
is no longer able to transfer its writes to the specified number of slaves.

min-slaves-to-write 1
min-slaves-max-lag 10

With the above configuration (please see the self-commented redis.conf example in the Redis distribution for more information) a Redis instance, when acting as a master, will stop accepting writes if it can’t write to at least 1 slave. Since replication is asynchronous not being able to write actually means that the slave is either disconnected, or is not sending us asynchronous acknowledges for more than the specified max-lag number of seconds.

Using this configuration the old Redis master M1 in the above example, will become unavailable after 10 seconds. When the partition heals, the Sentinel configuration will converge to the new one, the client C1 will be able to fetch a valid configuration and will continue with the new master.

However there is no free lunch. With this refinement, if the two slaves are
down, the master will stop accepting writes. It’s a trade off.

Example 3: Sentinel in the client boxes

Sometimes we have only two Redis boxes available, one for the master and
one for the slave. The configuration in the example 2 is not viable in
that case, so we can resort to the following, where Sentinels are placed
where clients are:

 +----+ +----+
 | M1 |----+----| R1 |
 | | | | |
 +----+ | +----+
 |
 +------------+------------+
 | | |
 | | |
 +----+ +----+ +----+
 | C1 | | C2 | | C3 |
 | S1 | | S2 | | S3 |
 +----+ +----+ +----+

 Configuration: quorum = 2

In this setup, the point of view Sentinels is the same as the clients: if
a master is reachable by the majority of the clients, it is fine.
C1, C2, C3 here are generic clients, it does not mean that C1 identifies
a single client connected to Redis. It is more likely something like
an application server, a Rails app, or something like that.

If the box where M1 and S1 are running fails, the failover will happen
without issues, however it is easy to see that different network partitions
will result in different behaviors. For example Sentinel will not be able
to setup if the network between the clients and the Redis servers will
get disconnected, since the Redis master and slave will be both not
available.

Note that if C3 gets partitioned with M1 (hardly possible with
the network described above, but more likely possible with different
layouts, or because of failures at the software layer), we have a similar
issue as described in Example 2, with the difference that here we have
no way to break the symmetry, since there is just a slave and master, so
the master can’t stop accepting queries when it is disconnected from its slave,
otherwise the master would never be available during slave failures.

So this is a valid setup but the setup in the Example 2 has advantages
such as the HA system of Redis running in the same boxes as Redis itself
which may be simpler to manage, and the ability to put a bound on the amount
of time a master into the minority partition can receive writes.

Example 4: Sentinel client side with less than three clients

The setup described in the Example 3 cannot be used if there are not enough
three boxes in the client side (for example three web servers). In this
case we need to resort to a mixed setup like the following:

 +----+ +----+
 | M1 |----+----| R1 |
 | S1 | | | S2 |
 +----+ | +----+
 |
 +------+-----+
 | |
 | |
 +----+ +----+
 | C1 | | C2 |
 | S3 | | S4 |
 +----+ +----+

 Configuration: quorum = 3

This is similar to the setup in Example 3, but here we run four Sentinels
in the four boxes we have available. If the master M1 becomes not available
the other three Sentinels will perform the failover.

In theory this setup works removing the box where C2 and S4 are running, and
setting the quorum to 2. However it is unlikely that we want HA in the
Redis side without having high availability in our application layer.

Sentinel, Docker, NAT, and possible issues

Docker uses a technique called port mapping: programs running inside Docker
containers may be exposed with a different port compared to the one the
program believes to be using. This is useful in order to run multiple
containers using the same ports, at the same time, in the same server.

Docker is not the only software system where this happens, there are other
Network Address Translation setups where ports may be remapped, and sometimes
not ports but also IP addresses.

Remapping ports and addresses creates issues with Sentinel in two ways:

	Sentinel auto-discovery of other Sentinels no longer works, since it is based on hello messages where each Sentinel announce at which port and IP address they are listening for connection. However Sentinels have no way to understand that an address or port is remapped, so it is announcing an information that is not correct for other Sentinels to connect.

	Slaves are listed in the INFO output of a Redis master in a similar way: the address is detected by the master checking the remote peer of the TCP connection, while the port is advertised by the slave itself during the handshake, however the port may be wrong for the same reason as exposed in point 1.

Since Sentinels auto detect slaves using masters INFO output information,
the detected slaves will not be reachable, and Sentinel will never be able to
failover the master, since there are no good slaves from the point of view of
the system, so there is currently no way to monitor with Sentinel a set of
master and slave instances deployed with Docker, unless you instruct Docker
to map the port 1:1.

For the first problem, in case you want to run a set of Sentinel
instances using Docker with forwarded ports (or any other NAT setup where ports
are remapped), you can use the following two Sentinel configuration directives
in order to force Sentinel to announce a specific set of IP and port:

sentinel announce-ip <ip>
sentinel announce-port <port>

Note that Docker has the ability to run in host networking mode (check the --net=host option for more information). This should create no issues since ports are not remapped in this setup.

A quick tutorial

In the next sections of this document, all the details about Sentinel API,
configuration and semantics will be covered incrementally. However for people
that want to play with the system ASAP, this section is a tutorial that shows
how to configure and interact with 3 Sentinel instances.

Here we assume that the instances are executed at port 5000, 5001, 5002.
We also assume that you have a running Redis master at port 6379 with a
slave running at port 6380. We will use the IPv4 loopback address 127.0.0.1
everywhere during the tutorial, assuming you are running the simulation
on your personal computer.

The three Sentinel configuration files should look like the following:

port 5000
sentinel monitor mymaster 127.0.0.1 6379 2
sentinel down-after-milliseconds mymaster 5000
sentinel failover-timeout mymaster 60000
sentinel parallel-syncs mymaster 1

The other two configuration files will be identical but using 5001 and 5002
as port numbers.

A few things to note about the above configuration:

	The master set is called mymaster. It identifies the master and its slaves. Since each master set has a different name, Sentinel can monitor different sets of masters and slaves at the same time.

	The quorum was set to the value of 2 (last argument of sentinel monitor configuration directive).

	The down-after-milliseconds value is 5000 milliseconds, that is 5 seconds, so masters will be detected as failing as soon as we don’t receive any reply from our pings within this amount of time.

Once you start the three Sentinels, you’ll see a few messages they log, like:

+monitor master mymaster 127.0.0.1 6379 quorum 2

This is a Sentinel event, and you can receive this kind of events via Pub/Sub
if you SUBSCRIBE to the event name as specified later.

Sentinel generates and logs different events during failure detection and
failover.

Asking Sentinel about the state of a master

The most obvious thing to do with Sentinel to get started, is check if the
master it is monitoring is doing well:

$ redis-cli -p 5000
127.0.0.1:5000> sentinel master mymaster
 1) "name"
 2) "mymaster"
 3) "ip"
 4) "127.0.0.1"
 5) "port"
 6) "6379"
 7) "runid"
 8) "953ae6a589449c13ddefaee3538d356d287f509b"
 9) "flags"
10) "master"
11) "link-pending-commands"
12) "0"
13) "link-refcount"
14) "1"
15) "last-ping-sent"
16) "0"
17) "last-ok-ping-reply"
18) "735"
19) "last-ping-reply"
20) "735"
21) "down-after-milliseconds"
22) "5000"
23) "info-refresh"
24) "126"
25) "role-reported"
26) "master"
27) "role-reported-time"
28) "532439"
29) "config-epoch"
30) "1"
31) "num-slaves"
32) "1"
33) "num-other-sentinels"
34) "2"
35) "quorum"
36) "2"
37) "failover-timeout"
38) "60000"
39) "parallel-syncs"
40) "1"

As you can see, it prints a number of information about the master. There are
a few that are of particular interest for us:

	num-other-sentinels is 2, so we know the Sentinel already detected two more Sentinels for this master. If you check the logs you’ll see the +sentinel events generated.

	flags is just master. If the master was down we could expect to see s_down or o_down flag as well here.

	num-slaves is correctly set to 1, so Sentinel also detected that there is an attached slave to our master.

In order to explore more about this instance, you may want to try the following
two commands:

SENTINEL slaves mymaster
SENTINEL sentinels mymaster

The first will provide similar information about the slaves connected to the
master, and the second about the other Sentinels.

Obtaining the address of the current master

As we already specified, Sentinel also acts as a configuration provider for
clients that want to connect to a set of master and slaves. Because of
possible failovers or reconfigurations, clients have no idea about who is
the currently active master for a given set of instances, so Sentinel exports
an API to ask this question:

127.0.0.1:5000> SENTINEL get-master-addr-by-name mymaster
1) "127.0.0.1"
2) "6379"

Testing the failover

At this point our toy Sentinel deployment is ready to be tested. We can
just kill our master and check if the configuration changes. To do so
we can just do:

redis-cli -p 6379 DEBUG sleep 30

This command will make our master no longer reachable, sleeping for 30 seconds.
It basically simulates a master hanging for some reason.

If you check the Sentinel logs, you should be able to see a lot of action:

	Each Sentinel detects the master is down with an +sdown event.

	This event is later escalated to +odown, which means that multiple Sentinels agree about the fact the master is not reachable.

	Sentinels vote a Sentinel that will start the first failover attempt.

	The failover happens.

If you ask again what is the current master address for mymaster, eventually
we should get a different reply this time:

127.0.0.1:5000> SENTINEL get-master-addr-by-name mymaster
1) "127.0.0.1"
2) "6380"

So far so good... At this point you may jump to create your Sentinel deployment
or can read more to understand all the Sentinel commands and internals.

Sentinel API

Sentinel provides an API in order to inspect its state, check the health
of monitored masters and slaves, subscribe in order to receive specific
notifications, and change the Sentinel configuration at run time.

By default Sentinel runs using TCP port 26379 (note that 6379 is the normal
Redis port). Sentinels accept commands using the Redis protocol, so you can
use redis-cli or any other unmodified Redis client in order to talk with
Sentinel.

It is possible to directly query a Sentinel to check what is the state of
the monitored Redis instances from its point of view, to see what other
Sentinels it knows, and so forth. Alternatively, using Pub/Sub, it is possible
to receive push style notifications from Sentinels, every time some event
happens, like a failover, or an instance entering an error condition, and
so forth.

Sentinel commands

The following is a list of accepted commands, not covering commands used in
order to modify the Sentinel configuration, which are covered later.

	PING This command simply returns PONG.

	SENTINEL masters Show a list of monitored masters and their state.

	SENTINEL master <master name> Show the state and info of the specified master.

	SENTINEL slaves <master name> Show a list of slaves for this master, and their state.

	SENTINEL sentinels <master name> Show a list of sentinel instances for this master, and their state.

	SENTINEL get-master-addr-by-name <master name> Return the ip and port number of the master with that name. If a failover is in progress or terminated successfully for this master it returns the address and port of the promoted slave.

	SENTINEL reset <pattern> This command will reset all the masters with matching name. The pattern argument is a glob-style pattern. The reset process clears any previous state in a master (including a failover in progress), and removes every slave and sentinel already discovered and associated with the master.

	SENTINEL failover <master name> Force a failover as if the master was not reachable, and without asking for agreement to other Sentinels (however a new version of the configuration will be published so that the other Sentinels will update their configurations).

	SENTINEL ckquorum <master name> Check if the current Sentinel configuration is able to reach the quorum needed to failover a master, and the majority needed to authorize the failover. This command should be used in monitoring systems to check if a Sentinel deployment is ok.

	SENTINEL flushconfig Force Sentinel to rewrite its configuration on disk, including the current Sentinel state. Normally Sentinel rewrites the configuration every time something changes in its state (in the context of the subset of the state which is persisted on disk across restart). However sometimes it is possible that the configuration file is lost because of operation errors, disk failures, package upgrade scripts or configuration managers. In those cases a way to to force Sentinel to rewrite the configuration file is handy. This command works even if the previous configuration file is completely missing.

Reconfiguring Sentinel at Runtime

Starting with Redis version 2.8.4, Sentinel provides an API in order to add, remove, or change the configuration of a given master. Note that if you have multiple sentinels you should apply the changes to all to your instances for Redis Sentinel to work properly. This means that changing the configuration of a single Sentinel does not automatically propagates the changes to the other Sentinels in the network.

The following is a list of SENTINEL sub commands used in order to update the configuration of a Sentinel instance.

	SENTINEL MONITOR <name> <ip> <port> <quorum> This command tells the Sentinel to start monitoring a new master with the specified name, ip, port, and quorum. It is identical to the sentinel monitor configuration directive in sentinel.conf configuration file, with the difference that you can’t use an hostname in as ip, but you need to provide an IPv4 or IPv6 address.

	SENTINEL REMOVE <name> is used in order to remove the specified master: the master will no longer be monitored, and will totally be removed from the internal state of the Sentinel, so it will no longer listed by SENTINEL masters and so forth.

	SENTINEL SET <name> <option> <value> The SET command is very similar to the CONFIG SET command of Redis, and is used in order to change configuration parameters of a specific master. Multiple option / value pairs can be specified (or none at all). All the configuration parameters that can be configured via sentinel.conf are also configurable using the SET command.

The following is an example of SENTINEL SET command in order to modify the down-after-milliseconds configuration of a master called objects-cache:

SENTINEL SET objects-cache-master down-after-milliseconds 1000

As already stated, SENTINEL SET can be used to set all the configuration parameters that are settable in the startup configuration file. Moreover it is possible to change just the master quorum configuration without removing and re-adding the master with SENTINEL REMOVE followed by SENTINEL MONITOR, but simply using:

SENTINEL SET objects-cache-master quorum 5

Note that there is no equivalent GET command since SENTINEL MASTER provides all the configuration parameters in a simple to parse format (as a field/value pairs array).

Adding or removing Sentinels

Adding a new Sentinel to your deployment is a simple process because of the
auto-discover mechanism implemented by Sentinel. All you need to do is to
start the new Sentinel configured to monitor the currently active master.
Within 10 seconds the Sentinel will acquire the list of other Sentinels and
the set of slaves attached to the master.

If you need to add multiple Sentinels at once, it is suggested to add it
one after the other, waiting for all the other Sentinels to already know
about the first one before adding the next. This is useful in order to still
guarantee that majority can be achieved only in one side of a partition,
in the chance failures should happen in the process of adding new Sentinels.

This can be easily achieved by adding every new Sentinel with a 30 seconds delay, and during absence of network partitions.

At the end of the process it is possible to use the command
SENTINEL MASTER mastername in order to check if all the Sentinels agree about
the total number of Sentinels monitoring the master.

Removing a Sentinel is a bit more complex: Sentinels never forget already seen
Sentinels, even if they are not reachable for a long time, since we don’t
want to dynamically change the majority needed to authorize a failover and
the creation of a new configuration number. So in order to remove a Sentinel
the following steps should be performed in absence of network partitions:

	Stop the Sentinel process of the Sentinel you want to remove.

	Send a SENTINEL RESET * command to all the other Sentinel instances (instead of * you can use the exact master name if you want to reset just a single master). One after the other, waiting at least 30 seconds between instances.

	Check that all the Sentinels agree about the number of Sentinels currently active, by inspecting the output of SENTINEL MASTER mastername of every Sentinel.

Removing the old master or unreachable slaves

Sentinels never forget about slaves of a given master, even when they are
unreachable for a long time. This is useful, because Sentinels should be able
to correctly reconfigure a returning slave after a network partition or a
failure event.

Moreover, after a failover, the failed over master is virtually added as a
slave of the new master, this way it will be reconfigured to replicate with
the new master as soon as it will be available again.

However sometimes you want to remove a slave (that may be the old master)
forever from the list of slaves monitored by Sentinels.

In order to do this, you need to send a SENTINEL RESET mastername command
to all the Sentinels: they’ll refresh the list of slaves within the next
10 seconds, only adding the ones listed as correctly replicating from the
current master INFO output.

Pub/Sub Messages

A client can use a Sentinel as it was a Redis compatible Pub/Sub server
(but you can’t use PUBLISH) in order to SUBSCRIBE or PSUBSCRIBE to
channels and get notified about specific events.

The channel name is the same as the name of the event. For instance the
channel named +sdown will receive all the notifications related to instances
entering an SDOWN (SDOWN means the instance is no longer reachable from
the point of view of the Sentinel you are querying) condition.

To get all the messages simply subscribe using PSUBSCRIBE *.

The following is a list of channels and message formats you can receive using
this API. The first word is the channel / event name, the rest is the format of the data.

Note: where instance details is specified it means that the following arguments are provided to identify the target instance:

<instance-type> <name> <ip> <port> @ <master-name> <master-ip> <master-port>

The part identifying the master (from the @ argument to the end) is optional
and is only specified if the instance is not a master itself.

	+reset-master <instance details> – The master was reset.

	+slave <instance details> – A new slave was detected and attached.

	+failover-state-reconf-slaves <instance details> – Failover state changed to reconf-slaves state.

	+failover-detected <instance details> – A failover started by another Sentinel or any other external entity was detected (An attached slave turned into a master).

	+slave-reconf-sent <instance details> – The leader sentinel sent the SLAVEOF command to this instance in order to reconfigure it for the new slave.

	+slave-reconf-inprog <instance details> – The slave being reconfigured showed to be a slave of the new master ip:port pair, but the synchronization process is not yet complete.

	+slave-reconf-done <instance details> – The slave is now synchronized with the new master.

	-dup-sentinel <instance details> – One or more sentinels for the specified master were removed as duplicated (this happens for instance when a Sentinel instance is restarted).

	+sentinel <instance details> – A new sentinel for this master was detected and attached.

	+sdown <instance details> – The specified instance is now in Subjectively Down state.

	-sdown <instance details> – The specified instance is no longer in Subjectively Down state.

	+odown <instance details> – The specified instance is now in Objectively Down state.

	-odown <instance details> – The specified instance is no longer in Objectively Down state.

	+new-epoch <instance details> – The current epoch was updated.

	+try-failover <instance details> – New failover in progress, waiting to be elected by the majority.

	+elected-leader <instance details> – Won the election for the specified epoch, can do the failover.

	+failover-state-select-slave <instance details> – New failover state is select-slave: we are trying to find a suitable slave for promotion.

	no-good-slave <instance details> – There is no good slave to promote. Currently we’ll try after some time, but probably this will change and the state machine will abort the failover at all in this case.

	selected-slave <instance details> – We found the specified good slave to promote.

	failover-state-send-slaveof-noone <instance details> – We are trying to reconfigure the promoted slave as master, waiting for it to switch.

	failover-end-for-timeout <instance details> – The failover terminated for timeout, slaves will eventually be configured to replicate with the new master anyway.

	failover-end <instance details> – The failover terminated with success. All the slaves appears to be reconfigured to replicate with the new master.

	switch-master <master name> <oldip> <oldport> <newip> <newport> – The master new IP and address is the specified one after a configuration change. This is the message most external users are interested in.

	+tilt – Tilt mode entered.

	-tilt – Tilt mode exited.

Handling of -BUSY state

The -BUSY error is returned by a Redis instance when a Lua script is running for
more time than the configured Lua script time limit. When this happens before
triggering a fail over Redis Sentinel will try to send a SCRIPT KILL
command, that will only succeed if the script was read-only.

If the instance will still be in an error condition after this try, it will
eventually be failed over.

Slaves priority

Redis instances have a configuration parameter called slave-priority.
This information is exposed by Redis slave instances in their INFO output,
and Sentinel uses it in order to pick a slave among the ones that can be
used in order to failover a master:

	If the slave priority is set to 0, the slave is never promoted to master.

	Slaves with a lower priority number are preferred by Sentinel.

For example if there is a slave S1 in the same data center of the current
master, and another slave S2 in another data center, it is possible to set
S1 with a priority of 10 and S2 with a priority of 100, so that if the master
fails and both S1 and S2 are available, S1 will be preferred.

For more information about the way slaves are selected, please check the slave selection and priority section of this documentation.

Sentinel and Redis authentication

When the master is configured to require a password from clients,
as a security measure, slaves need to also be aware of this password in
order to authenticate with the master and create the master-slave connection
used for the asynchronous replication protocol.

This is achieved using the following configuration directives:

	requirepass in the master, in order to set the authentication password, and to make sure the instance will not process requests for non authenticated clients.

	masterauth in the slaves in order for the slaves to authenticate with the master in order to correctly replicate data from it.

When Sentinel is used, there is not a single master, since after a failover
slaves may play the role of masters, and old masters can be reconfigured in
order to act as slaves, so what you want to do is to set the above directives
in all your instances, both masters and slaves.

This is also usually a sane setup since you don’t want to protect
data only in the master, having the same data accessible in the slaves.

However, in the uncommon case where you need a slave that is accessible
without authentication, you can still do it by setting up a slave priority
of zero, to prevent this slave from being promoted to master, and
configuring in this slave only the masterauth directive, without
using the requirepass directive, so that data will be readable by
unauthenticated clients.

In order for sentinels to connect to Redis server instances when they are
configured with requirepass, the Sentinel configuration must include the
sentinel auth-pass directive, in the format:

sentinel auth-pass <master-group-name> <pass>

Sentinel clients implementation

Sentinel requires explicit client support, unless the system is configured to execute a script that performs a transparent redirection of all the requests to the new master instance (virtual IP or other similar systems). The topic of client libraries implementation is covered in the document Sentinel clients guidelines.

More advanced concepts

In the following sections we’ll cover a few details about how Sentinel work,
without to resorting to implementation details and algorithms that will be
covered in the final part of this document.

SDOWN and ODOWN failure state

Redis Sentinel has two different concepts of being down, one is called
a Subjectively Down condition (SDOWN) and is a down condition that is
local to a given Sentinel instance. Another is called Objectively Down
condition (ODOWN) and is reached when enough Sentinels (at least the
number configured as the quorum parameter of the monitored master) have
an SDOWN condition, and get feedback from other Sentinels using
the SENTINEL is-master-down-by-addr command.

From the point of view of a Sentinel an SDOWN condition is reached when it
does not receive a valid reply to PING requests for the number of seconds
specified in the configuration as is-master-down-after-milliseconds
parameter.

An acceptable reply to PING is one of the following:

	PING replied with +PONG.

	PING replied with -LOADING error.

	PING replied with -MASTERDOWN error.

Any other reply (or no reply at all) is considered non valid.
However note that a logical master that advertises itself as a slave in
the INFO output is considered to be down.

Note that SDOWN requires that no acceptable reply is received for the whole
interval configured, so for instance if the interval is 30000 milliseconds
(30 seconds) and we receive an acceptable ping reply every 29 seconds, the
instance is considered to be working.

SDOWN is not enough to trigger a failover: it only means a single Sentinel
believes a Redis instance is not available. To trigger a failover, the
ODOWN state must be reached.

To switch from SDOWN to ODOWN no strong consensus algorithm is used, but
just a form of gossip: if a given Sentinel gets reports that a master
is not working from enough Sentinels in a given time range, the SDOWN is
promoted to ODOWN. If this acknowledge is later missing, the flag is cleared.

A more strict authorization that uses an actual majority is required in
order to really start the failover, but no failover can be triggered without
reaching the ODOWN state.

The ODOWN condition only applies to masters. For other kind of instances
Sentinel doesn’t require to act, so the ODOWN state is never reached for slaves
and other sentinels, but only SDOWN is.

However SDOWN has also semantic implications. For example a slave in SDOWN
state is not selected to be promoted by a Sentinel performing a failover.

Sentinels and Slaves auto discovery

Sentinels stay connected with other Sentinels in order to reciprocally
check the availability of each other, and to exchange messages. However you
don’t need to configure a list of other Sentinel addresses in every Sentinel
instance you run, as Sentinel uses the Redis instances Pub/Sub capabilities
in order to discover the other Sentinels that are monitoring the same masters
and slaves.

This feature is implemented by sending hello messages into the channel named
__sentinel__:hello.

Similarly you don’t need to configure what is the list of the slaves attached
to a master, as Sentinel will auto discover this list querying Redis.

	Every Sentinel publishes a message to every monitored master and slave Pub/Sub channel __sentinel__:hello, every two seconds, announcing its presence with ip, port, runid.

	Every Sentinel is subscribed to the Pub/Sub channel __sentinel__:hello of every master and slave, looking for unknown sentinels. When new sentinels are detected, they are added as sentinels of this master.

	Hello messages also include the full current configuration of the master. If the receiving Sentinel has a configuration for a given master which is older than the one received, it updates to the new configuration immediately.

	Before adding a new sentinel to a master a Sentinel always checks if there is already a sentinel with the same runid or the same address (ip and port pair). In that case all the matching sentinels are removed, and the new added.

Sentinel reconfiguration of instances outside the failover procedure

Even when no failover is in progress, Sentinels will always try to set the
current configuration on monitored instances. Specifically:

	Slaves (according to the current configuration) that claim to be masters, will be configured as slaves to replicate with the current master.

	Slaves connected to a wrong master, will be reconfigured to replicate with the right master.

For Sentinels to reconfigure slaves, the wrong configuration must be observed for some time, that is greater than the period used to broadcast new configurations.

This prevents Sentinels with a stale configuration (for example because they just rejoined from a partition) will try to change the slaves configuration before receiving an update.

Also note how the semantics of always trying to impose the current configuration makes the failover more resistant to partitions:

	Masters failed over are reconfigured as slaves when they return available.

	Slaves partitioned away during a partition are reconfigured once reachable.

The important lesson to remember about this section is: Sentinel is a system where each process will always try to impose the last logical configuration to the set of monitored instances.

Slave selection and priority

When a Sentinel instance is ready to perform a failover, since the master
is in ODOWN state and the Sentinel received the authorization to failover
from the majority of the Sentinel instances known, a suitable slave needs
to be selected.

The slave selection process evaluates the following information about slaves:

	Disconnection time from the master.

	Slave priority.

	Replication offset processed.

	Run ID.

A slave that is found to be disconnected from the master for more than ten
times the configured master timeout (down-after-milliseconds option), plus
the time the master is also not available from the point of view of the
Sentinel doing the failover, is considered to be not suitable for the failover
and is skipped.

In more rigorous terms, a slave whose the INFO output suggests to be
disconnected from the master for more than:

(down-after-milliseconds * 10) + milliseconds_since_master_is_in_SDOWN_state

Is considered to be unreliable and is disregarded entirely.

The slave selection only considers the slaves that passed the above test,
and sorts it based on the above criteria, in the following order.

	The slaves are sorted by slave-priority as configured in the redis.conf file of the Redis instance. A lower priority will be preferred.

	If the priority is the same, the replication offset processed by the slave is checked, and the slave that received more data from the master is selected.

	If multiple slaves have the same priority and processed the same data from the master, a further check is performed, selecting the slave with the lexicographically smaller run ID. Having a lower run ID is not a real advantage for a slave, but is useful in order to make the process of slave selection more deterministic, instead of resorting to select a random slave.

Redis masters (that may be turned into slaves after a failover), and slaves, all
must be configured with a slave-priority if there are machines to be strongly
preferred. Otherwise all the instances can run with the default run ID (which
is the suggested setup, since it is far more interesting to select the slave
by replication offset).

A Redis instance can be configured with a special slave-priority of zero
in order to be never selected by Sentinels as the new master.
However a slave configured in this way will still be reconfigured by
Sentinels in order to replicate with the new master after a failover, the
only difference is that it will never become a master itself.

Algorithms and internals

In the following sections we will explore the details of Sentinel behavior.
It is not strictly needed for users to be aware of all the details, but a
deep understanding of Sentinel may help to deploy and operate Sentinel in
a more effective way.

Quorum

The previous sections showed that every master monitored by Sentinel is associated to a configured quorum. It specifies the number of Sentinel processes
that need to agree about the unreachability or error condition of the master in
order to trigger a failover.

However, after the failover is triggered, in order for the failover to actually be performed, at least a majority of Sentinels must authorize the Sentinel to
failover. Sentinel never performs a failover in the partition where a
minority of Sentinels exist.

Let’s try to make things a bit more clear:

	Quorum: the number of Sentinel processes that need to detect an error condition in order for a master to be flagged as ODOWN.

	The failover is triggered by the ODOWN state.

	Once the failover is triggered, the Sentinel trying to failover is required to ask for authorization to a majority of Sentinels (or more than the majority if the quorum is set to a number greater than the majority).

The difference may seem subtle but is actually quite simple to understand and use. For example if you have 5 Sentinel instances, and the quorum is set to 2, a failover will be triggered as soon as 2 Sentinels believe that the master is not reachable, however one of the two Sentinels will be able to failover only if it gets authorization at least from 3 Sentinels.

If instead the quorum is configured to 5, all the Sentinels must agree about the master error condition, and the authorization from all Sentinels is required in order to failover.

This means that the quorum can be used to tune Sentinel in two ways:

	If a the quorum is set to a value smaller than the majority of Sentinels we deploy, we are basically making Sentinel more sensible to master failures, triggering a failover as soon as even just a minority of Sentinels is no longer able to talk with the master.

	If a quorum is set to a value greater than the majority of Sentinels, we are making Sentinel able to failover only when there are a very large number (larger than majority) of well connected Sentinels which agree about the master being down.

Configuration epochs

Sentinels require to get authorizations from a majority in order to start a
failover for a few important reasons:

When a Sentinel is authorized, it gets a unique configuration epoch for the master it is failing over. This is a number that will be used to version the new configuration after the failover is completed. Because a majority agreed that a given version was assigned to a given Sentinel, no other Sentinel will be able to use it. This means that every configuration of every failover is versioned with a unique version. We’ll see why this is so important.

Moreover Sentinels have a rule: if a Sentinel voted another Sentinel for the failover of a given master, it will wait some time to try to failover the same master again. This delay is the failover-timeout you can configure in sentinel.conf. This means that Sentinels will not try to failover the same master at the same time, the first to ask to be authorized will try, if it fails another will try after some time, and so forth.

Redis Sentinel guarantees the liveness property that if a majority of Sentinels are able to talk, eventually one will be authorized to failover if the master is down.

Redis Sentinel also guarantees the safety property that every Sentinel will failover the same master using a different configuration epoch.

Configuration propagation

Once a Sentinel is able to failover a master successfully, it will start to broadcast the new configuration so that the other Sentinels will update their information about a given master.

For a failover to be considered successful, it requires that the Sentinel was able to send the SLAVEOF NO ONE command to the selected slave, and that the switch to master was later observed in the INFO output of the master.

At this point, even if the reconfiguration of the slaves is in progress, the failover is considered to be successful, and all the Sentinels are required to start reporting the new configuration.

The way a new configuration is propagated is the reason why we need that every
Sentinel failover is authorized with a different version number (configuration epoch).

Every Sentinel continuously broadcast its version of the configuration of a master using Redis Pub/Sub messages, both in the master and all the slaves. At the same time all the Sentinels wait for messages to see what is the configuration
advertised by the other Sentinels.

Configurations are broadcast in the __sentinel__:hello Pub/Sub channel.

Because every configuration has a different version number, the greater version
always wins over smaller versions.

So for example the configuration for the master mymaster start with all the
Sentinels believing the master is at 192.168.1.50:6379. This configuration
has version 1. After some time a Sentinel is authorized to failover with version 2. If the failover is successful, it will start to broadcast a new configuration, let’s say 192.168.1.50:9000, with version 2. All the other instances will see this configuration and will update their configuration accordingly, since the new configuration has a greater version.

This means that Sentinel guarantees a second liveness property: a set of
Sentinels that are able to communicate will all converge to the same configuration with the higher version number.

Basically if the net is partitioned, every partition will converge to the higher
local configuration. In the special case of no partitions, there is a single
partition and every Sentinel will agree about the configuration.

Consistency under partitions

Redis Sentinel configurations are eventually consistent, so every partition will
converge to the higher configuration available.
However in a real-world system using Sentinel there are three different players:

	Redis instances.

	Sentinel instances.

	Clients.

In order to define the behavior of the system we have to consider all three.

The following is a simple network where there are 3 nodes, each running
a Redis instance, and a Sentinel instance:

 +-------------+
 | Sentinel 1 |----- Client A
 | Redis 1 (M) |
 +-------------+
 |
 |
+-------------+ | +------------+
| Sentinel 2 |-----+-- // ----| Sentinel 3 |----- Client B
| Redis 2 (S) | | Redis 3 (M)|
+-------------+ +------------+

In this system the original state was that Redis 3 was the master, while
Redis 1 and 2 were slaves. A partition occurred isolating the old master.
Sentinels 1 and 2 started a failover promoting Sentinel 1 as the new master.

The Sentinel properties guarantee that Sentinel 1 and 2 now have the new
configuration for the master. However Sentinel 3 has still the old configuration
since it lives in a different partition.

We know that Sentinel 3 will get its configuration updated when the network
partition will heal, however what happens during the partition if there
are clients partitioned with the old master?

Clients will be still able to write to Redis 3, the old master. When the
partition will rejoin, Redis 3 will be turned into a slave of Redis 1, and
all the data written during the partition will be lost.

Depending on your configuration you may want or not that this scenario happens:

	If you are using Redis as a cache, it could be handy that Client B is still able to write to the old master, even if its data will be lost.

	If you are using Redis as a store, this is not good and you need to configure the system in order to partially prevent this problem.

Since Redis is asynchronously replicated, there is no way to totally prevent data loss in this scenario, however you can bound the divergence between Redis 3 and Redis 1
using the following Redis configuration option:

min-slaves-to-write 1
min-slaves-max-lag 10

With the above configuration (please see the self-commented redis.conf example in the Redis distribution for more information) a Redis instance, when acting as a master, will stop accepting writes if it can’t write to at least 1 slave. Since replication is asynchronous not being able to write actually means that the slave is either disconnected, or is not sending us asynchronous acknowledges for more than the specified max-lag number of seconds.

Using this configuration the Redis 3 in the above example will become unavailable after 10 seconds. When the partition heals, the Sentinel 3 configuration will converge to
the new one, and Client B will be able to fetch a valid configuration and continue.

In general Redis + Sentinel as a whole are a an eventually consistent system where the merge function is last failover wins, and the data from old masters are discarded to replicate the data of the current master, so there is always a window for losing acknowledged writes. This is due to Redis asynchronous
replication and the discarding nature of the “virtual” merge function of the system. Note that this is not a limitation of Sentinel itself, and if you orchestrate the failover with a strongly consistent replicated state machine, the same properties will still apply. There are only two ways to avoid losing acknowledged writes:

	Use synchronous replication (and a proper consensus algorithm to run a replicated state machine).

	Use an eventually consistent system where different versions of the same object can be merged.

Redis currently is not able to use any of the above systems, and is currently outside the development goals. However there are proxies implementing solution “2” on top of Redis stores such as SoundCloud Roshi [https://github.com/soundcloud/roshi], or Netflix Dynomite [https://github.com/Netflix/dynomite].

Sentinel persistent state

Sentinel state is persisted in the sentinel configuration file. For example
every time a new configuration is received, or created (leader Sentinels), for
a master, the configuration is persisted on disk together with the configuration
epoch. This means that it is safe to stop and restart Sentinel processes.

TILT mode

Redis Sentinel is heavily dependent on the computer time: for instance in
order to understand if an instance is available it remembers the time of the
latest successful reply to the PING command, and compares it with the current
time to understand how old it is.

However if the computer time changes in an unexpected way, or if the computer
is very busy, or the process blocked for some reason, Sentinel may start to
behave in an unexpected way.

The TILT mode is a special “protection” mode that a Sentinel can enter when
something odd is detected that can lower the reliability of the system.
The Sentinel timer interrupt is normally called 10 times per second, so we
expect that more or less 100 milliseconds will elapse between two calls
to the timer interrupt.

What a Sentinel does is to register the previous time the timer interrupt
was called, and compare it with the current call: if the time difference
is negative or unexpectedly big (2 seconds or more) the TILT mode is entered
(or if it was already entered the exit from the TILT mode postponed).

When in TILT mode the Sentinel will continue to monitor everything, but:

	It stops acting at all.

	It starts to reply negatively to SENTINEL is-master-down-by-addr requests as the ability to detect a failure is no longer trusted.

If everything appears to be normal for 30 second, the TILT mode is exited.

Note that in some way TILT mode could be replaced using the monotonic clock
API that many kernels offer. However it is not still clear if this is a good
solution since the current system avoids issues in case the process is just
suspended or not executed by the scheduler for a long time.

 Redis Encryption

Redis Encryption

The idea of adding SSL support to Redis was proposed many times, however
currently we believe that given the small percentage of users requiring
SSL support, and the fact that each scenario tends to be different, using
a different “tunneling” strategy can be better. We may change the idea in the
future, but currently a good solution that may be suitable for many use cases
is to use the following project:

	Spiped [http://www.tarsnap.com/spiped.html] is a utility for creating symmetrically encrypted and authenticated pipes between socket addresses, so that one may connect to one address (e.g., a UNIX socket on localhost) and transparently have a connection established to another address (e.g., a UNIX socket on a different system).

The software is written in a similar spirit to Redis itself, it is a self-contained 4000 lines of C code utility that does a single thing well.

 Redis on ARM

Redis on ARM

Since the Redis 4.0 version (currently in release candidate state) Redis
supports the ARM processor in general, and the Raspberry Pi specifically, as a
main platform, exactly like it happens for Linux/x86. It means that every new
release of Redis is tested on the Pi environment, and that we take
this documentation page updated with information about supported devices
and information. While Redis already runs on Android, in the future we look
forward to extend our testing efforts to Android to also make it an officially
supported platform.

We believe that Redis is ideal for IoT and Embedded devices for several
reasons:

	Redis has a very small memory footprint and CPU requirements. Can run in small devices like the Raspberry Pi Zero without impacting the overall performance, using a small amount of memory, while delivering good performance for many use cases.

	The data structures of Redis are often a good way to model IoT/embedded use cases. For example in order to accumulate time series data, to receive or queue commands to execute or responses to send back to the remote servers and so forth.

	Modeling data inside Redis can be very useful in order to make in-device decisions for appliances that must respond very quickly or when the remote servers are offline.

	Redis can be used as an interprocess communication system between the processes running in the device.

	The append only file storage of Redis is well suited for the SSD cards.

Redis /proc/cpu/alignment requirements

Linux on ARM allows to trap unaligned accesses and fix them inside the kernel
in order to continue the execution of the offending program instead of
generating a SIGBUS. Redis 4.0 and greater are fixed in order to avoid any kind
of unaligned access, so there is no need to have a specific value for this
kernel configuration. Even when kernel alignment fixing is disabled Redis should
run as expected.

Building Redis in the Pi

	Grab the latest commit of the Redis 4.0 branch.

	Just use make as usually to create the executable.

There is nothing special in the process. The only difference is that by
default, Redis uses the libc allocator instead of defaulting to Jemalloc
as it does in other Linux based environments. This is because we believe
that for the small use cases inside embedded devices, memory fragmentation
is unlikely to be a problem. Moreover Jemalloc on ARM may not be as tested
as the libc allocator.

Performance

Performance testing of Redis was performed in the Raspberry Pi 3 and in the
original model B Pi. The difference between the two Pis in terms of
delivered performance is quite big. The benchmarks were performed via the
loopback interface, since most use cases will probably use Redis from within
the device and not via the network.

Raspberry Pi 3:

	Test 1 : 5 millions writes with 1 million keys (even distribution among keys). No persistence, no pipelining. 28,000 ops/sec.

	Test 2: Like test 1 but with pipelining using groups of 8 operations: 80,000 ops/sec.

	Test 3: Like test 1 but with AOF enabled, fsync 1 sec: 23,000 ops/sec

	Test 4: Like test 3, but with an AOF rewrite in progress: 21,000 ops/sec

Raspberry Pi 1 model B:

	Test 1 : 5 millions writes with 1 million keys (even distribution among keys). No persistence, no pipelining. 2,200 ops/sec.

	Test 2: Like test 1 but with pipelining using groups of 8 operations: 8,500 ops/sec.

	Test 3: Like test 1 but with AOF enabled, fsync 1 sec: 1,820 ops/sec

	Test 4: Like test 3, but with an AOF rewrite in progress: 1,000 ops/sec

The benchmarks above are referring to simple SET/GET operations. The performance is similar for all the Redis fast operations (not running in linear time). However sorted sets may show slightly slow numbers.

 How fast is Redis?

How fast is Redis?

Redis includes the redis-benchmark utility that simulates running commands done
by N clients at the same time sending M total queries (it is similar to the
Apache’s ab utility). Below you’ll find the full output of a benchmark executed
against a Linux box.

The following options are supported:

Usage: redis-benchmark [-h <host>] [-p <port>] [-c <clients>] [-n <requests]> [-k <boolean>]

 -h <hostname> Server hostname (default 127.0.0.1)
 -p <port> Server port (default 6379)
 -s <socket> Server socket (overrides host and port)
 -a <password> Password for Redis Auth
 -c <clients> Number of parallel connections (default 50)
 -n <requests> Total number of requests (default 100000)
 -d <size> Data size of SET/GET value in bytes (default 2)
 --dbnum <db> SELECT the specified db number (default 0)
 -k <boolean> 1=keep alive 0=reconnect (default 1)
 -r <keyspacelen> Use random keys for SET/GET/INCR, random values for SADD
 Using this option the benchmark will expand the string __rand_int__
 inside an argument with a 12 digits number in the specified range
 from 0 to keyspacelen-1. The substitution changes every time a command
 is executed. Default tests use this to hit random keys in the
 specified range.
 -P <numreq> Pipeline <numreq> requests. Default 1 (no pipeline).
 -q Quiet. Just show query/sec values
 --csv Output in CSV format
 -l Loop. Run the tests forever
 -t <tests> Only run the comma separated list of tests. The test
 names are the same as the ones produced as output.
 -I Idle mode. Just open N idle connections and wait.

You need to have a running Redis instance before launching the benchmark.
A typical example would be:

redis-benchmark -q -n 100000

Using this tool is quite easy, and you can also write your own benchmark,
but as with any benchmarking activity, there are some pitfalls to avoid.

Running only a subset of the tests

You don’t need to run all the default tests every time you execute redis-benchmark.
The simplest thing to select only a subset of tests is to use the -t option
like in the following example:

$ redis-benchmark -t set,lpush -n 100000 -q
SET: 74239.05 requests per second
LPUSH: 79239.30 requests per second

In the above example we asked to just run test the SET and LPUSH commands,
in quiet mode (see the -q switch).

It is also possible to specify the command to benchmark directly like in the
following example:

$ redis-benchmark -n 100000 -q script load "redis.call('set','foo','bar')"
script load redis.call('set','foo','bar'): 69881.20 requests per second

Selecting the size of the key space

By default the benchmark runs against a single key. In Redis the difference
between such a synthetic benchmark and a real one is not huge since it is an
in-memory system, however it is possible to stress cache misses and in general
to simulate a more real-world work load by using a large key space.

This is obtained by using the -r switch. For instance if I want to run
one million SET operations, using a random key for every operation out of
100k possible keys, I’ll use the following command line:

$ redis-cli flushall
OK

$ redis-benchmark -t set -r 100000 -n 1000000
====== SET ======
 1000000 requests completed in 13.86 seconds
 50 parallel clients
 3 bytes payload
 keep alive: 1

99.76% `<=` 1 milliseconds
99.98% `<=` 2 milliseconds
100.00% `<=` 3 milliseconds
100.00% `<=` 3 milliseconds
72144.87 requests per second

$ redis-cli dbsize
(integer) 99993

Using pipelining

By default every client (the benchmark simulates 50 clients if not otherwise
specified with -c) sends the next command only when the reply of the previous
command is received, this means that the server will likely need a read call
in order to read each command from every client. Also RTT is paid as well.

Redis supports /topics/pipelining, so it is possible to send
multiple commands at once, a feature often exploited by real world applications.
Redis pipelining is able to dramatically improve the number of operations per
second a server is able do deliver.

This is an example of running the benchmark in a MacBook Air 11” using a
pipelining of 16 commands:

$ redis-benchmark -n 1000000 -t set,get -P 16 -q
SET: 403063.28 requests per second
GET: 508388.41 requests per second

Using pipelining results in a significant increase in performance.

Pitfalls and misconceptions

The first point is obvious: the golden rule of a useful benchmark is to
only compare apples and apples. Different versions of Redis can be compared
on the same workload for instance. Or the same version of Redis, but with
different options. If you plan to compare Redis to something else, then it is
important to evaluate the functional and technical differences, and take them
in account.

	Redis is a server: all commands involve network or IPC round trips. It is meaningless to compare it to embedded data stores such as SQLite, Berkeley DB, Tokyo/Kyoto Cabinet, etc ... because the cost of most operations is primarily in network/protocol management.

	Redis commands return an acknowledgment for all usual commands. Some other data stores do not. Comparing Redis to stores involving one-way queries is only mildly useful.

	Naively iterating on synchronous Redis commands does not benchmark Redis itself, but rather measure your network (or IPC) latency and the client library intrinsic latency. To really test Redis, you need multiple connections (like redis-benchmark) and/or to use pipelining to aggregate several commands and/or multiple threads or processes.

	Redis is an in-memory data store with some optional persistence options. If you plan to compare it to transactional servers (MySQL, PostgreSQL, etc ...), then you should consider activating AOF and decide on a suitable fsync policy.

	Redis is, mostly, a single-threaded server from the POV of commands execution (actually modern versions of Redis use threads for different things). It is not designed to benefit from multiple CPU cores. People are supposed to launch several Redis instances to scale out on several cores if needed. It is not really fair to compare one single Redis instance to a multi-threaded data store.

A common misconception is that redis-benchmark is designed to make Redis
performances look stellar, the throughput achieved by redis-benchmark being
somewhat artificial, and not achievable by a real application. This is
actually not true.

The redis-benchmark program is a quick and useful way to get some figures and
evaluate the performance of a Redis instance on a given hardware. However,
by default, it does not represent the maximum throughput a Redis instance can
sustain. Actually, by using pipelining and a fast client (hiredis), it is fairly
easy to write a program generating more throughput than redis-benchmark. The
default behavior of redis-benchmark is to achieve throughput by exploiting
concurrency only (i.e. it creates several connections to the server).
It does not use pipelining or any parallelism at all (one pending query per
connection at most, and no multi-threading), if not explicitly enabled via
the -P parameter. So in some way using redis-benchmark and, triggering, for
example, a BGSAVE operation in the background at the same time, will provide
the user with numbers more near to the worst case than to the best case.

To run a benchmark using pipelining mode (and achieve higher throughput),
you need to explicitly use the -P option. Please note that it is still a
realistic behavior since a lot of Redis based applications actively use
pipelining to improve performance. However you should use a pipeline size that
is more or less the average pipeline length you’ll be able to use in your
application in order to get realistic numbers.

Finally, the benchmark should apply the same operations, and work in the same way
with the multiple data stores you want to compare. It is absolutely pointless to
compare the result of redis-benchmark to the result of another benchmark
program and extrapolate.

For instance, Redis and memcached in single-threaded mode can be compared on
GET/SET operations. Both are in-memory data stores, working mostly in the same
way at the protocol level. Provided their respective benchmark application is
aggregating queries in the same way (pipelining) and use a similar number of
connections, the comparison is actually meaningful.

This perfect example is illustrated by the dialog between Redis (antirez) and
memcached (dormando) developers.

antirez 1 - On Redis, Memcached, Speed, Benchmarks and The Toilet [http://antirez.com/post/redis-memcached-benchmark.html]

dormando - Redis VS Memcached (slightly better bench) [http://dormando.livejournal.com/525147.html]

antirez 2 - An update on the Memcached/Redis benchmark [http://antirez.com/post/update-on-memcached-redis-benchmark.html]

You can see that in the end, the difference between the two solutions is not
so staggering, once all technical aspects are considered. Please note both
Redis and memcached have been optimized further after these benchmarks.

Finally, when very efficient servers are benchmarked (and stores like Redis
or memcached definitely fall in this category), it may be difficult to saturate
the server. Sometimes, the performance bottleneck is on client side,
and not server-side. In that case, the client (i.e. the benchmark program itself)
must be fixed, or perhaps scaled out, in order to reach the maximum throughput.

Factors impacting Redis performance

There are multiple factors having direct consequences on Redis performance.
We mention them here, since they can alter the result of any benchmarks.
Please note however, that a typical Redis instance running on a low end,
untuned box usually provides good enough performance for most applications.

	Network bandwidth and latency usually have a direct impact on the performance.
It is a good practice to use the ping program to quickly check the latency
between the client and server hosts is normal before launching the benchmark.
Regarding the bandwidth, it is generally useful to estimate
the throughput in Gbit/s and compare it to the theoretical bandwidth
of the network. For instance a benchmark setting 4 KB strings
in Redis at 100000 q/s, would actually consume 3.2 Gbit/s of bandwidth
and probably fit within a 10 Gbit/s link, but not a 1 Gbit/s one. In many real
world scenarios, Redis throughput is limited by the network well before being
limited by the CPU. To consolidate several high-throughput Redis instances
on a single server, it worth considering putting a 10 Gbit/s NIC
or multiple 1 Gbit/s NICs with TCP/IP bonding.

	CPU is another very important factor. Being single-threaded, Redis favors
fast CPUs with large caches and not many cores. At this game, Intel CPUs are
currently the winners. It is not uncommon to get only half the performance on
an AMD Opteron CPU compared to similar Nehalem EP/Westmere EP/Sandy Bridge
Intel CPUs with Redis. When client and server run on the same box, the CPU is
the limiting factor with redis-benchmark.

	Speed of RAM and memory bandwidth seem less critical for global performance
especially for small objects. For large objects (>10 KB), it may become
noticeable though. Usually, it is not really cost-effective to buy expensive
fast memory modules to optimize Redis.

	Redis runs slower on a VM compared to running without virtualization using
the same hardware. If you have the chance to run Redis on a physical machine
this is preferred. However this does not mean that Redis is slow in
virtualized environments, the delivered performances are still very good
and most of the serious performance issues you may incur in virtualized
environments are due to over-provisioning, non-local disks with high latency,
or old hypervisor software that have slow fork syscall implementation.

	When the server and client benchmark programs run on the same box, both
the TCP/IP loopback and unix domain sockets can be used. Depending on the
platform, unix domain sockets can achieve around 50% more throughput than
the TCP/IP loopback (on Linux for instance). The default behavior of
redis-benchmark is to use the TCP/IP loopback.

	The performance benefit of unix domain sockets compared to TCP/IP loopback
tends to decrease when pipelining is heavily used (i.e. long pipelines).

	When an ethernet network is used to access Redis, aggregating commands using
pipelining is especially efficient when the size of the data is kept under
the ethernet packet size (about 1500 bytes). Actually, processing 10 bytes,
100 bytes, or 1000 bytes queries almost result in the same throughput.
See the graph below.

[image: Data size impact]

	On multi CPU sockets servers, Redis performance becomes dependent on the
NUMA configuration and process location. The most visible effect is that
redis-benchmark results seem non-deterministic because client and server
processes are distributed randomly on the cores. To get deterministic results,
it is required to use process placement tools (on Linux: taskset or numactl).
The most efficient combination is always to put the client and server on two
different cores of the same CPU to benefit from the L3 cache.
Here are some results of 4 KB SET benchmark for 3 server CPUs (AMD Istanbul,
Intel Nehalem EX, and Intel Westmere) with different relative placements.
Please note this benchmark is not meant to compare CPU models between themselves
(CPUs exact model and frequency are therefore not disclosed).

[image: NUMA chart]

	With high-end configurations, the number of client connections is also an
important factor. Being based on epoll/kqueue, the Redis event loop is quite
scalable. Redis has already been benchmarked at more than 60000 connections,
and was still able to sustain 50000 q/s in these conditions. As a rule of thumb,
an instance with 30000 connections can only process half the throughput
achievable with 100 connections. Here is an example showing the throughput of
a Redis instance per number of connections:

[image: connections chart]

	With high-end configurations, it is possible to achieve higher throughput by
tuning the NIC(s) configuration and associated interruptions. Best throughput
is achieved by setting an affinity between Rx/Tx NIC queues and CPU cores,
and activating RPS (Receive Packet Steering) support. More information in this
thread [https://groups.google.com/forum/#!msg/redis-db/gUhc19gnYgc/BruTPCOroiMJ].
Jumbo frames may also provide a performance boost when large objects are used.

	Depending on the platform, Redis can be compiled against different memory
allocators (libc malloc, jemalloc, tcmalloc), which may have different behaviors
in term of raw speed, internal and external fragmentation.
If you did not compile Redis yourself, you can use the INFO command to check
the mem_allocator field. Please note most benchmarks do not run long enough to
generate significant external fragmentation (contrary to production Redis
instances).

Other things to consider

One important goal of any benchmark is to get reproducible results, so they
can be compared to the results of other tests.

	A good practice is to try to run tests on isolated hardware as much as possible.
If it is not possible, then the system must be monitored to check the benchmark
is not impacted by some external activity.

	Some configurations (desktops and laptops for sure, some servers as well)
have a variable CPU core frequency mechanism. The policy controlling this
mechanism can be set at the OS level. Some CPU models are more aggressive than
others at adapting the frequency of the CPU cores to the workload. To get
reproducible results, it is better to set the highest possible fixed frequency
for all the CPU cores involved in the benchmark.

	An important point is to size the system accordingly to the benchmark.
The system must have enough RAM and must not swap. On Linux, do not forget
to set the overcommit_memory parameter correctly. Please note 32 and 64 bit
Redis instances do not have the same memory footprint.

	If you plan to use RDB or AOF for your benchmark, please check there is no other
I/O activity in the system. Avoid putting RDB or AOF files on NAS or NFS shares,
or on any other devices impacting your network bandwidth and/or latency
(for instance, EBS on Amazon EC2).

	Set Redis logging level (loglevel parameter) to warning or notice. Avoid putting
the generated log file on a remote filesystem.

	Avoid using monitoring tools which can alter the result of the benchmark. For
instance using INFO at regular interval to gather statistics is probably fine,
but MONITOR will impact the measured performance significantly.

Benchmark results on different virtualized and bare-metal servers.

WARNING: Note that most of the following benchmarks are a few years old and are obtained using old hardware compared to today’s standards. This page should be updated, but in many cases you can expect twice the numbers you are seeing here using state of hard hardware. Moreover Redis 4.0 is faster than 2.6 in many workloads.

	The test was done with 50 simultaneous clients performing 2 million requests.

	Redis 2.6.14 is used for all the tests.

	Test was executed using the loopback interface.

	Test was executed using a key space of 1 million keys.

	Test was executed with and without pipelining (16 commands pipeline).

Intel(R) Xeon(R) CPU E5520 @ 2.27GHz (with pipelining)

$./redis-benchmark -r 1000000 -n 2000000 -t get,set,lpush,lpop -P 16 -q
SET: 552028.75 requests per second
GET: 707463.75 requests per second
LPUSH: 767459.75 requests per second
LPOP: 770119.38 requests per second

Intel(R) Xeon(R) CPU E5520 @ 2.27GHz (without pipelining)

$./redis-benchmark -r 1000000 -n 2000000 -t get,set,lpush,lpop -q
SET: 122556.53 requests per second
GET: 123601.76 requests per second
LPUSH: 136752.14 requests per second
LPOP: 132424.03 requests per second

Linode 2048 instance (with pipelining)

$./redis-benchmark -r 1000000 -n 2000000 -t get,set,lpush,lpop -q -P 16
SET: 195503.42 requests per second
GET: 250187.64 requests per second
LPUSH: 230547.55 requests per second
LPOP: 250815.16 requests per second

Linode 2048 instance (without pipelining)

$./redis-benchmark -r 1000000 -n 2000000 -t get,set,lpush,lpop -q
SET: 35001.75 requests per second
GET: 37481.26 requests per second
LPUSH: 36968.58 requests per second
LPOP: 35186.49 requests per second

More detailed tests without pipelining

$ redis-benchmark -n 100000

====== SET ======
 100007 requests completed in 0.88 seconds
 50 parallel clients
 3 bytes payload
 keep alive: 1

58.50% <= 0 milliseconds
99.17% <= 1 milliseconds
99.58% <= 2 milliseconds
99.85% <= 3 milliseconds
99.90% <= 6 milliseconds
100.00% <= 9 milliseconds
114293.71 requests per second

====== GET ======
 100000 requests completed in 1.23 seconds
 50 parallel clients
 3 bytes payload
 keep alive: 1

43.12% <= 0 milliseconds
96.82% <= 1 milliseconds
98.62% <= 2 milliseconds
100.00% <= 3 milliseconds
81234.77 requests per second

====== INCR ======
 100018 requests completed in 1.46 seconds
 50 parallel clients
 3 bytes payload
 keep alive: 1

32.32% <= 0 milliseconds
96.67% <= 1 milliseconds
99.14% <= 2 milliseconds
99.83% <= 3 milliseconds
99.88% <= 4 milliseconds
99.89% <= 5 milliseconds
99.96% <= 9 milliseconds
100.00% <= 18 milliseconds
68458.59 requests per second

====== LPUSH ======
 100004 requests completed in 1.14 seconds
 50 parallel clients
 3 bytes payload
 keep alive: 1

62.27% <= 0 milliseconds
99.74% <= 1 milliseconds
99.85% <= 2 milliseconds
99.86% <= 3 milliseconds
99.89% <= 5 milliseconds
99.93% <= 7 milliseconds
99.96% <= 9 milliseconds
100.00% <= 22 milliseconds
100.00% <= 208 milliseconds
88109.25 requests per second

====== LPOP ======
 100001 requests completed in 1.39 seconds
 50 parallel clients
 3 bytes payload
 keep alive: 1

54.83% <= 0 milliseconds
97.34% <= 1 milliseconds
99.95% <= 2 milliseconds
99.96% <= 3 milliseconds
99.96% <= 4 milliseconds
100.00% <= 9 milliseconds
100.00% <= 208 milliseconds
71994.96 requests per second

Notes: changing the payload from 256 to 1024 or 4096 bytes does not change the
numbers significantly (but reply packets are glued together up to 1024 bytes so
GETs may be slower with big payloads). The same for the number of clients, from
50 to 256 clients I got the same numbers. With only 10 clients it starts to get
a bit slower.

You can expect different results from different boxes. For example a low
profile box like Intel core duo T5500 clocked at 1.66 GHz running Linux 2.6
will output the following:

$./redis-benchmark -q -n 100000
SET: 53684.38 requests per second
GET: 45497.73 requests per second
INCR: 39370.47 requests per second
LPUSH: 34803.41 requests per second
LPOP: 37367.20 requests per second

Another one using a 64-bit box, a Xeon L5420 clocked at 2.5 GHz:

$./redis-benchmark -q -n 100000
PING: 111731.84 requests per second
SET: 108114.59 requests per second
GET: 98717.67 requests per second
INCR: 95241.91 requests per second
LPUSH: 104712.05 requests per second
LPOP: 93722.59 requests per second

Other Redis benchmarking tools

There are several third-party tools that can be used for benchmarking Redis. Refer to each tool’s
documentation for more information about its goals and capabilities.

	memtier_benchmark [https://github.com/redislabs/memtier_benchmark] from Redis Labs [https://twitter.com/RedisLabs] is a NoSQL Redis and Memcache traffic generation and benchmarking tool.

	rpc-perf [https://github.com/twitter/rpc-perf] from Twitter [https://twitter.com/twitter] is a tool for benchmarking RPC services that supports Redis and Memcache.

	YCSB [https://github.com/brianfrankcooper/YCSB] from Yahoo @Yahoo [https://twitter.com/Yahoo] is a benchmarking framework with clients to many databases, including Redis.

Example of redis-benchmark results with optimized high-end server hardware

	Redis version 2.4.2

	Default number of connections, payload size = 256

	The Linux box is running SLES10 SP3 2.6.16.60-0.54.5-smp, CPU is 2 x Intel X5670 @ 2.93 GHz.

	Test executed while running Redis server and benchmark client on the same CPU, but different cores.

Using a unix domain socket:

$ numactl -C 6 ./redis-benchmark -q -n 100000 -s /tmp/redis.sock -d 256
PING (inline): 200803.22 requests per second
PING: 200803.22 requests per second
MSET (10 keys): 78064.01 requests per second
SET: 198412.69 requests per second
GET: 198019.80 requests per second
INCR: 200400.80 requests per second
LPUSH: 200000.00 requests per second
LPOP: 198019.80 requests per second
SADD: 203665.98 requests per second
SPOP: 200803.22 requests per second
LPUSH (again, in order to bench LRANGE): 200000.00 requests per second
LRANGE (first 100 elements): 42123.00 requests per second
LRANGE (first 300 elements): 15015.02 requests per second
LRANGE (first 450 elements): 10159.50 requests per second
LRANGE (first 600 elements): 7548.31 requests per second

Using the TCP loopback:

$ numactl -C 6 ./redis-benchmark -q -n 100000 -d 256
PING (inline): 145137.88 requests per second
PING: 144717.80 requests per second
MSET (10 keys): 65487.89 requests per second
SET: 142653.36 requests per second
GET: 142450.14 requests per second
INCR: 143061.52 requests per second
LPUSH: 144092.22 requests per second
LPOP: 142247.52 requests per second
SADD: 144717.80 requests per second
SPOP: 143678.17 requests per second
LPUSH (again, in order to bench LRANGE): 143061.52 requests per second
LRANGE (first 100 elements): 29577.05 requests per second
LRANGE (first 300 elements): 10431.88 requests per second
LRANGE (first 450 elements): 7010.66 requests per second
LRANGE (first 600 elements): 5296.61 requests per second

 FAQ

FAQ

Why is Redis different compared to other key-value stores?

There are two main reasons.

	Redis is a different evolution path in the key-value DBs where values can contain more complex data types, with atomic operations defined on those data types. Redis data types are closely related to fundamental data structures and are exposed to the programmer as such, without additional abstraction layers.

	Redis is an in-memory but persistent on disk database, so it represents a different trade off where very high write and read speed is achieved with the limitation of data sets that can’t be larger than memory. Another advantage of
in memory databases is that the memory representation of complex data structures
is much simpler to manipulate compared to the same data structures on disk, so
Redis can do a lot, with little internal complexity. At the same time the
two on-disk storage formats (RDB and AOF) don’t need to be suitable for random
access, so they are compact and always generated in an append-only fashion
(Even the AOF log rotation is an append-only operation, since the new version
is generated from the copy of data in memory). However this design also involves
different challenges compared to traditional on-disk stores. Being the main data
representation on memory, Redis operations must be carefully handled to make sure
there is always an updated version of the data set on disk.

What’s the Redis memory footprint?

To give you a few examples (all obtained using 64-bit instances):

	An empty instance uses ~ 3MB of memory.

	1 Million small Keys -> String Value pairs use ~ 85MB of memory.

	1 Million Keys -> Hash value, representing an object with 5 fields, use ~ 160 MB of memory.

To test your use case is trivial using the redis-benchmark utility to generate random data sets and check with the INFO memory command the space used.

64-bit systems will use considerably more memory than 32-bit systems to store the same keys, especially if the keys and values are small. This is because pointers take 8 bytes in 64-bit systems. But of course the advantage is that you can
have a lot of memory in 64-bit systems, so in order to run large Redis servers a 64-bit system is more or less required. The alternative is sharding.

I like Redis’s high level operations and features, but I don’t like that it takes everything in memory and I can’t have a dataset larger the memory. Plans to change this?

In the past the Redis developers experimented with Virtual Memory and other systems in order to allow larger than RAM datasets, but after all we are very happy if we can do one thing well: data served from memory, disk used for storage. So for now there are no plans to create an on disk backend for Redis. Most of what
Redis is, after all, is a direct result of its current design.

If your real problem is not the total RAM needed, but the fact that you need
to split your data set into multiple Redis instances, please read the
Partitioning page in this documentation for more info.

Recently Redis Labs, the company sponsoring Redis developments, developed a
“Redis on flash” solution that is able to use a mixed RAM/flash approach for
larger data sets with a biased access pattern. You may check their offering
for more information, however this feature is not part of the open source Redis
code base.

Is using Redis together with an on-disk database a good idea?

Yes, a common design pattern involves taking very write-heavy small data
in Redis (and data you need the Redis data structures to model your problem
in an efficient way), and big blobs of data into an SQL or eventually
consistent on-disk database. Similarly sometimes Redis is used in order to
take in memory another copy of a subset of the same data stored in the on-disk
database. This may look similar to caching, but actually is a more advanced model
since normally the Redis dataset is updated together with the on-disk DB dataset,
and not refreshed on cache misses.

Is there something I can do to lower the Redis memory usage?

If you can, use Redis 32 bit instances. Also make good use of small hashes,
lists, sorted sets, and sets of integers, since Redis is able to represent
those data types in the special case of a few elements in a much more compact
way. There is more info in the Memory Optimization page.

What happens if Redis runs out of memory?

Redis will either be killed by the Linux kernel OOM killer,
crash with an error, or will start to slow down.
With modern operating systems malloc() returning NULL is not common, usually
the server will start swapping (if some swap space is configured), and Redis
performance will start to degrade, so you’ll probably notice there is something
wrong.

Redis has built-in protections allowing the user to set a max limit to memory
usage, using the maxmemory option in the configuration file to put a limit
to the memory Redis can use. If this limit is reached Redis will start to reply
with an error to write commands (but will continue to accept read-only
commands), or you can configure it to evict keys when the max memory limit
is reached in the case you are using Redis for caching.

We have detailed documentation in case you plan to use Redis as an LRU cache.

The INFO command will report the amount of memory Redis is using so you can
write scripts that monitor your Redis servers checking for critical conditions
before they are reached.

Background saving fails with a fork() error under Linux even if I have a lot of free RAM!

Short answer: echo 1 > /proc/sys/vm/overcommit_memory :)

And now the long one:

Redis background saving schema relies on the copy-on-write semantic of fork in
modern operating systems: Redis forks (creates a child process) that is an
exact copy of the parent. The child process dumps the DB on disk and finally
exits. In theory the child should use as much memory as the parent being a
copy, but actually thanks to the copy-on-write semantic implemented by most
modern operating systems the parent and child process will share the common
memory pages. A page will be duplicated only when it changes in the child or in
the parent. Since in theory all the pages may change while the child process is
saving, Linux can’t tell in advance how much memory the child will take, so if
the overcommit_memory setting is set to zero fork will fail unless there is
as much free RAM as required to really duplicate all the parent memory pages,
with the result that if you have a Redis dataset of 3 GB and just 2 GB of free
memory it will fail.

Setting overcommit_memory to 1 tells Linux to relax and perform the fork in a
more optimistic allocation fashion, and this is indeed what you want for Redis.

A good source to understand how Linux Virtual Memory works and other
alternatives for overcommit_memory and overcommit_ratio is this classic
from Red Hat Magazine, “Understanding Virtual Memory” [http://www.redhat.com/magazine/001nov04/features/vm/].
Beware, this article had 1 and 2 configuration values for overcommit_memory
reversed: refer to the proc(5) [http://man7.org/linux/man-pages/man5/proc.5.html] man page for the right meaning of the
available values.

Are Redis on-disk-snapshots atomic?

Yes, redis background saving process is always forked when the server is
outside of the execution of a command, so every command reported to be atomic
in RAM is also atomic from the point of view of the disk snapshot.

Redis is single threaded. How can I exploit multiple CPU / cores?

It’s not very frequent that CPU becomes your bottleneck with Redis, as usually Redis is either memory or network bound. For instance, using pipelining Redis running
on an average Linux system can deliver even 1 million requests per second, so
if your application mainly uses O(N) or O(log(N)) commands, it is hardly
going to use too much CPU.

However, to maximize CPU usage you can start multiple instances of Redis in
the same box and treat them as different servers. At some point a single
box may not be enough anyway, so if you want to use multiple CPUs you can
start thinking of some way to shard earlier.

You can find more information about using multiple Redis instances in the Partitioning page.

However with Redis 4.0 we started to make Redis more threaded. For now this is
limited to deleting objects in the background, and to blocking commands
implemented via Redis modules. For the next releases, the plan is to make Redis
more and more threaded.

What is the maximum number of keys a single Redis instance can hold? and what the max number of elements in a Hash, List, Set, Sorted Set?

Redis can handle up to 2^32 keys, and was tested in practice to
handle at least 250 million keys per instance.

Every hash, list, set, and sorted set, can hold 2^32 elements.

In other words your limit is likely the available memory in your system.

My slave claims to have a different number of keys compared to its master, why?

If you use keys with limited time to live (Redis expires) this is normal behavior. This is what happens:

	The master generates an RDB file on the first synchronization with the slave.

	The RDB file will not include keys already expired in the master, but that are still in memory.

	However these keys are still in the memory of the Redis master, even if logically expired. They’ll not be considered as existing, but the memory will be reclaimed later, both incrementally and explicitly on access. However while these keys are not logical part of the dataset, they are advertised in INFO output and by the DBSIZE command.

	When the slave reads the RDB file generated by the master, this set of keys will not be loaded.

As a result of this, it is common for users with many keys with an expire set to see less keys in the slaves, because of this artifact, but there is no actual logical difference in the instances content.

What does Redis actually mean?

It means REmote DIctionary Server.

Why did you start the Redis project?

Originally Redis was started in order to scale LLOOGG [http://lloogg.com]. But after I got the basic server working I liked the idea to share the work with other people, and Redis was turned into an open source project.

How is Redis pronounced?

It’s “red” like the color, then “iss”.

 Redis Internals documentation

Redis Internals documentation

Redis source code is not very big (just 20k lines of code for the 2.2 release) and we try hard to make it simple and easy to understand. However we have some documentation explaining selected parts of the Redis internals.

Redis dynamic strings

String is the basic building block of Redis types.

Redis is a key-value store.
All Redis keys are strings and its also the simplest value type.

Lists, sets, sorted sets and hashes are other more complex value types and even
these are composed of strings.

Hacking Strings documents the Redis String implementation details.

Redis Virtual Memory

We have a document explaining virtual memory implementation details, but warning: this document refers to the 2.0 VM implementation. 2.2 is different... and better.

Redis Event Library

Read event library to understand what an event library does and why its needed.

Redis event library documents the implementation details of the event library used by Redis.

 Redis Signals Handling

Redis Signals Handling

This document provides information about how Redis reacts to the reception
of different POSIX signals such as SIGTERM, SIGSEGV and so forth.

The information contained in this document is only applicable to Redis version 2.6 or greater.

Handling of SIGTERM

The SIGTERM signals tells Redis to shutdown gracefully. When this signal is
received the server does not actually exits as a result, but it schedules
a shutdown very similar to the one performed when the SHUTDOWN command is
called. The scheduled shutdown starts ASAP, specifically as long as the
current command in execution terminates (if any), with a possible additional
delay of 0.1 seconds or less.

In case the server is blocked by a Lua script that is taking too much time,
if the script is killable with SCRIPT KILL the scheduled shutdown will be
executed just after the script is killed, or if terminates spontaneously.

The Shutdown performed in this condition includes the following actions:

	If there is a background child saving the RDB file or performing an AOF rewrite, the child is killed.

	If the AOF is active, Redis calls the fsync system call on the AOF file descriptor in order to flush the buffers on disk.

	If Redis is configured to persist on disk using RDB files, a synchronous (blocking) save is performed. Since the save is performed in a synchronous way no additional memory is used.

	If the server is daemonized, the pid file is removed.

	If the Unix domain socket is enabled, it gets removed.

	The server exits with an exit code of zero.

In case the RDB file can’t be saved, the shutdown fails, and the server continues to run in order to ensure no data loss. Since Redis 2.6.11 no further attempt to shut down will be made unless a new SIGTERM will be received or the SHUTDOWN command issued.

Handling of SIGSEGV, SIGBUS, SIGFPE and SIGILL

The following follow signals are handled as a Redis crash:

	SIGSEGV

	SIGBUS

	SIGFPE

	SIGILL

Once one of these signals is trapped, Redis aborts any current operation and performs the following actions:

	A bug report is produced on the log file. This includes a stack trace, dump of registers, and information about the state of clients.

	Since Redis 2.8 a fast memory test is performed as a first check of the reliability of the crashing system.

	If the server was daemonized, the pid file is removed.

	Finally the server unregisters its own signal handler for the received signal, and sends the same signal again to itself, in order to make sure that the default action is performed, for instance dumping the core on the file system.

What happens when a child process gets killed

When the child performing the Append Only File rewrite gets killed by a signal,
Redis handles this as an error and discards the (probably partial or corrupted)
AOF file. The rewrite will be re-triggered again later.

When the child performing an RDB save is killed Redis will handle the
condition as a more severe error, because while the effect of a lack of
AOF file rewrite is a the AOF file enlargement, the effect of failed RDB file
creation is lack of durability.

As a result of the child producing the RDB file being killed by a signal,
or when the child exits with an error (non zero exit code), Redis enters
a special error condition where no further write command is accepted.

	Redis will continue to reply to read commands.

	Redis will reply to all write commands with a MISCONFIG error.

This error condition is cleared only once it will be possible to create
an RDB file with success.

Killing the RDB file without triggering an error condition

However sometimes the user may want to kill the RDB saving child without
generating an error. Since Redis version 2.6.10 this can be done using the
special signal SIGUSR1 that is handled in a special way:
it kills the child process as any other signal, but the parent process will
not detect this as a critical error and will continue to serve write
requests as usually.

 Data types

Data types

[bookmark: strings]
Strings

Strings are the most basic kind of Redis value. Redis Strings are binary safe, this means that a Redis string can contain any kind of data, for instance a
JPEG image or a serialized Ruby object.

A String value can be at max 512 Megabytes in length.

You can do a number of interesting things using strings in Redis, for instance you can:

	Use Strings as atomic counters using commands in the INCR family: INCR, DECR, INCRBY.

	Append to strings with the APPEND command.

	Use Strings as a random access vectors with GETRANGE and SETRANGE.

	Encode a lot of data in little space, or create a Redis backed Bloom Filter using GETBIT and SETBIT.

Check all the available string commands for more information, or read the introduction to Redis data types.

[bookmark: lists]
Lists

Redis Lists are simply lists of strings, sorted by insertion order.
It is possible to add elements to a Redis List pushing new elements on the head (on the left) or on the tail (on the right) of the list.

The LPUSH command inserts a new element on the head, while
RPUSH inserts a new element on the tail. A new list is created
when one of this operations is performed against an empty key.
Similarly the key is removed from the key space if a list operation will
empty the list. These are very handy semantics since all the list commands will
behave exactly like they were called with an empty list if called with a
non-existing key as argument.

Some example of list operations and resulting lists:

LPUSH mylist a # now the list is "a"
LPUSH mylist b # now the list is "b","a"
RPUSH mylist c # now the list is "b","a","c" (RPUSH was used this time)

The max length of a list is 2^32 - 1 elements (4294967295, more than 4 billion of elements per list).

The main features of Redis Lists from the point of view of time complexity are
the support for constant time insertion and deletion of elements near the
head and tail, even with many millions of inserted items.
Accessing elements is very fast near the extremes of the list but
is slow if you try accessing the middle of a very big list, as it is
an O(N) operation.

You can do many interesting things with Redis Lists, for instance you can:

	Model a timeline in a social network, using LPUSH in order to add new elements in the user time line, and using LRANGE in order to retrieve a few of recently inserted items.

	You can use LPUSH together with LTRIM to create a list that never exceeds a given number of elements, but just remembers the latest N elements.

	Lists can be used as a message passing primitive, See for instance the well known Resque [https://github.com/defunkt/resque] Ruby library for creating background jobs.

	You can do a lot more with lists, this data type supports a number of commands, including blocking commands like BLPOP.

Please check all the available commands operating on lists for more information, or read the introduction to Redis data types.

[bookmark: sets]
Sets

Redis Sets are an unordered collection of Strings. It is possible to add,
remove, and test for existence of members in O(1) (constant time regardless
of the number of elements contained inside the Set).

Redis Sets have the desirable property of not allowing repeated members. Adding the same element multiple times will result in a set having a single copy of this element. Practically speaking this means that adding a member does not require a check if exists then add operation.

A very interesting thing about Redis Sets is that they support a number of
server side commands to compute sets starting from existing sets, so you
can do unions, intersections, differences of sets in very short time.

The max number of members in a set is 2^32 - 1 (4294967295, more than 4 billion of members per set).

You can do many interesting things using Redis Sets, for instance you can:

	You can track unique things using Redis Sets. Want to know all the unique IP addresses visiting a given blog post? Simply use SADD every time you process a page view. You are sure repeated IPs will not be inserted.

	Redis Sets are good to represent relations. You can create a tagging system with Redis using a Set to represent every tag. Then you can add all the IDs of all the objects having a given tag into a Set representing this particular tag, using the SADD command. Do you want all the IDs of all the Objects having a three different tags at the same time? Just use SINTER.

	You can use Sets to extract elements at random using the SPOP or SRANDMEMBER commands.

As usual, check the full list of Set commands for more information, or read the introduction to Redis data types.

[bookmark: hashes]
Hashes

Redis Hashes are maps between string fields and string values, so they are the perfect data type to represent objects (e.g. A User with a number of fields like name, surname, age, and so forth):

@cli
HMSET user:1000 username antirez password P1pp0 age 34
HGETALL user:1000
HSET user:1000 password 12345
HGETALL user:1000

A hash with a few fields (where few means up to one hundred or so) is stored in a way
that takes very little space, so you can store millions of objects in a small
Redis instance.

While Hashes are used mainly to represent objects, they are capable of storing many elements, so you can use Hashes for many other tasks as well.

Every hash can store up to 2^32 - 1 field-value pairs (more than 4 billion).

Check the full list of Hash commands for more information, or read the introduction to Redis data types.

[bookmark: sorted-sets]
Sorted sets

Redis Sorted Sets are, similarly to Redis Sets, non repeating collections of
Strings. The difference is that every member of a Sorted Set is associated
with score, that is used in order to take the sorted set ordered, from the
smallest to the greatest score. While members are unique, scores may be
repeated.

With sorted sets you can add, remove, or update elements in a very fast way
(in a time proportional to the logarithm of the number of elements). Since
elements are taken in order and not ordered afterwards, you can also get
ranges by score or by rank (position) in a very fast way.
Accessing the middle of a sorted set is also very fast, so you can use
Sorted Sets as a smart list of non repeating elements where you can quickly access
everything you need: elements in order, fast existence test, fast access
to elements in the middle!

In short with sorted sets you can do a lot of tasks with great performance
that are really hard to model in other kind of databases.

With Sorted Sets you can:

	Take a leader board in a massive online game, where every time a new score
is submitted you update it using ZADD. You can easily
take the top users using ZRANGE, you can also, given an
user name, return its rank in the listing using ZRANK.
Using ZRANK and ZRANGE together you can show users with a score similar to
a given user. All very quickly.

	Sorted Sets are often used in order to index data that is stored inside Redis.
For instance if you have many hashes representing users, you can use a sorted set with elements having the age of the user as the score and the ID of the user as the value. So using ZRANGEBYSCORE it will be trivial and fast to retrieve all the users with a given interval of ages.

Sorted Sets are probably the most advanced Redis data types, so take some time to check the full list of Sorted Set commands to discover what you can do with Redis! Also you may want to read the introduction to Redis data types.

Bitmaps and HyperLogLogs

Redis also supports Bitmaps and HyperLogLogs which are actually data types
based on the String base type, but having their own semantics.

Please refer to the introduction to Redis data types for information about those types.

 Redis Modules: an introduction to the API

Redis Modules: an introduction to the API

The modules documentation is composed of the following files:

	INTRO.md (this file). An overview about Redis Modules system and API. It’s a good idea to start your reading here.

	API.md is generated from module.c top comments of RedisMoule functions. It is a good reference in order to understand how each function works.

	TYPES.md covers the implementation of native data types into modules.

	BLOCK.md shows how to write blocking commands that will not reply immediately, but will block the client, without blocking the Redis server, and will provide a reply whenever will be possible.

Redis modules make possible to extend Redis functionality using external
modules, implementing new Redis commands at a speed and with features
similar to what can be done inside the core itself.

Redis modules are dynamic libraries, that can be loaded into Redis at
startup or using the MODULE LOAD command. Redis exports a C API, in the
form of a single C header file called redismodule.h. Modules are meant
to be written in C, however it will be possible to use C++ or other languages
that have C binding functionalities.

Modules are designed in order to be loaded into different versions of Redis,
so a given module does not need to be designed, or recompiled, in order to
run with a specific version of Redis. For this reason, the module will
register to the Redis core using a specific API version. The current API
version is “1”.

This document is about an alpha version of Redis modules. API, functionalities
and other details may change in the future.

Loading modules

In order to test the module you are developing, you can load the module
using the following redis.conf configuration directive:

loadmodule /path/to/mymodule.so

It is also possible to load a module at runtime using the following command:

MODULE LOAD /path/to/mymodule.so

In order to list all loaded modules, use:

MODULE LIST

Finally, you can unload (and later reload if you wish) a module using the
following command:

MODULE UNLOAD mymodule

Note that mymodule above is not the filename without the .so suffix, but
instead, the name the module used to register itself into the Redis core.
The name can be obtained using MODULE LIST. However it is good practice
that the filename of the dynamic library is the same as the name the module
uses to register itself into the Redis core.

The simplest module you can write

In order to show the different parts of a module, here we’ll show a very
simple module that implements a command that outputs a random number.

#include "redismodule.h"
#include <stdlib.h>

int HelloworldRand_RedisCommand(RedisModuleCtx *ctx, RedisModuleString **argv, int argc) {
 RedisModule_ReplyWithLongLong(ctx,rand());
 return REDISMODULE_OK;
}

int RedisModule_OnLoad(RedisModuleCtx *ctx, RedisModuleString **argv, int argc) {
 if (RedisModule_Init(ctx,"helloworld",1,REDISMODULE_APIVER_1)
 == REDISMODULE_ERR) return REDISMODULE_ERR;

 if (RedisModule_CreateCommand(ctx,"helloworld.rand",
 HelloworldRand_RedisCommand) == REDISMODULE_ERR)
 return REDISMODULE_ERR;

 return REDISMODULE_OK;
}

The example module has two functions. One implements a command called
HELLOWORLD.RAND. This function is specific of that module. However the
other function called RedisModule_OnLoad() must be present in each
Redis module. It is the entry point for the module to be initialized,
register its commands, and potentially other private data structures
it uses.

Note that it is a good idea for modules to call commands with the
name of the module followed by a dot, and finally the command name,
like in the case of HELLOWORLD.RAND. This way it is less likely to
have collisions.

Note that if different modules have colliding commands, they’ll not be
able to work in Redis at the same time, since the function
RedisModule_CreateCommand will fail in one of the modules, so the module
loading will abort returning an error condition.

Module initialization

The above example shows the usage of the function RedisModule_Init().
It should be the first function called by the module OnLoad function.
The following is the function prototype:

int RedisModule_Init(RedisModuleCtx *ctx, const char *modulename,
 int module_version, int api_version);

The Init function announces the Redis core that the module has a given
name, its version (that is reported by MODULE LIST), and that is willing
to use a specific version of the API.

If the API version is wrong, the name is already taken, or there are other
similar errors, the function will return REDISMODULE_ERR, and the module
OnLoad function should return ASAP with an error.

Before the Init function is called, no other API function can be called,
otherwise the module will segfault and the Redis instance will crash.

The second function called, RedisModule_CreateCommand, is used in order
to register commands into the Redis core. The following is the prototype:

int RedisModule_CreateCommand(RedisModuleCtx *ctx, const char *cmdname,
 RedisModuleCmdFunc cmdfunc);

As you can see, most Redis modules API calls all take as first argument
the context of the module, so that they have a reference to the module
calling it, to the command and client executing a given command, and so forth.

To create a new command, the above function needs the context, the command
name, and the function pointer of the function implementing the command,
which must have the following prototype:

int mycommand(RedisModuleCtx *ctx, RedisModuleString **argv, int argc);

The command function arguments are just the context, that will be passed
to all the other API calls, the command argument vector, and total number
of arguments, as passed by the user.

As you can see, the arguments are provided as pointers to a specific data
type, the RedisModuleString. This is an opaque data type you have API
functions to access and use, direct access to its fields is never needed.

Zooming into the example command implementation, we can find another call:

int RedisModule_ReplyWithLongLong(RedisModuleCtx *ctx, long long integer);

This function returns an integer to the client that invoked the command,
exactly like other Redis commands do, like for example INCR or SCARD.

Setup and dependencies of a Redis module

Redis modules don’t depend on Redis or some other library, nor they
need to be compiled with a specific redismodule.h file. In order
to create a new module, just copy a recent version of redismodule.h
in your source tree, link all the libraries you want, and create
a dynamic library having the RedisModule_OnLoad() function symbol
exported.

The module will be able to load into different versions of Redis.

Passing configuration parameters to Redis modules

When the module is loaded with the MODULE LOAD command, or using the
loadmodule directive in the redis.conf file, the user is able to pass
configuration parameters to the module by adding arguments after the module
file name:

loadmodule mymodule.so foo bar 1234

In the above example the strings foo, bar and 123 will be passed
to the module OnLoad() function in the argv argument as an array
of RedisModuleString pointers. The number of arguments passed is into argc.

The way you can access those strings will be explained in the rest of this
document. Normally the module will store the module configuration parameters
in some static global variable that can be accessed module wide, so that
the configuration can change the behavior of different commands.

Working with RedisModuleString objects

The command argument vector argv passed to module commands, and the
return value of other module APIs functions, are of type RedisModuleString.

Usually you directly pass module strings to other API calls, however sometimes
you may need to directly access the string object.

There are a few functions in order to work with string objects:

const char *RedisModule_StringPtrLen(RedisModuleString *string, size_t *len);

The above function accesses a string by returning its pointer and setting its
length in len.
You should never write to a string object pointer, as you can see from the
const pointer qualifier.

However, if you want, you can create new string objects using the following
API:

RedisModuleString *RedisModule_CreateString(RedisModuleCtx *ctx, const char *ptr, size_t len);

The string returned by the above command must be freed using a corresponding
call to RedisModule_FreeString():

void RedisModule_FreeString(RedisModuleString *str);

However if you want to avoid having to free strings, the automatic memory
management, covered later in this document, can be a good alternative, by
doing it for you.

Note that the strings provided via the argument vector argv never need
to be freed. You only need to free new strings you create, or new strings
returned by other APIs, where it is specified that the returned string must
be freed.

Creating strings from numbers or parsing strings as numbers

Creating a new string from an integer is a very common operation, so there
is a function to do this:

RedisModuleString *mystr = RedisModule_CreateStringFromLongLong(ctx,10);

Similarly in order to parse a string as a number:

long long myval;
if (RedisModule_StringToLongLong(ctx,argv[1],&myval) == REDISMODULE_OK) {
 /* Do something with 'myval' */
}

Accessing Redis keys from modules

Most Redis modules, in order to be useful, have to interact with the Redis
data space (this is not always true, for example an ID generator may
never touch Redis keys). Redis modules have two different APIs in order to
access the Redis data space, one is a low level API that provides very
fast access and a set of functions to manipulate Redis data structures.
The other API is more high level, and allows to call Redis commands and
fetch the result, similarly to how Lua scripts access Redis.

The high level API is also useful in order to access Redis functionalities
that are not available as APIs.

In general modules developers should prefer the low level API, because commands
implemented using the low level API run at a speed comparable to the speed
of native Redis commands. However there are definitely use cases for the
higher level API. For example often the bottleneck could be processing the
data and not accessing it.

Also note that sometimes using the low level API is not harder compared to
the higher level one.

Calling Redis commands

The high level API to access Redis is the sum of the RedisModule_Call()
function, together with the functions needed in order to access the
reply object returned by Call().

RedisModule_Call uses a special calling convention, with a format specifier
that is used to specify what kind of objects you are passing as arguments
to the function.

Redis commands are invoked just using a command name and a list of arguments.
However when calling commands, the arguments may originate from different
kind of strings: null-terminated C strings, RedisModuleString objects as
received from the argv parameter in the command implementation, binary
safe C buffers with a pointer and a length, and so forth.

For example if I want to call INCRBY using a first argument (the key)
a string received in the argument vector argv, which is an array
of RedisModuleString object pointers, and a C string representing the
number “10” as second argument (the increment), I’ll use the following
function call:

RedisModuleCallReply *reply;
reply = RedisModule_Call(ctx,"INCR","sc",argv[1],"10");

The first argument is the context, and the second is always a null terminated
C string with the command name. The third argument is the format specifier
where each character corresponds to the type of the arguments that will follow.
In the above case "sc" means a RedisModuleString object, and a null
terminated C string. The other arguments are just the two arguments as
specified. In fact argv[1] is a RedisModuleString and "10" is a null
terminated C string.

This is the full list of format specifiers:

	c – Null terminated C string pointer.

	b – C buffer, two arguments needed: C string pointer and size_t length.

	s – RedisModuleString as received in argv or by other Redis module APIs returning a RedisModuleString object.

	l – Long long integer.

	v – Array of RedisModuleString objects.

	! – This modifier just tells the function to replicate the command to slaves and AOF. It is ignored from the point of view of arguments parsing.

The function returns a RedisModuleCallReply object on success, on
error NULL is returned.

NULL is returned when the command name is invalid, the format specifier uses
characters that are not recognized, or when the command is called with the
wrong number of arguments. In the above cases the errno var is set to EINVAL. NULL is also returned when, in an instance with Cluster enabled, the target
keys are about non local hash slots. In this case errno is set to EPERM.

Working with RedisModuleCallReply objects.

RedisModuleCall returns reply objects that can be accessed using the
RedisModule_CallReply* family of functions.

In order to obtain the type or reply (corresponding to one of the data types
supported by the Redis protocol), the function RedisModule_CallReplyType()
is used:

reply = RedisModule_Call(ctx,"INCR","sc",argv[1],"10");
if (RedisModule_CallReplyType(reply) == REDISMODULE_REPLY_INTEGER) {
 long long myval = RedisModule_CallReplyInteger(reply);
 /* Do something with myval. */
}

Valid reply types are:

	REDISMODULE_REPLY_STRING Bulk string or status replies.

	REDISMODULE_REPLY_ERROR Errors.

	REDISMODULE_REPLY_INTEGER Signed 64 bit integers.

	REDISMODULE_REPLY_ARRAY Array of replies.

	REDISMODULE_REPLY_NULL NULL reply.

Strings, errors and arrays have an associated length. For strings and errors
the length corresponds to the length of the string. For arrays the length
is the number of elements. To obtain the reply length the following function
is used:

size_t reply_len = RedisModule_CallReplyLength(reply);

In order to obtain the value of an integer reply, the following function is used, as already shown in the example above:

long long reply_integer_val = RedisModule_CallReplyInteger(reply);

Called with a reply object of the wrong type, the above function always
returns LLONG_MIN.

Sub elements of array replies are accessed this way:

RedisModuleCallReply *subreply;
subreply = RedisModule_CallReplyArrayElement(reply,idx);

The above function returns NULL if you try to access out of range elements.

Strings and errors (which are like strings but with a different type) can
be accessed using in the following way, making sure to never write to
the resulting pointer (that is returned as as const pointer so that
misusing must be pretty explicit):

size_t len;
char *ptr = RedisModule_CallReplyStringPtr(reply,&len);

If the reply type is not a string or an error, NULL is returned.

RedisCallReply objects are not the same as module string objects
(RedisModuleString types). However sometimes you may need to pass replies
of type string or integer, to API functions expecting a module string.

When this is the case, you may want to evaluate if using the low level
API could be a simpler way to implement your command, or you can use
the following function in order to create a new string object from a
call reply of type string, error or integer:

RedisModuleString *mystr = RedisModule_CreateStringFromCallReply(myreply);

If the reply is not of the right type, NULL is returned.
The returned string object should be released with RedisModule_FreeString()
as usually, or by enabling automatic memory management (see corresponding
section).

Releasing call reply objects

Reply objects must be freed using RedisModule_FreeCallReply. For arrays,
you need to free only the top level reply, not the nested replies.
Currently the module implementation provides a protection in order to avoid
crashing if you free a nested reply object for error, however this feature
is not guaranteed to be here forever, so should not be considered part
of the API.

If you use automatic memory management (explained later in this document)
you don’t need to free replies (but you still could if you wish to release
memory ASAP).

Returning values from Redis commands

Like normal Redis commands, new commands implemented via modules must be
able to return values to the caller. The API exports a set of functions for
this goal, in order to return the usual types of the Redis protocol, and
arrays of such types as elemented. Also errors can be returned with any
error string and code (the error code is the initial uppercase letters in
the error message, like the “BUSY” string in the “BUSY the sever is busy” error
message).

All the functions to send a reply to the client are called
RedisModule_ReplyWith<something>.

To return an error, use:

RedisModule_ReplyWithError(RedisModuleCtx *ctx, const char *err);

There is a predefined error string for key of wrong type errors:

REDISMODULE_ERRORMSG_WRONGTYPE

Example usage:

RedisModule_ReplyWithError(ctx,"ERR invalid arguments");

We already saw how to reply with a long long in the examples above:

RedisModule_ReplyWithLongLong(ctx,12345);

To reply with a simple string, that can’t contain binary values or newlines,
(so it’s suitable to send small words, like “OK”) we use:

RedisModule_ReplyWithSimpleString(ctx,"OK");

It’s possible to reply with “bulk strings” that are binary safe, using
two different functions:

int RedisModule_ReplyWithStringBuffer(RedisModuleCtx *ctx, const char *buf, size_t len);

int RedisModule_ReplyWithString(RedisModuleCtx *ctx, RedisModuleString *str);

The first function gets a C pointer and length. The second a RedisMoudleString
object. Use one or the other depending on the source type you have at hand.

In order to reply with an array, you just need to use a function to emit the
array length, followed by as many calls to the above functions as the number
of elements of the array are:

RedisModule_ReplyWithArray(ctx,2);
RedisModule_ReplyWithStringBuffer(ctx,"age",3);
RedisModule_ReplyWithLongLong(ctx,22);

To return nested arrays is easy, your nested array element just uses another
call to RedisModule_ReplyWithArray() followed by the calls to emit the
sub array elements.

Returning arrays with dynamic length

Sometimes it is not possible to know beforehand the number of items of
an array. As an example, think of a Redis module implementing a FACTOR
command that given a number outputs the prime factors. Instead of
factorializing the number, storing the prime factors into an array, and
later produce the command reply, a better solution is to start an array
reply where the length is not known, and set it later. This is accomplished
with a special argument to RedisModule_ReplyWithArray():

RedisModule_ReplyWithArray(ctx, REDISMODULE_POSTPONED_ARRAY_LEN);

The above call starts an array reply so we can use other ReplyWith calls
in order to produce the array items. Finally in order to set the length
se use the following call:

RedisModule_ReplySetArrayLength(ctx, number_of_items);

In the case of the FACTOR command, this translates to some code similar
to this:

RedisModule_ReplyWithArray(ctx, REDISMODULE_POSTPONED_ARRAY_LEN);
number_of_factors = 0;
while(still_factors) {
 RedisModule_ReplyWithLongLong(ctx, some_factor);
 number_of_factors++;
}
RedisModule_ReplySetArrayLength(ctx, number_of_factors);

Another common use case for this feature is iterating over the arrays of
some collection and only returning the ones passing some kind of filtering.

It is possible to have multiple nested arrays with postponed reply.
Each call to SetArray() will set the length of the latest corresponding
call to ReplyWithArray():

RedisModule_ReplyWithArray(ctx, REDISMODULE_POSTPONED_ARRAY_LEN);
... generate 100 elements ...
RedisModule_ReplyWithArray(ctx, REDISMODULE_POSTPONED_ARRAY_LEN);
... generate 10 elements ...
RedisModule_ReplySetArrayLength(ctx, 10);
RedisModule_ReplySetArrayLength(ctx, 100);

This creates a 100 items array having as last element a 10 items array.

Arity and type checks

Often commands need to check that the number of arguments and type of the key
is correct. In order to report a wrong arity, there is a specific function
called RedisModule_WrongArity(). The usage is trivial:

if (argc != 2) return RedisModule_WrongArity(ctx);

Checking for the wrong type involves opening the key and checking the type:

RedisModuleKey *key = RedisModule_OpenKey(ctx,argv[1],
 REDISMODULE_READ|REDISMODULE_WRITE);

int keytype = RedisModule_KeyType(key);
if (keytype != REDISMODULE_KEYTYPE_STRING &&
 keytype != REDISMODULE_KEYTYPE_EMPTY)
{
 RedisModule_CloseKey(key);
 return RedisModule_ReplyWithError(ctx,REDISMODULE_ERRORMSG_WRONGTYPE);
}

Note that you often want to proceed with a command both if the key
is of the expected type, or if it’s empty.

Low level access to keys

Low level access to keys allow to perform operations on value objects associated
to keys directly, with a speed similar to what Redis uses internally to
implement the built-in commands.

Once a key is opened, a key pointer is returned that will be used with all the
other low level API calls in order to perform operations on the key or its
associated value.

Because the API is meant to be very fast, it cannot do too many run-time
checks, so the user must be aware of certain rules to follow:

	Opening the same key multiple times where at least one instance is opened for writing, is undefined and may lead to crashes.

	While a key is open, it should only be accessed via the low level key API. For example opening a key, then calling DEL on the same key using the RedisModule_Call() API will result into a crash. However it is safe to open a key, perform some operation with the low level API, closing it, then using other APIs to manage the same key, and later opening it again to do some more work.

In order to open a key the RedisModule_OpenKey function is used. It returns
a key pointer, that we’ll use with all the next calls to access and modify
the value:

RedisModuleKey *key;
key = RedisModule_OpenKey(ctx,argv[1],REDISMODULE_READ);

The second argument is the key name, that must be a RedisModuleString object.
The third argument is the mode: REDISMODULE_READ or REDISMODULE_WRITE.
It is possible to use | to bitwise OR the two modes to open the key in
both modes. Currently a key opened for writing can also be accessed for reading
but this is to be considered an implementation detail. The right mode should
be used in sane modules.

You can open non exisitng keys for writing, since the keys will be created
when an attempt to write to the key is performed. However when opening keys
just for reading, RedisModule_OpenKey will return NULL if the key does not
exist.

Once you are done using a key, you can close it with:

RedisModule_CloseKey(key);

Note that if automatic memory management is enabled, you are not forced to
close keys. When the module function returns, Redis will take care to close
all the keys which are still open.

Getting the key type

In order to obtain the value of a key, use the RedisModule_KeyType() function:

int keytype = RedisModule_KeyType(key);

It returns one of the following values:

REDISMODULE_KEYTYPE_EMPTY
REDISMODULE_KEYTYPE_STRING
REDISMODULE_KEYTYPE_LIST
REDISMODULE_KEYTYPE_HASH
REDISMODULE_KEYTYPE_SET
REDISMODULE_KEYTYPE_ZSET

The above are just the usual Redis key types, with the addition of an empty
type, that signals the key pointer is associated with an empty key that
does not yet exists.

Creating new keys

To create a new key, open it for writing and then write to it using one
of the key writing functions. Example:

RedisModuleKey *key;
key = RedisModule_OpenKey(ctx,argv[1],REDISMODULE_READ);
if (RedisModule_KeyType(key) == REDISMODULE_KEYTYPE_EMPTY) {
 RedisModule_StringSet(key,argv[2]);
}

Deleting keys

Just use:

RedisModule_DeleteKey(key);

The function returns REDISMODULE_ERR if the key is not open for writing.
Note that after a key gets deleted, it is setup in order to be targeted
by new key commands. For example RedisModule_KeyType() will return it is
an empty key, and writing to it will create a new key, possibly of another
type (depending on the API used).

Managing key expires (TTLs)

To control key expires two functions are provided, that are able to set,
modify, get, and unset the time to live associated with a key.

One function is used in order to query the current expire of an open key:

mstime_t RedisModule_GetExpire(RedisModuleKey *key);

The function returns the time to live of the key in milliseconds, or
REDISMODULE_NO_EXPIRE as a special value to signal the key has no associated
expire or does not exist at all (you can differentiate the two cases checking
if the key type is REDISMODULE_KEYTYPE_EMPTY).

In order to change the expire of a key the following function is used instead:

int RedisModule_SetExpire(RedisModuleKey *key, mstime_t expire);

When called on a non existing key, REDISMODULE_ERR is returned, because
the function can only associate expires to existing open keys (non existing
open keys are only useful in order to create new values with data type
specific write operations).

Again the expire time is specified in milliseconds. If the key has currently
no expire, a new expire is set. If the key already have an expire, it is
replaced with the new value.

If the key has an expire, and the special value REDISMODULE_NO_EXPIRE is
used as a new expire, the expire is removed, similarly to the Redis
PERSIST command. In case the key was already persistent, no operation is
performed.

Obtaining the length of values

There is a single function in order to retrieve the length of the value
associated to an open key. The returned length is value-specific, and is
the string length for strings, and the number of elements for the aggregated
data types (how many elements there is in a list, set, sorted set, hash).

size_t len = RedisModule_ValueLength(key);

If the key does not exist, 0 is returned by the function:

String type API

Setting a new string value, like the Redis SET command does, is performed
using:

int RedisModule_StringSet(RedisModuleKey *key, RedisModuleString *str);

The function works exactly like the Redis SET command itself, that is, if
there is a prior value (of any type) it will be deleted.

Accessing existing string values is performed using DMA (direct memory
access) for speed. The API will return a pointer and a length, so that’s
possible to access and, if needed, modify the string directly.

size_t len, j;
char *myptr = RedisModule_StringDMA(key,&len,REDISMODULE_WRITE);
for (j = 0; j < len; j++) myptr[j] = 'A';

In the above example we write directly on the string. Note that if you want
to write, you must be sure to ask for WRITE mode.

DMA pointers are only valid if no other operations are performed with the key
before using the pointer, after the DMA call.

Sometimes when we want to manipulate strings directly, we need to change
their size as well. For this scope, the RedisModule_StringTruncate function
is used. Example:

RedisModule_StringTruncate(mykey,1024);

The function truncates, or enlarges the string as needed, padding it with
zero bytes if the previos length is smaller than the new length we request.
If the string does not exist since key is associated to an open empty key,
a string value is created and associated to the key.

Note that every time StringTruncate() is called, we need to re-obtain
the DMA pointer again, since the old may be invalid.

List type API

It’s possible to push and pop values from list values:

int RedisModule_ListPush(RedisModuleKey *key, int where, RedisModuleString *ele);
RedisModuleString *RedisModule_ListPop(RedisModuleKey *key, int where);

In both the APIs the where argument specifies if to push or pop from tail
or head, using the following macros:

REDISMODULE_LIST_HEAD
REDISMODULE_LIST_TAIL

Elements returned by RedisModule_ListPop() are like strings craeted with
RedisModule_CreateString(), they must be released with
RedisModule_FreeString() or by enabling automatic memory management.

Set type API

Work in progress.

Sorted set type API

Documentation missing, please refer to the top comments inside module.c
for the following functions:

	RedisModule_ZsetAdd

	RedisModule_ZsetIncrby

	RedisModule_ZsetScore

	RedisModule_ZsetRem

And for the sorted set iterator:

	RedisModule_ZsetRangeStop

	RedisModule_ZsetFirstInScoreRange

	RedisModule_ZsetLastInScoreRange

	RedisModule_ZsetFirstInLexRange

	RedisModule_ZsetLastInLexRange

	RedisModule_ZsetRangeCurrentElement

	RedisModule_ZsetRangeNext

	RedisModule_ZsetRangePrev

	RedisModule_ZsetRangeEndReached

Hash type API

Documentation missing, please refer to the top comments inside module.c
for the following functions:

	RedisModule_HashSet

	RedisModule_HashGet

Iterating aggregated values

Work in progress.

Replicating commands

If you want to use module commands exactly like normal Redis commands, in the
context of replicated Redis instances, or using the AOF file for persistence,
it is important for module commands to handle their replication in a consistent
way.

When using the higher level APIs to invoke commands, replication happens
automatically if you use the “!” modifier in the format string of
RedisModule_Call() as in the following example:

reply = RedisModule_Call(ctx,"INCR","!sc",argv[1],"10");

As you can see the format specifier is "!sc". The bang is not parsed as a
format specifier, but it internally flags the command as “must replicate”.

If you use the above programming style, there are no problems.
However sometimes things are more complex than that, and you use the low level
API. In this case, if there are no side effects in the command execution, and
it consistently always performs the same work, what is possible to do is to
replicate the command verbatim as the user executed it. To do that, you just
need to call the following function:

RedisModule_ReplicateVerbatim(ctx);

When you use the above API, you should not use any other replication function
since they are not guaranteed to mix well.

However this is not the only option. It’s also possible to exactly tell
Redis what commands to replicate as the effect of the command execution, using
an API similar to RedisModule_Call() but that instead of calling the command
sends it to the AOF / slaves stream. Example:

RedisModule_Replicate(ctx,"INCRBY","cl","foo",my_increment);

It’s possible to call RedisModule_Replicate multiple times, and each
will emit a command. All the sequence emitted is wrapped between a
MULTI/EXEC transaction, so that the AOF and replication effects are the
same as executing a single command.

Note that Call() replication and Replicate() replication have a rule,
in case you want to mix both forms of replication (not necessarily a good
idea if there are simpler approaches). Commands replicated with Call()
are always the first emitted in the final MULTI/EXEC block, while all
the commands emitted with Replicate() will follow.

Automatic memory management

Normally when writing programs in the C language, programmers need to manage
memory manually. This is why the Redis modules API has functions to release
strings, close open keys, free replies, and so forth.

However given that commands are executed in a contained environment and
with a set of strict APIs, Redis is able to provide automatic memory management
to modules, at the cost of some performance (most of the time, a very low
cost).

When automatic memory management is enabled:

	You don’t need to close open keys.

	You don’t need to free replies.

	You don’t need to free RedisModuleString objects.

However you can still do it, if you want. For example, automatic memory
management may be active, but inside a loop allocating a lot of strings,
you may still want to free strings no longer used.

In order to enable automatic memory management, just call the following
function at the start of the command implementation:

RedisModule_AutoMemory(ctx);

Automatic memory management is usually the way to go, however experienced
C programmers may not use it in order to gain some speed and memory usage
benefit.

Allocating memory into modules

Normal C programs use malloc() and free() in order to allocate and
release memory dynamically. While in Redis modules the use of malloc is
not technically forbidden, it is a lot better to use the Redis Modules
specific functions, that are exact replacements for malloc, free,
realloc and strdup. These functions are:

void *RedisModule_Alloc(size_t bytes);
void* RedisModule_Realloc(void *ptr, size_t bytes);
void RedisModule_Free(void *ptr);
void RedisModule_Calloc(size_t nmemb, size_t size);
char *RedisModule_Strdup(const char *str);

They work exactly like their libc equivalent calls, however they use
the same allocator Redis uses, and the memory allocated using these
functions is reported by the INFO command in the memory section, is
accounted when enforcing the maxmemory policy, and in general is
a first citizen of the Redis executable. On the contrar, the method
allocated inside modules with libc malloc() is transparent to Redis.

Another reason to use the modules functions in order to allocate memory
is that, when creating native data types inside modules, the RDB loading
functions can return deserialized strings (from the RDB file) directly
as RedisModule_Alloc() allocations, so they can be used directly to
populate data structures after loading, instead of having to copy them
to the data structure.

Pool allocator

Sometimes in commands implementations, it is required to perform many
small allocations that will be not retained at the end of the command
execution, but are just functional to execute the command itself.

This work can be more easily accomplished using the Redis pool allocator:

void *RedisModule_PoolAlloc(RedisModuleCtx *ctx, size_t bytes);

It works similarly to malloc(), and returns memory aligned to the
next power of two of greater or equal to bytes (for a maximum alignment
of 8 bytes). However it allocates memory in blocks, so it the overhead
of the allocations is small, and more important, the memory allocated
is automatically released when the command returns.

So in general short living allocations are a good candidates for the pool
allocator.

Writing commands compatible with Redis Cluster

Documentation missing, please check the following functions inside module.c:

RedisModule_IsKeysPositionRequest(ctx);
RedisModule_KeyAtPos(ctx,pos);

 Redis latency monitoring framework

Redis latency monitoring framework

Redis is often used in the context of demanding use cases, where it
serves a big amount of queries per second per instance, and at the same
time, there are very strict latency requirements both for the average response
time and for the worst case latency.

While Redis is an in memory system, it deals with the operating system in
different ways, for example, in the context of persisting to disk.
Moreover Redis implements a rich set of commands. Certain commands
are fast and run in constant or logarithmic time, other commands are slower
O(N) commands, that can cause latency spikes.

Finally Redis is single threaded: this is usually an advantage
from the point of view of the amount of work it can perform per core, and in
the latency figures it is able to provide, but at the same time it poses
a challenge from the point of view of latency, since the single
thread must be able to perform certain tasks incrementally, like for
example keys expiration, in a way that does not impact the other clients
that are served.

For all these reasons, Redis 2.8.13 introduced a new feature called
Latency Monitoring, that helps the user to check and troubleshoot possible
latency problems. Latency monitoring is composed of the following conceptual
parts:

	Latency hooks that sample different latency sensitive code paths.

	Time series recording of latency spikes split by different event.

	Reporting engine to fetch raw data from the time series.

	Analysis engine to provide human readable reports and hints according to the measurements.

The remaining part of this document covers the latency monitoring subsystem
details, however for more information about the general topic of Redis
and latency, please read the Redis latency problems troubleshooting page in this documentation.

Events and time series

Different monitored code paths have different names, and are called events.
For example command is an event measuring latency spikes of possibly slow
commands executions, while fast-command is the event name for the monitoring
of the O(1) and O(log N) commands. Other events are less generic, and monitor
a very specific operation performed by Redis. For example the fork event
only monitors the time taken by Redis to execute the fork(2) system call.

A latency spike is an event that runs in more time than the configured latency
threshold. There is a separated time series associated with every monitored
event. This is how the time series work:

	Every time a latency spike happens, it is logged in the appropriate time series.

	Every time series is composed of 160 elements.

	Each element is a pair: an unix timestamp of the time the latency spike was measured, and the number of milliseconds the event took to executed.

	Latency spikes for the same event happening in the same second are merged (by taking the maximum latency), so even if continuous latency spikes are measured for a given event, for example because the user set a very low threshold, at least 180 seconds of history are available.

	For every element the all-time maximum latency is recorded.

How to enable latency monitoring

What is high latency for an use case, is not high latency for another. There are applications where all the queries must be served in less than 1 millisecond and applications where from time to time a small percentage of clients experiencing a 2 seconds latency is acceptable.

So the first step to enable the latency monitor is to set a latency threshold in milliseconds. Only events that will take more than the specified threshold will be logged as latency spikes. The user should set the threshold according to its needs. For example if for the requirements of the application based on Redis the maximum acceptable latency is 100 milliseconds, the threshold should be set to such a value in order to log all the events blocking the server for a time equal or greater to 100 milliseconds.

The latency monitor can easily be enabled at runtime in a production server
with the following command:

CONFIG SET latency-monitor-threshold 100

By default monitoring is disabled (threshold set to 0), even if the actual cost of latency monitoring is near zero. However while the memory requirements of latency monitoring are very small, there is no good reason to raise the baseline memory usage of a Redis instance that is working well.

Information reporting with the LATENCY command

The user interface to the latency monitoring subsystem is the LATENCY command.
Like many other Redis commands, LATENCY accept subcommands that modify the
behavior of the command. The next sections document each subcommand.

LATENCY LATEST

The LATENCY LATEST command reports the latest latency events logged. Each event has the following fields:

	Event name.

	Unix timestamp of the latest latency spike for the event.

	Latest event latency in millisecond.

	All time maximum latency for this event.

All time does not really mean the maximum latency since the Redis instance was
started, because it is possible to reset events data using LATENCY RESET as we’ll see later.

The following is an example output:

127.0.0.1:6379> debug sleep 1
OK
(1.00s)
127.0.0.1:6379> debug sleep .25
OK
127.0.0.1:6379> latency latest
1) 1) "command"
 2) (integer) 1405067976
 3) (integer) 251
 4) (integer) 1001

LATENCY HISTORY event-name

The LATENCY HISTORY command is useful in order to fetch raw data from the
event time series, as timestamp-latency pairs. The command will return up
to 160 elements for a given event. An application may want to fetch raw data
in order to perform monitoring, display graphs, and so forth.

Example output:

127.0.0.1:6379> latency history command
1) 1) (integer) 1405067822
 2) (integer) 251
2) 1) (integer) 1405067941
 2) (integer) 1001

LATENCY RESET [event-name ... event-name]

The LATENCY RESET command, if called without arguments, resets all the
events, discarding the currently logged latency spike events, and resetting
the maximum event time register.

It is possible to reset only specific events by providing the event names
as arguments. The command returns the number of events time series that were
reset during the command execution.

LATENCY GRAPH event-name

Produces an ASCII-art style graph for the specified event:

127.0.0.1:6379> latency reset command
(integer) 0
127.0.0.1:6379> debug sleep .1
OK
127.0.0.1:6379> debug sleep .2
OK
127.0.0.1:6379> debug sleep .3
OK
127.0.0.1:6379> debug sleep .5
OK
127.0.0.1:6379> debug sleep .4
OK
127.0.0.1:6379> latency graph command
command - high 500 ms, low 101 ms (all time high 500 ms)
--
 #_
 _||
 _|||
_||||

11186
542ss
sss

The vertical labels under each graph column represent the amount of seconds,
minutes, hours or days ago the event happened. For example “15s” means that the
first graphed event happened 15 seconds ago.

The graph is normalized in the min-max scale so that the zero (the underscore
in the lower row) is the minimum, and a # in the higher row is the maximum.

The graph subcommand is useful in order to get a quick idea about the trend
of a given latency event without using additional tooling, and without the
need to interpret raw data as provided by LATENCY HISTORY.

LATENCY DOCTOR

The LATENCY DOCTOR command is the most powerful analysis tool in the latency
monitoring, and is able to provide additional statistical data like the average
period between latency spikes, the median deviation, and an human readable
analysis of the event. For certain events, like fork, additional information
is provided, like the rate at which the system forks processes.

This is the output you should post in the Redis mailing list if you are
looking for help about Latency related issues.

Example output:

127.0.0.1:6379> latency doctor

Dave, I have observed latency spikes in this Redis instance.
You don't mind talking about it, do you Dave?

1. command: 5 latency spikes (average 300ms, mean deviation 120ms,
 period 73.40 sec). Worst all time event 500ms.

I have a few advices for you:

- Your current Slow Log configuration only logs events that are
 slower than your configured latency monitor threshold. Please
 use 'CONFIG SET slowlog-log-slower-than 1000'.
- Check your Slow Log to understand what are the commands you are
 running which are too slow to execute. Please check
 http://redis.io/commands/slowlog for more information.
- Deleting, expiring or evicting (because of maxmemory policy)
 large objects is a blocking operation. If you have very large
 objects that are often deleted, expired, or evicted, try to
 fragment those objects into multiple smaller objects.

The doctor has erratic psychological behaviors, so we recommend interacting with
it carefully.

 Redis Administration

Redis Administration

This page contains topics related to the administration of Redis instances.
Every topic is self contained in form of a FAQ. New topics will be created in the future.

Redis setup hints

	We suggest deploying Redis using the Linux operating system. Redis is also tested heavily on OS X, and tested from time to time on FreeBSD and OpenBSD systems. However Linux is where we do all the major stress testing, and where most production deployments are working.

	Make sure to set the Linux kernel overcommit memory setting to 1. Add vm.overcommit_memory = 1 to /etc/sysctl.conf and then reboot or run the command sysctl vm.overcommit_memory=1 for this to take effect immediately.

	Make sure to disable Linux kernel feature transparent huge pages, it will affect greatly both memory usage and latency in a negative way. This is accomplished with the following command: echo never > /sys/kernel/mm/transparent_hugepage/enabled.

	Make sure to setup some swap in your system (we suggest as much as swap as memory). If Linux does not have swap and your Redis instance accidentally consumes too much memory, either Redis will crash for out of memory or the Linux kernel OOM killer will kill the Redis process.

	Set an explicit maxmemory option limit in your instance in order to make sure that the instance will report errors instead of failing when the system memory limit is near to be reached.

	If you are using Redis in a very write-heavy application, while saving an RDB file on disk or rewriting the AOF log Redis may use up to 2 times the memory normally used. The additional memory used is proportional to the number of memory pages modified by writes during the saving process, so it is often proportional to the number of keys (or aggregate types items) touched during this time. Make sure to size your memory accordingly.

	Use daemonize no when run under daemontools.

	Even if you have persistence disabled, Redis will need to perform RDB saves if you use replication, unless you use the new diskless replication feature, which is currently experimental.

	If you are using replication, make sure that either your master has persistence enabled, or that it does not automatically restarts on crashes: slaves will try to be an exact copy of the master, so if a master restarts with an empty data set, slaves will be wiped as well.

	By default Redis does not require any authentication and listens to all the network interfaces. This is a big security issue if you leave Redis exposed on the internet or other places where attackers can reach it. See for example this attack [http://antirez.com/news/96] to see how dangerous it can be. Please check our security page and the quick start for information about how to secure Redis.

Running Redis on EC2

	Use HVM based instances, not PV based instances.

	Don’t use old instances families, for example: use m3.medium with HVM instead of m1.medium with PV.

	The use of Redis persistence with EC2 EBS volumes needs to be handled with care since sometimes EBS volumes have high latency characteristics.

	You may want to try the new diskless replication if you have issues when slaves are synchronizing with the master.

Upgrading or restarting a Redis instance without downtime

Redis is designed to be a very long running process in your server.
For instance many configuration options can be modified without any kind of restart using the CONFIG SET command.

Starting from Redis 2.2 it is even possible to switch from AOF to RDB snapshots persistence or the other way around without restarting Redis. Check the output of the CONFIG GET * command for more information.

However from time to time a restart is mandatory, for instance in order to upgrade the Redis process to a newer version, or when you need to modify some configuration parameter that is currently not supported by the CONFIG command.

The following steps provide a very commonly used way in order to avoid any downtime.

	Setup your new Redis instance as a slave for your current Redis instance. In order to do so you need a different server, or a server that has enough RAM to keep two instances of Redis running at the same time.

	If you use a single server, make sure that the slave is started in a different port than the master instance, otherwise the slave will not be able to start at all.

	Wait for the replication initial synchronization to complete (check the slave log file).

	Make sure using INFO that there are the same number of keys in the master and in the slave. Check with redis-cli that the slave is working as you wish and is replying to your commands.

	Allow writes to the slave using CONFIG SET slave-read-only no

	Configure all your clients in order to use the new instance (that is, the slave).

	Once you are sure that the master is no longer receiving any query (you can check this with the MONITOR command), elect the slave to master using the SLAVEOF NO ONE command, and shut down your master.

If you are using Redis Sentinel or Redis Cluster, the simplest way in order to upgrade to newer versions, is to upgrade a slave after the other, then perform a manual fail-over in order to promote one of the upgraded slaves as master, and finally promote the last slave.

Note however that Redis Cluster 4.0 is not compatible with Redis Cluster 3.2 at cluster bus protocol level, so a mass restart is needed in this case.

 Redis Design Draft 1 – Redis Design Drafts

Redis Design Draft 1 – Redis Design Drafts

	Author: Salvatore Sanfilippo antirez@gmail.com

	GitHub issue: none

History of revisions

1.0, 10 April 2013 - Initial draft.

Overview

Redis Design Drafts are a way to make the community aware of designs planned
in order to modify or evolve Redis. Every new Redis Design Draft is published
in the Redis mailing list and announced on Twitter, in the hope to receive
feedback before implementing a given feature.

The way the community can provide feedback about a RDD is simply writing
a message to the Redis mailing list, or commenting in the associated
GitHub issue if any.

Drafts are published only for features already approved as potentially very
interesting for the project by the current Redis project maintainer.

The official Redis web site includes a list of published RDDs.

Format

The format of RDDs should reflect the format of this RDD.

 Special encoding of small aggregate data types

 This page is a work in progress. Currently it is just a list of things you should check if you have problems with memory.

Special encoding of small aggregate data types

Since Redis 2.2 many data types are optimized to use less space up to a certain size. Hashes, Lists, Sets composed of just integers, and Sorted Sets, when smaller than a given number of elements, and up to a maximum element size, are encoded in a very memory efficient way that uses up to 10 times less memory (with 5 time less memory used being the average saving).

This is completely transparent from the point of view of the user and API.
Since this is a CPU / memory trade off it is possible to tune the maximum number of elements and maximum element size for special encoded types using the following redis.conf directives.

hash-max-zipmap-entries 512 (hash-max-ziplist-entries for Redis >= 2.6)
hash-max-zipmap-value 64 (hash-max-ziplist-value for Redis >= 2.6)
list-max-ziplist-entries 512
list-max-ziplist-value 64
zset-max-ziplist-entries 128
zset-max-ziplist-value 64
set-max-intset-entries 512

If a specially encoded value will overflow the configured max size, Redis will automatically convert it into normal encoding. This operation is very fast for small values, but if you change the setting in order to use specially encoded values for much larger aggregate types the suggestion is to run some benchmark and test to check the conversion time.

Using 32 bit instances

Redis compiled with 32 bit target uses a lot less memory per key, since pointers are small, but such an instance will be limited to 4 GB of maximum memory usage. To compile Redis as 32 bit binary use make 32bit. RDB and AOF files are compatible between 32 bit and 64 bit instances (and between little and big endian of course) so you can switch from 32 to 64 bit, or the contrary, without problems.

Bit and byte level operations

Redis 2.2 introduced new bit and byte level operations: GETRANGE, SETRANGE, GETBIT and SETBIT. Using these commands you can treat the Redis string type as a random access array. For instance if you have an application where users are identified by a unique progressive integer number, you can use a bitmap in order to save information about the sex of users, setting the bit for females and clearing it for males, or the other way around. With 100 million users this data will take just 12 megabytes of RAM in a Redis instance. You can do the same using GETRANGE and SETRANGE in order to store one byte of information for each user. This is just an example but it is actually possible to model a number of problems in very little space with these new primitives.

Use hashes when possible

Small hashes are encoded in a very small space, so you should try representing your data using hashes every time it is possible. For instance if you have objects representing users in a web application, instead of using different keys for name, surname, email, password, use a single hash with all the required fields.

If you want to know more about this, read the next section.

Using hashes to abstract a very memory efficient plain key-value store on top of Redis

I understand the title of this section is a bit scaring, but I’m going to explain in details what this is about.

Basically it is possible to model a plain key-value store using Redis
where values can just be just strings, that is not just more memory efficient
than Redis plain keys but also much more memory efficient than memcached.

Let’s start with some fact: a few keys use a lot more memory than a single key
containing a hash with a few fields. How is this possible? We use a trick.
In theory in order to guarantee that we perform lookups in constant time
(also known as O(1) in big O notation) there is the need to use a data structure
with a constant time complexity in the average case, like a hash table.

But many times hashes contain just a few fields. When hashes are small we can
instead just encode them in an O(N) data structure, like a linear
array with length-prefixed key value pairs. Since we do this only when N
is small, the amortized time for HGET and HSET commands is still O(1): the
hash will be converted into a real hash table as soon as the number of elements
it contains will grow too much (you can configure the limit in redis.conf).

This does not work well just from the point of view of time complexity, but
also from the point of view of constant times, since a linear array of key
value pairs happens to play very well with the CPU cache (it has a better
cache locality than a hash table).

However since hash fields and values are not (always) represented as full
featured Redis objects, hash fields can’t have an associated time to live
(expire) like a real key, and can only contain a string. But we are okay with
this, this was anyway the intention when the hash data type API was
designed (we trust simplicity more than features, so nested data structures
are not allowed, as expires of single fields are not allowed).

So hashes are memory efficient. This is very useful when using hashes
to represent objects or to model other problems when there are group of
related fields. But what about if we have a plain key value business?

Imagine we want to use Redis as a cache for many small objects, that can be
JSON encoded objects, small HTML fragments, simple key -> boolean values
and so forth. Basically anything is a string -> string map with small keys
and values.

Now let’s assume the objects we want to cache are numbered, like:

	object:102393

	object:1234

	object:5

This is what we can do. Every time there is to perform a
SET operation to set a new value, we actually split the key into two parts,
one used as a key, and used as field name for the hash. For instance the
object named “object:1234” is actually split into:

	a Key named object:12

	a Field named 34

So we use all the characters but the latest two for the key, and the final
two characters for the hash field name. To set our key we use the following
command:

HSET object:12 34 somevalue

As you can see every hash will end containing 100 fields, that
is an optimal compromise between CPU and memory saved.

There is another very important thing to note, with this schema
every hash will have more or
less 100 fields regardless of the number of objects we cached. This is since
our objects will always end with a number, and not a random string. In some
way the final number can be considered as a form of implicit pre-sharding.

What about small numbers? Like object:2? We handle this case using just
“object:” as a key name, and the whole number as the hash field name.
So object:2 and object:10 will both end inside the key “object:”, but one
as field name “2” and one as “10”.

How much memory we save this way?

I used the following Ruby program to test how this works:

require 'rubygems'
require 'redis'

UseOptimization = true

def hash_get_key_field(key)
 s = key.split(":")
 if s[1].length > 2
 {:key => s[0]+":"+s[1][0..-3], :field => s[1][-2..-1]}
 else
 {:key => s[0]+":", :field => s[1]}
 end
end

def hash_set(r,key,value)
 kf = hash_get_key_field(key)
 r.hset(kf[:key],kf[:field],value)
end

def hash_get(r,key,value)
 kf = hash_get_key_field(key)
 r.hget(kf[:key],kf[:field],value)
end

r = Redis.new
(0..100000).each{|id|
 key = "object:#{id}"
 if UseOptimization
 hash_set(r,key,"val")
 else
 r.set(key,"val")
 end
}

This is the result against a 64 bit instance of Redis 2.2:

	UseOptimization set to true: 1.7 MB of used memory

	UseOptimization set to false; 11 MB of used memory

This is an order of magnitude, I think this makes Redis more or less the most
memory efficient plain key value store out there.

WARNING: for this to work, make sure that in your redis.conf you have
something like this:

hash-max-zipmap-entries 256

Also remember to set the following field accordingly to the maximum size
of your keys and values:

hash-max-zipmap-value 1024

Every time a hash will exceed the number of elements or element size specified
it will be converted into a real hash table, and the memory saving will be lost.

You may ask, why don’t you do this implicitly in the normal key space so that
I don’t have to care? There are two reasons: one is that we tend to make
trade offs explicit, and this is a clear tradeoff between many things: CPU,
memory, max element size. The second is that the top level key space must
support a lot of interesting things like expires, LRU data, and so
forth so it is not practical to do this in a general way.

But the Redis Way is that the user must understand how things work so that
he is able to pick the best compromise, and to understand how the system will
behave exactly.

Memory allocation

To store user keys, Redis allocates at most as much memory as the maxmemory
setting enables (however there are small extra allocations possible).

The exact value can be set in the configuration file or set later via
CONFIG SET (see Using memory as an LRU cache for more info [http://redis.io/topics/lru-cache]). There are a few things that should be noted about how
Redis manages memory:

	Redis will not always free up (return) memory to the OS when keys are removed.
This is not something special about Redis, but it is how most malloc() implementations work. For example if you fill an instance with 5GB worth of data, and then
remove the equivalent of 2GB of data, the Resident Set Size (also known as
the RSS, which is the number of memory pages consumed by the process)
will probably still be around 5GB, even if Redis will claim that the user
memory is around 3GB. This happens because the underlying allocator can’t easily release the memory. For example often most of the removed keys were allocated in the same pages as the other keys that still exist.

	The previous point means that you need to provision memory based on your
peak memory usage. If your workload from time to time requires 10GB, even if
most of the times 5GB could do, you need to provision for 10GB.

	However allocators are smart and are able to reuse free chunks of memory,
so after you freed 2GB of your 5GB data set, when you start adding more keys
again, you’ll see the RSS (Resident Set Size) to stay steady and don’t grow
more, as you add up to 2GB of additional keys. The allocator is basically
trying to reuse the 2GB of memory previously (logically) freed.

	Because of all this, the fragmentation ratio is not reliable when you
had a memory usage that at peak is much larger than the currently used memory.
The fragmentation is calculated as the amount of memory currently in use
(as the sum of all the allocations performed by Redis) divided by the physical
memory actually used (the RSS value). Because the RSS reflects the peak memory,
when the (virtually) used memory is low since a lot of keys / values were
freed, but the RSS is high, the ratio mem_used / RSS will be very high.

If maxmemory is not set Redis will keep allocating memory as it finds
fit and thus it can (gradually) eat up all your free memory.
Therefore it is generally advisable to configure some limit. You may also
want to set maxmemory-policy to noeviction (which is not the default
value in some older versions of Redis).

It makes Redis return an out of memory error for write commands if and when it reaches the limit - which in turn may result in errors in the application but will not render the whole machine dead because of memory starvation.

Work in progress

Work in progress... more tips will be added soon.

 Blocking commands in Redis modules

Blocking commands in Redis modules

Redis has a few blocking commands among the built-in set of commands.
One of the most used is BLPOP (or the symmetric BRPOP) which blocks
waiting for elements arriving in a list.

The interesting fact about blocking commands is that they do not block
the whole server, but just the client calling them. Usually the reason to
block is that we expect some external event to happen: this can be
some change in the Redis data structures like in the BLPOP case, a
long computation happening in a thread, to receive some data from the
network, and so forth.

Redis modules have the ability to implement blocking commands as well,
this documentation shows how the API works and describes a few patterns
that can be used in order to model blocking commands.

NOTE: This API si currently experimental, so it can only be used if
the macro REDISMODULE_EXPERIMENTAL_API is defined. This is required because
these calls are still not in their final stage of design, so may change
in the future, certain parts may be reprecated and so forth.

To use this part of the modules API include the modules header like that:

#define REDISMODULE_EXPERIMENTAL_API
#include "redismodule.h"

How blocking and resuming works.

Note: You may want to check the helloblock.c example in the Redis source tree
inside the src/modules directory, for a simple to understand example
on how the blocking API is applied.

In Redis modules, commands are implemented by callback functions that
are invoked by the Redis core when the specific command is called
by the user. Normally the callback terminates its execution sending
some reply to the client. Using the following function instead, the
function implementing the module command may request that the client
is put into the blocked state:

RedisModuleBlockedClient *RedisModule_BlockClient(RedisModuleCtx *ctx, RedisModuleCmdFunc reply_callback, RedisModuleCmdFunc timeout_callback, void (*free_privdata)(void*), long long timeout_ms);

The function returns a RedisModuleBlockedClient object, which is later
used in order to unblock the client. The arguments have the following
meaning:

	ctx is the command execution context as usually in the rest of the API.

	reply_callback is the callback, having the same prototype of a normal command function, that is called when the client is unblocked in order to return a reply to the client.

	timeout_callback is the callback, having the same prototype of a normal command function that is called when the client reached the ms timeout.

	free_privdata is the callback that is called in order to free the private data. Private data is a pointer to some data that is passed between the API used to unblock the client, to the callback that will send the reply to the client. We’ll see how this mechanism works later in this document.

	ms is the timeout in milliseconds. When the timeout is reached, the timeout callback is called and the client is automatically aborted.

Once a client is blocked, it can be unblocked with the following API:

int RedisModule_UnblockClient(RedisModuleBlockedClient *bc, void *privdata);

The function takes as argument the blocked client object returned by
the previous call to RedisModule_BlockClient(), and unblock the client.
Immediately before the client gets unblocked, the reply_callback function
specified when the client was blocked is called: this function will
have access to the privdata pointer used here.

IMPORTANT: The above function is thread safe, and can be called from within
a thread doing some work in order to implement the command that blocked
the client.

The privdata data will be freed automatically using the free_privdata
callback when the client is unblocked. This is useful since the reply
callback may never be called in case the client timeouts or disconnects
from the server, so it’s important that it’s up to an external function
to have the responsibility to free the data passed if needed.

To better understand how the API works, we can imagine writing a command
that blocks a client for one second, and then send as reply “Hello!”.

Note: arity checks and other non important things are not implemented
int his command, in order to take the example simple.

int Example_RedisCommand(RedisModuleCtx *ctx, RedisModuleString **argv,
 int argc)
{
 RedisModuleBlockedClient *bc =
 RedisModule_BlockClient(ctx,reply_func,timeout_func,NULL,0);

 pthread_t tid;
 pthread_create(&tid,NULL,threadmain,bc);

 return REDISMODULE_OK;
}

void *threadmain(void *arg) {
 RedisModuleBlockedClient *bc = arg;

 sleep(1); /* Wait one second and unblock. */
 RedisModule_UnblockClient(bc,NULL);
}

The above command blocks the client ASAP, spawining a thread that will
wait a second and will unblock the client. Let’s check the reply and
timeout callbacks, which are in our case very similar, since they
just reply the client with a different reply type.

int reply_func(RedisModuleCtx *ctx, RedisModuleString **argv,
 int argc)
{
 return RedisModule_ReplyWithSimpleString(ctx,"Hello!");
}

int timeout_func(RedisModuleCtx *ctx, RedisModuleString **argv,
 int argc)
{
 return RedisModule_ReplyWithNull(ctx);
}

The reply callback just sends the “Hello!” string to the client.
The important bit here is that the reply callback is called when the
client is unblocked from the thread.

The timeout command returns NULL, as it often happens with actual
Redis blocking commands timing out.

Passing reply data when unblocking

The above example is simple to understand but lacks an important
real world aspect of an actual blocking command implementation: often
the reply function will need to know what to reply to the client,
and this information is often provided as the client is unblocked.

We could modify the above example so that the thread generates a
random number after waiting one second. You can think at it as an
actually expansive operation of some kind. Then this random number
can be passed to the reply function so that we return it to the command
caller. In order to make this working, we modify the functions as follow:

void *threadmain(void *arg) {
 RedisModuleBlockedClient *bc = arg;

 sleep(1); /* Wait one second and unblock. */

 long *mynumber = RedisModule_Alloc(sizeof(long));
 *mynumber = rand();
 RedisModule_UnblockClient(bc,mynumber);
}

As you can see, now the unblocking call is passing some private data,
that is the mynumber pointer, to the reply callback. In order to
obtain this private data, the reply callback will use the following
fnuction:

void *RedisModule_GetBlockedClientPrivateData(RedisModuleCtx *ctx);

So our reply callback is modified like that:

int reply_func(RedisModuleCtx *ctx, RedisModuleString **argv,
 int argc)
{
 long *mynumber = RedisModule_GetBlockedClientPrivateData(ctx);
 /* IMPORTANT: don't free mynumber here, but in the
 * free privdata callback. */
 return RedisModule_ReplyWithLongLong(ctx,mynumber);
}

Note that we also need to pass a free_privdata function when blocking
the client with RedisModule_BlockClient(), since the allocated
long value must be freed. Our callback will look like the following:

void free_privdata(void *privdata) {
 RedisModule_Free(privdata);
}

NOTE: It is important to stress that the private data is best freed in the
free_privdata callback becaues the reply function may not be called
if the client disconnects or timeout.

Also note that the private data is also accessible from the timeout
callback, always using the GetBlockedClientPrivateData() API.

Aborting the blocking of a client

One problem that sometimes arises is that we need to allocate resources
in order to implement the non blocking command. So we block the client,
then, for example, try to create a thread, but the thread creation function
returns an error. What to do in such a condition in order to recover? We
don’t want to take the client blocked, nor we want to call UnblockClient()
because this will trigger the reply callback to be called.

In this case the best thing to do is to use the following function:

int RedisModule_AbortBlock(RedisModuleBlockedClient *bc);

Practically this is how to use it:

int Example_RedisCommand(RedisModuleCtx *ctx, RedisModuleString **argv,
 int argc)
{
 RedisModuleBlockedClient *bc =
 RedisModule_BlockClient(ctx,reply_func,timeout_func,NULL,0);

 pthread_t tid;
 if (pthread_create(&tid,NULL,threadmain,bc) != 0) {
 RedisModule_AbortBlock(bc);
 RedisModule_ReplyWithError(ctx,"Sorry can't create a thread");
 }

 return REDISMODULE_OK;
}

The client will be unblocked but the reply callback will not be called.

Implementing the command, reply and timeout callback using a single function

The following functions can be used in order to implement the reply and
callback with the same function that implements the primary command
function:

int RedisModule_IsBlockedReplyRequest(RedisModuleCtx *ctx);
int RedisModule_IsBlockedTimeoutRequest(RedisModuleCtx *ctx);

So I could rewrite the example command without using a separated
reply and timeout callback:

int Example_RedisCommand(RedisModuleCtx *ctx, RedisModuleString **argv,
 int argc)
{
 if (RedisModule_IsBlockedReplyRequest(ctx)) {
 long *mynumber = RedisModule_GetBlockedClientPrivateData(ctx);
 return RedisModule_ReplyWithLongLong(ctx,mynumber);
 } else if (RedisModule_IsBlockedTimeoutRequest) {
 return RedisModule_ReplyWithNull(ctx);
 }

 RedisModuleBlockedClient *bc =
 RedisModule_BlockClient(ctx,reply_func,timeout_func,NULL,0);

 pthread_t tid;
 if (pthread_create(&tid,NULL,threadmain,bc) != 0) {
 RedisModule_AbortBlock(bc);
 RedisModule_ReplyWithError(ctx,"Sorry can't create a thread");
 }

 return REDISMODULE_OK;
}

Functionally is the same but there are people that will prefer the less
verbose implementation that concentrates most of the command logic in a
single function.

Working on copies of data inside a thread

An interesting pattern in order to work with threads implementing the
slow part of a command, is to work with a copy of the data, so that
while some operation is performed in a key, the user continues to see
the old version. However when the thread terminated its work, the
representations are swapped and the new, processed version, is used.

An example of this approach is the
Neural Redis module [https://github.com/antirez/neural-redis]
where neural networks are trained in different threads while the
user can still execute and inspect their older versions.

Future work

An API is work in progress right now in order to allow Redis modules APIs
to be called in a safe way from threads, so that the threaded command
can access the data space and do incremental operations.

There is no ETA for this feature but it may appear in the course of the
Redis 4.0 release at some point.

 Tutorial: Design and implementation of a simple Twitter clone using PHP and the Redis key-value store

Tutorial: Design and implementation of a simple Twitter clone using PHP and the Redis key-value store

This article describes the design and implementation of a very simple Twitter clone [https://github.com/antirez/retwis] written using PHP with Redis as the only database. The programming community has traditionally considered key-value stores as a special purpose database that couldn’t be used as a drop-in replacement for a relational database for the development of web applications. This article will try to show that Redis data structures on top of a key-value layer are an effective data model to implement many kinds of applications.

Before continuing, you may want to spend a few seconds playing with the Retwis online demo [http://retwis.redis.io], to check what we are going to actually
model. Long story short: it is a toy, but complex enough to be a foundation
in order to learn how to create more complex applications.

Note: the original version of this article was written in 2009 when Redis was
released. It was not exactly clear at that time that the Redis data model was
suitable to write entire applications. Now after 5 years there are many cases of
applications using Redis as their main store, so the goal of the article today
is to be a tutorial for Redis newcomers. You’ll learn how to design a simple
data layout using Redis, and how to apply different data structures.

Our Twitter clone, called Retwis [http://retwis.antirez.com], is structurally simple, has very good performance, and can be distributed among any number of web and Redis servers with little efforts. You can find the source code here [http://code.google.com/p/redis/downloads/list].

I used PHP for the example since it can be read by everybody. The same (or better) results can be obtained using Ruby, Python, Erlang, and so on.
A few clones exist (however not all the clones use the same data layout as the
current version of this tutorial, so please, stick with the official PHP
implementation for the sake of following the article better).

	Retwis-RB [http://retwisrb.danlucraft.com/] is a port of Retwis to Ruby and Sinatra written by Daniel Lucraft! Full source code is included of course, and a link to its Git repository appears in the footer of this article. The rest of this article targets PHP, but Ruby programmers can also check the Retwis-RB source code since it’s conceptually very similar.

	Retwis-J [http://retwisj.cloudfoundry.com/] is a port of Retwis to Java, using the Spring Data Framework, written by Costin Leau [http://twitter.com/costinl]. Its source code can be found on GitHub [https://github.com/SpringSource/spring-data-keyvalue-examples], and there is comprehensive documentation available at springsource.org [http://j.mp/eo6z6I].

What is a key-value store?

The essence of a key-value store is the ability to store some data, called a value, inside a key. The value can be retrieved later only if we know the specific key it was stored in. There is no direct way to search for a key by value. In some sense, it is like a very large hash/dictionary, but it is persistent, i.e. when your application ends, the data doesn’t go away. So, for example, I can use the command SET to store the value bar in the key foo:

SET foo bar

Redis stores data permanently, so if I later ask “What is the value stored in key foo?” Redis will reply with bar:

GET foo => bar

Other common operations provided by key-value stores are DEL, to delete a given key and its associated value, SET-if-not-exists (called SETNX on Redis), to assign a value to a key only if the key does not already exist, and INCR, to atomically increment a number stored in a given key:

SET foo 10
INCR foo => 11
INCR foo => 12
INCR foo => 13

Atomic operations

There is something special about INCR. You may wonder why Redis provides such an operation if we can do it ourselves with a bit of code? After all, it is as simple as:

x = GET foo
x = x + 1
SET foo x

The problem is that incrementing this way will work as long as there is only one client working with the key foo at one time. See what happens if two clients are accessing this key at the same time:

x = GET foo (yields 10)
y = GET foo (yields 10)
x = x + 1 (x is now 11)
y = y + 1 (y is now 11)
SET foo x (foo is now 11)
SET foo y (foo is now 11)

Something is wrong! We incremented the value two times, but instead of going from 10 to 12, our key holds 11. This is because the increment done with GET / increment / SET is not an atomic operation. Instead the INCR provided by Redis, Memcached, ..., are atomic implementations, and the server will take care of protecting the key during the time needed to complete the increment in order to prevent simultaneous accesses.

What makes Redis different from other key-value stores is that it provides other operations similar to INCR that can be used to model complex problems. This is why you can use Redis to write whole web applications without using another database like an SQL database, and without going crazy.

Beyond key-value stores: lists

In this section we will see which Redis features we need to build our Twitter clone. The first thing to know is that Redis values can be more than strings. Redis supports Lists, Sets, Hashes, Sorted Sets, Bitmaps, and HyperLogLog types as values, and there are atomic operations to operate on them so we are safe even with multiple accesses to the same key. Let’s start with Lists:

LPUSH mylist a (now mylist holds 'a')
LPUSH mylist b (now mylist holds 'b','a')
LPUSH mylist c (now mylist holds 'c','b','a')

LPUSH means Left Push, that is, add an element to the left (or to the head) of the list stored in mylist. If the key mylist does not exist it is automatically created as an empty list before the PUSH operation. As you can imagine, there is also an RPUSH operation that adds the element to the right of the list (on the tail). This is very useful for our Twitter clone. User updates can be added to a list stored in username:updates, for instance.

There are operations to get data from Lists, of course. For instance, LRANGE returns a range from the list, or the whole list.

LRANGE mylist 0 1 => c,b

LRANGE uses zero-based indexes - that is the first element is 0, the second 1, and so on. The command arguments are LRANGE key first-index last-index. The last-index argument can be negative, with a special meaning: -1 is the last element of the list, -2 the penultimate, and so on. So, to get the whole list use:

LRANGE mylist 0 -1 => c,b,a

Other important operations are LLEN that returns the number of elements in the list, and LTRIM that is like LRANGE but instead of returning the specified range trims the list, so it is like Get range from mylist, Set this range as new value but does so atomically.

The Set data type

Currently we don’t use the Set type in this tutorial, but since we use
Sorted Sets, which are kind of a more capable version of Sets, it is better
to start introducing Sets first (which are a very useful data structure
per se), and later Sorted Sets.

There are more data types than just Lists. Redis also supports Sets, which are unsorted collections of elements. It is possible to add, remove, and test for existence of members, and perform the intersection between different Sets. Of course it is possible to get the elements of a Set. Some examples will make it more clear. Keep in mind that SADD is the add to set operation, SREM is the remove from set operation, sismember is the test if member operation, and SINTER is the perform intersection operation. Other operations are SCARD to get the cardinality (the number of elements) of a Set, and SMEMBERS to return all the members of a Set.

SADD myset a
SADD myset b
SADD myset foo
SADD myset bar
SCARD myset => 4
SMEMBERS myset => bar,a,foo,b

Note that SMEMBERS does not return the elements in the same order we added them since Sets are unsorted collections of elements. When you want to store in order it is better to use Lists instead. Some more operations against Sets:

SADD mynewset b
SADD mynewset foo
SADD mynewset hello
SINTER myset mynewset => foo,b

SINTER can return the intersection between Sets but it is not limited to two Sets. You may ask for the intersection of 4,5, or 10000 Sets. Finally let’s check how SISMEMBER works:

SISMEMBER myset foo => 1
SISMEMBER myset notamember => 0

The Sorted Set data type

Sorted Sets are similar to Sets: collection of elements. However in Sorted
Sets each element is associated with a floating point value, called the
element score. Because of the score, elements inside a Sorted Set are
ordered, since we can always compare two elements by score (and if the score
happens to be the same, we compare the two elements as strings).

Like Sets in Sorted Sets it is not possible to add repeated elements, every
element is unique. However it is possible to update an element’s score.

Sorted Set commands are prefixed with Z. The following is an example
of Sorted Sets usage:

ZADD zset 10 a
ZADD zset 5 b
ZADD zset 12.55 c
ZRANGE zset 0 -1 => b,a,c

In the above example we added a few elements with ZADD, and later retrieved
the elements with ZRANGE. As you can see the elements are returned in order
according to their score. In order to check if a given element exists, and
also to retrieve its score if it exists, we use the ZSCORE command:

ZSCORE zset a => 10
ZSCORE zset non_existing_element => NULL

Sorted Sets are a very powerful data structure, you can query elements by
score range, lexicographically, in reverse order, and so forth.
To know more please check the Sorted Set sections in the official Redis commands documentation [http://redis.io/commands/#sorted_set].

The Hash data type

This is the last data structure we use in our program, and is extremely easy
to gasp since there is an equivalent in almost every programming language out
there: Hashes. Redis Hashes are basically like Ruby or Python hashes, a
collection of fields associated with values:

HMSET myuser name Salvatore surname Sanfilippo country Italy
HGET myuser surname => Sanfilippo

HMSET can be used to set fields in the hash, that can be retrieved with
HGET later. It is possible to check if a field exists with HEXISTS, or
to increment a hash field with HINCRBY and so forth.

Hashes are the ideal data structure to represent objects. For example we
use Hashes in order to represent Users and Updates in our Twitter clone.

Okay, we just exposed the basics of the Redis main data structures,
we are ready to start coding!

Prerequisites

If you haven’t downloaded the Retwis source code [https://github.com/antirez/retwis] already please grab it now. It contains a few PHP files, and also a copy of Predis [https://github.com/nrk/predis], the PHP client library we use in this example.

Another thing you probably want is a working Redis server. Just get the source, build with make, run with ./redis-server, and you’re ready to go. No configuration is required at all in order to play with or run Retwis on your computer.

Data layout

When working with a relational database, a database schema must be designed so that we’d know the tables, indexes, and so on that the database will contain. We don’t have tables in Redis, so what do we need to design? We need to identify what keys are needed to represent our objects and what kind of values this keys need to hold.

Let’s start with Users. We need to represent users, of course, with their username, userid, password, the set of users following a given user, the set of users a given user follows, and so on. The first question is, how should we identify a user? Like in a relational DB, a good solution is to identify different users with different numbers, so we can associate a unique ID with every user. Every other reference to this user will be done by id. Creating unique IDs is very simple to do by using our atomic INCR operation. When we create a new user we can do something like this, assuming the user is called “antirez”:

INCR next_user_id => 1000
HMSET user:1000 username antirez password p1pp0

Note: you should use a hashed password in a real application, for simplicity
we store the password in clear text.

We use the next_user_id key in order to always get a unique ID for every new user. Then we use this unique ID to name the key holding a Hash with user’s data. This is a common design pattern with key-values stores! Keep it in mind.
Besides the fields already defined, we need some more stuff in order to fully define a User. For example, sometimes it can be useful to be able to get the user ID from the username, so every time we add a user, we also populate the users key, which is a Hash, with the username as field, and its ID as value.

HSET users antirez 1000

This may appear strange at first, but remember that we are only able to access data in a direct way, without secondary indexes. It’s not possible to tell Redis to return the key that holds a specific value. This is also our strength. This new paradigm is forcing us to organize data so that everything is accessible by primary key, speaking in relational DB terms.

Followers, following, and updates

There is another central need in our system. A user might have users who follow them, which we’ll call their followers. A user might follow other users, which we’ll call a following. We have a perfect data structure for this. That is... Sets.
The uniqueness of Sets elements, and the fact we can test in constant time for
existence, are two interesting features. However what about also remembering
the time at which a given user started following another one? In an enhanced
version of our simple Twitter clone this may be useful, so instead of using
a simple Set, we use a Sorted Set, using the user ID of the following or follower
user as element, and the unix time at which the relation between the users
was created, as our score.

So let’s define our keys:

followers:1000 => Sorted Set of uids of all the followers users
following:1000 => Sorted Set of uids of all the following users

We can add new followers with:

ZADD followers:1000 1401267618 1234 => Add user 1234 with time 1401267618

Another important thing we need is a place were we can add the updates to display in the user’s home page. We’ll need to access this data in chronological order later, from the most recent update to the oldest, so the perfect kind of data structure for this is a List. Basically every new update will be LPUSHed in the user updates key, and thanks to LRANGE, we can implement pagination and so on. Note that we use the words updates and posts interchangeably, since updates are actually “little posts” in some way.

posts:1000 => a List of post ids - every new post is LPUSHed here.

This list is basically the User timeline. We’ll push the IDs of her/his own
posts, and, the IDs of all the posts of created by the following users.
Basically, we’ll implement a write fanout.

Authentication

OK, we have more or less everything about the user except for authentication. We’ll handle authentication in a simple but robust way: we don’t want to use PHP sessions, as our system must be ready to be distributed among different web servers easily, so we’ll keep the whole state in our Redis database. All we need is a random unguessable string to set as the cookie of an authenticated user, and a key that will contain the user ID of the client holding the string.

We need two things in order to make this thing work in a robust way.
First: the current authentication secret (the random unguessable string)
should be part of the User object, so when the user is created we also set
an auth field in its Hash:

HSET user:1000 auth fea5e81ac8ca77622bed1c2132a021f9

Moreover, we need a way to map authentication secrets to user IDs, so
we also take an auths key, which has as value a Hash type mapping
authentication secrets to user IDs.

HSET auths fea5e81ac8ca77622bed1c2132a021f9 1000

In order to authenticate a user we’ll do these simple steps (see the login.php file in the Retwis source code):

	Get the username and password via the login form.

	Check if the username field actually exists in the users Hash.

	If it exists we have the user id, (i.e. 1000).

	Check if user:1000 password matches, if not, return an error message.

	Ok authenticated! Set “fea5e81ac8ca77622bed1c2132a021f9” (the value of user:1000 auth field) as the “auth” cookie.

This is the actual code:

include("retwis.php");

Form sanity checks
if (!gt("username") || !gt("password"))
 goback("You need to enter both username and password to login.");

The form is ok, check if the username is available
$username = gt("username");
$password = gt("password");
$r = redisLink();
$userid = $r->hget("users",$username);
if (!$userid)
 goback("Wrong username or password");
$realpassword = $r->hget("user:$userid","password");
if ($realpassword != $password)
 goback("Wrong username or password");

Username / password OK, set the cookie and redirect to index.php
$authsecret = $r->hget("user:$userid","auth");
setcookie("auth",$authsecret,time()+3600*24*365);
header("Location: index.php");

This happens every time a user logs in, but we also need a function isLoggedIn in order to check if a given user is already authenticated or not. These are the logical steps preformed by the isLoggedIn function:

	Get the “auth” cookie from the user. If there is no cookie, the user is not logged in, of course. Let’s call the value of the cookie <authcookie>.

	Check if <authcookie> field in the auths Hash exists, and what the value (the user ID) is (1000 in the example).

	In order for the system to be more robust, also verify that user:1000 auth field also matches.

	OK the user is authenticated, and we loaded a bit of information in the $User global variable.

The code is simpler than the description, possibly:

function isLoggedIn() {
 global $User, $_COOKIE;

 if (isset($User)) return true;

 if (isset($_COOKIE['auth'])) {
 $r = redisLink();
 $authcookie = $_COOKIE['auth'];
 if ($userid = $r->hget("auths",$authcookie)) {
 if ($r->hget("user:$userid","auth") != $authcookie) return false;
 loadUserInfo($userid);
 return true;
 }
 }
 return false;
}

function loadUserInfo($userid) {
 global $User;

 $r = redisLink();
 $User['id'] = $userid;
 $User['username'] = $r->hget("user:$userid","username");
 return true;
}

Having loadUserInfo as a separate function is overkill for our application, but it’s a good approach in a complex application. The only thing that’s missing from all the authentication is the logout. What do we do on logout? That’s simple, we’ll just change the random string in user:1000 auth field, remove the old authentication secret from the auths Hash, and add the new one.

Important: the logout procedure explains why we don’t just authenticate the user after looking up the authentication secret in the auths Hash, but double check it against user:1000 auth field. The true authentication string is the latter, while the auths Hash is just an authentication field that may even be volatile, or, if there are bugs in the program or a script gets interrupted, we may even end with multiple entries in the auths key pointing to the same user ID. The logout code is the following (logout.php):

include("retwis.php");

if (!isLoggedIn()) {
 header("Location: index.php");
 exit;
}

$r = redisLink();
$newauthsecret = getrand();
$userid = $User['id'];
$oldauthsecret = $r->hget("user:$userid","auth");

$r->hset("user:$userid","auth",$newauthsecret);
$r->hset("auths",$newauthsecret,$userid);
$r->hdel("auths",$oldauthsecret);

header("Location: index.php");

That is just what we described and should be simple to understand.

Updates

Updates, also known as posts, are even simpler. In order to create a new post in the database we do something like this:

INCR next_post_id => 10343
HMSET post:10343 user_id $owner_id time $time body "I'm having fun with Retwis"

As you can see each post is just represented by a Hash with three fields. The ID of the user owning the post, the time at which the post was published, and finally, the body of the post, which is, the actual status message.

After we create a post and we obtain the post ID, we need to LPUSH the ID in the timeline of every user that is following the author of the post, and of course in the list of posts of the author itself (everybody is virtually following herself/himself). This is the file post.php that shows how this is performed:

include("retwis.php");

if (!isLoggedIn() || !gt("status")) {
 header("Location:index.php");
 exit;
}

$r = redisLink();
$postid = $r->incr("next_post_id");
$status = str_replace("\n"," ",gt("status"));
$r->hmset("post:$postid","user_id",$User['id'],"time",time(),"body",$status);
$followers = $r->zrange("followers:".$User['id'],0,-1);
$followers[] = $User['id']; /* Add the post to our own posts too */

foreach($followers as $fid) {
 $r->lpush("posts:$fid",$postid);
}
Push the post on the timeline, and trim the timeline to the
newest 1000 elements.
$r->lpush("timeline",$postid);
$r->ltrim("timeline",0,1000);

header("Location: index.php");

The core of the function is the foreach loop. We use ZRANGE to get all the followers of the current user, then the loop will LPUSH the push the post in every follower timeline List.

Note that we also maintain a global timeline for all the posts, so that in the Retwis home page we can show everybody’s updates easily. This requires just doing an LPUSH to the timeline List. Let’s face it, aren’t you starting to think it was a bit strange to have to sort things added in chronological order using ORDER BY with SQL? I think so.

There is an interesting thing to notice in the code above: we used a new
command called LTRIM after we perform the LPUSH operation in the global
timeline. This is used in order to trim the list to just 1000 elements. The
global timeline is actually only used in order to show a few posts in the
home page, there is no need to have the full history of all the posts.

Basically LTRIM + LPUSH is a way to create a capped collection in Redis.

Paginating updates

Now it should be pretty clear how we can use LRANGE in order to get ranges of posts, and render these posts on the screen. The code is simple:

function showPost($id) {
 $r = redisLink();
 $post = $r->hgetall("post:$id");
 if (empty($post)) return false;

 $userid = $post['user_id'];
 $username = $r->hget("user:$userid","username");
 $elapsed = strElapsed($post['time']);
 $userlink = "".utf8entities($username)."";

 echo('<div class="post">'.$userlink.' '.utf8entities($post['body'])."
");
 echo('<i>posted '.$elapsed.' ago via web</i></div>');
 return true;
}

function showUserPosts($userid,$start,$count) {
 $r = redisLink();
 $key = ($userid == -1) ? "timeline" : "posts:$userid";
 $posts = $r->lrange($key,$start,$start+$count);
 $c = 0;
 foreach($posts as $p) {
 if (showPost($p)) $c++;
 if ($c == $count) break;
 }
 return count($posts) == $count+1;
}

showPost will simply convert and print a Post in HTML while showUserPosts gets a range of posts and then passes them to showPosts.

Note: LRANGE is not very efficient if the list of posts start to be very
big, and we want to access elements which are in the middle of the list, since Redis Lists are backed by linked lists. If a system is designed for
deep pagination of million of items, it is better to resort to Sorted Sets
instead.

Following users

It is not hard, but we did not yet check how we create following / follower relationships. If user ID 1000 (antirez) wants to follow user ID 5000 (pippo), we need to create both a following and a follower relationship. We just need to ZADD calls:

 ZADD following:1000 5000
 ZADD followers:5000 1000

Note the same pattern again and again. In theory with a relational database, the list of following and followers would be contained in a single table with fields like following_id and follower_id. You can extract the followers or following of every user using an SQL query. With a key-value DB things are a bit different since we need to set both the 1000 is following 5000 and 5000 is followed by 1000 relations. This is the price to pay, but on the other hand accessing the data is simpler and extremely fast. Having these things as separate sets allows us to do interesting stuff. For example, using ZINTERSTORE we can have the intersection of ‘following’ of two different users, so we may add a feature to our Twitter clone so that it is able to tell you very quickly when you visit somebody else’s profile, “you and Alice have 34 followers in common”, and things like that.

You can find the code that sets or removes a following / follower relation in the follow.php file.

Making it horizontally scalable

Gentle reader, if you read till this point you are already a hero. Thank you. Before talking about scaling horizontally it is worth checking performance on a single server. Retwis is extremely fast, without any kind of cache. On a very slow and loaded server, an Apache benchmark with 100 parallel clients issuing 100000 requests measured the average pageview to take 5 milliseconds. This means you can serve millions of users every day with just a single Linux box, and this one was monkey ass slow... Imagine the results with more recent hardware.

However you can’t go with a single server forever, how do you scale a key-value
store?

Retwis does not perform any multi-keys operation, so making it scalable is
simple: you may use client-side sharding, or something like a sharding proxy
like Twemproxy, or the upcoming Redis Cluster.

To know more about those topics please read
our documentation about sharding. However, the point here
to stress is that in a key-value store, if you design with care, the data set
is split among many independent small keys. To distribute those keys
to multiple nodes is more straightforward and predictable compared to using
a semantically more complex database system.

 Redis Cluster Specification

Redis Cluster Specification

Welcome to the Redis Cluster Specification. Here you’ll find information
about algorithms and design rationales of Redis Cluster. This document is a work
in progress as it is continuously synchronized with the actual implementation
of Redis.

Main properties and rationales of the design

Redis Cluster goals

Redis Cluster is a distributed implementation of Redis with the following goals, in order of importance in the design:

	High performance and linear scalability up to 1000 nodes. There are no proxies, asynchronous replication is used, and no merge operations are performed on values.

	Acceptable degree of write safety: the system tries (in a best-effort way) to retain all the writes originating from clients connected with the majority of the master nodes. Usually there are small windows where acknowledged writes can be lost. Windows to lose acknowledged writes are larger when clients are in a minority partition.

	Availability: Redis Cluster is able to survive partitions where the majority of the master nodes are reachable and there is at least one reachable slave for every master node that is no longer reachable. Moreover using replicas migration, masters no longer replicated by any slave will receive one from a master which is covered by multiple slaves.

What is described in this document is implemented in Redis 3.0 or greater.

Implemented subset

Redis Cluster implements all the single key commands available in the
non-distributed version of Redis. Commands performing complex multi-key
operations like Set type unions or intersections are implemented as well
as long as the keys all belong to the same node.

Redis Cluster implements a concept called hash tags that can be used
in order to force certain keys to be stored in the same node. However during
manual reshardings, multi-key operations may become unavailable for some time
while single key operations are always available.

Redis Cluster does not support multiple databases like the stand alone version
of Redis. There is just database 0 and the SELECT command is not allowed.

Clients and Servers roles in the Redis Cluster protocol

In Redis Cluster nodes are responsible for holding the data,
and taking the state of the cluster, including mapping keys to the right nodes.
Cluster nodes are also able to auto-discover other nodes, detect non-working
nodes, and promote slave nodes to master when needed in order
to continue to operate when a failure occurs.

To perform their tasks all the cluster nodes are connected using a
TCP bus and a binary protocol, called the Redis Cluster Bus.
Every node is connected to every other node in the cluster using the cluster
bus. Nodes use a gossip protocol to propagate information about the cluster
in order to discover new nodes, to send ping packets to make sure all the
other nodes are working properly, and to send cluster messages needed to
signal specific conditions. The cluster bus is also used in order to
propagate Pub/Sub messages across the cluster and to orchestrate manual
failovers when requested by users (manual failovers are failovers which
are not initiated by the Redis Cluster failure detector, but by the
system administrator directly).

Since cluster nodes are not able to proxy requests, clients may be redirected
to other nodes using redirection errors -MOVED and -ASK.
The client is in theory free to send requests to all the nodes in the cluster,
getting redirected if needed, so the client is not required to hold the
state of the cluster. However clients that are able to cache the map between
keys and nodes can improve the performance in a sensible way.

Write safety

Redis Cluster uses asynchronous replication between nodes, and last failover wins implicit merge function. This means that the last elected master dataset eventually replaces all the other replicas. There is always a window of time when it is possible to lose writes during partitions. However these windows are very different in the case of a client that is connected to the majority of masters, and a client that is connected to the minority of masters.

Redis Cluster tries harder to retain writes that are performed by clients connected to the majority of masters, compared to writes performed in the minority side.
The following are examples of scenarios that lead to loss of acknowledged
writes received in the majority partitions during failures:

	A write may reach a master, but while the master may be able to reply to the client, the write may not be propagated to slaves via the asynchronous replication used between master and slave nodes. If the master dies without the write reaching the slaves, the write is lost forever if the master is unreachable for a long enough period that one of its slaves is promoted. This is usually hard to observe in the case of a total, sudden failure of a master node since masters try to reply to clients (with the acknowledge of the write) and slaves (propagating the write) at about the same time. However it is a real world failure mode.

	Another theoretically possible failure mode where writes are lost is the following:

	A master is unreachable because of a partition.

	It gets failed over by one of its slaves.

	After some time it may be reachable again.

	A client with an out-of-date routing table may write to the old master before it is converted into a slave (of the new master) by the cluster.

The second failure mode is unlikely to happen because master nodes unable to communicate with the majority of the other masters for enough time to be failed over will no longer accept writes, and when the partition is fixed writes are still refused for a small amount of time to allow other nodes to inform about configuration changes. This failure mode also requires that the client’s routing table has not yet been updated.

Writes targeting the minority side of a partition have a larger window in which to get lost. For example, Redis Cluster loses a non-trivial number of writes on partitions where there is a minority of masters and at least one or more clients, since all the writes sent to the masters may potentially get lost if the masters are failed over in the majority side.

Specifically, for a master to be failed over it must be unreachable by the majority of masters for at least NODE_TIMEOUT, so if the partition is fixed before that time, no writes are lost. When the partition lasts for more than NODE_TIMEOUT, all the writes performed in the minority side up to that point may be lost. However the minority side of a Redis Cluster will start refusing writes as soon as NODE_TIMEOUT time has elapsed without contact with the majority, so there is a maximum window after which the minority becomes no longer available. Hence, no writes are accepted or lost after that time.

Availability

Redis Cluster is not available in the minority side of the partition. In the majority side of the partition assuming that there are at least the majority of masters and a slave for every unreachable master, the cluster becomes available again after NODE_TIMEOUT time plus a few more seconds required for a slave to get elected and failover its master (failovers are usually executed in a matter of 1 or 2 seconds).

This means that Redis Cluster is designed to survive failures of a few nodes in the cluster, but it is not a suitable solution for applications that require availability in the event of large net splits.

In the example of a cluster composed of N master nodes where every node has a single slave, the majority side of the cluster will remain available as long as a single node is partitioned away, and will remain available with a probability of 1-(1/(N*2-1)) when two nodes are partitioned away (after the first node fails we are left with N*2-1 nodes in total, and the probability of the only master without a replica to fail is 1/(N*2-1)).

For example, in a cluster with 5 nodes and a single slave per node, there is a 1/(5*2-1) = 11.11% probability that after two nodes are partitioned away from the majority, the cluster will no longer be available.

Thanks to a Redis Cluster feature called replicas migration the Cluster
availability is improved in many real world scenarios by the fact that
replicas migrate to orphaned masters (masters no longer having replicas).
So at every successful failure event, the cluster may reconfigure the slaves
layout in order to better resist the next failure.

Performance

In Redis Cluster nodes don’t proxy commands to the right node in charge for a given key, but instead they redirect clients to the right nodes serving a given portion of the key space.

Eventually clients obtain an up-to-date representation of the cluster and which node serves which subset of keys, so during normal operations clients directly contact the right nodes in order to send a given command.

Because of the use of asynchronous replication, nodes do not wait for other nodes’ acknowledgment of writes (if not explicitly requested using the WAIT command).

Also, because multi-key commands are only limited to near keys, data is never moved between nodes except when resharding.

Normal operations are handled exactly as in the case of a single Redis instance. This means that in a Redis Cluster with N master nodes you can expect the same performance as a single Redis instance multiplied by N as the design scales linearly. At the same time the query is usually performed in a single round trip, since clients usually retain persistent connections with the nodes, so latency figures are also the same as the single standalone Redis node case.

Very high performance and scalability while preserving weak but
reasonable forms of data safety and availability is the main goal of
Redis Cluster.

Why merge operations are avoided

Redis Cluster design avoids conflicting versions of the same key-value pair in multiple nodes as in the case of the Redis data model this is not always desirable. Values in Redis are often very large; it is common to see lists or sorted sets with millions of elements. Also data types are semantically complex. Transferring and merging these kind of values can be a major bottleneck and/or may require the non-trivial involvement of application-side logic, additional memory to store meta-data, and so forth.

There are no strict technological limits here. CRDTs or synchronously replicated
state machines can model complex data types similar to Redis. However, the
actual run time behavior of such systems would not be similar to Redis Cluster.
Redis Cluster was designed in order to cover the exact use cases of the
non-clustered Redis version.

Overview of Redis Cluster main components

Keys distribution model

The key space is split into 16384 slots, effectively setting an upper limit
for the cluster size of 16384 master nodes (however the suggested max size of
nodes is in the order of ~ 1000 nodes).

Each master node in a cluster handles a subset of the 16384 hash slots.
The cluster is stable when there is no cluster reconfiguration in
progress (i.e. where hash slots are being moved from one node to another).
When the cluster is stable, a single hash slot will be served by a single node
(however the serving node can have one or more slaves that will replace it in the case of net splits or failures,
and that can be used in order to scale read operations where reading stale data is acceptable).

The base algorithm used to map keys to hash slots is the following
(read the next paragraph for the hash tag exception to this rule):

HASH_SLOT = CRC16(key) mod 16384

The CRC16 is specified as follows:

	Name: XMODEM (also known as ZMODEM or CRC-16/ACORN)

	Width: 16 bit

	Poly: 1021 (That is actually x^16 + x^12 + x^5 + 1)

	Initialization: 0000

	Reflect Input byte: False

	Reflect Output CRC: False

	Xor constant to output CRC: 0000

	Output for “123456789”: 31C3

14 out of 16 CRC16 output bits are used (this is why there is
a modulo 16384 operation in the formula above).

In our tests CRC16 behaved remarkably well in distributing different kinds of
keys evenly across the 16384 slots.

Note: A reference implementation of the CRC16 algorithm used is available in the Appendix A of this document.

Keys hash tags

There is an exception for the computation of the hash slot that is used in order
to implement hash tags. Hash tags are a way to ensure that multiple keys
are allocated in the same hash slot. This is used in order to implement
multi-key operations in Redis Cluster.

In order to implement hash tags, the hash slot for a key is computed in a
slightly different way in certain conditions.
If the key contains a “{...}” pattern only the substring between
{ and } is hashed in order to obtain the hash slot. However since it is
possible that there are multiple occurrences of { or } the algorithm is
well specified by the following rules:

	IF the key contains a { character.

	AND IF there is a } character to the right of {

	AND IF there are one or more characters between the first occurrence of { and the first occurrence of }.

Then instead of hashing the key, only what is between the first occurrence of { and the following first occurrence of } is hashed.

Examples:

	The two keys {user1000}.following and {user1000}.followers will hash to the same hash slot since only the substring user1000 will be hashed in order to compute the hash slot.

	For the key foo{}{bar} the whole key will be hashed as usually since the first occurrence of { is followed by } on the right without characters in the middle.

	For the key foo{{bar}}zap the substring {bar will be hashed, because it is the substring between the first occurrence of { and the first occurrence of } on its right.

	For the key foo{bar}{zap} the substring bar will be hashed, since the algorithm stops at the first valid or invalid (without bytes inside) match of { and }.

	What follows from the algorithm is that if the key starts with {}, it is guaranteed to be hashed as a whole. This is useful when using binary data as key names.

Adding the hash tags exception, the following is an implementation of the HASH_SLOT function in Ruby and C language.

Ruby example code:

def HASH_SLOT(key)
 s = key.index "{"
 if s
 e = key.index "}",s+1
 if e && e != s+1
 key = key[s+1..e-1]
 end
 end
 crc16(key) % 16384
end

C example code:

unsigned int HASH_SLOT(char *key, int keylen) {
 int s, e; /* start-end indexes of { and } */

 /* Search the first occurrence of '{'. */
 for (s = 0; s < keylen; s++)
 if (key[s] == '{') break;

 /* No '{' ? Hash the whole key. This is the base case. */
 if (s == keylen) return crc16(key,keylen) & 16383;

 /* '{' found? Check if we have the corresponding '}'. */
 for (e = s+1; e < keylen; e++)
 if (key[e] == '}') break;

 /* No '}' or nothing between {} ? Hash the whole key. */
 if (e == keylen || e == s+1) return crc16(key,keylen) & 16383;

 /* If we are here there is both a { and a } on its right. Hash
 * what is in the middle between { and }. */
 return crc16(key+s+1,e-s-1) & 16383;
}

Cluster nodes attributes

Every node has a unique name in the cluster. The node name is the
hex representation of a 160 bit random number, obtained the first time a
node is started (usually using /dev/urandom).
The node will save its ID in the node configuration file, and will use the
same ID forever, or at least as long as the node configuration file is not
deleted by the system administrator, or a hard reset is requested
via the CLUSTER RESET command.

The node ID is used to identify every node across the whole cluster.
It is possible for a given node to change its IP address without any need
to also change the node ID. The cluster is also able to detect the change
in IP/port and reconfigure using the gossip protocol running over the cluster
bus.

The node ID is not the only information associated with each node, but is
the only one that is always globally consistent. Every node has also the
following set of information associated. Some information is about the
cluster configuration detail of this specific node, and is eventually
consistent across the cluster. Some other information, like the last time
a node was pinged, is instead local to each node.

Every node maintains the following information about other nodes that it is
aware of in the cluster: The node ID, IP and port of the node, a set of
flags, what is the master of the node if it is flagged as slave, last time
the node was pinged and the last time the pong was received, the current
configuration epoch of the node (explained later in this specification),
the link state and finally the set of hash slots served.

A detailed explanation of all the node fields [http://redis.io/commands/cluster-nodes] is described in the CLUSTER NODES documentation.

The CLUSTER NODES command can be sent to any node in the cluster and provides the state of the cluster and the information for each node according to the local view the queried node has of the cluster.

The following is sample output of the CLUSTER NODES command sent to a master
node in a small cluster of three nodes.

$ redis-cli cluster nodes
d1861060fe6a534d42d8a19aeb36600e18785e04 127.0.0.1:6379 myself - 0 1318428930 1 connected 0-1364
3886e65cc906bfd9b1f7e7bde468726a052d1dae 127.0.0.1:6380 master - 1318428930 1318428931 2 connected 1365-2729
d289c575dcbc4bdd2931585fd4339089e461a27d 127.0.0.1:6381 master - 1318428931 1318428931 3 connected 2730-4095

In the above listing the different fields are in order: node id, address:port, flags, last ping sent, last pong received, configuration epoch, link state, slots. Details about the above fields will be covered as soon as we talk of specific parts of Redis Cluster.

The Cluster bus

Every Redis Cluster node has an additional TCP port for receiving
incoming connections from other Redis Cluster nodes. This port is at a fixed
offset from the normal TCP port used to receive incoming connections
from clients. To obtain the Redis Cluster port, 10000 should be added to
the normal commands port. For example, if a Redis node is listening for
client connections on port 6379, the Cluster bus port 16379 will also be
opened.

Node-to-node communication happens exclusively using the Cluster bus and
the Cluster bus protocol: a binary protocol composed of frames
of different types and sizes. The Cluster bus binary protocol is not
publicly documented since it is not intended for external software devices
to talk with Redis Cluster nodes using this protocol. However you can
obtain more details about the Cluster bus protocol by reading the
cluster.h and cluster.c files in the Redis Cluster source code.

Cluster topology

Redis Cluster is a full mesh where every node is connected with every other node using a TCP connection.

In a cluster of N nodes, every node has N-1 outgoing TCP connections, and N-1 incoming connections.

These TCP connections are kept alive all the time and are not created on demand.
When a node expects a pong reply in response to a ping in the cluster bus, before waiting long enough to mark the node as unreachable, it will try to
refresh the connection with the node by reconnecting from scratch.

While Redis Cluster nodes form a full mesh, nodes use a gossip protocol and
a configuration update mechanism in order to avoid exchanging too many
messages between nodes during normal conditions, so the number of messages
exchanged is not exponential.

Nodes handshake

Nodes always accept connections on the cluster bus port, and even reply to
pings when received, even if the pinging node is not trusted.
However, all other packets will be discarded by the receiving node if the
sending node is not considered part of the cluster.

A node will accept another node as part of the cluster only in two ways:

	If a node presents itself with a MEET message. A meet message is exactly
like a PING message, but forces the receiver to accept the node as part of
the cluster. Nodes will send MEET messages to other nodes only if the system administrator requests this via the following command:

CLUSTER MEET ip port

	A node will also register another node as part of the cluster if a node that is already trusted will gossip about this other node. So if A knows B, and B knows C, eventually B will send gossip messages to A about C. When this happens, A will register C as part of the network, and will try to connect with C.

This means that as long as we join nodes in any connected graph, they’ll eventually form a fully connected graph automatically. This means that the cluster is able to auto-discover other nodes, but only if there is a trusted relationship that was forced by the system administrator.

This mechanism makes the cluster more robust but prevents different Redis clusters from accidentally mixing after change of IP addresses or other network related events.

Redirection and resharding

MOVED Redirection

A Redis client is free to send queries to every node in the cluster, including
slave nodes. The node will analyze the query, and if it is acceptable
(that is, only a single key is mentioned in the query, or the multiple keys
mentioned are all to the same hash slot) it will lookup what
node is responsible for the hash slot where the key or keys belong.

If the hash slot is served by the node, the query is simply processed, otherwise
the node will check its internal hash slot to node map, and will reply
to the client with a MOVED error, like in the following example:

GET x
-MOVED 3999 127.0.0.1:6381

The error includes the hash slot of the key (3999) and the ip:port of the
instance that can serve the query. The client needs to reissue the query
to the specified node’s IP address and port.
Note that even if the client waits a long time before reissuing the query,
and in the meantime the cluster configuration changed, the destination node
will reply again with a MOVED error if the hash slot 3999 is now served by
another node. The same happens if the contacted node had no updated information.

So while from the point of view of the cluster nodes are identified by
IDs we try to simplify our interface with the client just exposing a map
between hash slots and Redis nodes identified by IP:port pairs.

The client is not required to, but should try to memorize that hash slot
3999 is served by 127.0.0.1:6381. This way once a new command needs to
be issued it can compute the hash slot of the target key and have a
greater chance of choosing the right node.

An alternative is to just refresh the whole client-side cluster layout
using the CLUSTER NODES or CLUSTER SLOTS commands
when a MOVED redirection is received. When a redirection is encountered, it
is likely multiple slots were reconfigured rather than just one, so updating
the client configuration as soon as possible is often the best strategy.

Note that when the Cluster is stable (no ongoing changes in the configuration),
eventually all the clients will obtain a map of hash slots -> nodes, making
the cluster efficient, with clients directly addressing the right nodes
without redirections, proxies or other single point of failure entities.

A client must be also able to handle -ASK redirections that are described
later in this document, otherwise it is not a complete Redis Cluster client.

Cluster live reconfiguration

Redis Cluster supports the ability to add and remove nodes while the cluster
is running. Adding or removing a node is abstracted into the same
operation: moving a hash slot from one node to another. This means
that the same basic mechanism can be used in order to rebalance the cluster, add
or remove nodes, and so forth.

	To add a new node to the cluster an empty node is added to the cluster and some set of hash slots are moved from existing nodes to the new node.

	To remove a node from the cluster the hash slots assigned to that node are moved to other existing nodes.

	To rebalance the cluster a given set of hash slots are moved between nodes.

The core of the implementation is the ability to move hash slots around.
From a practical point of view a hash slot is just a set of keys, so
what Redis Cluster really does during resharding is to move keys from
an instance to another instance. Moving a hash slot means moving all the keys
that happen to hash into this hash slot.

To understand how this works we need to show the CLUSTER subcommands
that are used to manipulate the slots translation table in a Redis Cluster node.

The following subcommands are available (among others not useful in this case):

	CLUSTER ADDSLOTS slot1 [slot2] ... [slotN]

	CLUSTER DELSLOTS slot1 [slot2] ... [slotN]

	CLUSTER SETSLOT slot NODE node

	CLUSTER SETSLOT slot MIGRATING node

	CLUSTER SETSLOT slot IMPORTING node

The first two commands, ADDSLOTS and DELSLOTS, are simply used to assign
(or remove) slots to a Redis node. Assigning a slot means to tell a given
master node that it will be in charge of storing and serving content for
the specified hash slot.

After the hash slots are assigned they will propagate across the cluster
using the gossip protocol, as specified later in the
configuration propagation section.

The ADDSLOTS command is usually used when a new cluster is created
from scratch to assign each master node a subset of all the 16384 hash
slots available.

The DELSLOTS is mainly used for manual modification of a cluster configuration
or for debugging tasks: in practice it is rarely used.

The SETSLOT subcommand is used to assign a slot to a specific node ID if
the SETSLOT <slot> NODE form is used. Otherwise the slot can be set in the
two special states MIGRATING and IMPORTING. Those two special states
are used in order to migrate a hash slot from one node to another.

	When a slot is set as MIGRATING, the node will accept all queries that
are about this hash slot, but only if the key in question
exists, otherwise the query is forwarded using a -ASK redirection to the
node that is target of the migration.

	When a slot is set as IMPORTING, the node will accept all queries that
are about this hash slot, but only if the request is
preceded by an ASKING command. If the ASKING command was not given
by the client, the query is redirected to the real hash slot owner via
a -MOVED redirection error, as would happen normally.

Let’s make this clearer with an example of hash slot migration.
Assume that we have two Redis master nodes, called A and B.
We want to move hash slot 8 from A to B, so we issue commands like this:

	We send B: CLUSTER SETSLOT 8 IMPORTING A

	We send A: CLUSTER SETSLOT 8 MIGRATING B

All the other nodes will continue to point clients to node “A” every time
they are queried with a key that belongs to hash slot 8, so what happens
is that:

	All queries about existing keys are processed by “A”.

	All queries about non-existing keys in A are processed by “B”, because “A” will redirect clients to “B”.

This way we no longer create new keys in “A”.
In the meantime, a special program called redis-trib used during reshardings
and Redis Cluster configuration will migrate existing keys in
hash slot 8 from A to B.
This is performed using the following command:

CLUSTER GETKEYSINSLOT slot count

The above command will return count keys in the specified hash slot.
For every key returned, redis-trib sends node “A” a MIGRATE command, that
will migrate the specified key from A to B in an atomic way (both instances
are locked for the time (usually very small time) needed to migrate a key so
there are no race conditions). This is how MIGRATE works:

MIGRATE target_host target_port key target_database id timeout

MIGRATE will connect to the target instance, send a serialized version of
the key, and once an OK code is received, the old key from its own dataset
will be deleted. From the point of view of an external client a key exists
either in A or B at any given time.

In Redis Cluster there is no need to specify a database other than 0, but
MIGRATE is a general command that can be used for other tasks not
involving Redis Cluster.
MIGRATE is optimized to be as fast as possible even when moving complex
keys such as long lists, but in Redis Cluster reconfiguring the
cluster where big keys are present is not considered a wise procedure if
there are latency constraints in the application using the database.

When the migration process is finally finished, the SETSLOT <slot> NODE <node-id> command is sent to the two nodes involved in the migration in order to
set the slots to their normal state again. The same command is usually
sent to all other nodes to avoid waiting for the natural
propagation of the new configuration across the cluster.

ASK redirection

In the previous section we briefly talked about ASK redirection. Why can’t
we simply use MOVED redirection? Because while MOVED means that
we think the hash slot is permanently served by a different node and the
next queries should be tried against the specified node, ASK means to
send only the next query to the specified node.

This is needed because the next query about hash slot 8 can be about a
key that is still in A, so we always want the client to try A and
then B if needed. Since this happens only for one hash slot out of 16384
available, the performance hit on the cluster is acceptable.

We need to force that client behavior, so to make sure
that clients will only try node B after A was tried, node B will only
accept queries of a slot that is set as IMPORTING if the client sends the
ASKING command before sending the query.

Basically the ASKING command sets a one-time flag on the client that forces
a node to serve a query about an IMPORTING slot.

The full semantics of ASK redirection from the point of view of the client is as follows:

	If ASK redirection is received, send only the query that was redirected to the specified node but continue sending subsequent queries to the old node.

	Start the redirected query with the ASKING command.

	Don’t yet update local client tables to map hash slot 8 to B.

Once hash slot 8 migration is completed, A will send a MOVED message and
the client may permanently map hash slot 8 to the new IP and port pair.
Note that if a buggy client performs the map earlier this is not
a problem since it will not send the ASKING command before issuing the query,
so B will redirect the client to A using a MOVED redirection error.

Slots migration is explained in similar terms but with different wording
(for the sake of redundancy in the documentation) in the CLUSTER SETSLOT
command documentation.

Clients first connection and handling of redirections

While it is possible to have a Redis Cluster client implementation that does not
remember the slots configuration (the map between slot numbers and addresses of
nodes serving it) in memory and only works by contacting random nodes waiting to
be redirected, such a client would be very inefficient.

Redis Cluster clients should try to be smart enough to memorize the slots
configuration. However this configuration is not required to be up to date.
Since contacting the wrong node will simply result in a redirection, that
should trigger an update of the client view.

Clients usually need to fetch a complete list of slots and mapped node
addresses in two different situations:

	At startup in order to populate the initial slots configuration.

	When a MOVED redirection is received.

Note that a client may handle the MOVED redirection by updating just the
moved slot in its table, however this is usually not efficient since often
the configuration of multiple slots is modified at once (for example if a
slave is promoted to master, all the slots served by the old master will
be remapped). It is much simpler to react to a MOVED redirection by
fetching the full map of slots to nodes from scratch.

In order to retrieve the slots configuration Redis Cluster offers
an alternative to the CLUSTER NODES command that does not
require parsing, and only provides the information strictly needed to clients.

The new command is called CLUSTER SLOTS and provides an array of slots
ranges, and the associated master and slave nodes serving the specified range.

The following is an example of output of CLUSTER SLOTS:

127.0.0.1:7000> cluster slots
1) 1) (integer) 5461
 2) (integer) 10922
 3) 1) "127.0.0.1"
 2) (integer) 7001
 4) 1) "127.0.0.1"
 2) (integer) 7004
2) 1) (integer) 0
 2) (integer) 5460
 3) 1) "127.0.0.1"
 2) (integer) 7000
 4) 1) "127.0.0.1"
 2) (integer) 7003
3) 1) (integer) 10923
 2) (integer) 16383
 3) 1) "127.0.0.1"
 2) (integer) 7002
 4) 1) "127.0.0.1"
 2) (integer) 7005

The first two sub-elements of every element of the returned array are the
start-end slots of the range. The additional elements represent address-port
pairs. The first address-port pair is the master serving the slot, and the
additional address-port pairs are all the slaves serving the same slot
that are not in an error condition (i.e. the FAIL flag is not set).

For example the first element of the output says that slots from 5461 to 10922
(start and end included) are served by 127.0.0.1:7001, and it is possible
to scale read-only load contacting the slave at 127.0.0.1:7004.

CLUSTER SLOTS is not guaranteed to return ranges that cover the full
16384 slots if the cluster is misconfigured, so clients should initialize the
slots configuration map filling the target nodes with NULL objects, and
report an error if the user tries to execute commands about keys
that belong to unassigned slots.

Before returning an error to the caller when a slot is found to
be unassigned, the client should try to fetch the slots configuration
again to check if the cluster is now configured properly.

Multiple keys operations

Using hash tags, clients are free to use multi-key operations.
For example the following operation is valid:

MSET {user:1000}.name Angela {user:1000}.surname White

Multi-key operations may become unavailable when a resharding of the
hash slot the keys belong to is in progress.

More specifically, even during a resharding the multi-key operations
targeting keys that all exist and are all still in the same node (either
the source or destination node) are still available.

Operations on keys that don’t exist or are - during the resharding - split
between the source and destination nodes, will generate a -TRYAGAIN error.
The client can try the operation after some time, or report back the error.

As soon as migration of the specified hash slot has terminated, all
multi-key operations are available again for that hash slot.

Scaling reads using slave nodes

Normally slave nodes will redirect clients to the authoritative master for
the hash slot involved in a given command, however clients can use slaves
in order to scale reads using the READONLY command.

READONLY tells a Redis Cluster slave node that the client is ok reading
possibly stale data and is not interested in running write queries.

When the connection is in readonly mode, the cluster will send a redirection
to the client only if the operation involves keys not served
by the slave’s master node. This may happen because:

	The client sent a command about hash slots never served by the master of this slave.

	The cluster was reconfigured (for example resharded) and the slave is no longer able to serve commands for a given hash slot.

When this happens the client should update its hashslot map as explained in
the previous sections.

The readonly state of the connection can be cleared using the READWRITE command.

Fault Tolerance

Heartbeat and gossip messages

Redis Cluster nodes continuously exchange ping and pong packets. Those two kind of packets have the same structure, and both carry important configuration information. The only actual difference is the message type field. We’ll refer to the sum of ping and pong packets as heartbeat packets.

Usually nodes send ping packets that will trigger the receivers to reply with pong packets. However this is not necessarily true. It is possible for nodes to just send pong packets to send information to other nodes about their configuration, without triggering a reply. This is useful, for example, in order to broadcast a new configuration as soon as possible.

Usually a node will ping a few random nodes every second so that the total number of ping packets sent (and pong packets received) by each node is a constant amount regardless of the number of nodes in the cluster.

However every node makes sure to ping every other node that hasn’t sent a ping or received a pong for longer than half the NODE_TIMEOUT time. Before NODE_TIMEOUT has elapsed, nodes also try to reconnect the TCP link with another node to make sure nodes are not believed to be unreachable only because there is a problem in the current TCP connection.

The number of messages globally exchanged can be sizable if NODE_TIMEOUT is set to a small figure and the number of nodes (N) is very large, since every node will try to ping every other node for which they don’t have fresh information every half the NODE_TIMEOUT time.

For example in a 100 node cluster with a node timeout set to 60 seconds, every node will try to send 99 pings every 30 seconds, with a total amount of pings of 3.3 per second. Multiplied by 100 nodes, this is 330 pings per second in the total cluster.

There are ways to lower the number of messages, however there have been no
reported issues with the bandwidth currently used by Redis Cluster failure
detection, so for now the obvious and direct design is used. Note that even
in the above example, the 330 packets per second exchanged are evenly
divided among 100 different nodes, so the traffic each node receives
is acceptable.

Heartbeat packet content

Ping and pong packets contain a header that is common to all types of packets (for instance packets to request a failover vote), and a special Gossip Section that is specific of Ping and Pong packets.

The common header has the following information:

	Node ID, a 160 bit pseudorandom string that is assigned the first time a node is created and remains the same for all the life of a Redis Cluster node.

	The currentEpoch and configEpoch fields of the sending node that are used to mount the distributed algorithms used by Redis Cluster (this is explained in detail in the next sections). If the node is a slave the configEpoch is the last known configEpoch of its master.

	The node flags, indicating if the node is a slave, a master, and other single-bit node information.

	A bitmap of the hash slots served by the sending node, or if the node is a slave, a bitmap of the slots served by its master.

	The sender TCP base port (that is, the port used by Redis to accept client commands; add 10000 to this to obtain the cluster bus port).

	The state of the cluster from the point of view of the sender (down or ok).

	The master node ID of the sending node, if it is a slave.

Ping and pong packets also contain a gossip section. This section offers to the receiver a view of what the sender node thinks about other nodes in the cluster. The gossip section only contains information about a few random nodes among the set of nodes known to the sender. The number of nodes mentioned in a gossip section is proportional to the cluster size.

For every node added in the gossip section the following fields are reported:

	Node ID.

	IP and port of the node.

	Node flags.

Gossip sections allow receiving nodes to get information about the state of other nodes from the point of view of the sender. This is useful both for failure detection and to discover other nodes in the cluster.

Failure detection

Redis Cluster failure detection is used to recognize when a master or slave node is no longer reachable by the majority of nodes and then respond by promoting a slave to the role of master. When slave promotion is not possible the cluster is put in an error state to stop receiving queries from clients.

As already mentioned, every node takes a list of flags associated with other known nodes. There are two flags that are used for failure detection that are called PFAIL and FAIL. PFAIL means Possible failure, and is a non-acknowledged failure type. FAIL means that a node is failing and that this condition was confirmed by a majority of masters within a fixed amount of time.

PFAIL flag:

A node flags another node with the PFAIL flag when the node is not reachable for more than NODE_TIMEOUT time. Both master and slave nodes can flag another node as PFAIL, regardless of its type.

The concept of non-reachability for a Redis Cluster node is that we have an active ping (a ping that we sent for which we have yet to get a reply) pending for longer than NODE_TIMEOUT. For this mechanism to work the NODE_TIMEOUT must be large compared to the network round trip time. In order to add reliability during normal operations, nodes will try to reconnect with other nodes in the cluster as soon as half of the NODE_TIMEOUT has elapsed without a reply to a ping. This mechanism ensures that connections are kept alive so broken connections usually won’t result in false failure reports between nodes.

FAIL flag:

The PFAIL flag alone is just local information every node has about other nodes, but it is not sufficient to trigger a slave promotion. For a node to be considered down the PFAIL condition needs to be escalated to a FAIL condition.

As outlined in the node heartbeats section of this document, every node sends gossip messages to every other node including the state of a few random known nodes. Every node eventually receives a set of node flags for every other node. This way every node has a mechanism to signal other nodes about failure conditions they have detected.

A PFAIL condition is escalated to a FAIL condition when the following set of conditions are met:

	Some node, that we’ll call A, has another node B flagged as PFAIL.

	Node A collected, via gossip sections, information about the state of B from the point of view of the majority of masters in the cluster.

	The majority of masters signaled the PFAIL or FAIL condition within NODE_TIMEOUT * FAIL_REPORT_VALIDITY_MULT time. (The validity factor is set to 2 in the current implementation, so this is just two times the NODE_TIMEOUT time).

If all the above conditions are true, Node A will:

	Mark the node as FAIL.

	Send a FAIL message to all the reachable nodes.

The FAIL message will force every receiving node to mark the node in FAIL state, whether or not it already flagged the node in PFAIL state.

Note that the FAIL flag is mostly one way. That is, a node can go from PFAIL to FAIL, but a FAIL flag can only be cleared in the following situations:

	The node is already reachable and is a slave. In this case the FAIL flag can be cleared as slaves are not failed over.

	The node is already reachable and is a master not serving any slot. In this case the FAIL flag can be cleared as masters without slots do not really participate in the cluster and are waiting to be configured in order to join the cluster.

	The node is already reachable and is a master, but a long time (N times the NODE_TIMEOUT) has elapsed without any detectable slave promotion. It’s better for it to rejoin the cluster and continue in this case.

It is useful to note that while the PFAIL -> FAIL transition uses a form of agreement, the agreement used is weak:

	Nodes collect views of other nodes over some time period, so even if the majority of master nodes need to “agree”, actually this is just state that we collected from different nodes at different times and we are not sure, nor we require, that at a given moment the majority of masters agreed. However we discard failure reports which are old, so the failure was signaled by the majority of masters within a window of time.

	While every node detecting the FAIL condition will force that condition on other nodes in the cluster using the FAIL message, there is no way to ensure the message will reach all the nodes. For instance a node may detect the FAIL condition and because of a partition will not be able to reach any other node.

However the Redis Cluster failure detection has a liveness requirement: eventually all the nodes should agree about the state of a given node. There are two cases that can originate from split brain conditions. Either some minority of nodes believe the node is in FAIL state, or a minority of nodes believe the node is not in FAIL state. In both the cases eventually the cluster will have a single view of the state of a given node:

Case 1: If a majority of masters have flagged a node as FAIL, because of failure detection and the chain effect it generates, every other node will eventually flag the master as FAIL, since in the specified window of time enough failures will be reported.

Case 2: When only a minority of masters have flagged a node as FAIL, the slave promotion will not happen (as it uses a more formal algorithm that makes sure everybody knows about the promotion eventually) and every node will clear the FAIL state as per the FAIL state clearing rules above (i.e. no promotion after N times the NODE_TIMEOUT has elapsed).

The FAIL flag is only used as a trigger to run the safe part of the algorithm for the slave promotion. In theory a slave may act independently and start a slave promotion when its master is not reachable, and wait for the masters to refuse to provide the acknowledgment if the master is actually reachable by the majority. However the added complexity of the PFAIL -> FAIL state, the weak agreement, and the FAIL message forcing the propagation of the state in the shortest amount of time in the reachable part of the cluster, have practical advantages. Because of these mechanisms, usually all the nodes will stop accepting writes at about the same time if the cluster is in an error state. This is a desirable feature from the point of view of applications using Redis Cluster. Also erroneous election attempts initiated by slaves that can’t reach its master due to local problems (the master is otherwise reachable by the majority of other master nodes) are avoided.

Configuration handling, propagation, and failovers

Cluster current epoch

Redis Cluster uses a concept similar to the Raft algorithm “term”. In Redis Cluster the term is called epoch instead, and it is used in order to give incremental versioning to events. When multiple nodes provide conflicting information, it becomes possible for another node to understand which state is the most up to date.

The currentEpoch is a 64 bit unsigned number.

At node creation every Redis Cluster node, both slaves and master nodes, set the currentEpoch to 0.

Every time a packet is received from another node, if the epoch of the sender (part of the cluster bus messages header) is greater than the local node epoch, the currentEpoch is updated to the sender epoch.

Because of these semantics, eventually all the nodes will agree to the greatest configEpoch in the cluster.

This information is used when the state of the cluster is changed and a node seeks agreement in order to perform some action.

Currently this happens only during slave promotion, as described in the next section. Basically the epoch is a logical clock for the cluster and dictates that given information wins over one with a smaller epoch.

Configuration epoch

Every master always advertises its configEpoch in ping and pong packets along with a bitmap advertising the set of slots it serves.

The configEpoch is set to zero in masters when a new node is created.

A new configEpoch is created during slave election. Slaves trying to replace
failing masters increment their epoch and try to get authorization from
a majority of masters. When a slave is authorized, a new unique configEpoch
is created and the slave turns into a master using the new configEpoch.

As explained in the next sections the configEpoch helps to resolve conflicts when different nodes claim divergent configurations (a condition that may happen because of network partitions and node failures).

Slave nodes also advertise the configEpoch field in ping and pong packets, but in the case of slaves the field represents the configEpoch of its master as of the last time they exchanged packets. This allows other instances to detect when a slave has an old configuration that needs to be updated (master nodes will not grant votes to slaves with an old configuration).

Every time the configEpoch changes for some known node, it is permanently stored in the nodes.conf file by all the nodes that receive this information. The same also happens for the currentEpoch value. These two variables are guaranteed to be saved and fsync-ed to disk when updated before a node continues its operations.

The configEpoch values generated using a simple algorithm during failovers
are guaranteed to be new, incremental, and unique.

Slave election and promotion

Slave election and promotion is handled by slave nodes, with the help of master nodes that vote for the slave to promote.
A slave election happens when a master is in FAIL state from the point of view of at least one of its slaves that has the prerequisites in order to become a master.

In order for a slave to promote itself to master, it needs to start an election and win it. All the slaves for a given master can start an election if the master is in FAIL state, however only one slave will win the election and promote itself to master.

A slave starts an election when the following conditions are met:

	The slave’s master is in FAIL state.

	The master was serving a non-zero number of slots.

	The slave replication link was disconnected from the master for no longer than a given amount of time, in order to ensure the promoted slave’s data is reasonably fresh. This time is user configurable.

In order to be elected, the first step for a slave is to increment its currentEpoch counter, and request votes from master instances.

Votes are requested by the slave by broadcasting a FAILOVER_AUTH_REQUEST packet to every master node of the cluster. Then it waits for a maximum time of two times the NODE_TIMEOUT for replies to arrive (but always for at least 2 seconds).

Once a master has voted for a given slave, replying positively with a FAILOVER_AUTH_ACK, it can no longer vote for another slave of the same master for a period of NODE_TIMEOUT * 2. In this period it will not be able to reply to other authorization requests for the same master. This is not needed to guarantee safety, but useful for preventing multiple slaves from getting elected (even if with a different configEpoch) at around the same time, which is usually not wanted.

A slave discards any AUTH_ACK replies with an epoch that is less than the currentEpoch at the time the vote request was sent. This ensures it doesn’t count votes intended for a previous election.

Once the slave receives ACKs from the majority of masters, it wins the election.
Otherwise if the majority is not reached within the period of two times NODE_TIMEOUT (but always at least 2 seconds), the election is aborted and a new one will be tried again after NODE_TIMEOUT * 4 (and always at least 4 seconds).

Slave rank

As soon as a master is in FAIL state, a slave waits a short period of time before trying to get elected. That delay is computed as follows:

DELAY = 500 milliseconds + random delay between 0 and 500 milliseconds +
 SLAVE_RANK * 1000 milliseconds.

The fixed delay ensures that we wait for the FAIL state to propagate across the cluster, otherwise the slave may try to get elected while the masters are still unaware of the FAIL state, refusing to grant their vote.

The random delay is used to desynchronize slaves so they’re unlikely to start an election at the same time.

The SLAVE_RANK is the rank of this slave regarding the amount of replication data it has processed from the master.
Slaves exchange messages when the master is failing in order to establish a (best effort) rank:
the slave with the most updated replication offset is at rank 0, the second most updated at rank 1, and so forth.
In this way the most updated slaves try to get elected before others.

Rank order is not strictly enforced; if a slave of higher rank fails to be
elected, the others will try shortly.

Once a slave wins the election, it obtains a new unique and incremental configEpoch which is higher than that of any other existing master. It starts advertising itself as master in ping and pong packets, providing the set of served slots with a configEpoch that will win over the past ones.

In order to speedup the reconfiguration of other nodes, a pong packet is broadcast to all the nodes of the cluster. Currently unreachable nodes will eventually be reconfigured when they receive a ping or pong packet from another node or will receive an UPDATE packet from another node if the information it publishes via heartbeat packets are detected to be out of date.

The other nodes will detect that there is a new master serving the same slots served by the old master but with a greater configEpoch, and will upgrade their configuration. Slaves of the old master (or the failed over master if it rejoins the cluster) will not just upgrade the configuration but will also reconfigure to replicate from the new master. How nodes rejoining the cluster are configured is explained in the next sections.

Masters reply to slave vote request

In the previous section it was discussed how slaves try to get elected. This section explains what happens from the point of view of a master that is requested to vote for a given slave.

Masters receive requests for votes in form of FAILOVER_AUTH_REQUEST requests from slaves.

For a vote to be granted the following conditions need to be met:

	A master only votes a single time for a given epoch, and refuses to vote for older epochs: every master has a lastVoteEpoch field and will refuse to vote again as long as the currentEpoch in the auth request packet is not greater than the lastVoteEpoch. When a master replies positively to a vote request, the lastVoteEpoch is updated accordingly, and safely stored on disk.

	A master votes for a slave only if the slave’s master is flagged as FAIL.

	Auth requests with a currentEpoch that is less than the master currentEpoch are ignored. Because of this the master reply will always have the same currentEpoch as the auth request. If the same slave asks again to be voted, incrementing the currentEpoch, it is guaranteed that an old delayed reply from the master can not be accepted for the new vote.

Example of the issue caused by not using rule number 3:

Master currentEpoch is 5, lastVoteEpoch is 1 (this may happen after a few failed elections)

	Slave currentEpoch is 3.

	Slave tries to be elected with epoch 4 (3+1), master replies with an ok with currentEpoch 5, however the reply is delayed.

	Slave will try to be elected again, at a later time, with epoch 5 (4+1), the delayed reply reaches the slave with currentEpoch 5, and is accepted as valid.

	Masters don’t vote for a slave of the same master before NODE_TIMEOUT * 2 has elapsed if a slave of that master was already voted for. This is not strictly required as it is not possible for two slaves to win the election in the same epoch. However, in practical terms it ensures that when a slave is elected it has plenty of time to inform the other slaves and avoid the possibility that another slave will win a new election, performing an unnecessary second failover.

	Masters make no effort to select the best slave in any way. If the slave’s master is in FAIL state and the master did not vote in the current term, a positive vote is granted. The best slave is the most likely to start an election and win it before the other slaves, since it will usually be able to start the voting process earlier because of its higher rank as explained in the previous section.

	When a master refuses to vote for a given slave there is no negative response, the request is simply ignored.

	Masters don’t vote for slaves sending a configEpoch that is less than any configEpoch in the master table for the slots claimed by the slave. Remember that the slave sends the configEpoch of its master, and the bitmap of the slots served by its master. This means that the slave requesting the vote must have a configuration for the slots it wants to failover that is newer or equal the one of the master granting the vote.

Practical example of configuration epoch usefulness during partitions

This section illustrates how the epoch concept is used to make the slave promotion process more resistant to partitions.

	A master is no longer reachable indefinitely. The master has three slaves A, B, C.

	Slave A wins the election and is promoted to master.

	A network partition makes A not available for the majority of the cluster.

	Slave B wins the election and is promoted as master.

	A partition makes B not available for the majority of the cluster.

	The previous partition is fixed, and A is available again.

At this point B is down and A is available again with a role of master (actually UPDATE messages would reconfigure it promptly, but here we assume all UPDATE messages were lost). At the same time, slave C will try to get elected in order to fail over B. This is what happens:

	C will try to get elected and will succeed, since for the majority of masters its master is actually down. It will obtain a new incremental configEpoch.

	A will not be able to claim to be the master for its hash slots, because the other nodes already have the same hash slots associated with a higher configuration epoch (the one of B) compared to the one published by A.

	So, all the nodes will upgrade their table to assign the hash slots to C, and the cluster will continue its operations.

As you’ll see in the next sections, a stale node rejoining a cluster
will usually get notified as soon as possible about the configuration change
because as soon as it pings any other node, the receiver will detect it
has stale information and will send an UPDATE message.

Hash slots configuration propagation

An important part of Redis Cluster is the mechanism used to propagate the information about which cluster node is serving a given set of hash slots. This is vital to both the startup of a fresh cluster and the ability to upgrade the configuration after a slave was promoted to serve the slots of its failing master.

The same mechanism allows nodes partitioned away for an indefinite amount of
time to rejoin the cluster in a sensible way.

There are two ways hash slot configurations are propagated:

	Heartbeat messages. The sender of a ping or pong packet always adds information about the set of hash slots it (or its master, if it is a slave) serves.

	UPDATE messages. Since in every heartbeat packet there is information about the sender configEpoch and set of hash slots served, if a receiver of a heartbeat packet finds the sender information is stale, it will send a packet with new information, forcing the stale node to update its info.

The receiver of a heartbeat or UPDATE message uses certain simple rules in
order to update its table mapping hash slots to nodes. When a new Redis Cluster node is created, its local hash slot table is simply initialized to NULL entries so that each hash slot is not bound or linked to any node. This looks similar to the following:

0 -> NULL
1 -> NULL
2 -> NULL
...
16383 -> NULL

The first rule followed by a node in order to update its hash slot table is the following:

Rule 1: If a hash slot is unassigned (set to NULL), and a known node claims it, I’ll modify my hash slot table and associate the claimed hash slots to it.

So if we receive a heartbeat from node A claiming to serve hash slots 1 and 2 with a configuration epoch value of 3, the table will be modified to:

0 -> NULL
1 -> A [3]
2 -> A [3]
...
16383 -> NULL

When a new cluster is created, a system administrator needs to manually assign (using the CLUSTER ADDSLOTS command, via the redis-trib command line tool, or by any other means) the slots served by each master node only to the node itself, and the information will rapidly propagate across the cluster.

However this rule is not enough. We know that hash slot mapping can change
during two events:

	A slave replaces its master during a failover.

	A slot is resharded from a node to a different one.

For now let’s focus on failovers. When a slave fails over its master, it obtains
a configuration epoch which is guaranteed to be greater than the one of its
master (and more generally greater than any other configuration epoch
generated previously). For example node B, which is a slave of A, may failover
B with configuration epoch of 4. It will start to send heartbeat packets
(the first time mass-broadcasting cluster-wide) and because of the following
second rule, receivers will update their hash slot tables:

Rule 2: If a hash slot is already assigned, and a known node is advertising it using a configEpoch that is greater than the configEpoch of the master currently associated with the slot, I’ll rebind the hash slot to the new node.

So after receiving messages from B that claim to serve hash slots 1 and 2 with configuration epoch of 4, the receivers will update their table in the following way:

0 -> NULL
1 -> B [4]
2 -> B [4]
...
16383 -> NULL

Liveness property: because of the second rule, eventually all nodes in the cluster will agree that the owner of a slot is the one with the greatest configEpoch among the nodes advertising it.

This mechanism in Redis Cluster is called last failover wins.

The same happens during reshardings. When a node importing a hash slot
completes the import operation, its configuration epoch is incremented to make
sure the change will be propagated throughout the cluster.

UPDATE messages, a closer look

With the previous section in mind, it is easier to see how update messages
work. Node A may rejoin the cluster after some time. It will send heartbeat
packets where it claims it serves hash slots 1 and 2 with configuration epoch
of 3. All the receivers with updated information will instead see that
the same hash slots are associated with node B having an higher configuration
epoch. Because of this they’ll send an UPDATE message to A with the new
configuration for the slots. A will update its configuration because of the
rule 2 above.

How nodes rejoin the cluster

The same basic mechanism is used when a node rejoins a cluster.
Continuing with the example above, node A will be notified
that hash slots 1 and 2 are now served by B. Assuming that these two were
the only hash slots served by A, the count of hash slots served by A will
drop to 0! So A will reconfigure to be a slave of the new master.

The actual rule followed is a bit more complex than this. In general it may
happen that A rejoins after a lot of time, in the meantime it may happen that
hash slots originally served by A are served by multiple nodes, for example
hash slot 1 may be served by B, and hash slot 2 by C.

So the actual Redis Cluster node role switch rule is: A master node will change its configuration to replicate (be a slave of) the node that stole its last hash slot.

During reconfiguration, eventually the number of served hash slots will drop to zero, and the node will reconfigure accordingly. Note that in the base case this just means that the old master will be a slave of the slave that replaced it after a failover. However in the general form the rule covers all possible cases.

Slaves do exactly the same: they reconfigure to replicate the node that
stole the last hash slot of its former master.

Replica migration

Redis Cluster implements a concept called replica migration in order to
improve the availability of the system. The idea is that in a cluster with
a master-slave setup, if the map between slaves and masters is fixed
availability is limited over time if multiple independent failures of single
nodes happen.

For example in a cluster where every master has a single slave, the cluster
can continue operations as long as either the master or the slave fail, but not
if both fail the same time. However there is a class of failures that are
the independent failures of single nodes caused by hardware or software issues
that can accumulate over time. For example:

	Master A has a single slave A1.

	Master A fails. A1 is promoted as new master.

	Three hours later A1 fails in an independent manner (unrelated to the failure of A). No other slave is available for promotion since node A is still down. The cluster cannot continue normal operations.

If the map between masters and slaves is fixed, the only way to make the cluster
more resistant to the above scenario is to add slaves to every master, however
this is costly as it requires more instances of Redis to be executed, more
memory, and so forth.

An alternative is to create an asymmetry in the cluster, and let the cluster
layout automatically change over time. For example the cluster may have three
masters A, B, C. A and B have a single slave each, A1 and B1. However the master
C is different and has two slaves: C1 and C2.

Replica migration is the process of automatic reconfiguration of a slave
in order to migrate to a master that has no longer coverage (no working
slaves). With replica migration the scenario mentioned above turns into the
following:

	Master A fails. A1 is promoted.

	C2 migrates as slave of A1, that is otherwise not backed by any slave.

	Three hours later A1 fails as well.

	C2 is promoted as new master to replace A1.

	The cluster can continue the operations.

Replica migration algorithm

The migration algorithm does not use any form of agreement since the slave
layout in a Redis Cluster is not part of the cluster configuration that needs
to be consistent and/or versioned with config epochs. Instead it uses an
algorithm to avoid mass-migration of slaves when a master is not backed.
The algorithm guarantees that eventually (once the cluster configuration is
stable) every master will be backed by at least one slave.

This is how the algorithm works. To start we need to define what is a
good slave in this context: a good slave is a slave not in FAIL state
from the point of view of a given node.

The execution of the algorithm is triggered in every slave that detects that
there is at least a single master without good slaves. However among all the
slaves detecting this condition, only a subset should act. This subset is
actually often a single slave unless different slaves have in a given moment
a slightly different view of the failure state of other nodes.

The acting slave is the slave among the masters with the maximum number
of attached slaves, that is not in FAIL state and has the smallest node ID.

So for example if there are 10 masters with 1 slave each, and 2 masters with
5 slaves each, the slave that will try to migrate is - among the 2 masters
having 5 slaves - the one with the lowest node ID. Given that no agreement
is used, it is possible that when the cluster configuration is not stable,
a race condition occurs where multiple slaves believe themselves to be
the non-failing slave with the lower node ID (it is unlikely for this to happen
in practice). If this happens, the result is multiple slaves migrating to the
same master, which is harmless. If the race happens in a way that will leave
the ceding master without slaves, as soon as the cluster is stable again
the algorithm will be re-executed again and will migrate a slave back to
the original master.

Eventually every master will be backed by at least one slave. However,
the normal behavior is that a single slave migrates from a master with
multiple slaves to an orphaned master.

The algorithm is controlled by a user-configurable parameter called
cluster-migration-barrier: the number of good slaves a master
must be left with before a slave can migrate away. For example, if this
parameter is set to 2, a slave can try to migrate only if its master remains
with two working slaves.

configEpoch conflicts resolution algorithm

When new configEpoch values are created via slave promotion during
failovers, they are guaranteed to be unique.

However there are two distinct events where new configEpoch values are
created in an unsafe way, just incrementing the local currentEpoch of
the local node and hoping there are no conflicts at the same time.
Both the events are system-administrator triggered:

	CLUSTER FAILOVER command with TAKEOVER option is able to manually promote a slave node into a master without the majority of masters being available. This is useful, for example, in multi data center setups.

	Migration of slots for cluster rebalancing also generates new configuration epochs inside the local node without agreement for performance reasons.

Specifically, during manual reshardings, when a hash slot is migrated from
a node A to a node B, the resharding program will force B to upgrade
its configuration to an epoch which is the greatest found in the cluster,
plus 1 (unless the node is already the one with the greatest configuration
epoch), without requiring agreement from other nodes.
Usually a real world resharding involves moving several hundred hash slots
(especially in small clusters). Requiring an agreement to generate new
configuration epochs during reshardings, for each hash slot moved, is
inefficient. Moreover it requires an fsync in each of the cluster nodes
every time in order to store the new configuration. Because of the way it is
performed instead, we only need a new config epoch when the first hash slot is moved,
making it much more efficient in production environments.

However because of the two cases above, it is possible (though unlikely) to end
with multiple nodes having the same configuration epoch. A resharding operation
performed by the system administrator, and a failover happening at the same
time (plus a lot of bad luck) could cause currentEpoch collisions if
they are not propagated fast enough.

Moreover, software bugs and filesystem corruptions can also contribute
to multiple nodes having the same configuration epoch.

When masters serving different hash slots have the same configEpoch, there
are no issues. It is more important that slaves failing over a master have
unique configuration epochs.

That said, manual interventions or reshardings may change the cluster
configuration in different ways. The Redis Cluster main liveness property
requires that slot configurations always converge, so under every circumstance
we really want all the master nodes to have a different configEpoch.

In order to enforce this, a conflict resolution algorithm is used in the
event that two nodes end up with the same configEpoch.

	IF a master node detects another master node is advertising itself with
the same configEpoch.

	AND IF the node has a lexicographically smaller Node ID compared to the other node claiming the same configEpoch.

	THEN it increments its currentEpoch by 1, and uses it as the new configEpoch.

If there are any set of nodes with the same configEpoch, all the nodes but the one with the greatest Node ID will move forward, guaranteeing that, eventually, every node will pick a unique configEpoch regardless of what happened.

This mechanism also guarantees that after a fresh cluster is created, all
nodes start with a different configEpoch (even if this is not actually
used) since redis-trib makes sure to use CONFIG SET-CONFIG-EPOCH at startup.
However if for some reason a node is left misconfigured, it will update
its configuration to a different configuration epoch automatically.

Node resets

Nodes can be software reset (without restarting them) in order to be reused
in a different role or in a different cluster. This is useful in normal
operations, in testing, and in cloud environments where a given node can
be reprovisioned to join a different set of nodes to enlarge or create a new
cluster.

In Redis Cluster nodes are reset using the CLUSTER RESET command. The
command is provided in two variants:

	CLUSTER RESET SOFT

	CLUSTER RESET HARD

The command must be sent directly to the node to reset. If no reset type is
provided, a soft reset is performed.

The following is a list of operations performed by a reset:

	Soft and hard reset: If the node is a slave, it is turned into a master, and its dataset is discarded. If the node is a master and contains keys the reset operation is aborted.

	Soft and hard reset: All the slots are released, and the manual failover state is reset.

	Soft and hard reset: All the other nodes in the nodes table are removed, so the node no longer knows any other node.

	Hard reset only: currentEpoch, configEpoch, and lastVoteEpoch are set to 0.

	Hard reset only: the Node ID is changed to a new random ID.

Master nodes with non-empty data sets can’t be reset (since normally you want to reshard data to the other nodes). However, under special conditions when this is appropriate (e.g. when a cluster is totally destroyed with the intent of creating a new one), FLUSHALL must be executed before proceeding with the reset.

Removing nodes from a cluster

It is possible to practically remove a node from an existing cluster by
resharding all its data to other nodes (if it is a master node) and
shutting it down. However, the other nodes will still remember its node
ID and address, and will attempt to connect with it.

For this reason, when a node is removed we want to also remove its entry
from all the other nodes tables. This is accomplished by using the
CLUSTER FORGET <node-id> command.

The command does two things:

	It removes the node with the specified node ID from the nodes table.

	It sets a 60 second ban which prevents a node with the same node ID from being re-added.

The second operation is needed because Redis Cluster uses gossip in order to auto-discover nodes, so removing the node X from node A, could result in node B gossiping about node X to A again. Because of the 60 second ban, the Redis Cluster administration tools have 60 seconds in order to remove the node from all the nodes, preventing the re-addition of the node due to auto discovery.

Further information is available in the CLUSTER FORGET documentation.

Publish/Subscribe

In a Redis Cluster clients can subscribe to every node, and can also
publish to every other node. The cluster will make sure that published
messages are forwarded as needed.

The current implementation will simply broadcast each published message
to all other nodes, but at some point this will be optimized either
using Bloom filters or other algorithms.

Appendix

Appendix A: CRC16 reference implementation in ANSI C

/*
 * Copyright 2001-2010 Georges Menie (www.menie.org)
 * Copyright 2010 Salvatore Sanfilippo (adapted to Redis coding style)
 * All rights reserved.
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * * Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 * * Neither the name of the University of California, Berkeley nor the
 * names of its contributors may be used to endorse or promote products
 * derived from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS AND CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/* CRC16 implementation according to CCITT standards.
 *
 * Note by @antirez: this is actually the XMODEM CRC 16 algorithm, using the
 * following parameters:
 *
 * Name : "XMODEM", also known as "ZMODEM", "CRC-16/ACORN"
 * Width : 16 bit
 * Poly : 1021 (That is actually x^16 + x^12 + x^5 + 1)
 * Initialization : 0000
 * Reflect Input byte : False
 * Reflect Output CRC : False
 * Xor constant to output CRC : 0000
 * Output for "123456789" : 31C3
 */

static const uint16_t crc16tab[256]= {
 0x0000,0x1021,0x2042,0x3063,0x4084,0x50a5,0x60c6,0x70e7,
 0x8108,0x9129,0xa14a,0xb16b,0xc18c,0xd1ad,0xe1ce,0xf1ef,
 0x1231,0x0210,0x3273,0x2252,0x52b5,0x4294,0x72f7,0x62d6,
 0x9339,0x8318,0xb37b,0xa35a,0xd3bd,0xc39c,0xf3ff,0xe3de,
 0x2462,0x3443,0x0420,0x1401,0x64e6,0x74c7,0x44a4,0x5485,
 0xa56a,0xb54b,0x8528,0x9509,0xe5ee,0xf5cf,0xc5ac,0xd58d,
 0x3653,0x2672,0x1611,0x0630,0x76d7,0x66f6,0x5695,0x46b4,
 0xb75b,0xa77a,0x9719,0x8738,0xf7df,0xe7fe,0xd79d,0xc7bc,
 0x48c4,0x58e5,0x6886,0x78a7,0x0840,0x1861,0x2802,0x3823,
 0xc9cc,0xd9ed,0xe98e,0xf9af,0x8948,0x9969,0xa90a,0xb92b,
 0x5af5,0x4ad4,0x7ab7,0x6a96,0x1a71,0x0a50,0x3a33,0x2a12,
 0xdbfd,0xcbdc,0xfbbf,0xeb9e,0x9b79,0x8b58,0xbb3b,0xab1a,
 0x6ca6,0x7c87,0x4ce4,0x5cc5,0x2c22,0x3c03,0x0c60,0x1c41,
 0xedae,0xfd8f,0xcdec,0xddcd,0xad2a,0xbd0b,0x8d68,0x9d49,
 0x7e97,0x6eb6,0x5ed5,0x4ef4,0x3e13,0x2e32,0x1e51,0x0e70,
 0xff9f,0xefbe,0xdfdd,0xcffc,0xbf1b,0xaf3a,0x9f59,0x8f78,
 0x9188,0x81a9,0xb1ca,0xa1eb,0xd10c,0xc12d,0xf14e,0xe16f,
 0x1080,0x00a1,0x30c2,0x20e3,0x5004,0x4025,0x7046,0x6067,
 0x83b9,0x9398,0xa3fb,0xb3da,0xc33d,0xd31c,0xe37f,0xf35e,
 0x02b1,0x1290,0x22f3,0x32d2,0x4235,0x5214,0x6277,0x7256,
 0xb5ea,0xa5cb,0x95a8,0x8589,0xf56e,0xe54f,0xd52c,0xc50d,
 0x34e2,0x24c3,0x14a0,0x0481,0x7466,0x6447,0x5424,0x4405,
 0xa7db,0xb7fa,0x8799,0x97b8,0xe75f,0xf77e,0xc71d,0xd73c,
 0x26d3,0x36f2,0x0691,0x16b0,0x6657,0x7676,0x4615,0x5634,
 0xd94c,0xc96d,0xf90e,0xe92f,0x99c8,0x89e9,0xb98a,0xa9ab,
 0x5844,0x4865,0x7806,0x6827,0x18c0,0x08e1,0x3882,0x28a3,
 0xcb7d,0xdb5c,0xeb3f,0xfb1e,0x8bf9,0x9bd8,0xabbb,0xbb9a,
 0x4a75,0x5a54,0x6a37,0x7a16,0x0af1,0x1ad0,0x2ab3,0x3a92,
 0xfd2e,0xed0f,0xdd6c,0xcd4d,0xbdaa,0xad8b,0x9de8,0x8dc9,
 0x7c26,0x6c07,0x5c64,0x4c45,0x3ca2,0x2c83,0x1ce0,0x0cc1,
 0xef1f,0xff3e,0xcf5d,0xdf7c,0xaf9b,0xbfba,0x8fd9,0x9ff8,
 0x6e17,0x7e36,0x4e55,0x5e74,0x2e93,0x3eb2,0x0ed1,0x1ef0
};

uint16_t crc16(const char *buf, int len) {
 int counter;
 uint16_t crc = 0;
 for (counter = 0; counter < len; counter++)
 crc = (crc<<8) ^ crc16tab[((crc>>8) ^ *buf++)&0x00FF];
 return crc;
}

 An introduction to Redis data types and abstractions

An introduction to Redis data types and abstractions

Redis is not a plain key-value store, it is actually a data structures server, supporting different kinds of values. What this means is that, while in
traditional key-value stores you associated string keys to string values, in
Redis the value is not limited to a simple string, but can also hold more complex
data structures. The following is the list of all the data structures supported
by Redis, which will be covered separately in this tutorial:

	Binary-safe strings.

	Lists: collections of string elements sorted according to the order of insertion. They are basically linked lists.

	Sets: collections of unique, unsorted string elements.

	Sorted sets, similar to Sets but where every string element is associated to a
floating number value, called score. The elements are always taken sorted
by their score, so unlike Sets it is possible to retrieve a range of elements
(for example you may ask: give me the top 10, or the bottom 10).

	Hashes, which are maps composed of fields associated with values. Both the
field and the value are strings. This is very similar to Ruby or Python
hashes.

	Bit arrays (or simply bitmaps): it is possible, using special commands, to
handle String values like an array of bits: you can set and clear individual
bits, count all the bits set to 1, find the first set or unset bit, and so
forth.

	HyperLogLogs: this is a probabilistic data structure which is used in order
to estimate the cardinality of a set. Don’t be scared, it is simpler than
it seems... See later in the HyperLogLog section of this tutorial.

It’s not always trivial to grasp how these data types work and what to use in
order to solve a given problem from the command reference, so this
document is a crash course to Redis data types and their most common patterns.

For all the examples we’ll use the redis-cli utility, a simple but
handy command-line utility, to issue commands against the Redis server.

Redis keys

Redis keys are binary safe, this means that you can use any binary sequence as a
key, from a string like “foo” to the content of a JPEG file.
The empty string is also a valid key.

A few other rules about keys:

	Very long keys are not a good idea. For instance a key of 1024 bytes is a bad
idea not only memory-wise, but also because the lookup of the key in the
dataset may require several costly key-comparisons. Even when the task at hand
is to match the existence of a large value, hashing it (for example
with SHA1) is a better idea, especially from the perspective of memory
and bandwidth.

	Very short keys are often not a good idea. There is little point in writing
“u1000flw” as a key if you can instead write “user:1000:followers”. The latter
is more readable and the added space is minor compared to the space used by
the key object itself and the value object. While short keys will obviously
consume a bit less memory, your job is to find the right balance.

	Try to stick with a schema. For instance “object-type:id” is a good
idea, as in “user:1000”. Dots or dashes are often used for multi-word
fields, as in “comment:1234:reply.to” or “comment:1234:reply-to”.

	The maximum allowed key size is 512 MB.

[bookmark: strings]
Redis Strings

The Redis String type is the simplest type of value you can associate with
a Redis key. It is the only data type in Memcached, so it is also very natural
for newcomers to use it in Redis.

Since Redis keys are strings, when we use the string type as a value too,
we are mapping a string to another string. The string data type is useful
for a number of use cases, like caching HTML fragments or pages.

Let’s play a bit with the string type, using redis-cli (all the examples
will be performed via redis-cli in this tutorial).

> set mykey somevalue
OK
> get mykey
"somevalue"

As you can see using the SET and the GET commands are the way we set
and retrieve a string value. Note that SET will replace any existing value
already stored into the key, in the case that the key already exists, even if
the key is associated with a non-string value. So SET performs an assignment.

Values can be strings (including binary data) of every kind, for instance you
can store a jpeg image inside a value. A value can’t be bigger than 512 MB.

The SET command has interesting options, that are provided as additional
arguments. For example, I may ask SET to fail if the key already exists,
or the opposite, that it only succeed if the key already exists:

> set mykey newval nx
(nil)
> set mykey newval xx
OK

Even if strings are the basic values of Redis, there are interesting operations
you can perform with them. For instance, one is atomic increment:

> set counter 100
OK
> incr counter
(integer) 101
> incr counter
(integer) 102
> incrby counter 50
(integer) 152

The INCR command parses the string value as an integer,
increments it by one, and finally sets the obtained value as the new value.
There are other similar commands like INCRBY,
DECR and DECRBY. Internally it’s
always the same command, acting in a slightly different way.

What does it mean that INCR is atomic?
That even multiple clients issuing INCR against
the same key will never enter into a race condition. For instance, it will never
happen that client 1 reads “10”, client 2 reads “10” at the same time, both
increment to 11, and set the new value to 11. The final value will always be
12 and the read-increment-set operation is performed while all the other
clients are not executing a command at the same time.

There are a number of commands for operating on strings. For example
the GETSET command sets a key to a new value, returning the old value as the
result. You can use this command, for example, if you have a
system that increments a Redis key using INCR
every time your web site receives a new visitor. You may want to collect this
information once every hour, without losing a single increment.
You can GETSET the key, assigning it the new value of “0” and reading the
old value back.

The ability to set or retrieve the value of multiple keys in a single
command is also useful for reduced latency. For this reason there are
the MSET and MGET commands:

> mset a 10 b 20 c 30
OK
> mget a b c
1) "10"
2) "20"
3) "30"

When MGET is used, Redis returns an array of values.

Altering and querying the key space

There are commands that are not defined on particular types, but are useful
in order to interact with the space of keys, and thus, can be used with
keys of any type.

For example the EXISTS command returns 1 or 0 to signal if a given key
exists or not in the database, while the DEL command deletes a key
and associated value, whatever the value is.

> set mykey hello
OK
> exists mykey
(integer) 1
> del mykey
(integer) 1
> exists mykey
(integer) 0

From the examples you can also see how DEL itself returns 1 or 0 depending on whether
the key was removed (it existed) or not (there was no such key with that
name).

There are many key space related commands, but the above two are the
essential ones together with the TYPE command, which returns the kind
of value stored at the specified key:

> set mykey x
OK
> type mykey
string
> del mykey
(integer) 1
> type mykey
none

Redis expires: keys with limited time to live

Before continuing with more complex data structures, we need to discuss
another feature which works regardless of the value type, and is
called Redis expires. Basically you can set a timeout for a key, which
is a limited time to live. When the time to live elapses, the key is
automatically destroyed, exactly as if the user called the DEL command
with the key.

A few quick info about Redis expires:

	They can be set both using seconds or milliseconds precision.

	However the expire time resolution is always 1 millisecond.

	Information about expires are replicated and persisted on disk, the time virtually passes when your Redis server remains stopped (this means that Redis saves the date at which a key will expire).

Setting an expire is trivial:

> set key some-value
OK
> expire key 5
(integer) 1
> get key (immediately)
"some-value"
> get key (after some time)
(nil)

The key vanished between the two GET calls, since the second call was
delayed more than 5 seconds. In the example above we used EXPIRE in
order to set the expire (it can also be used in order to set a different
expire to a key already having one, like PERSIST can be used in order
to remove the expire and make the key persistent forever). However we
can also create keys with expires using other Redis commands. For example
using SET options:

> set key 100 ex 10
OK
> ttl key
(integer) 9

The example above sets a key with the string value 100, having an expire
of ten seconds. Later the TTL command is called in order to check the
remaining time to live for the key.

In order to set and check expires in milliseconds, check the PEXPIRE and
the PTTL commands, and the full list of SET options.

[bookmark: lists]
Redis Lists

To explain the List data type it’s better to start with a little bit of theory,
as the term List is often used in an improper way by information technology
folks. For instance “Python Lists” are not what the name may suggest (Linked
Lists), but rather Arrays (the same data type is called Array in
Ruby actually).

From a very general point of view a List is just a sequence of ordered
elements: 10,20,1,2,3 is a list. But the properties of a List implemented using
an Array are very different from the properties of a List implemented using a
Linked List.

Redis lists are implemented via Linked Lists. This means that even if you have
millions of elements inside a list, the operation of adding a new element in
the head or in the tail of the list is performed in constant time. The speed of adding a
new element with the LPUSH command to the head of a list with ten
elements is the same as adding an element to the head of list with 10
million elements.

What’s the downside? Accessing an element by index is very fast in lists
implemented with an Array (constant time indexed access) and not so fast in
lists implemented by linked lists (where the operation requires an amount of
work proportional to the index of the accessed element).

Redis Lists are implemented with linked lists because for a database system it
is crucial to be able to add elements to a very long list in a very fast way.
Another strong advantage, as you’ll see in a moment, is that Redis Lists can be
taken at constant length in constant time.

When fast access to the middle of a large collection of elements is important,
there is a different data structure that can be used, called sorted sets.
Sorted sets will be covered later in this tutorial.

First steps with Redis Lists

The LPUSH command adds a new element into a list, on the
left (at the head), while the RPUSH command adds a new
element into a list ,on the right (at the tail). Finally the
LRANGE command extracts ranges of elements from lists:

> rpush mylist A
(integer) 1
> rpush mylist B
(integer) 2
> lpush mylist first
(integer) 3
> lrange mylist 0 -1
1) "first"
2) "A"
3) "B"

Note that LRANGE takes two indexes, the first and the last
element of the range to return. Both the indexes can be negative, telling Redis
to start counting from the end: so -1 is the last element, -2 is the
penultimate element of the list, and so forth.

As you can see RPUSH appended the elements on the right of the list, while
the final LPUSH appended the element on the left.

Both commands are variadic commands, meaning that you are free to push
multiple elements into a list in a single call:

> rpush mylist 1 2 3 4 5 "foo bar"
(integer) 9
> lrange mylist 0 -1
1) "first"
2) "A"
3) "B"
4) "1"
5) "2"
6) "3"
7) "4"
8) "5"
9) "foo bar"

An important operation defined on Redis lists is the ability to pop elements.
Popping elements is the operation of both retrieving the element from the list,
and eliminating it from the list, at the same time. You can pop elements
from left and right, similarly to how you can push elements in both sides
of the list:

> rpush mylist a b c
(integer) 3
> rpop mylist
"c"
> rpop mylist
"b"
> rpop mylist
"a"

We added three elements and popped three elements, so at the end of this
sequence of commands the list is empty and there are no more elements to
pop. If we try to pop yet another element, this is the result we get:

> rpop mylist
(nil)

Redis returned a NULL value to signal that there are no elements into the
list.

Common use cases for lists

Lists are useful for a number of tasks, two very representative use cases
are the following:

	Remember the latest updates posted by users into a social network.

	Communication between processes, using a consumer-producer pattern where the producer pushes items into a list, and a consumer (usually a worker) consumes those items and executed actions. Redis has special list commands to make this use case both more reliable and efficient.

For example both the popular Ruby libraries resque [https://github.com/resque/resque] and
sidekiq [https://github.com/mperham/sidekiq] use Redis lists under the hood in order to
implement background jobs.

The popular Twitter social network takes the latest tweets [http://www.infoq.com/presentations/Real-Time-Delivery-Twitter]
posted by users into Redis lists.

To describe a common use case step by step, imagine your home page shows the latest
photos published in a photo sharing social network and you want to speedup access.

	Every time a user posts a new photo, we add its ID into a list with LPUSH.

	When users visit the home page, we use LRANGE 0 9 in order to get the latest 10 posted items.

Capped lists

In many use cases we just want to use lists to store the latest items,
whatever they are: social network updates, logs, or anything else.

Redis allows us to use lists as a capped collection, only remembering the latest
N items and discarding all the oldest items using the LTRIM command.

The LTRIM command is similar to LRANGE, but instead of displaying the
specified range of elements it sets this range as the new list value. All
the elements outside the given range are removed.

An example will make it more clear:

> rpush mylist 1 2 3 4 5
(integer) 5
> ltrim mylist 0 2
OK
> lrange mylist 0 -1
1) "1"
2) "2"
3) "3"

The above LTRIM command tells Redis to take just list elements from index
0 to 2, everything else will be discarded. This allows for a very simple but
useful pattern: doing a List push operation + a List trim operation together
in order to add a new element and discard elements exceeding a limit:

LPUSH mylist <some element>
LTRIM mylist 0 999

The above combination adds a new element and takes only the 1000
newest elements into the list. With LRANGE you can access the top items
without any need to remember very old data.

Note: while LRANGE is technically an O(N) command, accessing small ranges
towards the head or the tail of the list is a constant time operation.

Blocking operations on lists

Lists have a special feature that make them suitable to implement queues,
and in general as a building block for inter process communication systems:
blocking operations.

Imagine you want to push items into a list with one process, and use
a different process in order to actually do some kind of work with those
items. This is the usual producer / consumer setup, and can be implemented
in the following simple way:

	To push items into the list, producers call LPUSH.

	To extract / process items from the list, consumers call RPOP.

However it is possible that sometimes the list is empty and there is nothing
to process, so RPOP just returns NULL. In this case a consumer is forced to wait
some time and retry again with RPOP. This is called polling, and is not
a good idea in this context because it has several drawbacks:

	Forces Redis and clients to process useless commands (all the requests when the list is empty will get no actual work done, they’ll just return NULL).

	Adds a delay to the processing of items, since after a worker receives a NULL, it waits some time. To make the delay smaller, we could wait less between calls to RPOP, with the effect of amplifying problem number 1, i.e. more useless calls to Redis.

So Redis implements commands called BRPOP and BLPOP which are versions
of RPOP and LPOP able to block if the list is empty: they’ll return to
the caller only when a new element is added to the list, or when a user-specified
timeout is reached.

This is an example of a BRPOP call we could use in the worker:

> brpop tasks 5
1) "tasks"
2) "do_something"

It means: “wait for elements in the list tasks, but return if after 5 seconds
no element is available”.

Note that you can use 0 as timeout to wait for elements forever, and you can
also specify multiple lists and not just one, in order to wait on multiple
lists at the same time, and get notified when the first list receives an
element.

A few things to note about BRPOP:

	Clients are served in an ordered way: the first client that blocked waiting for a list, is served first when an element is pushed by some other client, and so forth.

	The return value is different compared to RPOP: it is a two-element array since it also includes the name of the key, because BRPOP and BLPOP are able to block waiting for elements from multiple lists.

	If the timeout is reached, NULL is returned.

There are more things you should know about lists and blocking ops. We
suggest that you read more on the following:

	It is possible to build safer queues or rotating queues using RPOPLPUSH.

	There is also a blocking variant of the command, called BRPOPLPUSH.

Automatic creation and removal of keys

So far in our examples we never had to create empty lists before pushing
elements, or removing empty lists when they no longer have elements inside.
It is Redis’ responsibility to delete keys when lists are left empty, or to create
an empty list if the key does not exist and we are trying to add elements
to it, for example, with LPUSH.

This is not specific to lists, it applies to all the Redis data types
composed of multiple elements – Sets, Sorted Sets and Hashes.

Basically we can summarize the behavior with three rules:

	When we add an element to an aggregate data type, if the target key does not exist, an empty aggregate data type is created before adding the element.

	When we remove elements from an aggregate data type, if the value remains empty, the key is automatically destroyed.

	Calling a read-only command such as LLEN (which returns the length of the list), or a write command removing elements, with an empty key, always produces the same result as if the key is holding an empty aggregate type of the type the command expects to find.

Examples of rule 1:

> del mylist
(integer) 1
> lpush mylist 1 2 3
(integer) 3

However we can’t perform operations against the wrong type if the key exists:

> set foo bar
OK
> lpush foo 1 2 3
(error) WRONGTYPE Operation against a key holding the wrong kind of value
> type foo
string

Example of rule 2:

> lpush mylist 1 2 3
(integer) 3
> exists mylist
(integer) 1
> lpop mylist
"3"
> lpop mylist
"2"
> lpop mylist
"1"
> exists mylist
(integer) 0

The key no longer exists after all the elements are popped.

Example of rule 3:

> del mylist
(integer) 0
> llen mylist
(integer) 0
> lpop mylist
(nil)

[bookmark: hashes]
Redis Hashes

Redis hashes look exactly how one might expect a “hash” to look, with field-value pairs:

> hmset user:1000 username antirez birthyear 1977 verified 1
OK
> hget user:1000 username
"antirez"
> hget user:1000 birthyear
"1977"
> hgetall user:1000
1) "username"
2) "antirez"
3) "birthyear"
4) "1977"
5) "verified"
6) "1"

While hashes are handy to represent objects, actually the number of fields you can
put inside a hash has no practical limits (other than available memory), so you can use
hashes in many different ways inside your application.

The command HMSET sets multiple fields of the hash, while HGET retrieves
a single field. HMGET is similar to HGET but returns an array of values:

> hmget user:1000 username birthyear no-such-field
1) "antirez"
2) "1977"
3) (nil)

There are commands that are able to perform operations on individual fields
as well, like HINCRBY:

> hincrby user:1000 birthyear 10
(integer) 1987
> hincrby user:1000 birthyear 10
(integer) 1997

You can find the full list of hash commands in the documentation [http://redis.io/commands#hash].

It is worth noting that small hashes (i.e., a few elements with small values) are
encoded in special way in memory that make them very memory efficient.

[bookmark: sets]
Redis Sets

Redis Sets are unordered collections of strings. The
SADD command adds new elements to a set. It’s also possible
to do a number of other operations against sets like testing if a given element
already exists, performing the intersection, union or difference between
multiple sets, and so forth.

> sadd myset 1 2 3
(integer) 3
> smembers myset
1. 3
2. 1
3. 2

Here I’ve added three elements to my set and told Redis to return all the
elements. As you can see they are not sorted – Redis is free to return the
elements in any order at every call, since there is no contract with the
user about element ordering.

Redis has commands to test for membership. For example, checking if an element exists:

> sismember myset 3
(integer) 1
> sismember myset 30
(integer) 0

“3” is a member of the set, while “30” is not.

Sets are good for expressing relations between objects.
For instance we can easily use sets in order to implement tags.

A simple way to model this problem is to have a set for every object we
want to tag. The set contains the IDs of the tags associated with the object.

One illustration is tagging news articles.
If article ID 1000 is tagged with tags 1, 2, 5 and 77, a set
can associate these tag IDs with the news item:

> sadd news:1000:tags 1 2 5 77
(integer) 4

We may also want to have the inverse relation as well: the list
of all the news tagged with a given tag:

> sadd tag:1:news 1000
(integer) 1
> sadd tag:2:news 1000
(integer) 1
> sadd tag:5:news 1000
(integer) 1
> sadd tag:77:news 1000
(integer) 1

To get all the tags for a given object is trivial:

> smembers news:1000:tags
1. 5
2. 1
3. 77
4. 2

Note: in the example we assume you have another data structure, for example
a Redis hash, which maps tag IDs to tag names.

There are other non trivial operations that are still easy to implement
using the right Redis commands. For instance we may want a list of all the
objects with the tags 1, 2, 10, and 27 together. We can do this using
the SINTER command, which performs the intersection between different
sets. We can use:

> sinter tag:1:news tag:2:news tag:10:news tag:27:news
... results here ...

In addition to intersection you can also perform
unions, difference, extract a random element, and so forth.

The command to extract an element is called SPOP, and is handy to model
certain problems. For example in order to implement a web-based poker game,
you may want to represent your deck with a set. Imagine we use a one-char
prefix for (C)lubs, (D)iamonds, (H)earts, (S)pades:

> sadd deck C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 CJ CQ CK
 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 DJ DQ DK H1 H2 H3
 H4 H5 H6 H7 H8 H9 H10 HJ HQ HK S1 S2 S3 S4 S5 S6
 S7 S8 S9 S10 SJ SQ SK
 (integer) 52

Now we want to provide each player with 5 cards. The SPOP command
removes a random element, returning it to the client, so it is the
perfect operation in this case.

However if we call it against our deck directly, in the next play of the
game we’ll need to populate the deck of cards again, which may not be
ideal. So to start, we can make a copy of the set stored in the deck key
into the game:1:deck key.

This is accomplished using SUNIONSTORE, which normally performs the
union between multiple sets, and stores the result into another set.
However, since the union of a single set is itself, I can copy my deck
with:

> sunionstore game:1:deck deck
(integer) 52

Now I’m ready to provide the first player with five cards:

> spop game:1:deck
"C6"
> spop game:1:deck
"CQ"
> spop game:1:deck
"D1"
> spop game:1:deck
"CJ"
> spop game:1:deck
"SJ"

One pair of jacks, not great...

This is a good time to introduce the set command that provides the number
of elements inside a set. This is often called the cardinality of a set
in the context of set theory, so the Redis command is called SCARD.

> scard game:1:deck
(integer) 47

The math works: 52 - 5 = 47.

When you need to just get random elements without removing them from the
set, there is the SRANDMEMBER command suitable for the task. It also features
the ability to return both repeating and non-repeating elements.

[bookmark: sorted-sets]
Redis Sorted sets

Sorted sets are a data type which is similar to a mix between a Set and
a Hash. Like sets, sorted sets are composed of unique, non-repeating
string elements, so in some sense a sorted set is a set as well.

However while elements inside sets are not ordered, every element in
a sorted set is associated with a floating point value, called the score
(this is why the type is also similar to a hash, since every element
is mapped to a value).

Moreover, elements in a sorted sets are taken in order (so they are not
ordered on request, order is a peculiarity of the data structure used to
represent sorted sets). They are ordered according to the following rule:

	If A and B are two elements with a different score, then A > B if A.score is > B.score.

	If A and B have exactly the same score, then A > B if the A string is lexicographically greater than the B string. A and B strings can’t be equal since sorted sets only have unique elements.

Let’s start with a simple example, adding a few selected hackers names as
sorted set elements, with their year of birth as “score”.

> zadd hackers 1940 "Alan Kay"
(integer) 1
> zadd hackers 1957 "Sophie Wilson"
(integer) 1
> zadd hackers 1953 "Richard Stallman"
(integer) 1
> zadd hackers 1949 "Anita Borg"
(integer) 1
> zadd hackers 1965 "Yukihiro Matsumoto"
(integer) 1
> zadd hackers 1914 "Hedy Lamarr"
(integer) 1
> zadd hackers 1916 "Claude Shannon"
(integer) 1
> zadd hackers 1969 "Linus Torvalds"
(integer) 1
> zadd hackers 1912 "Alan Turing"
(integer) 1

As you can see ZADD is similar to SADD, but takes one additional argument
(placed before the element to be added) which is the score.
ZADD is also variadic, so you are free to specify multiple score-value
pairs, even if this is not used in the example above.

With sorted sets it is trivial to return a list of hackers sorted by their
birth year because actually they are already sorted.

Implementation note: Sorted sets are implemented via a
dual-ported data structure containing both a skip list and a hash table, so
every time we add an element Redis performs an O(log(N)) operation. That’s
good, but when we ask for sorted elements Redis does not have to do any work at
all, it’s already all sorted:

> zrange hackers 0 -1
1) "Alan Turing"
2) "Hedy Lamarr"
3) "Claude Shannon"
4) "Alan Kay"
5) "Anita Borg"
6) "Richard Stallman"
7) "Sophie Wilson"
8) "Yukihiro Matsumoto"
9) "Linus Torvalds"

Note: 0 and -1 means from element index 0 to the last element (-1 works
here just as it does in the case of the LRANGE command).

What if I want to order them the opposite way, youngest to oldest?
Use ZREVRANGE instead of ZRANGE:

> zrevrange hackers 0 -1
1) "Linus Torvalds"
2) "Yukihiro Matsumoto"
3) "Sophie Wilson"
4) "Richard Stallman"
5) "Anita Borg"
6) "Alan Kay"
7) "Claude Shannon"
8) "Hedy Lamarr"
9) "Alan Turing"

It is possible to return scores as well, using the WITHSCORES argument:

> zrange hackers 0 -1 withscores
1) "Alan Turing"
2) "1912"
3) "Hedy Lamarr"
4) "1914"
5) "Claude Shannon"
6) "1916"
7) "Alan Kay"
8) "1940"
9) "Anita Borg"
10) "1949"
11) "Richard Stallman"
12) "1953"
13) "Sophie Wilson"
14) "1957"
15) "Yukihiro Matsumoto"
16) "1965"
17) "Linus Torvalds"
18) "1969"

Operating on ranges

Sorted sets are more powerful than this. They can operate on ranges.
Let’s get all the individuals that were born up to 1950 inclusive. We
use the ZRANGEBYSCORE command to do it:

> zrangebyscore hackers -inf 1950
1) "Alan Turing"
2) "Hedy Lamarr"
3) "Claude Shannon"
4) "Alan Kay"
5) "Anita Borg"

We asked Redis to return all the elements with a score between negative
infinity and 1950 (both extremes are included).

It’s also possible to remove ranges of elements. Let’s remove all
the hackers born between 1940 and 1960 from the sorted set:

> zremrangebyscore hackers 1940 1960
(integer) 4

ZREMRANGEBYSCORE is perhaps not the best command name,
but it can be very useful, and returns the number of removed elements.

Another extremely useful operation defined for sorted set elements
is the get-rank operation. It is possible to ask what is the
position of an element in the set of the ordered elements.

> zrank hackers "Anita Borg"
(integer) 4

The ZREVRANK command is also available in order to get the rank, considering
the elements sorted a descending way.

Lexicographical scores

With recent versions of Redis 2.8, a new feature was introduced that allows
getting ranges lexicographically, assuming elements in a sorted set are all
inserted with the same identical score (elements are compared with the C
memcmp function, so it is guaranteed that there is no collation, and every
Redis instance will reply with the same output).

The main commands to operate with lexicographical ranges are ZRANGEBYLEX,
ZREVRANGEBYLEX, ZREMRANGEBYLEX and ZLEXCOUNT.

For example, let’s add again our list of famous hackers, but this time
use a score of zero for all the elements:

> zadd hackers 0 "Alan Kay" 0 "Sophie Wilson" 0 "Richard Stallman" 0
 "Anita Borg" 0 "Yukihiro Matsumoto" 0 "Hedy Lamarr" 0 "Claude Shannon"
 0 "Linus Torvalds" 0 "Alan Turing"

Because of the sorted sets ordering rules, they are already sorted
lexicographically:

> zrange hackers 0 -1
1) "Alan Kay"
2) "Alan Turing"
3) "Anita Borg"
4) "Claude Shannon"
5) "Hedy Lamarr"
6) "Linus Torvalds"
7) "Richard Stallman"
8) "Sophie Wilson"
9) "Yukihiro Matsumoto"

Using ZRANGEBYLEX we can ask for lexicographical ranges:

> zrangebylex hackers [B [P
1) "Claude Shannon"
2) "Hedy Lamarr"
3) "Linus Torvalds"

Ranges can be inclusive or exclusive (depending on the first character),
also string infinite and minus infinite are specified respectively with
the + and - strings. See the documentation for more information.

This feature is important because it allows us to use sorted sets as a generic
index. For example, if you want to index elements by a 128-bit unsigned
integer argument, all you need to do is to add elements into a sorted
set with the same score (for example 0) but with an 16 byte prefix
consisting of the 128 bit number in big endian. Since numbers in big
endian, when ordered lexicographically (in raw bytes order) are actually
ordered numerically as well, you can ask for ranges in the 128 bit space,
and get the element’s value discarding the prefix.

If you want to see the feature in the context of a more serious demo,
check the Redis autocomplete demo [http://autocomplete.redis.io].

Updating the score: leader boards

Just a final note about sorted sets before switching to the next topic.
Sorted sets’ scores can be updated at any time. Just calling ZADD against
an element already included in the sorted set will update its score
(and position) with O(log(N)) time complexity. As such, sorted sets are suitable
when there are tons of updates.

Because of this characteristic a common use case is leader boards.
The typical application is a Facebook game where you combine the ability to
take users sorted by their high score, plus the get-rank operation, in order
to show the top-N users, and the user rank in the leader board (e.g., “you are
the #4932 best score here”).

[bookmark: bitmaps]
Bitmaps

Bitmaps are not an actual data type, but a set of bit-oriented operations
defined on the String type. Since strings are binary safe blobs and their
maximum length is 512 MB, they are suitable to set up to 2^32 different
bits.

Bit operations are divided into two groups: constant-time single bit
operations, like setting a bit to 1 or 0, or getting its value, and
operations on groups of bits, for example counting the number of set
bits in a given range of bits (e.g., population counting).

One of the biggest advantages of bitmaps is that they often provide
extreme space savings when storing information. For example in a system
where different users are represented by incremental user IDs, it is possible
to remember a single bit information (for example, knowing whether
a user wants to receive a newsletter) of 4 billion of users using just 512 MB of memory.

Bits are set and retrieved using the SETBIT and GETBIT commands:

> setbit key 10 1
(integer) 1
> getbit key 10
(integer) 1
> getbit key 11
(integer) 0

The SETBIT command takes as its first argument the bit number, and as its second
argument the value to set the bit to, which is 1 or 0. The command
automatically enlarges the string if the addressed bit is outside the
current string length.

GETBIT just returns the value of the bit at the specified index.
Out of range bits (addressing a bit that is outside the length of the string
stored into the target key) are always considered to be zero.

There are three commands operating on group of bits:

	BITOP performs bit-wise operations between different strings. The provided operations are AND, OR, XOR and NOT.

	BITCOUNT performs population counting, reporting the number of bits set to 1.

	BITPOS finds the first bit having the specified value of 0 or 1.

Both BITPOS and BITCOUNT are able to operate with byte ranges of the
string, instead of running for the whole length of the string. The following
is a trivial example of BITCOUNT call:

> setbit key 0 1
(integer) 0
> setbit key 100 1
(integer) 0
> bitcount key
(integer) 2

Common user cases for bitmaps are:

	Real time analytics of all kinds.

	Storing space efficient but high performance boolean information associated with object IDs.

For example imagine you want to know the longest streak of daily visits of
your web site users. You start counting days starting from zero, that is the
day you made your web site public, and set a bit with SETBIT every time
the user visits the web site. As a bit index you simply take the current unix
time, subtract the initial offset, and divide by 3600*24.

This way for each user you have a small string containing the visit
information for each day. With BITCOUNT it is possible to easily get
the number of days a given user visited the web site, while with
a few BITPOS calls, or simply fetching and analyzing the bitmap client-side,
it is possible to easily compute the longest streak.

Bitmaps are trivial to split into multiple keys, for example for
the sake of sharding the data set and because in general it is better to
avoid working with huge keys. To split a bitmap across different keys
instead of setting all the bits into a key, a trivial strategy is just
to store M bits per key and obtain the key name with bit-number/M and
the Nth bit to address inside the key with bit-number MOD M.

[bookmark: hyperloglogs]
HyperLogLogs

A HyperLogLog is a probabilistic data structure used in order to count
unique things (technically this is referred to estimating the cardinality
of a set). Usually counting unique items requires using an amount of memory
proportional to the number of items you want to count, because you need
to remember the elements you have already seen in the past in order to avoid
counting them multiple times. However there is a set of algorithms that trade
memory for precision: you end with an estimated measure with a standard error,
which in the case of the Redis implementation is less than 1%. The
magic of this algorithm is that you no longer need to use an amount of memory
proportional to the number of items counted, and instead can use a
constant amount of memory! 12k bytes in the worst case, or a lot less if your
HyperLogLog (We’ll just call them HLL from now) has seen very few elements.

HLLs in Redis, while technically a different data structure, are encoded
as a Redis string, so you can call GET to serialize a HLL, and SET
to deserialize it back to the server.

Conceptually the HLL API is like using Sets to do the same task. You would
SADD every observed element into a set, and would use SCARD to check the
number of elements inside the set, which are unique since SADD will not
re-add an existing element.

While you don’t really add items into an HLL, because the data structure
only contains a state that does not include actual elements, the API is the
same:

	Every time you see a new element, you add it to the count with PFADD.

	Every time you want to retrieve the current approximation of the unique elements added with PFADD so far, you use the PFCOUNT.

 > pfadd hll a b c d
 (integer) 1
 > pfcount hll
 (integer) 4

An example of use case for this data structure is counting unique queries
performed by users in a search form every day.

Redis is also able to perform the union of HLLs, please check the
full documentation for more information.

Other notable features

There are other important things in the Redis API that can’t be explored
in the context of this document, but are worth your attention:

	It is possible to iterate the key space of a large collection incrementally.

	It is possible to run Lua scripts server side to improve latency and bandwidth.

	Redis is also a Pub-Sub server.

Learn more

This tutorial is in no way complete and has covered just the basics of the API.
Read the command reference to discover a lot more.

Thanks for reading, and have fun hacking with Redis!

 Who’s using Redis?

Who’s using Redis?

A list of well known companies using Redis:

 	
 Twitter

 	
 GitHub

 	
 Weibo

 	
 Pinterest

 	
 Snapchat

 	
 Craigslist

 	
 Digg

 	
 StackOverflow

 	
 Flickr

And many others!, techstacks.io maintains a list of popular sites using Redis, the information may not be always updated since many companies change their tech stack during their lifetime, but is an interesting resource. link policy: we only link major sites, we used to also link to small companies and services but this rapidly became impossible to maintain.

 Hacking Strings

Hacking Strings

The implementation of Redis strings is contained in sds.c (sds stands for Simple Dynamic Strings).

The C structure sdshdr declared in sds.h represents a Redis string:

struct sdshdr {
 long len;
 long free;
 char buf[];
};

The buf character array stores the actual string.

The len field stores the length of buf. This makes obtaining the length
of a Redis string an O(1) operation.

The free field stores the number of additional bytes available for use.

Together the len and free field can be thought of as holding the metadata of the buf character array.

Creating Redis Strings

A new data type named sds is defined in sds.h to be a synonym for a character pointer:

typedef char *sds;

sdsnewlen function defined in sds.c creates a new Redis String:

sds sdsnewlen(const void *init, size_t initlen) {
 struct sdshdr *sh;

 sh = zmalloc(sizeof(struct sdshdr)+initlen+1);
#ifdef SDS_ABORT_ON_OOM
 if (sh == NULL) sdsOomAbort();
#else
 if (sh == NULL) return NULL;
#endif
 sh->len = initlen;
 sh->free = 0;
 if (initlen) {
 if (init) memcpy(sh->buf, init, initlen);
 else memset(sh->buf,0,initlen);
 }
 sh->buf[initlen] = '\0';
 return (char*)sh->buf;
}

Remember a Redis string is a variable of type struct sdshdr. But sdsnewlen returns a character pointer!!

That’s a trick and needs some explanation.

Suppose I create a Redis string using sdsnewlen like below:

sdsnewlen("redis", 5);

This creates a new variable of type struct sdshdr allocating memory for len and free
fields as well as for the buf character array.

sh = zmalloc(sizeof(struct sdshdr)+initlen+1); // initlen is length of init argument.

After sdsnewlen successfully creates a Redis string the result is something like:

|5|0|redis|

^ ^
sh sh->buf

sdsnewlen returns sh->buf to the caller.

What do you do if you need to free the Redis string pointed by sh?

You want the pointer sh but you only have the pointer sh->buf.

Can you get the pointer sh from sh->buf?

Yes. Pointer arithmetic. Notice from the above ASCII art that if you subtract
the size of two longs from sh->buf you get the pointer sh.

The sizeof two longs happens to be the size of struct sdshdr.

Look at sdslen function and see this trick at work:

size_t sdslen(const sds s) {
 struct sdshdr *sh = (void*) (s-(sizeof(struct sdshdr)));
 return sh->len;
}

Knowing this trick you could easily go through the rest of the functions in sds.c.

The Redis string implementation is hidden behind an interface that accepts only character pointers. The users of Redis strings need not care about how its implemented and treat Redis strings as a character pointer.

 Redis cluster tutorial

Redis cluster tutorial

This document is a gentle introduction to Redis Cluster, that does not use
complex to understand distributed systems concepts. It provides instructions
about how to setup a cluster, test, and operate it, without
going into the details that are covered in
the Redis Cluster specification but just describing
how the system behaves from the point of view of the user.

However this tutorial tries to provide information about the availability
and consistency characteristics of Redis Cluster from the point of view
of the final user, stated in a simple to understand way.

Note this tutorial requires Redis version 3.0 or higher.

If you plan to run a serious Redis Cluster deployment, the
more formal specification is a suggested reading, even if not
strictly required. However it is a good idea to start from this document,
play with Redis Cluster some time, and only later read the specification.

Redis Cluster 101

Redis Cluster provides a way to run a Redis installation where data is
automatically sharded across multiple Redis nodes.

Redis Cluster also provides some degree of availability during partitions,
that is in practical terms the ability to continue the operations when
some nodes fail or are not able to communicate. However the cluster stops
to operate in the event of larger failures (for example when the majority of
masters are unavailable).

So in practical terms, what you get with Redis Cluster?

	The ability to automatically split your dataset among multiple nodes.

	The ability to continue operations when a subset of the nodes are experiencing failures or are unable to communicate with the rest of the cluster.

Redis Cluster TCP ports

Every Redis Cluster node requires two TCP connections open. The normal Redis
TCP port used to serve clients, for example 6379, plus the port obtained by
adding 10000 to the data port, so 16379 in the example.

This second high port is used for the Cluster bus, that is a node-to-node
communication channel using a binary protocol. The Cluster bus is used by
nodes for failure detection, configuration update, failover authorization
and so forth. Clients should never try to communicate with the cluster bus
port, but always with the normal Redis command port, however make sure you
open both ports in your firewall, otherwise Redis cluster nodes will be
not able to communicate.

The command port and cluster bus port offset is fixed and is always 10000.

Note that for a Redis Cluster to work properly you need, for each node:

	The normal client communication port (usually 6379) used to communicate with clients to be open to all the clients that need to reach the cluster, plus all the other cluster nodes (that use the client port for keys migrations).

	The cluster bus port (the client port + 10000) must be reachable from all the other cluster nodes.

If you don’t open both TCP ports, your cluster will not work as expected.

The cluster bus uses a different, binary protocol, for node to node data
exchange, which is more suited to exchange information between nodes using
little bandwidth and processing time.

Redis Cluster and Docker

Currently Redis Cluster does not support NATted environments and in general
environments where IP addresses or TCP ports are remapped.

Docker uses a technique called port mapping: programs running inside Docker
containers may be exposed with a different port compared to the one the
program believes to be using. This is useful in order to run multiple
containers using the same ports, at the same time, in the same server.

In order to make Docker compatible with Redis Cluster you need to use
the host networking mode of Docker. Please check the --net=host option
in the Docker documentation [https://docs.docker.com/engine/userguide/networking/dockernetworks/] for more information.

Redis Cluster data sharding

Redis Cluster does not use consistent hashing, but a different form of sharding
where every key is conceptually part of what we call an hash slot.

There are 16384 hash slots in Redis Cluster, and to compute what is the hash
slot of a given key, we simply take the CRC16 of the key modulo

	

Every node in a Redis Cluster is responsible for a subset of the hash slots,
so for example you may have a cluster with 3 nodes, where:

	Node A contains hash slots from 0 to 5500.

	Node B contains hash slots from 5501 to 11000.

	Node C contains hash slots from 11001 to 16383.

This allows to add and remove nodes in the cluster easily. For example if
I want to add a new node D, I need to move some hash slot from nodes A, B, C
to D. Similarly if I want to remove node A from the cluster I can just
move the hash slots served by A to B and C. When the node A will be empty
I can remove it from the cluster completely.

Because moving hash slots from a node to another does not require to stop
operations, adding and removing nodes, or changing the percentage of hash
slots hold by nodes, does not require any downtime.

Redis Cluster supports multiple key operations as long as all the keys involved
into a single command execution (or whole transaction, or Lua script
execution) all belong to the same hash slot. The user can force multiple keys
to be part of the same hash slot by using a concept called hash tags.

Hash tags are documented in the Redis Cluster specification, but the gist is
that if there is a substring between {} brackets in a key, only what is
inside the string is hashed, so for example this{foo}key and another{foo}key
are guaranteed to be in the same hash slot, and can be used together in a
command with multiple keys as arguments.

Redis Cluster master-slave model

In order to remain available when a subset of master nodes are failing or are
not able to communicate with the majority of nodes, Redis Cluster uses a
master-slave model where every hash slot has from 1 (the master itself) to N
replicas (N-1 additional slaves nodes).

In our example cluster with nodes A, B, C, if node B fails the cluster is not
able to continue, since we no longer have a way to serve hash slots in the
range 5501-11000.

However when the cluster is created (or at a latter time) we add a slave
node to every master, so that the final cluster is composed of A, B, C
that are masters nodes, and A1, B1, C1 that are slaves nodes, the system is
able to continue if node B fails.

Node B1 replicates B, and B fails, the cluster will promote node B1 as the new
master and will continue to operate correctly.

However note that if nodes B and B1 fail at the same time Redis Cluster is not
able to continue to operate.

Redis Cluster consistency guarantees

Redis Cluster is not able to guarantee strong consistency. In practical
terms this means that under certain conditions it is possible that Redis
Cluster will lose writes that were acknowledged by the system to the client.

The first reason why Redis Cluster can lose writes is because it uses
asynchronous replication. This means that during writes the following
happens:

	Your client writes to the master B.

	The master B replies OK to your client.

	The master B propagates the write to its slaves B1, B2 and B3.

As you can see B does not wait for an acknowledge from B1, B2, B3 before
replying to the client, since this would be a prohibitive latency penalty
for Redis, so if your client writes something, B acknowledges the write,
but crashes before being able to send the write to its slaves, one of the
slaves (that did not receive the write) can be promoted to master, losing
the write forever.

This is very similar to what happens with most databases that are
configured to flush data to disk every second, so it is a scenario you
are already able to reason about because of past experiences with traditional
database systems not involving distributed systems. Similarly you can
improve consistency by forcing the database to flush data on disk before
replying to the client, but this usually results into prohibitively low
performance. That would be the equivalent of synchronous replication in
the case of Redis Cluster.

Basically there is a trade-off to take between performance and consistency.

Redis Cluster has support for synchronous writes when absolutely needed,
implemented via the WAIT command, this makes losing writes a lot less
likely, however note that Redis Cluster does not implement strong consistency
even when synchronous replication is used: it is always possible under more
complex failure scenarios that a slave that was not able to receive the write
is elected as master.

There is another notable scenario where Redis Cluster will lose writes, that
happens during a network partition where a client is isolated with a minority
of instances including at least a master.

Take as an example our 6 nodes cluster composed of A, B, C, A1, B1, C1,
with 3 masters and 3 slaves. There is also a client, that we will call Z1.

After a partition occurs, it is possible that in one side of the
partition we have A, C, A1, B1, C1, and in the other side we have B and Z1.

Z1 is still able to write to B, that will accept its writes. If the
partition heals in a very short time, the cluster will continue normally.
However if the partition lasts enough time for B1 to be promoted to master
in the majority side of the partition, the writes that Z1 is sending to B
will be lost.

Note that there is a maximum window to the amount of writes Z1 will be able
to send to B: if enough time has elapsed for the majority side of the
partition to elect a slave as master, every master node in the minority
side stops accepting writes.

This amount of time is a very important configuration directive of Redis
Cluster, and is called the node timeout.

After node timeout has elapsed, a master node is considered to be failing,
and can be replaced by one of its replicas.
Similarly after node timeout has elapsed without a master node to be able
to sense the majority of the other master nodes, it enters an error state
and stops accepting writes.

Redis Cluster configuration parameters

We are about to create an example cluster deployment. Before we continue,
let’s introduce the configuration parameters that Redis Cluster introduces
in the redis.conf file. Some will be obvious, others will be more clear
as you continue reading.

	cluster-enabled <yes/no>: If yes enables Redis Cluster support in a specific Redis instance. Otherwise the instance starts as a stand alone instance as usually.

	cluster-config-file <filename>: Note that despite the name of this option, this is not an user editable configuration file, but the file where a Redis Cluster node automatically persists the cluster configuration (the state, basically) every time there is a change, in order to be able to re-read it at startup. The file lists things like the other nodes in the cluster, their state, persistent variables, and so forth. Often this file is rewritten and flushed on disk as a result of some message reception.

	cluster-node-timeout <milliseconds>: The maximum amount of time a Redis Cluster node can be unavailable, without it being considered as failing. If a master node is not reachable for more than the specified amount of time, it will be failed over by its slaves. This parameter controls other important things in Redis Cluster. Notably, every node that can’t reach the majority of master nodes for the specified amount of time, will stop accepting queries.

	cluster-slave-validity-factor <factor>: If set to zero, a slave will always try to failover a master, regardless of the amount of time the link between the master and the slave remained disconnected. If the value is positive, a maximum disconnection time is calculated as the node timeout value multiplied by the factor provided with this option, and if the node is a slave, it will not try to start a failover if the master link was disconnected for more than the specified amount of time. For example if the node timeout is set to 5 seconds, and the validity factor is set to 10, a slave disconnected from the master for more than 50 seconds will not try to failover its master. Note that any value different than zero may result in Redis Cluster to be unavailable after a master failure if there is no slave able to failover it. In that case the cluster will return back available only when the original master rejoins the cluster.

	cluster-migration-barrier <count>: Minimum number of slaves a master will remain connected with, for another slave to migrate to a master which is no longer covered by any slave. See the appropriate section about replica migration in this tutorial for more information.

	cluster-require-full-coverage <yes/no>: If this is set to yes, as it is by default, the cluster stops accepting writes if some percentage of the key space is not covered by any node. If the option is set to no, the cluster will still serve queries even if only requests about a subset of keys can be processed.

Creating and using a Redis Cluster

Note: to deploy a Redis Cluster manually it is very important to learn certain
operational aspects of it. However if you want to get a cluster up and running
ASAP (As Soon As Possible) skip this section and the next one and go directly to Creating a Redis Cluster using the create-cluster script.

To create a cluster, the first thing we need is to have a few empty
Redis instances running in cluster mode. This basically means that
clusters are not created using normal Redis instances as a special mode
needs to be configured so that the Redis instance will enable the Cluster
specific features and commands.

The following is a minimal Redis cluster configuration file:

port 7000
cluster-enabled yes
cluster-config-file nodes.conf
cluster-node-timeout 5000
appendonly yes

As you can see what enables the cluster mode is simply the cluster-enabled
directive. Every instance also contains the path of a file where the
configuration for this node is stored, which by default is nodes.conf.
This file is never touched by humans; it is simply generated at startup
by the Redis Cluster instances, and updated every time it is needed.

Note that the minimal cluster that works as expected requires to contain
at least three master nodes. For your first tests it is strongly suggested
to start a six nodes cluster with three masters and three slaves.

To do so, enter a new directory, and create the following directories named
after the port number of the instance we’ll run inside any given directory.

Something like:

mkdir cluster-test
cd cluster-test
mkdir 7000 7001 7002 7003 7004 7005

Create a redis.conf file inside each of the directories, from 7000 to 7005.
As a template for your configuration file just use the small example above,
but make sure to replace the port number 7000 with the right port number
according to the directory name.

Now copy your redis-server executable, compiled from the latest sources in the unstable branch at GitHub, into the cluster-test directory, and finally open 6 terminal tabs in your favorite terminal application.

Start every instance like that, one every tab:

cd 7000
../redis-server ./redis.conf

As you can see from the logs of every instance, since no nodes.conf file
existed, every node assigns itself a new ID.

[82462] 26 Nov 11:56:55.329 * No cluster configuration found, I'm 97a3a64667477371c4479320d683e4c8db5858b1

This ID will be used forever by this specific instance in order for the instance
to have a unique name in the context of the cluster. Every node
remembers every other node using this IDs, and not by IP or port.
IP addresses and ports may change, but the unique node identifier will never
change for all the life of the node. We call this identifier simply Node ID.

Creating the cluster

Now that we have a number of instances running, we need to create our
cluster by writing some meaningful configuration to the nodes.

This is very easy to accomplish as we are helped by the Redis Cluster
command line utility called redis-trib, a Ruby program
executing special commands on instances in order to create new clusters,
check or reshard an existing cluster, and so forth.

The redis-trib utility is in the src directory of the Redis source code
distribution.
You need to install redis gem to be able to run redis-trib.

gem install redis

To create your cluster simply type:

./redis-trib.rb create --replicas 1 127.0.0.1:7000 127.0.0.1:7001 \
127.0.0.1:7002 127.0.0.1:7003 127.0.0.1:7004 127.0.0.1:7005

The command used here is create, since we want to create a new cluster.
The option --replicas 1 means that we want a slave for every master created.
The other arguments are the list of addresses of the instances I want to use
to create the new cluster.

Obviously the only setup with our requirements is to create a cluster with
3 masters and 3 slaves.

Redis-trib will propose you a configuration. Accept the proposed configuration by typing yes.
The cluster will be configured and joined, which means, instances will be
bootstrapped into talking with each other. Finally, if everything went well,
you’ll see a message like that:

[OK] All 16384 slots covered

This means that there is at least a master instance serving each of the
16384 slots available.

Creating a Redis Cluster using the create-cluster script

If you don’t want to create a Redis Cluster by configuring and executing
individual instances manually as explained above, there is a much simpler
system (but you’ll not learn the same amount of operational details).

Just check utils/create-cluster directory in the Redis distribution.
There is a script called create-cluster inside (same name as the directory
it is contained into), it’s a simple bash script. In order to start
a 6 nodes cluster with 3 masters and 3 slaves just type the following
commands:

	create-cluster start

	create-cluster create

Reply to yes in step 2 when the redis-trib utility wants you to accept
the cluster layout.

You can now interact with the cluster, the first node will start at port 30001
by default. When you are done, stop the cluster with:

	create-cluster stop.

Please read the README inside this directory for more information on how
to run the script.

Playing with the cluster

At this stage one of the problems with Redis Cluster is the lack of
client libraries implementations.

I’m aware of the following implementations:

	redis-rb-cluster [http://github.com/antirez/redis-rb-cluster] is a Ruby implementation written by me (@antirez) as a reference for other languages. It is a simple wrapper around the original redis-rb, implementing the minimal semantics to talk with the cluster efficiently.

	redis-py-cluster [https://github.com/Grokzen/redis-py-cluster] A port of redis-rb-cluster to Python. Supports majority of redis-py functionality. Is in active development.

	The popular Predis [https://github.com/nrk/predis] has support for Redis Cluster, the support was recently updated and is in active development.

	The most used Java client, Jedis [https://github.com/xetorthio/jedis] recently added support for Redis Cluster, see the Jedis Cluster section in the project README.

	StackExchange.Redis [https://github.com/StackExchange/StackExchange.Redis] offers support for C# (and should work fine with most .NET languages; VB, F#, etc)

	thunk-redis [https://github.com/thunks/thunk-redis] offers support for Node.js and io.js, it is a thunk/promise-based redis client with pipelining and cluster.

	redis-go-cluster [https://github.com/chasex/redis-go-cluster] is an implementation of Redis Cluster for the Go language using the Redigo library client [https://github.com/garyburd/redigo] as the base client. Implements MGET/MSET via result aggregation.

	The redis-cli utility in the unstable branch of the Redis repository at GitHub implements a very basic cluster support when started with the -c switch.

An easy way to test Redis Cluster is either to try any of the above clients
or simply the redis-cli command line utility. The following is an example
of interaction using the latter:

$ redis-cli -c -p 7000
redis 127.0.0.1:7000> set foo bar
-> Redirected to slot [12182] located at 127.0.0.1:7002
OK
redis 127.0.0.1:7002> set hello world
-> Redirected to slot [866] located at 127.0.0.1:7000
OK
redis 127.0.0.1:7000> get foo
-> Redirected to slot [12182] located at 127.0.0.1:7002
"bar"
redis 127.0.0.1:7000> get hello
-> Redirected to slot [866] located at 127.0.0.1:7000
"world"

Note: if you created the cluster using the script your nodes may listen
to different ports, starting from 30001 by default.

The redis-cli cluster support is very basic so it always uses the fact that
Redis Cluster nodes are able to redirect a client to the right node.
A serious client is able to do better than that, and cache the map between
hash slots and nodes addresses, to directly use the right connection to the
right node. The map is refreshed only when something changed in the cluster
configuration, for example after a failover or after the system administrator
changed the cluster layout by adding or removing nodes.

Writing an example app with redis-rb-cluster

Before going forward showing how to operate the Redis Cluster, doing things
like a failover, or a resharding, we need to create some example application
or at least to be able to understand the semantics of a simple Redis Cluster
client interaction.

In this way we can run an example and at the same time try to make nodes
failing, or start a resharding, to see how Redis Cluster behaves under real
world conditions. It is not very helpful to see what happens while nobody
is writing to the cluster.

This section explains some basic usage of
redis-rb-cluster [https://github.com/antirez/redis-rb-cluster] showing two
examples. The first is the following, and is the
example.rb [https://github.com/antirez/redis-rb-cluster/blob/master/example.rb]
file inside the redis-rb-cluster distribution:

 1 require './cluster'
 2
 3 if ARGV.length != 2
 4 startup_nodes = [
 5 {:host => "127.0.0.1", :port => 7000},
 6 {:host => "127.0.0.1", :port => 7001}
 7]
 8 else
 9 startup_nodes = [
 10 {:host => ARGV[0], :port => ARGV[1].to_i}
 11]
 12 end
 13
 14 rc = RedisCluster.new(startup_nodes,32,:timeout => 0.1)
 15
 16 last = false
 17
 18 while not last
 19 begin
 20 last = rc.get("__last__")
 21 last = 0 if !last
 22 rescue => e
 23 puts "error #{e.to_s}"
 24 sleep 1
 25 end
 26 end
 27
 28 ((last.to_i+1)..1000000000).each{|x|
 29 begin
 30 rc.set("foo#{x}",x)
 31 puts rc.get("foo#{x}")
 32 rc.set("__last__",x)
 33 rescue => e
 34 puts "error #{e.to_s}"
 35 end
 36 sleep 0.1
 37 }

The application does a very simple thing, it sets keys in the form foo<number> to number, one after the other. So if you run the program the result is the
following stream of commands:

	SET foo0 0

	SET foo1 1

	SET foo2 2

	And so forth...

The program looks more complex than it should usually as it is designed to
show errors on the screen instead of exiting with an exception, so every
operation performed with the cluster is wrapped by begin rescue blocks.

The line 14 is the first interesting line in the program. It creates the
Redis Cluster object, using as argument a list of startup nodes, the maximum
number of connections this object is allowed to take against different nodes,
and finally the timeout after a given operation is considered to be failed.

The startup nodes don’t need to be all the nodes of the cluster. The important
thing is that at least one node is reachable. Also note that redis-rb-cluster
updates this list of startup nodes as soon as it is able to connect with the
first node. You should expect such a behavior with any other serious client.

Now that we have the Redis Cluster object instance stored in the rc variable
we are ready to use the object like if it was a normal Redis object instance.

This is exactly what happens in line 18 to 26: when we restart the example
we don’t want to start again with foo0, so we store the counter inside
Redis itself. The code above is designed to read this counter, or if the
counter does not exist, to assign it the value of zero.

However note how it is a while loop, as we want to try again and again even
if the cluster is down and is returning errors. Normal applications don’t need
to be so careful.

Lines between 28 and 37 start the main loop where the keys are set or
an error is displayed.

Note the sleep call at the end of the loop. In your tests you can remove
the sleep if you want to write to the cluster as fast as possible (relatively
to the fact that this is a busy loop without real parallelism of course, so
you’ll get the usually 10k ops/second in the best of the conditions).

Normally writes are slowed down in order for the example application to be
easier to follow by humans.

Starting the application produces the following output:

ruby ./example.rb
1
2
3
4
5
6
7
8
9
^C (I stopped the program here)

This is not a very interesting program and we’ll use a better one in a moment
but we can already see what happens during a resharding when the program
is running.

Resharding the cluster

Now we are ready to try a cluster resharding. To do this please
keep the example.rb program running, so that you can see if there is some
impact on the program running. Also you may want to comment the sleep
call in order to have some more serious write load during resharding.

Resharding basically means to move hash slots from a set of nodes to another
set of nodes, and like cluster creation it is accomplished using the
redis-trib utility.

To start a resharding just type:

./redis-trib.rb reshard 127.0.0.1:7000

You only need to specify a single node, redis-trib will find the other nodes
automatically.

Currently redis-trib is only able to reshard with the administrator support,
you can’t just say move 5% of slots from this node to the other one (but
this is pretty trivial to implement). So it starts with questions. The first
is how much a big resharding do you want to do:

How many slots do you want to move (from 1 to 16384)?

We can try to reshard 1000 hash slots, that should already contain a non
trivial amount of keys if the example is still running without the sleep
call.

Then redis-trib needs to know what is the target of the resharding, that is,
the node that will receive the hash slots.
I’ll use the first master node, that is, 127.0.0.1:7000, but I need
to specify the Node ID of the instance. This was already printed in a
list by redis-trib, but I can always find the ID of a node with the following
command if I need:

$ redis-cli -p 7000 cluster nodes | grep myself
97a3a64667477371c4479320d683e4c8db5858b1 :0 myself,master - 0 0 0 connected 0-5460

Ok so my target node is 97a3a64667477371c4479320d683e4c8db5858b1.

Now you’ll get asked from what nodes you want to take those keys.
I’ll just type all in order to take a bit of hash slots from all the
other master nodes.

After the final confirmation you’ll see a message for every slot that
redis-trib is going to move from a node to another, and a dot will be printed
for every actual key moved from one side to the other.

While the resharding is in progress you should be able to see your
example program running unaffected. You can stop and restart it multiple times
during the resharding if you want.

At the end of the resharding, you can test the health of the cluster with
the following command:

./redis-trib.rb check 127.0.0.1:7000

All the slots will be covered as usually, but this time the master at
127.0.0.1:7000 will have more hash slots, something around 6461.

Scripting a resharding operation

Reshardings can be performed automatically without the need to manually
enter the parameters in an interactive way. This is possible using a command
line like the following:

./redis-trib.rb reshard --from <node-id> --to <node-id> --slots <number of slots> --yes <host>:<port>

This allows to build some automatism if you are likely to reshard often,
however currently there is no way for redis-trib to automatically
rebalance the cluster checking the distribution of keys across the cluster
nodes and intelligently moving slots as needed. This feature will be added
in the future.

A more interesting example application

The example application we wrote early is not very good.
It writes to the cluster in a simple way without even checking if what was
written is the right thing.

From our point of view the cluster receiving the writes could just always
write the key foo to 42 to every operation, and we would not notice at
all.

So in the redis-rb-cluster repository, there is a more interesting application
that is called consistency-test.rb. It uses a set of counters, by default 1000, and sends INCR commands in order to increment the counters.

However instead of just writing, the application does two additional things:

	When a counter is updated using INCR, the application remembers the write.

	It also reads a random counter before every write, and check if the value is what we expected it to be, comparing it with the value it has in memory.

What this means is that this application is a simple consistency checker,
and is able to tell you if the cluster lost some write, or if it accepted
a write that we did not receive acknowledgment for. In the first case we’ll
see a counter having a value that is smaller than the one we remember, while
in the second case the value will be greater.

Running the consistency-test application produces a line of output every
second:

$ ruby consistency-test.rb
925 R (0 err) | 925 W (0 err) |
5030 R (0 err) | 5030 W (0 err) |
9261 R (0 err) | 9261 W (0 err) |
13517 R (0 err) | 13517 W (0 err) |
17780 R (0 err) | 17780 W (0 err) |
22025 R (0 err) | 22025 W (0 err) |
25818 R (0 err) | 25818 W (0 err) |

The line shows the number of Reads and Writes performed, and the
number of errors (query not accepted because of errors since the system was
not available).

If some inconsistency is found, new lines are added to the output.
This is what happens, for example, if I reset a counter manually while
the program is running:

$ redis-cli -h 127.0.0.1 -p 7000 set key_217 0
OK

(in the other tab I see...)

94774 R (0 err) | 94774 W (0 err) |
98821 R (0 err) | 98821 W (0 err) |
102886 R (0 err) | 102886 W (0 err) | 114 lost |
107046 R (0 err) | 107046 W (0 err) | 114 lost |

When I set the counter to 0 the real value was 114, so the program reports
114 lost writes (INCR commands that are not remembered by the cluster).

This program is much more interesting as a test case, so we’ll use it
to test the Redis Cluster failover.

Testing the failover

Note: during this test, you should take a tab open with the consistency test
application running.

In order to trigger the failover, the simplest thing we can do (that is also
the semantically simplest failure that can occur in a distributed system)
is to crash a single process, in our case a single master.

We can identify a cluster and crash it with the following command:

$ redis-cli -p 7000 cluster nodes | grep master
3e3a6cb0d9a9a87168e266b0a0b24026c0aae3f0 127.0.0.1:7001 master - 0 1385482984082 0 connected 5960-10921
2938205e12de373867bf38f1ca29d31d0ddb3e46 127.0.0.1:7002 master - 0 1385482983582 0 connected 11423-16383
97a3a64667477371c4479320d683e4c8db5858b1 :0 myself,master - 0 0 0 connected 0-5959 10922-11422

Ok, so 7000, 7001, and 7002 are masters. Let’s crash node 7002 with the
DEBUG SEGFAULT command:

$ redis-cli -p 7002 debug segfault
Error: Server closed the connection

Now we can look at the output of the consistency test to see what it reported.

18849 R (0 err) | 18849 W (0 err) |
23151 R (0 err) | 23151 W (0 err) |
27302 R (0 err) | 27302 W (0 err) |

... many error warnings here ...

29659 R (578 err) | 29660 W (577 err) |
33749 R (578 err) | 33750 W (577 err) |
37918 R (578 err) | 37919 W (577 err) |
42077 R (578 err) | 42078 W (577 err) |

As you can see during the failover the system was not able to accept 578 reads and 577 writes, however no inconsistency was created in the database. This may
sound unexpected as in the first part of this tutorial we stated that Redis
Cluster can lose writes during the failover because it uses asynchronous
replication. What we did not say is that this is not very likely to happen
because Redis sends the reply to the client, and the commands to replicate
to the slaves, about at the same time, so there is a very small window to
lose data. However the fact that it is hard to trigger does not mean that it
is impossible, so this does not change the consistency guarantees provided
by Redis cluster.

We can now check what is the cluster setup after the failover (note that
in the meantime I restarted the crashed instance so that it rejoins the
cluster as a slave):

$ redis-cli -p 7000 cluster nodes
3fc783611028b1707fd65345e763befb36454d73 127.0.0.1:7004 slave 3e3a6cb0d9a9a87168e266b0a0b24026c0aae3f0 0 1385503418521 0 connected
a211e242fc6b22a9427fed61285e85892fa04e08 127.0.0.1:7003 slave 97a3a64667477371c4479320d683e4c8db5858b1 0 1385503419023 0 connected
97a3a64667477371c4479320d683e4c8db5858b1 :0 myself,master - 0 0 0 connected 0-5959 10922-11422
3c3a0c74aae0b56170ccb03a76b60cfe7dc1912e 127.0.0.1:7005 master - 0 1385503419023 3 connected 11423-16383
3e3a6cb0d9a9a87168e266b0a0b24026c0aae3f0 127.0.0.1:7001 master - 0 1385503417005 0 connected 5960-10921
2938205e12de373867bf38f1ca29d31d0ddb3e46 127.0.0.1:7002 slave 3c3a0c74aae0b56170ccb03a76b60cfe7dc1912e 0 1385503418016 3 connected

Now the masters are running on ports 7000, 7001 and 7005. What was previously
a master, that is the Redis instance running on port 7002, is now a slave of

	

The output of the CLUSTER NODES command may look intimidating, but it is actually pretty simple, and is composed of the following tokens:

	Node ID

	ip:port

	flags: master, slave, myself, fail, ...

	if it is a slave, the Node ID of the master

	Time of the last pending PING still waiting for a reply.

	Time of the last PONG received.

	Configuration epoch for this node (see the Cluster specification).

	Status of the link to this node.

	Slots served...

Manual failover

Sometimes it is useful to force a failover without actually causing any problem
on a master. For example in order to upgrade the Redis process of one of the
master nodes it is a good idea to failover it in order to turn it into a slave
with minimal impact on availability.

Manual failovers are supported by Redis Cluster using the CLUSTER FAILOVER
command, that must be executed in one of the slaves of the master you want
to failover.

Manual failovers are special and are safer compared to failovers resulting from
actual master failures, since they occur in a way that avoid data loss in the
process, by switching clients from the original master to the new master only
when the system is sure that the new master processed all the replication stream
from the old one.

This is what you see in the slave log when you perform a manual failover:

Manual failover user request accepted.
Received replication offset for paused master manual failover: 347540
All master replication stream processed, manual failover can start.
Start of election delayed for 0 milliseconds (rank #0, offset 347540).
Starting a failover election for epoch 7545.
Failover election won: I'm the new master.

Basically clients connected to the master we are failing over are stopped.
At the same time the master sends its replication offset to the slave, that
waits to reach the offset on its side. When the replication offset is reached,
the failover starts, and the old master is informed about the configuration
switch. When the clients are unblocked on the old master, they are redirected
to the new master.

Adding a new node

Adding a new node is basically the process of adding an empty node and then
moving some data into it, in case it is a new master, or telling it to
setup as a replica of a known node, in case it is a slave.

We’ll show both, starting with the addition of a new master instance.

In both cases the first step to perform is adding an empty node.

This is as simple as to start a new node in port 7006 (we already used
from 7000 to 7005 for our existing 6 nodes) with the same configuration
used for the other nodes, except for the port number, so what you should
do in order to conform with the setup we used for the previous nodes:

	Create a new tab in your terminal application.

	Enter the cluster-test directory.

	Create a directory named 7006.

	Create a redis.conf file inside, similar to the one used for the other nodes but using 7006 as port number.

	Finally start the server with ../redis-server ./redis.conf

At this point the server should be running.

Now we can use redis-trib as usually in order to add the node to
the existing cluster.

./redis-trib.rb add-node 127.0.0.1:7006 127.0.0.1:7000

As you can see I used the add-node command specifying the address of the
new node as first argument, and the address of a random existing node in the
cluster as second argument.

In practical terms redis-trib here did very little to help us, it just
sent a CLUSTER MEET message to the node, something that is also possible
to accomplish manually. However redis-trib also checks the state of the
cluster before to operate, so it is a good idea to perform cluster operations
always via redis-trib even when you know how the internals work.

Now we can connect to the new node to see if it really joined the cluster:

redis 127.0.0.1:7006> cluster nodes
3e3a6cb0d9a9a87168e266b0a0b24026c0aae3f0 127.0.0.1:7001 master - 0 1385543178575 0 connected 5960-10921
3fc783611028b1707fd65345e763befb36454d73 127.0.0.1:7004 slave 3e3a6cb0d9a9a87168e266b0a0b24026c0aae3f0 0 1385543179583 0 connected
f093c80dde814da99c5cf72a7dd01590792b783b :0 myself,master - 0 0 0 connected
2938205e12de373867bf38f1ca29d31d0ddb3e46 127.0.0.1:7002 slave 3c3a0c74aae0b56170ccb03a76b60cfe7dc1912e 0 1385543178072 3 connected
a211e242fc6b22a9427fed61285e85892fa04e08 127.0.0.1:7003 slave 97a3a64667477371c4479320d683e4c8db5858b1 0 1385543178575 0 connected
97a3a64667477371c4479320d683e4c8db5858b1 127.0.0.1:7000 master - 0 1385543179080 0 connected 0-5959 10922-11422
3c3a0c74aae0b56170ccb03a76b60cfe7dc1912e 127.0.0.1:7005 master - 0 1385543177568 3 connected 11423-16383

Note that since this node is already connected to the cluster it is already
able to redirect client queries correctly and is generally speaking part of
the cluster. However it has two peculiarities compared to the other masters:

	It holds no data as it has no assigned hash slots.

	Because it is a master without assigned slots, it does not participate in the election process when a slave wants to become a master.

Now it is possible to assign hash slots to this node using the resharding
feature of redis-trib. It is basically useless to show this as we already
did in a previous section, there is no difference, it is just a resharding
having as a target the empty node.

Adding a new node as a replica

Adding a new Replica can be performed in two ways. The obvious one is to
use redis-trib again, but with the –slave option, like this:

./redis-trib.rb add-node --slave 127.0.0.1:7006 127.0.0.1:7000

Note that the command line here is exactly like the one we used to add
a new master, so we are not specifying to which master we want to add
the replica. In this case what happens is that redis-trib will add the new
node as replica of a random master among the masters with less replicas.

However you can specify exactly what master you want to target with your
new replica with the following command line:

./redis-trib.rb add-node --slave --master-id 3c3a0c74aae0b56170ccb03a76b60cfe7dc1912e 127.0.0.1:7006 127.0.0.1:7000

This way we assign the new replica to a specific master.

A more manual way to add a replica to a specific master is to add the new
node as an empty master, and then turn it into a replica using the
CLUSTER REPLICATE command. This also works if the node was added as a slave
but you want to move it as a replica of a different master.

For example in order to add a replica for the node 127.0.0.1:7005 that is
currently serving hash slots in the range 11423-16383, that has a Node ID
3c3a0c74aae0b56170ccb03a76b60cfe7dc1912e, all I need to do is to connect
with the new node (already added as empty master) and send the command:

redis 127.0.0.1:7006> cluster replicate 3c3a0c74aae0b56170ccb03a76b60cfe7dc1912e

That’s it. Now we have a new replica for this set of hash slots, and all
the other nodes in the cluster already know (after a few seconds needed to
update their config). We can verify with the following command:

$ redis-cli -p 7000 cluster nodes | grep slave | grep 3c3a0c74aae0b56170ccb03a76b60cfe7dc1912e
f093c80dde814da99c5cf72a7dd01590792b783b 127.0.0.1:7006 slave 3c3a0c74aae0b56170ccb03a76b60cfe7dc1912e 0 1385543617702 3 connected
2938205e12de373867bf38f1ca29d31d0ddb3e46 127.0.0.1:7002 slave 3c3a0c74aae0b56170ccb03a76b60cfe7dc1912e 0 1385543617198 3 connected

The node 3c3a0c... now has two slaves, running on ports 7002 (the existing one) and 7006 (the new one).

Removing a node

To remove a slave node just use the del-node command of redis-trib:

./redis-trib del-node 127.0.0.1:7000 `<node-id>`

The first argument is just a random node in the cluster, the second argument
is the ID of the node you want to remove.

You can remove a master node in the same way as well, however in order to
remove a master node it must be empty. If the master is not empty you need
to reshard data away from it to all the other master nodes before.

An alternative to remove a master node is to perform a manual failover of it
over one of its slaves and remove the node after it turned into a slave of the
new master. Obviously this does not help when you want to reduce the actual
number of masters in your cluster, in that case, a resharding is needed.

Replicas migration

In Redis Cluster it is possible to reconfigure a slave to replicate with a
different master at any time just using the following command:

CLUSTER REPLICATE <master-node-id>

However there is a special scenario where you want replicas to move from one
master to another one automatically, without the help of the system administrator.
The automatic reconfiguration of replicas is called replicas migration and is
able to improve the reliability of a Redis Cluster.

Note: you can read the details of replicas migration in the Redis Cluster Specification, here we’ll only provide some information about the
general idea and what you should do in order to benefit from it.

The reason why you may want to let your cluster replicas to move from one master
to another under certain condition, is that usually the Redis Cluster is as
resistant to failures as the number of replicas attached to a given master.

For example a cluster where every master has a single replica can’t continue
operations if the master and its replica fail at the same time, simply because
there is no other instance to have a copy of the hash slots the master was
serving. However while netsplits are likely to isolate a number of nodes
at the same time, many other kind of failures, like hardware or software failures
local to a single node, are a very notable class of failures that are unlikely
to happen at the same time, so it is possible that in your cluster where
every master has a slave, the slave is killed at 4am, and the master is killed
at 6am. This still will result in a cluster that can no longer operate.

To improve reliability of the system we have the option to add additional
replicas to every master, but this is expensive. Replica migration allows to
add more slaves to just a few masters. So you have 10 masters with 1 slave
each, for a total of 20 instances. However you add, for example, 3 instances
more as slaves of some of your masters, so certain masters will have more
than a single slave.

With replicas migration what happens is that if a master is left without
slaves, a replica from a master that has multiple slaves will migrate to
the orphaned master. So after your slave goes down at 4am as in the example
we made above, another slave will take its place, and when the master
will fail as well at 5am, there is still a slave that can be elected so that
the cluster can continue to operate.

So what you should know about replicas migration in short?

	The cluster will try to migrate a replica from the master that has the greatest number of replicas in a given moment.

	To benefit from replica migration you have just to add a few more replicas to a single master in your cluster, it does not matter what master.

	There is a configuration parameter that controls the replica migration feature that is called cluster-migration-barrier: you can read more about it in the example redis.conf file provided with Redis Cluster.

Upgrading nodes in a Redis Cluster

Upgrading slave nodes is easy since you just need to stop the node and restart
it with an updated version of Redis. If there are clients scaling reads using
slave nodes, they should be able to reconnect to a different slave if a given
one is not available.

Upgrading masters is a bit more complex, and the suggested procedure is:

	Use CLUSTER FAILOVER to trigger a manual failover of the master to one of its slaves (see the “Manual failover” section of this documentation).

	Wait for the master to turn into a slave.

	Finally upgrade the node as you do for slaves.

	If you want the master to be the node you just upgraded, trigger a new manual failover in order to turn back the upgraded node into a master.

Following this procedure you should upgrade one node after the other until
all the nodes are upgraded.

Migrating to Redis Cluster

Users willing to migrate to Redis Cluster may have just a single master, or
may already using a preexisting sharding setup, where keys
are split among N nodes, using some in-house algorithm or a sharding algorithm
implemented by their client library or Redis proxy.

In both cases it is possible to migrate to Redis Cluster easily, however
what is the most important detail is if multiple-keys operations are used
by the application, and how. There are three different cases:

	Multiple keys operations, or transactions, or Lua scripts involving multiple keys, are not used. Keys are accessed independently (even if accessed via transactions or Lua scripts grouping multiple commands, about the same key, together).

	Multiple keys operations, transactions, or Lua scripts involving multiple keys are used but only with keys having the same hash tag, which means that the keys used together all have a {...} sub-string that happens to be identical. For example the following multiple keys operation is defined in the context of the same hash tag: SUNION {user:1000}.foo {user:1000}.bar.

	Multiple keys operations, transactions, or Lua scripts involving multiple keys are used with key names not having an explicit, or the same, hash tag.

The third case is not handled by Redis Cluster: the application requires to
be modified in order to don’t use multi keys operations or only use them in
the context of the same hash tag.

Case 1 and 2 are covered, so we’ll focus on those two cases, that are handled
in the same way, so no distinction will be made in the documentation.

Assuming you have your preexisting data set split into N masters, where
N=1 if you have no preexisting sharding, the following steps are needed
in order to migrate your data set to Redis Cluster:

	Stop your clients. No automatic live-migration to Redis Cluster is currently possible. You may be able to do it orchestrating a live migration in the context of your application / environment.

	Generate an append only file for all of your N masters using the BGREWRITEAOF command, and waiting for the AOF file to be completely generated.

	Save your AOF files from aof-1 to aof-N somewhere. At this point you can stop your old instances if you wish (this is useful since in non-virtualized deployments you often need to reuse the same computers).

	Create a Redis Cluster composed of N masters and zero slaves. You’ll add slaves later. Make sure all your nodes are using the append only file for persistence.

	Stop all the cluster nodes, substitute their append only file with your pre-existing append only files, aof-1 for the first node, aof-2 for the second node, up to aof-N.

	Restart your Redis Cluster nodes with the new AOF files. They’ll complain that there are keys that should not be there according to their configuration.

	Use redis-trib fix command in order to fix the cluster so that keys will be migrated according to the hash slots each node is authoritative or not.

	Use redis-trib check at the end to make sure your cluster is ok.

	Restart your clients modified to use a Redis Cluster aware client library.

There is an alternative way to import data from external instances to a Redis
Cluster, which is to use the redis-trib import command.

The command moves all the keys of a running instance (deleting the keys from
the source instance) to the specified pre-existing Redis Cluster. However
note that if you use a Redis 2.8 instance as source instance the operation
may be slow since 2.8 does not implement migrate connection caching, so you
may want to restart your source instance with a Redis 3.x version before
to perform such operation.

 Pub/Sub

Pub/Sub

SUBSCRIBE, UNSUBSCRIBE and PUBLISH
implement the Publish/Subscribe messaging
paradigm [http://en.wikipedia.org/wiki/Publish/subscribe] where
(citing Wikipedia) senders (publishers) are not programmed to send
their messages to specific receivers (subscribers). Rather, published
messages are characterized into channels, without knowledge of what (if
any) subscribers there may be. Subscribers express interest in one or
more channels, and only receive messages that are of interest, without
knowledge of what (if any) publishers there are. This decoupling of
publishers and subscribers can allow for greater scalability and a more
dynamic network topology.

For instance in order to subscribe to channels foo and bar the
client issues a SUBSCRIBE providing the names of the channels:

SUBSCRIBE foo bar

Messages sent by other clients to these channels will be pushed by Redis
to all the subscribed clients.

A client subscribed to one or more channels should not issue commands,
although it can subscribe and unsubscribe to and from other channels.
The replies to subscription and unsubscription operations are sent in
the form of messages, so that the client can just read a coherent
stream of messages where the first element indicates the type of
message. The commands that are allowed in the context of a subscribed
client are SUBSCRIBE, PSUBSCRIBE, UNSUBSCRIBE, PUNSUBSCRIBE,
PING and QUIT.

Format of pushed messages

A message is a @array-reply with three elements.

The first element is the kind of message:

	subscribe: means that we successfully subscribed to the channel
given as the second element in the reply. The third argument represents
the number of channels we are currently subscribed to.

	unsubscribe: means that we successfully unsubscribed from the
channel given as second element in the reply. The third argument
represents the number of channels we are currently subscribed to. When
the last argument is zero, we are no longer subscribed to any channel,
and the client can issue any kind of Redis command as we are outside the
Pub/Sub state.

	message: it is a message received as result of a PUBLISH command
issued by another client. The second element is the name of the
originating channel, and the third argument is the actual message
payload.

Database & Scoping

Pub/Sub has no relation to the key space. It was made to not interfere with
it on any level, including database numbers.

Publishing on db 10, will be heard by a subscriber on db 1.

If you need scoping of some kind, prefix the channels with the name of the
environment (test, staging, production, ...).

Wire protocol example

SUBSCRIBE first second
*3
$9
subscribe
$5
first
:1
*3
$9
subscribe
$6
second
:2

At this point, from another client we issue a PUBLISH operation
against the channel named second:

> PUBLISH second Hello

This is what the first client receives:

*3
$7
message
$6
second
$5
Hello

Now the client unsubscribes itself from all the channels using the
UNSUBSCRIBE command without additional arguments:

UNSUBSCRIBE
*3
$11
unsubscribe
$6
second
:1
*3
$11
unsubscribe
$5
first
:0

Pattern-matching subscriptions

The Redis Pub/Sub implementation supports pattern matching. Clients may
subscribe to glob-style patterns in order to receive all the messages
sent to channel names matching a given pattern.

For instance:

PSUBSCRIBE news.*

Will receive all the messages sent to the channel news.art.figurative,
news.music.jazz, etc. All the glob-style patterns are valid, so
multiple wildcards are supported.

PUNSUBSCRIBE news.*

Will then unsubscribe the client from that pattern. No other subscriptions
will be affected by this call.

Messages received as a result of pattern matching are sent in a
different format:

	The type of the message is pmessage: it is a message received
as result of a PUBLISH command issued by another client, matching
a pattern-matching subscription. The second element is the original
pattern matched, the third element is the name of the originating
channel, and the last element the actual message payload.

Similarly to SUBSCRIBE and UNSUBSCRIBE, PSUBSCRIBE and
PUNSUBSCRIBE commands are acknowledged by the system sending a message
of type psubscribe and punsubscribe using the same format as the
subscribe and unsubscribe message format.

Messages matching both a pattern and a channel subscription

A client may receive a single message multiple times if it’s subscribed
to multiple patterns matching a published message, or if it is
subscribed to both patterns and channels matching the message. Like in
the following example:

SUBSCRIBE foo
PSUBSCRIBE f*

In the above example, if a message is sent to channel foo, the client
will receive two messages: one of type message and one of type
pmessage.

The meaning of the subscription count with pattern matching

In subscribe, unsubscribe, psubscribe and punsubscribe
message types, the last argument is the count of subscriptions still
active. This number is actually the total number of channels and
patterns the client is still subscribed to. So the client will exit
the Pub/Sub state only when this count drops to zero as a result of
unsubscribing from all the channels and patterns.

Programming example

Pieter Noordhuis provided a great example using EventMachine
and Redis to create a multi user high performance web
chat [https://gist.github.com/pietern/348262].

Client library implementation hints

Because all the messages received contain the original subscription
causing the message delivery (the channel in the case of message type,
and the original pattern in the case of pmessage type) client libraries
may bind the original subscription to callbacks (that can be anonymous
functions, blocks, function pointers), using a hash table.

When a message is received an O(1) lookup can be done in order to
deliver the message to the registered callback.

 Using pipelining to speedup Redis queries

Using pipelining to speedup Redis queries

Request/Response protocols and RTT

Redis is a TCP server using the client-server model and what is called a Request/Response protocol.

This means that usually a request is accomplished with the following steps:

	The client sends a query to the server, and reads from the socket, usually in a blocking way, for the server response.

	The server processes the command and sends the response back to the client.

So for instance a four commands sequence is something like this:

	Client: INCR X

	Server: 1

	Client: INCR X

	Server: 2

	Client: INCR X

	Server: 3

	Client: INCR X

	Server: 4

Clients and Servers are connected via a networking link. Such a link can be very fast (a loopback interface) or very slow (a connection established over the Internet with many hops between the two hosts). Whatever the network latency is, there is a time for the packets to travel from the client to the server, and back from the server to the client to carry the reply.

This time is called RTT (Round Trip Time). It is very easy to see how this can affect the performances when a client needs to perform many requests in a row (for instance adding many elements to the same list, or populating a database with many keys). For instance if the RTT time is 250 milliseconds (in the case of a very slow link over the Internet), even if the server is able to process 100k requests per second, we’ll be able to process at max four requests per second.

If the interface used is a loopback interface, the RTT is much shorter (for instance my host reports 0,044 milliseconds pinging 127.0.0.1), but it is still a lot if you need to perform many writes in a row.

Fortunately there is a way to improve this use case.

Redis Pipelining

A Request/Response server can be implemented so that it is able to process new requests even if the client didn’t already read the old responses. This way it is possible to send multiple commands to the server without waiting for the replies at all, and finally read the replies in a single step.

This is called pipelining, and is a technique widely in use since many decades. For instance many POP3 protocol implementations already supported this feature, dramatically speeding up the process of downloading new emails from the server.

Redis supports pipelining since the very early days, so whatever version you are running, you can use pipelining with Redis. This is an example using the raw netcat utility:

$ (printf "PING\r\nPING\r\nPING\r\n"; sleep 1) | nc localhost 6379
+PONG
+PONG
+PONG

This time we are not paying the cost of RTT for every call, but just one time for the three commands.

To be very explicit, with pipelining the order of operations of our very first example will be the following:

	Client: INCR X

	Client: INCR X

	Client: INCR X

	Client: INCR X

	Server: 1

	Server: 2

	Server: 3

	Server: 4

IMPORTANT NOTE: While the client sends commands using pipelining, the server will be forced to queue the replies, using memory. So if you need to send a lot of commands with pipelining, it is better to send them as batches having a reasonable number, for instance 10k commands, read the replies, and then send another 10k commands again, and so forth. The speed will be nearly the same, but the additional memory used will be at max the amount needed to queue the replies for this 10k commands.

It’s not just a matter of RTT

Pipelining is not just a way in order to reduce the latency cost due to the
round trip time, it actually improves by a huge amount the total operations
you can perform per second in a given Redis server. This is the result of the
fact that, without using pipelining, serving each command is very cheap from
the point of view of accessing the data structures and producing the reply,
but it is very costly from the point of view of doing the socket I/O. This
involes calling the read() and write() syscall, that means going from user
land to kernel land. The context switch is a huge speed penalty.

When pipelining is used, many commands are usually read with a single read()
system call, and multiple replies are delivered with a single write() system
call. Because of this, the number of total queries performed per second
initially increases almost linearly with longer pipelines, and eventually
reaches 10 times the baseline obtained not using pipelining, as you can
see from the following graph:

[image: Pipeline size and IOPs]

Some real world code example

In the following benchmark we’ll use the Redis Ruby client, supporting pipelining, to test the speed improvement due to pipelining:

require 'rubygems'
require 'redis'

def bench(descr)
 start = Time.now
 yield
 puts "#{descr} #{Time.now-start} seconds"
end

def without_pipelining
 r = Redis.new
 10000.times {
 r.ping
 }
end

def with_pipelining
 r = Redis.new
 r.pipelined {
 10000.times {
 r.ping
 }
 }
end

bench("without pipelining") {
 without_pipelining
}
bench("with pipelining") {
 with_pipelining
}

Running the above simple script will provide the following figures in my Mac OS X system, running over the loopback interface, where pipelining will provide the smallest improvement as the RTT is already pretty low:

without pipelining 1.185238 seconds
with pipelining 0.250783 seconds

As you can see, using pipelining, we improved the transfer by a factor of five.

Pipelining VS Scripting

Using Redis scripting (available in Redis version 2.6 or greater) a number of use cases for pipelining can be addressed more efficiently using scripts that perform a lot of the work needed at the server side. A big advantage of scripting is that it is able to both read and write data with minimal latency, making operations like read, compute, write very fast (pipelining can’t help in this scenario since the client needs the reply of the read command before it can call the write command).

Sometimes the application may also want to send EVAL or EVALSHA commands in a pipeline. This is entirely possible and Redis explicitly supports it with the SCRIPT LOAD [http://redis.io/commands/script-load] command (it guarantees that EVALSHA can be called without the risk of failing).

Appendix: why a busy loops are slow even on the loopback interface?

Even with all the background covered in this page, you may still wonder why
a Redis benchmark like the following (in pseudo code), is slow even when
executed in the loopback interface, when the server and the client are running
in the same physical machine:

FOR-ONE-SECOND:
 Redis.SET("foo","bar")
END

After all if both the Redis process and the benchmark are running in the same
box, isn’t this just messages copied via memory from one place to another without
any actual latency and actual networking involved?

The reason is that processes in a system are not always running, actually it is
the kernel scheduler that let the process run, so what happens is that, for
instance, the benchmark is allowed to run, reads the reply from the Redis server
(related to the last command executed), and writes a new command. The command is
now in the loopback interface buffer, but in order to be read by the server, the
kernel should schedule the server process (currently blocked in a system call)
to run, and so forth. So in practical terms the loopback interface still involves
network-alike latency, because of how the kernel scheduler works.

Basically a busy loop benchmark is the silliest thing that can be done when
metering performances in a networked server. The wise thing is just avoiding
benchmarking in this way.

 Redis Persistence

 This page provides a technical description of Redis persistence, it is a suggested read for all the Redis users. For a wider overview of Redis persistence and the durability guarantees it provides you may want to also read Redis persistence demystified [http://antirez.com/post/redis-persistence-demystified.html].

Redis Persistence

Redis provides a different range of persistence options:

	The RDB persistence performs point-in-time snapshots of your dataset at specified intervals.

	the AOF persistence logs every write operation received by the server, that will be played again at server startup, reconstructing the original dataset. Commands are logged using the same format as the Redis protocol itself, in an append-only fashion. Redis is able to rewrite the log on background when it gets too big.

	If you wish, you can disable persistence at all, if you want your data to just exist as long as the server is running.

	It is possible to combine both AOF and RDB in the same instance. Notice that, in this case, when Redis restarts the AOF file will be used to reconstruct the original dataset since it is guaranteed to be the most complete.

The most important thing to understand is the different trade-offs between the
RDB and AOF persistence. Let’s start with RDB:

RDB advantages

	RDB is a very compact single-file point-in-time representation of your Redis data. RDB files are perfect for backups. For instance you may want to archive your RDB files every hour for the latest 24 hours, and to save an RDB snapshot every day for 30 days. This allows you to easily restore different versions of the data set in case of disasters.

	RDB is very good for disaster recovery, being a single compact file can be transferred to far data centers, or on Amazon S3 (possibly encrypted).

	RDB maximizes Redis performances since the only work the Redis parent process needs to do in order to persist is forking a child that will do all the rest. The parent instance will never perform disk I/O or alike.

	RDB allows faster restarts with big datasets compared to AOF.

RDB disadvantages

	RDB is NOT good if you need to minimize the chance of data loss in case Redis stops working (for example after a power outage). You can configure different save points where an RDB is produced (for instance after at least five minutes and 100 writes against the data set, but you can have multiple save points). However you’ll usually create an RDB snapshot every five minutes or more, so in case of Redis stopping working without a correct shutdown for any reason you should be prepared to lose the latest minutes of data.

	RDB needs to fork() often in order to persist on disk using a child process. Fork() can be time consuming if the dataset is big, and may result in Redis to stop serving clients for some millisecond or even for one second if the dataset is very big and the CPU performance not great. AOF also needs to fork() but you can tune how often you want to rewrite your logs without any trade-off on durability.

AOF advantages

	Using AOF Redis is much more durable: you can have different fsync policies: no fsync at all, fsync every second, fsync at every query. With the default policy of fsync every second write performances are still great (fsync is performed using a background thread and the main thread will try hard to perform writes when no fsync is in progress.) but you can only lose one second worth of writes.

	The AOF log is an append only log, so there are no seeks, nor corruption problems if there is a power outage. Even if the log ends with an half-written command for some reason (disk full or other reasons) the redis-check-aof tool is able to fix it easily.

	Redis is able to automatically rewrite the AOF in background when it gets too big. The rewrite is completely safe as while Redis continues appending to the old file, a completely new one is produced with the minimal set of operations needed to create the current data set, and once this second file is ready Redis switches the two and starts appending to the new one.

	AOF contains a log of all the operations one after the other in an easy to understand and parse format. You can even easily export an AOF file. For instance even if you flushed everything for an error using a FLUSHALL command, if no rewrite of the log was performed in the meantime you can still save your data set just stopping the server, removing the latest command, and restarting Redis again.

AOF disadvantages

	AOF files are usually bigger than the equivalent RDB files for the same dataset.

	AOF can be slower than RDB depending on the exact fsync policy. In general with fsync set to every second performances are still very high, and with fsync disabled it should be exactly as fast as RDB even under high load. Still RDB is able to provide more guarantees about the maximum latency even in the case of an huge write load.

	In the past we experienced rare bugs in specific commands (for instance there was one involving blocking commands like BRPOPLPUSH) causing the AOF produced to not reproduce exactly the same dataset on reloading. This bugs are rare and we have tests in the test suite creating random complex datasets automatically and reloading them to check everything is ok, but this kind of bugs are almost impossible with RDB persistence. To make this point more clear: the Redis AOF works incrementally updating an existing state, like MySQL or MongoDB does, while the RDB snapshotting creates everything from scratch again and again, that is conceptually more robust. However -
	It should be noted that every time the AOF is rewritten by Redis it is recreated from scratch starting from the actual data contained in the data set, making resistance to bugs stronger compared to an always appending AOF file (or one rewritten reading the old AOF instead of reading the data in memory).

	We never had a single report from users about an AOF corruption that was detected in the real world.

Ok, so what should I use?

The general indication is that you should use both persistence methods if
you want a degree of data safety comparable to what PostgreSQL can provide you.

If you care a lot about your data, but still can live with a few minutes of
data loss in case of disasters, you can simply use RDB alone.

There are many users using AOF alone, but we discourage it since to have an
RDB snapshot from time to time is a great idea for doing database backups,
for faster restarts, and in the event of bugs in the AOF engine.

Note: for all these reasons we’ll likely end up unifying AOF and RDB into a single persistence model in the future (long term plan).

The following sections will illustrate a few more details about the two persistence models.

[bookmark: snapshotting]
Snapshotting

By default Redis saves snapshots of the dataset on disk, in a binary
file called dump.rdb. You can configure Redis to have it save the
dataset every N seconds if there are at least M changes in the dataset,
or you can manually call the SAVE or BGSAVE commands.

For example, this configuration will make Redis automatically dump the
dataset to disk every 60 seconds if at least 1000 keys changed:

save 60 1000

This strategy is known as snapshotting.

How it works

Whenever Redis needs to dump the dataset to disk, this is what happens:

	Redis forks [http://linux.die.net/man/2/fork]. We now have a child
and a parent process.

	The child starts to write the dataset to a temporary RDB file.

	When the child is done writing the new RDB file, it replaces the old
one.

This method allows Redis to benefit from copy-on-write semantics.

[bookmark: append-only-file]
Append-only file

Snapshotting is not very durable. If your computer running Redis stops,
your power line fails, or you accidentally kill -9 your instance, the
latest data written on Redis will get lost. While this may not be a big
deal for some applications, there are use cases for full durability, and
in these cases Redis was not a viable option.

The append-only file is an alternative, fully-durable strategy for
Redis. It became available in version 1.1.

You can turn on the AOF in your configuration file:

appendonly yes

From now on, every time Redis receives a command that changes the
dataset (e.g. SET) it will append it to the AOF. When you restart
Redis it will re-play the AOF to rebuild the state.

Log rewriting

As you can guess, the AOF gets bigger and bigger as write operations are
performed. For example, if you are incrementing a counter 100 times,
you’ll end up with a single key in your dataset containing the final
value, but 100 entries in your AOF. 99 of those entries are not needed
to rebuild the current state.

So Redis supports an interesting feature: it is able to rebuild the AOF
in the background without interrupting service to clients. Whenever
you issue a BGREWRITEAOF Redis will write the shortest sequence of
commands needed to rebuild the current dataset in memory. If you’re
using the AOF with Redis 2.2 you’ll need to run BGREWRITEAOF from time to
time. Redis 2.4 is able to trigger log rewriting automatically (see the
2.4 example configuration file for more information).

How durable is the append only file?

You can configure how many times Redis will
fsync [http://linux.die.net/man/2/fsync] data on disk. There are
three options:

	fsync every time a new command is appended to the AOF. Very very
slow, very safe.

	fsync every second. Fast enough (in 2.4 likely to be as fast as snapshotting), and you can lose 1 second of data if there is a disaster.

	Never fsync, just put your data in the hands of the Operating
System. The faster and less safe method.

The suggested (and default) policy is to fsync every second. It is
both very fast and pretty safe. The always policy is very slow in
practice (although it was improved in Redis 2.0) – there is no way to
make fsync faster than it is.

What should I do if my AOF gets corrupted?

It is possible that the server crashes while writing the AOF file (this
still should never lead to inconsistencies), corrupting the file in a
way that is no longer loadable by Redis. When this happens you can fix
this problem using the following procedure:

	Make a backup copy of your AOF file.

	Fix the original file using the redis-check-aof tool that ships with
Redis:

$ redis-check-aof --fix <filename>

	Optionally use diff -u to check what is the difference between two
files.

	Restart the server with the fixed file.

How it works

Log rewriting uses the same copy-on-write trick already in use for
snapshotting. This is how it works:

	Redis forks [http://linux.die.net/man/2/fork], so now we have a child
and a parent process.

	The child starts writing the new AOF in a temporary file.

	The parent accumulates all the new changes in an in-memory buffer (but
at the same time it writes the new changes in the old append-only file,
so if the rewriting fails, we are safe).

	When the child is done rewriting the file, the parent gets a signal,
and appends the in-memory buffer at the end of the file generated by the
child.

	Profit! Now Redis atomically renames the old file into the new one,
and starts appending new data into the new file.

How I can switch to AOF, if I’m currently using dump.rdb snapshots?

There is a different procedure to do this in Redis 2.0 and Redis 2.2, as you
can guess it’s simpler in Redis 2.2 and does not require a restart at all.

Redis >= 2.2

	Make a backup of your latest dump.rdb file.

	Transfer this backup into a safe place.

	Issue the following two commands:

	redis-cli config set appendonly yes

	redis-cli config set save “”

	Make sure that your database contains the same number of keys it contained.

	Make sure that writes are appended to the append only file correctly.

The first CONFIG command enables the Append Only File. In order to do so Redis will block to generate the initial dump, then will open the file for writing, and will start appending all the next write queries.

The second CONFIG command is used to turn off snapshotting persistence. This is optional, if you wish you can take both the persistence methods enabled.

IMPORTANT: remember to edit your redis.conf to turn on the AOF, otherwise
when you restart the server the configuration changes will be lost and the
server will start again with the old configuration.

Redis 2.0

	Make a backup of your latest dump.rdb file.

	Transfer this backup into a safe place.

	Stop all the writes against the database!

	Issue a redis-cli bgrewriteaof. This will create the append only file.

	Stop the server when Redis finished generating the AOF dump.

	Edit redis.conf end enable append only file persistence.

	Restart the server.

	Make sure that your database contains the same number of keys it contained.

	Make sure that writes are appended to the append only file correctly.

Interactions between AOF and RDB persistence

Redis >= 2.4 makes sure to avoid triggering an AOF rewrite when an RDB
snapshotting operation is already in progress, or allowing a BGSAVE while the
AOF rewrite is in progress. This prevents two Redis background processes
from doing heavy disk I/O at the same time.

When snapshotting is in progress and the user explicitly requests a log
rewrite operation using BGREWRITEAOF the server will reply with an OK
status code telling the user the operation is scheduled, and the rewrite
will start once the snapshotting is completed.

In the case both AOF and RDB persistence are enabled and Redis restarts the
AOF file will be used to reconstruct the original dataset since it is
guaranteed to be the most complete.

Backing up Redis data

Before starting this section, make sure to read the following sentence: Make Sure to Backup Your Database. Disks break, instances in the cloud disappear, and so forth: no backups means huge risk of data disappearing into /dev/null.

Redis is very data backup friendly since you can copy RDB files while the
database is running: the RDB is never modified once produced, and while it
gets produced it uses a temporary name and is renamed into its final destination
atomically using rename(2) only when the new snapshot is complete.

This means that copying the RDB file is completely safe while the server is
running. This is what we suggest:

	Create a cron job in your server creating hourly snapshots of the RDB file in one directory, and daily snapshots in a different directory.

	Every time the cron script runs, make sure to call the find command to make sure too old snapshots are deleted: for instance you can take hourly snapshots for the latest 48 hours, and daily snapshots for one or two months. Make sure to name the snapshots with data and time information.

	At least one time every day make sure to transfer an RDB snapshot outside your data center or at least outside the physical machine running your Redis instance.

Disaster recovery

Disaster recovery in the context of Redis is basically the same story as
backups, plus the ability to transfer those backups in many different external
data centers. This way data is secured even in the case of some catastrophic
event affecting the main data center where Redis is running and producing its
snapshots.

Since many Redis users are in the startup scene and thus don’t have plenty
of money to spend we’ll review the most interesting disaster recovery techniques
that don’t have too high costs.

	Amazon S3 and other similar services are a good way for mounting your disaster recovery system. Simply transfer your daily or hourly RDB snapshot to S3 in an encrypted form. You can encrypt your data using gpg -c (in symmetric encryption mode). Make sure to store your password in many different safe places (for instance give a copy to the most important people of your organization). It is recommended to use multiple storage services for improved data safety.

	Transfer your snapshots using SCP (part of SSH) to far servers. This is a fairly simple and safe route: get a small VPS in a place that is very far from you, install ssh there, and generate an ssh client key without passphrase, then make
add it in the authorized_keys file of your small VPS. You are ready to transfer
backups in an automated fashion. Get at least two VPS in two different providers
for best results.

It is important to understand that this system can easily fail if not coded
in the right way. At least make absolutely sure that after the transfer is
completed you are able to verify the file size (that should match the one of
the file you copied) and possibly the SHA1 digest if you are using a VPS.

You also need some kind of independent alert system if the transfer of fresh
backups is not working for some reason.

 <no title>

 Renames key to newkey if newkey does not yet exist.
It returns an error when key does not exist.

Note: Before Redis 3.2.0, an error is returned if source and destination names are the same.

@return

@integer-reply, specifically:

	1 if key was renamed to newkey.

	0 if newkey already exists.

@examples

SET mykey "Hello"
SET myotherkey "World"
RENAMENX mykey myotherkey
GET myotherkey

 <no title>

 Set the debug mode for subsequent scripts executed with EVAL. Redis includes a
complete Lua debugger, codename LDB, that can be used to make the task of
writing complex scripts much simpler. In debug mode Redis acts as a remote
debugging server and a client, such as redis-cli, can execute scripts step by
step, set breakpoints, inspect variables and more - for additional information
about LDB refer to the Redis Lua debugger page.

Important note: avoid debugging Lua scripts using your Redis production
server. Use a development server instead.

LDB can be enabled in one of two modes: asynchronous or synchronous. In
asynchronous mode the server creates a forked debugging session that does not
block and all changes to the data are rolled back after the session
finishes, so debugging can be restarted using the same initial state. The
alternative synchronous debug mode blocks the server while the debugging session
is active and retains all changes to the data set once it ends.

	YES. Enable non-blocking asynchronous debugging of Lua scripts (changes are discarded).

	SYNC. Enable blocking synchronous debugging of Lua scripts (saves changes to data).

	NO. Disables scripts debug mode.

@return

@simple-string-reply: OK.

 <no title>

 Inserts value in the list stored at key either before or after the reference
value pivot.

When key does not exist, it is considered an empty list and no operation is
performed.

An error is returned when key exists but does not hold a list value.

@return

@integer-reply: the length of the list after the insert operation, or -1 when
the value pivot was not found.

@examples

RPUSH mylist "Hello"
RPUSH mylist "World"
LINSERT mylist BEFORE "World" "There"
LRANGE mylist 0 -1

 <no title>

 Inserts value at the tail of the list stored at key, only if key already
exists and holds a list.
In contrary to RPUSH, no operation will be performed when key does not yet
exist.

@return

@integer-reply: the length of the list after the push operation.

@examples

RPUSH mylist "Hello"
RPUSHX mylist "World"
RPUSHX myotherlist "World"
LRANGE mylist 0 -1
LRANGE myotherlist 0 -1

 <no title>

 Create a key associated with a value that is obtained by deserializing the
provided serialized value (obtained via DUMP).

If ttl is 0 the key is created without any expire, otherwise the specified
expire time (in milliseconds) is set.

RESTORE will return a “Target key name is busy” error when key already
exists unless you use the REPLACE modifier (Redis 3.0 or greater).

RESTORE checks the RDB version and data checksum.
If they don’t match an error is returned.

@return

@simple-string-reply: The command returns OK on success.

@examples

redis> DEL mykey
0
redis> RESTORE mykey 0 "\n\x17\x17\x00\x00\x00\x12\x00\x00\x00\x03\x00\
 x00\xc0\x01\x00\x04\xc0\x02\x00\x04\xc0\x03\x00\
 xff\x04\x00u#<\xc0;.\xe9\xdd"
OK
redis> TYPE mykey
list
redis> LRANGE mykey 0 -1
1) "1"
2) "2"
3) "3"

 <no title>

 The command provides a list of slave nodes replicating from the specified
master node. The list is provided in the same format used by CLUSTER NODES (please refer to its documentation for the specification of the format).

The command will fail if the specified node is not known or if it is not
a master according to the node table of the node receiving the command.

Note that if a slave is added, moved, or removed from a given master node,
and we ask CLUSTER SLAVES to a node that has not yet received the
configuration update, it may show stale information. However eventually
(in a matter of seconds if there are no network partitions) all the nodes
will agree about the set of nodes associated with a given master.

@return

The command returns data in the same format as CLUSTER NODES.

 <no title>

 Subscribes the client to the specified channels.

Once the client enters the subscribed state it is not supposed to issue any
other commands, except for additional SUBSCRIBE, PSUBSCRIBE, UNSUBSCRIBE
and PUNSUBSCRIBE commands.

 <no title>

 Returns all keys matching pattern.

While the time complexity for this operation is O(N), the constant times are
fairly low.
For example, Redis running on an entry level laptop can scan a 1 million key
database in 40 milliseconds.

Warning: consider KEYS as a command that should only be used in production
environments with extreme care.
It may ruin performance when it is executed against large databases.
This command is intended for debugging and special operations, such as changing
your keyspace layout.
Don’t use KEYS in your regular application code.
If you’re looking for a way to find keys in a subset of your keyspace, consider
using SCAN or sets.

Supported glob-style patterns:

	h?llo matches hello, hallo and hxllo

	h*llo matches hllo and heeeello

	h[ae]llo matches hello and hallo, but not hillo

	h[^e]llo matches hallo, hbllo, ... but not hello

	h[a-b]llo matches hallo and hbllo

Use \ to escape special characters if you want to match them verbatim.

@return

@array-reply: list of keys matching pattern.

@examples

MSET one 1 two 2 three 3 four 4
KEYS *o*
KEYS t??
KEYS *

 Design pattern: Locking with !SETNX

 Set key to hold string value if key does not exist.
In that case, it is equal to SET.
When key already holds a value, no operation is performed.
SETNX is short for “SET if Not eXists”.

@return

@integer-reply, specifically:

	1 if the key was set

	0 if the key was not set

@examples

SETNX mykey "Hello"
SETNX mykey "World"
GET mykey

Design pattern: Locking with !SETNX

Please note that:

	The following pattern is discouraged in favor of the Redlock algorithm [http://redis.io/topics/distlock] which is only a bit more complex to implement, but offers better guarantees and is fault tolerant.

	We document the old pattern anyway because certain existing implementations link to this page as a reference. Moreover it is an interesting example of how Redis commands can be used in order to mount programming primitives.

	Anyway even assuming a single-instance locking primitive, starting with 2.6.12 it is possible to create a much simpler locking primitive, equivalent to the one discussed here, using the SET command to acquire the lock, and a simple Lua script to release the lock. The pattern is documented in the SET command page.

That said, SETNX can be used, and was historically used, as a locking primitive. For example, to acquire the lock of the key foo, the client could try the
following:

SETNX lock.foo <current Unix time + lock timeout + 1>

If SETNX returns 1 the client acquired the lock, setting the lock.foo key
to the Unix time at which the lock should no longer be considered valid.
The client will later use DEL lock.foo in order to release the lock.

If SETNX returns 0 the key is already locked by some other client.
We can either return to the caller if it’s a non blocking lock, or enter a loop
retrying to hold the lock until we succeed or some kind of timeout expires.

Handling deadlocks

In the above locking algorithm there is a problem: what happens if a client
fails, crashes, or is otherwise not able to release the lock?
It’s possible to detect this condition because the lock key contains a UNIX
timestamp.
If such a timestamp is equal to the current Unix time the lock is no longer
valid.

When this happens we can’t just call DEL against the key to remove the lock
and then try to issue a SETNX, as there is a race condition here, when
multiple clients detected an expired lock and are trying to release it.

	C1 and C2 read lock.foo to check the timestamp, because they both received
0 after executing SETNX, as the lock is still held by C3 that crashed
after holding the lock.

	C1 sends DEL lock.foo

	C1 sends SETNX lock.foo and it succeeds

	C2 sends DEL lock.foo

	C2 sends SETNX lock.foo and it succeeds

	ERROR: both C1 and C2 acquired the lock because of the race condition.

Fortunately, it’s possible to avoid this issue using the following algorithm.
Let’s see how C4, our sane client, uses the good algorithm:

	C4 sends SETNX lock.foo in order to acquire the lock

	The crashed client C3 still holds it, so Redis will reply with 0 to C4.

	C4 sends GET lock.foo to check if the lock expired.
If it is not, it will sleep for some time and retry from the start.

	Instead, if the lock is expired because the Unix time at lock.foo is older
than the current Unix time, C4 tries to perform:

GETSET lock.foo <current Unix timestamp + lock timeout + 1>

	Because of the GETSET semantic, C4 can check if the old value stored at
key is still an expired timestamp.
If it is, the lock was acquired.

	If another client, for instance C5, was faster than C4 and acquired the lock
with the GETSET operation, the C4 GETSET operation will return a non
expired timestamp.
C4 will simply restart from the first step.
Note that even if C4 set the key a bit a few seconds in the future this is
not a problem.

In order to make this locking algorithm more robust, a
client holding a lock should always check the timeout didn’t expire before
unlocking the key with DEL because client failures can be complex, not just
crashing but also blocking a lot of time against some operations and trying
to issue DEL after a lot of time (when the LOCK is already held by another
client).

 <no title>

 Request for authentication in a password-protected Redis server.
Redis can be instructed to require a password before allowing clients to execute
commands.
This is done using the requirepass directive in the configuration file.

If password matches the password in the configuration file, the server replies
with the OK status code and starts accepting commands.
Otherwise, an error is returned and the clients needs to try a new password.

Note: because of the high performance nature of Redis, it is possible to try
a lot of passwords in parallel in very short time, so make sure to generate a
strong and very long password so that this attack is infeasible.

@return

@simple-string-reply

 <no title>

 Computes the union of numkeys sorted sets given by the specified keys, and
stores the result in destination.
It is mandatory to provide the number of input keys (numkeys) before passing
the input keys and the other (optional) arguments.

By default, the resulting score of an element is the sum of its scores in the
sorted sets where it exists.

Using the WEIGHTS option, it is possible to specify a multiplication factor
for each input sorted set.
This means that the score of every element in every input sorted set is
multiplied by this factor before being passed to the aggregation function.
When WEIGHTS is not given, the multiplication factors default to 1.

With the AGGREGATE option, it is possible to specify how the results of the
union are aggregated.
This option defaults to SUM, where the score of an element is summed across
the inputs where it exists.
When this option is set to either MIN or MAX, the resulting set will contain
the minimum or maximum score of an element across the inputs where it exists.

If destination already exists, it is overwritten.

@return

@integer-reply: the number of elements in the resulting sorted set at
destination.

@examples

ZADD zset1 1 "one"
ZADD zset1 2 "two"
ZADD zset2 1 "one"
ZADD zset2 2 "two"
ZADD zset2 3 "three"
ZUNIONSTORE out 2 zset1 zset2 WEIGHTS 2 3
ZRANGE out 0 -1 WITHSCORES

 <no title>

 The SLAVEOF command can change the replication settings of a slave on the fly.
If a Redis server is already acting as slave, the command SLAVEOF NO ONE will
turn off the replication, turning the Redis server into a MASTER.
In the proper form SLAVEOF hostname port will make the server a slave of
another server listening at the specified hostname and port.

If a server is already a slave of some master, SLAVEOF hostname port will stop
the replication against the old server and start the synchronization against the
new one, discarding the old dataset.

The form SLAVEOF NO ONE will stop replication, turning the server into a
MASTER, but will not discard the replication.
So, if the old master stops working, it is possible to turn the slave into a
master and set the application to use this new master in read/write.
Later when the other Redis server is fixed, it can be reconfigured to work as a
slave.

@return

@simple-string-reply

A note about slavery: it’s unfortunate that originally the master-slave terminology was picked for databases. When Redis was designed the existing terminology was used without much analysis of alternatives, however a SLAVEOF NO ONE command was added as a freedom message. Instead of changing the terminology, which would require breaking backward compatibility in the API and INFO output, we want to use this page to remind you that slavery is both a crime against humanity today and something that has been perpetuated throughout all human history [https://en.wikipedia.org/wiki/Slavery].

If slavery is not wrong, nothing is wrong. – Abraham Lincoln

 <no title>

 This command sets a specific config epoch in a fresh node. It only works when:

	The nodes table of the node is empty.

	The node current config epoch is zero.

These prerequisites are needed since usually, manually altering the
configuration epoch of a node is unsafe, we want to be sure that the node with
the higher configuration epoch value (that is the last that failed over) wins
over other nodes in claiming the hash slots ownership.

However there is an exception to this rule, and it is when a new
cluster is created from scratch. Redis Cluster config epoch collision
resolution algorithm can deal with new nodes all configured with the
same configuration at startup, but this process is slow and should be
the exception, only to make sure that whatever happens, two more
nodes eventually always move away from the state of having the same
configuration epoch.

So, using CONFIG SET-CONFIG-EPOCH, when a new cluster is created, we can
assign a different progressive configuration epoch to each node before
joining the cluster together.

@return

@simple-string-reply: OK if the command was executed successfully, otherwise an error is returned.

 <no title>

 Alters the last access time of a key(s).
A key is ignored if it does not exist.

@return

@integer-reply: The number of keys that were touched.

@examples

SET key1 "Hello"
SET key2 "World"
TOUCH key1 key2

 <no title>

 Returns the number of elements in the sorted set at key with a score between
min and max.

The min and max arguments have the same semantic as described for
ZRANGEBYSCORE.

Note: the command has a complexity of just O(log(N)) because it uses elements ranks (see ZRANK) to get an idea of the range. Because of this there is no need to do a work proportional to the size of the range.

@return

@integer-reply: the number of elements in the specified score range.

@examples

ZADD myzset 1 "one"
ZADD myzset 2 "two"
ZADD myzset 3 "three"
ZCOUNT myzset -inf +inf
ZCOUNT myzset (1 3

 <no title>

 Merge multiple HyperLogLog values into an unique value that will approximate
the cardinality of the union of the observed Sets of the source HyperLogLog
structures.

The computed merged HyperLogLog is set to the destination variable, which is
created if does not exist (defaulting to an empty HyperLogLog).

@return

@simple-string-reply: The command just returns OK.

@examples

PFADD hll1 foo bar zap a
PFADD hll2 a b c foo
PFMERGE hll3 hll1 hll2
PFCOUNT hll3

 <no title>

 Geospatial Redis commands encode positions of objects in a single 52 bit integer, using a technique called geohash. Those 52 bit integers are:

	Returned by GEOAENCODE as return value.

	Used by GEOADD as sorted set scores of members.

The GEODECODE command is able to translate the 52 bit integers back into a position expressed as longitude and latitude. The command also returns the corners of the box that the 52 bit integer identifies on the earth surface, since each 52 integer actually represent not a single point, but a small area.

This command usefulness is limited to the rare situations where you want to
fetch raw data from the sorted set, for example with ZRANGE, and later
need to decode the scores into positions. The other obvious use is debugging.

@return

@array-reply, specifically:

The command returns an array of three elements. Each element of the main array is an array of two elements, specifying a longitude and a latitude. So the returned value is in the following form:

	center-longitude, center-latitude

	min-longitude, min-latitude

	max-longitude, max-latitude

@examples

GEOADD Sicily 13.361389 38.115556 "Palermo" 15.087269 37.502669 "Catania"
ZSCORE Sicily "Palermo"
GEODECODE 3479099956230698

 Example

 Returns an integer identifying the hash slot the specified key hashes to.
This command is mainly useful for debugging and testing, since it exposes
via an API the underlying Redis implementation of the hashing algorithm.
Example use cases for this command:

	Client libraries may use Redis in order to test their own hashing algorithm, generating random keys and hashing them with both their local implementation and using Redis CLUSTER KEYSLOT command, then checking if the result is the same.

	Humans may use this command in order to check what is the hash slot, and then the associated Redis Cluster node, responsible for a given key.

Example

> CLUSTER KEYSLOT somekey
11058
> CLUSTER KEYSLOT foo{hash_tag}
(integer) 2515
> CLUSTER KEYSLOT bar{hash_tag}
(integer) 2515

Note that the command implements the full hashing algorithm, including support for hash tags, that is the special property of Redis Cluster key hashing algorithm, of hashing just what is between { and } if such a pattern is found inside the key name, in order to force multiple keys to be handled by the same node.

@return

@integer-reply: The hash slot number.

 <no title>

 The CONFIG GET command is used to read the configuration parameters of a
running Redis server.
Not all the configuration parameters are supported in Redis 2.4, while Redis 2.6
can read the whole configuration of a server using this command.

The symmetric command used to alter the configuration at run time is CONFIG SET.

CONFIG GET takes a single argument, which is a glob-style pattern.
All the configuration parameters matching this parameter are reported as a list
of key-value pairs.
Example:

redis> config get *max-*-entries*
1) "hash-max-zipmap-entries"
2) "512"
3) "list-max-ziplist-entries"
4) "512"
5) "set-max-intset-entries"
6) "512"

You can obtain a list of all the supported configuration parameters by typing
CONFIG GET * in an open redis-cli prompt.

All the supported parameters have the same meaning of the equivalent
configuration parameter used in the redis.conf [http://github.com/antirez/redis/raw/2.8/redis.conf] file, with the
following important differences:

	Where bytes or other quantities are specified, it is not possible to use
the redis.conf abbreviated form (10k, 2gb ... and so forth), everything
should be specified as a well-formed 64-bit integer, in the base unit of the
configuration directive.

	The save parameter is a single string of space-separated integers.
Every pair of integers represent a seconds/modifications threshold.

For instance what in redis.conf looks like:

save 900 1
save 300 10

that means, save after 900 seconds if there is at least 1 change to the dataset,
and after 300 seconds if there are at least 10 changes to the dataset, will be
reported by CONFIG GET as “900 1 300 10”.

@return

The return type of the command is a @array-reply.

 Non-blocking behavior

 BLPOP is a blocking list pop primitive.
It is the blocking version of LPOP because it blocks the connection when there
are no elements to pop from any of the given lists.
An element is popped from the head of the first list that is non-empty, with the
given keys being checked in the order that they are given.

Non-blocking behavior

When BLPOP is called, if at least one of the specified keys contains a
non-empty list, an element is popped from the head of the list and returned to
the caller together with the key it was popped from.

Keys are checked in the order that they are given.
Let’s say that the key list1 doesn’t exist and list2 and list3 hold
non-empty lists.
Consider the following command:

BLPOP list1 list2 list3 0

BLPOP guarantees to return an element from the list stored at list2 (since
it is the first non empty list when checking list1, list2 and list3 in
that order).

Blocking behavior

If none of the specified keys exist, BLPOP blocks the connection until another
client performs an LPUSH or RPUSH operation against one of the keys.

Once new data is present on one of the lists, the client returns with the name
of the key unblocking it and the popped value.

When BLPOP causes a client to block and a non-zero timeout is specified,
the client will unblock returning a nil multi-bulk value when the specified
timeout has expired without a push operation against at least one of the
specified keys.

The timeout argument is interpreted as an integer value specifying the maximum number of seconds to block. A timeout of zero can be used to block indefinitely.

What key is served first? What client? What element? Priority ordering details.

	If the client tries to blocks for multiple keys, but at least one key contains elements, the returned key / element pair is the first key from left to right that has one or more elements. In this case the client is not blocked. So for instance BLPOP key1 key2 key3 key4 0, assuming that both key2 and key4 are non-empty, will always return an element from key2.

	If multiple clients are blocked for the same key, the first client to be served is the one that was waiting for more time (the first that blocked for the key). Once a client is unblocked it does not retain any priority, when it blocks again with the next call to BLPOP it will be served accordingly to the number of clients already blocked for the same key, that will all be served before it (from the first to the last that blocked).

	When a client is blocking for multiple keys at the same time, and elements are available at the same time in multiple keys (because of a transaction or a Lua script added elements to multiple lists), the client will be unblocked using the first key that received a push operation (assuming it has enough elements to serve our client, as there may be other clients as well waiting for this key). Basically after the execution of every command Redis will run a list of all the keys that received data AND that have at least a client blocked. The list is ordered by new element arrival time, from the first key that received data to the last. For every key processed, Redis will serve all the clients waiting for that key in a FIFO fashion, as long as there are elements in this key. When the key is empty or there are no longer clients waiting for this key, the next key that received new data in the previous command / transaction / script is processed, and so forth.

Behavior of !BLPOP when multiple elements are pushed inside a list.

There are times when a list can receive multiple elements in the context of the same conceptual command:

	Variadic push operations such as LPUSH mylist a b c.

	After an EXEC of a MULTI block with multiple push operations against the same list.

	Executing a Lua Script with Redis 2.6 or newer.

When multiple elements are pushed inside a list where there are clients blocking, the behavior is different for Redis 2.4 and Redis 2.6 or newer.

For Redis 2.6 what happens is that the command performing multiple pushes is executed, and only after the execution of the command the blocked clients are served. Consider this sequence of commands.

Client A: BLPOP foo 0
Client B: LPUSH foo a b c

If the above condition happens using a Redis 2.6 server or greater, Client A will be served with the c element, because after the LPUSH command the list contains c,b,a, so taking an element from the left means to return c.

Instead Redis 2.4 works in a different way: clients are served in the context of the push operation, so as long as LPUSH foo a b c starts pushing the first element to the list, it will be delivered to the Client A, that will receive a (the first element pushed).

The behavior of Redis 2.4 creates a lot of problems when replicating or persisting data into the AOF file, so the much more generic and semantically simpler behavior was introduced into Redis 2.6 to prevent problems.

Note that for the same reason a Lua script or a MULTI/EXEC block may push elements into a list and afterward delete the list. In this case the blocked clients will not be served at all and will continue to be blocked as long as no data is present on the list after the execution of a single command, transaction, or script.

!BLPOP inside a !MULTI / !EXEC transaction

BLPOP can be used with pipelining (sending multiple commands and
reading the replies in batch), however this setup makes sense almost solely
when it is the last command of the pipeline.

Using BLPOP inside a MULTI / EXEC block does not make a lot of sense
as it would require blocking the entire server in order to execute the block
atomically, which in turn does not allow other clients to perform a push
operation. For this reason the behavior of BLPOP inside MULTI / EXEC when the list is empty is to return a nil multi-bulk reply, which is the same
thing that happens when the timeout is reached.

If you like science fiction, think of time flowing at infinite speed inside a
MULTI / EXEC block...

@return

@array-reply: specifically:

	A nil multi-bulk when no element could be popped and the timeout expired.

	A two-element multi-bulk with the first element being the name of the key
where an element was popped and the second element being the value of the
popped element.

@examples

redis> DEL list1 list2
(integer) 0
redis> RPUSH list1 a b c
(integer) 3
redis> BLPOP list1 list2 0
1) "list1"
2) "a"

Reliable queues

When BLPOP returns an element to the client, it also removes the element from the list. This means that the element only exists in the context of the client: if the client crashes while processing the returned element, it is lost forever.

This can be a problem with some application where we want a more reliable messaging system. When this is the case, please check the BRPOPLPUSH command, that is a variant of BLPOP that adds the returned element to a target list before returning it to the client.

Pattern: Event notification

Using blocking list operations it is possible to mount different blocking
primitives.
For instance for some application you may need to block waiting for elements
into a Redis Set, so that as far as a new element is added to the Set, it is
possible to retrieve it without resort to polling.
This would require a blocking version of SPOP that is not available, but using
blocking list operations we can easily accomplish this task.

The consumer will do:

LOOP forever
 WHILE SPOP(key) returns elements
 ... process elements ...
 END
 BRPOP helper_key
END

While in the producer side we’ll use simply:

MULTI
SADD key element
LPUSH helper_key x
EXEC

 <no title>

 When all the elements in a sorted set are inserted with the same score, in order to force lexicographical ordering, this command returns the number of elements in the sorted set at key with a value between min and max.

The min and max arguments have the same meaning as described for
ZRANGEBYLEX.

Note: the command has a complexity of just O(log(N)) because it uses elements ranks (see ZRANK) to get an idea of the range. Because of this there is no need to do a work proportional to the size of the range.

@return

@integer-reply: the number of elements in the specified score range.

@examples

ZADD myzset 0 a 0 b 0 c 0 d 0 e
ZADD myzset 0 f 0 g
ZLEXCOUNT myzset - +
ZLEXCOUNT myzset [b [f

 <no title>

 Increments the number stored at field in the hash stored at key by
increment.
If key does not exist, a new key holding a hash is created.
If field does not exist the value is set to 0 before the operation is
performed.

The range of values supported by HINCRBY is limited to 64 bit signed integers.

@return

@integer-reply: the value at field after the increment operation.

@examples

Since the increment argument is signed, both increment and decrement
operations can be performed:

HSET myhash field 5
HINCRBY myhash field 1
HINCRBY myhash field -1
HINCRBY myhash field -10

 <no title>

 PEXPIREAT has the same effect and semantic as EXPIREAT, but the Unix time at
which the key will expire is specified in milliseconds instead of seconds.

@return

@integer-reply, specifically:

	1 if the timeout was set.

	0 if key does not exist.

@examples

SET mykey "Hello"
PEXPIREAT mykey 1555555555005
TTL mykey
PTTL mykey

 Handling of strings with different lengths

 Perform a bitwise operation between multiple keys (containing string values) and
store the result in the destination key.

The BITOP command supports four bitwise operations: AND, OR, XOR
and NOT, thus the valid forms to call the command are:

	BITOP AND destkey srckey1 srckey2 srckey3 ... srckeyN

	BITOP OR destkey srckey1 srckey2 srckey3 ... srckeyN

	BITOP XOR destkey srckey1 srckey2 srckey3 ... srckeyN

	BITOP NOT destkey srckey

As you can see NOT is special as it only takes an input key, because it
performs inversion of bits so it only makes sense as an unary operator.

The result of the operation is always stored at destkey.

Handling of strings with different lengths

When an operation is performed between strings having different lengths, all the
strings shorter than the longest string in the set are treated as if they were
zero-padded up to the length of the longest string.

The same holds true for non-existent keys, that are considered as a stream of
zero bytes up to the length of the longest string.

@return

@integer-reply

The size of the string stored in the destination key, that is equal to the
size of the longest input string.

@examples

SET key1 "foobar"
SET key2 "abcdef"
BITOP AND dest key1 key2
GET dest

Pattern: real time metrics using bitmaps

BITOP is a good complement to the pattern documented in the BITCOUNT command
documentation.
Different bitmaps can be combined in order to obtain a target bitmap where
the population counting operation is performed.

See the article called “Fast easy realtime metrics using Redis
bitmaps [http://blog.getspool.com/2011/11/29/fast-easy-realtime-metrics-using-redis-bitmaps]” for a interesting use cases.

Performance considerations

BITOP is a potentially slow command as it runs in O(N) time.
Care should be taken when running it against long input strings.

For real-time metrics and statistics involving large inputs a good approach is
to use a slave (with read-only option disabled) where the bit-wise
operations are performed to avoid blocking the master instance.

 <no title>

 Returns the members of the set resulting from the difference between the first
set and all the successive sets.

For example:

key1 = {a,b,c,d}
key2 = {c}
key3 = {a,c,e}
SDIFF key1 key2 key3 = {b,d}

Keys that do not exist are considered to be empty sets.

@return

@array-reply: list with members of the resulting set.

@examples

SADD key1 "a"
SADD key1 "b"
SADD key1 "c"
SADD key2 "c"
SADD key2 "d"
SADD key2 "e"
SDIFF key1 key2

 Migrating multiple keys with a single command call

 Atomically transfer a key from a source Redis instance to a destination Redis
instance.
On success the key is deleted from the original instance and is guaranteed to
exist in the target instance.

The command is atomic and blocks the two instances for the time required to
transfer the key, at any given time the key will appear to exist in a given
instance or in the other instance, unless a timeout error occurs. In 3.2 and
above, multiple keys can be pipelined in a single call to MIGRATE by passing
the empty string (“”) as key and adding the KEYS clause.

The command internally uses DUMP to generate the serialized version of the key
value, and RESTORE in order to synthesize the key in the target instance.
The source instance acts as a client for the target instance.
If the target instance returns OK to the RESTORE command, the source instance
deletes the key using DEL.

The timeout specifies the maximum idle time in any moment of the communication
with the destination instance in milliseconds.
This means that the operation does not need to be completed within the specified
amount of milliseconds, but that the transfer should make progresses without
blocking for more than the specified amount of milliseconds.

MIGRATE needs to perform I/O operations and to honor the specified timeout.
When there is an I/O error during the transfer or if the timeout is reached the
operation is aborted and the special error - IOERR returned.
When this happens the following two cases are possible:

	The key may be on both the instances.

	The key may be only in the source instance.

It is not possible for the key to get lost in the event of a timeout, but the
client calling MIGRATE, in the event of a timeout error, should check if the
key is also present in the target instance and act accordingly.

When any other error is returned (starting with ERR) MIGRATE guarantees that
the key is still only present in the originating instance (unless a key with the
same name was also already present on the target instance).

If there are no keys to migrate in the source instance NOKEY is returned.
Because missing keys are possible in normal conditions, from expiry for example,
NOKEY isn’t an error.

Migrating multiple keys with a single command call

Starting with Redis 3.0.6 MIGRATE supports a new bulk-migration mode that
uses pipelining in order to migrate multiple keys between instances without
incurring in the round trip time latency and other overheads that there are
when moving each key with a single MIGRATE call.

In order to enable this form, the KEYS option is used, and the normal key
argument is set to an empty string. The actual key names will be provided
after the KEYS argument itself, like in the following example:

MIGRATE 192.168.1.34 6379 "" 0 5000 KEYS key1 key2 key3

When this form is used the NOKEY status code is only returned when none
of the keys is present in the instance, otherwise the command is executed, even if
just a single key exists.

Options

	COPY – Do not remove the key from the local instance.

	REPLACE – Replace existing key on the remote instance.

	KEYS – If the key argument is an empty string, the command will instead migrate all the keys that follow the KEYS option (see the above section for more info).

COPY and REPLACE are available only in 3.0 and above.
KEYS is available starting with Redis 3.0.6.

@return

@simple-string-reply: The command returns OK on success, or NOKEY if no keys were
found in the source instance.

 <no title>

 The CONFIG SET command is used in order to reconfigure the server at run time
without the need to restart Redis.
You can change both trivial parameters or switch from one to another persistence
option using this command.

The list of configuration parameters supported by CONFIG SET can be obtained
issuing a CONFIG GET * command, that is the symmetrical command used to obtain
information about the configuration of a running Redis instance.

All the configuration parameters set using CONFIG SET are immediately loaded
by Redis and will take effect starting with the next command executed.

All the supported parameters have the same meaning of the equivalent
configuration parameter used in the redis.conf [http://github.com/antirez/redis/raw/2.8/redis.conf] file, with the
following important differences:

	In options where bytes or other quantities are specified, it is not
possible to use the redis.conf abbreviated form (10k, 2gb ... and so forth),
everything should be specified as a well-formed 64-bit integer, in the base
unit of the configuration directive. However since Redis version 3.0 or
greater, it is possible to use CONFIG SET with memory units for
maxmemory, client output buffers, and replication backlog size.

	The save parameter is a single string of space-separated integers.
Every pair of integers represent a seconds/modifications threshold.

For instance what in redis.conf looks like:

save 900 1
save 300 10

that means, save after 900 seconds if there is at least 1 change to the dataset,
and after 300 seconds if there are at least 10 changes to the dataset, should
be set using CONFIG SET SAVE "900 1 300 10".

It is possible to switch persistence from RDB snapshotting to append-only file
(and the other way around) using the CONFIG SET command.
For more information about how to do that please check the persistence
page.

In general what you should know is that setting the appendonly parameter to
yes will start a background process to save the initial append-only file
(obtained from the in memory data set), and will append all the subsequent
commands on the append-only file, thus obtaining exactly the same effect of a
Redis server that started with AOF turned on since the start.

You can have both the AOF enabled with RDB snapshotting if you want, the two
options are not mutually exclusive.

@return

@simple-string-reply: OK when the configuration was set properly.
Otherwise an error is returned.

 Pattern: Counter

 Increments the number stored at key by one.
If the key does not exist, it is set to 0 before performing the operation.
An error is returned if the key contains a value of the wrong type or contains a
string that can not be represented as integer.
This operation is limited to 64 bit signed integers.

Note: this is a string operation because Redis does not have a dedicated
integer type.
The string stored at the key is interpreted as a base-10 64 bit signed
integer to execute the operation.

Redis stores integers in their integer representation, so for string values
that actually hold an integer, there is no overhead for storing the string
representation of the integer.

@return

@integer-reply: the value of key after the increment

@examples

SET mykey "10"
INCR mykey
GET mykey

Pattern: Counter

The counter pattern is the most obvious thing you can do with Redis atomic
increment operations.
The idea is simply send an INCR command to Redis every time an operation
occurs.
For instance in a web application we may want to know how many page views this
user did every day of the year.

To do so the web application may simply increment a key every time the user
performs a page view, creating the key name concatenating the User ID and a
string representing the current date.

This simple pattern can be extended in many ways:

	It is possible to use INCR and EXPIRE together at every page view to have
a counter counting only the latest N page views separated by less than the
specified amount of seconds.

	A client may use GETSET in order to atomically get the current counter value
and reset it to zero.

	Using other atomic increment/decrement commands like DECR or INCRBY it
is possible to handle values that may get bigger or smaller depending on the
operations performed by the user.
Imagine for instance the score of different users in an online game.

Pattern: Rate limiter

The rate limiter pattern is a special counter that is used to limit the rate at
which an operation can be performed.
The classical materialization of this pattern involves limiting the number of
requests that can be performed against a public API.

We provide two implementations of this pattern using INCR, where we assume
that the problem to solve is limiting the number of API calls to a maximum of
ten requests per second per IP address.

Pattern: Rate limiter 1

The more simple and direct implementation of this pattern is the following:

FUNCTION LIMIT_API_CALL(ip)
ts = CURRENT_UNIX_TIME()
keyname = ip+":"+ts
current = GET(keyname)
IF current != NULL AND current > 10 THEN
 ERROR "too many requests per second"
ELSE
 MULTI
 INCR(keyname,1)
 EXPIRE(keyname,10)
 EXEC
 PERFORM_API_CALL()
END

Basically we have a counter for every IP, for every different second.
But this counters are always incremented setting an expire of 10 seconds so that
they’ll be removed by Redis automatically when the current second is a different
one.

Note the used of MULTI and EXEC in order to make sure that we’ll both
increment and set the expire at every API call.

Pattern: Rate limiter 2

An alternative implementation uses a single counter, but is a bit more complex
to get it right without race conditions.
We’ll examine different variants.

FUNCTION LIMIT_API_CALL(ip):
current = GET(ip)
IF current != NULL AND current > 10 THEN
 ERROR "too many requests per second"
ELSE
 value = INCR(ip)
 IF value == 1 THEN
 EXPIRE(ip,1)
 END
 PERFORM_API_CALL()
END

The counter is created in a way that it only will survive one second, starting
from the first request performed in the current second.
If there are more than 10 requests in the same second the counter will reach a
value greater than 10, otherwise it will expire and start again from 0.

In the above code there is a race condition.
If for some reason the client performs the INCR command but does not perform
the EXPIRE the key will be leaked until we’ll see the same IP address again.

This can be fixed easily turning the INCR with optional EXPIRE into a Lua
script that is send using the EVAL command (only available since Redis version
2.6).

local current
current = redis.call("incr",KEYS[1])
if tonumber(current) == 1 then
 redis.call("expire",KEYS[1],1)
end

There is a different way to fix this issue without using scripting, but using
Redis lists instead of counters.
The implementation is more complex and uses more advanced features but has the
advantage of remembering the IP addresses of the clients currently performing an
API call, that may be useful or not depending on the application.

FUNCTION LIMIT_API_CALL(ip)
current = LLEN(ip)
IF current > 10 THEN
 ERROR "too many requests per second"
ELSE
 IF EXISTS(ip) == FALSE
 MULTI
 RPUSH(ip,ip)
 EXPIRE(ip,1)
 EXEC
 ELSE
 RPUSHX(ip,ip)
 END
 PERFORM_API_CALL()
END

The RPUSHX command only pushes the element if the key already exists.

Note that we have a race here, but it is not a problem: EXISTS may return
false but the key may be created by another client before we create it inside
the MULTI / EXEC block.
However this race will just miss an API call under rare conditions, so the rate
limiting will still work correctly.

 <no title>

 Sets the specified fields to their respective values in the hash stored at
key.
This command overwrites any specified fields already existing in the hash.
If key does not exist, a new key holding a hash is created.

@return

@simple-string-reply

@examples

HMSET myhash field1 "Hello" field2 "World"
HGET myhash field1
HGET myhash field2

 <no title>

 DEBUG OBJECT is a debugging command that should not be used by clients.
Check the OBJECT command instead.

@return

@simple-string-reply

 <no title>

 See SCAN for ZSCAN documentation.

 <no title>

 Removes and returns the last element of the list stored at key.

@return

@bulk-string-reply: the value of the last element, or nil when key does not exist.

@examples

RPUSH mylist "one"
RPUSH mylist "two"
RPUSH mylist "three"
RPOP mylist
LRANGE mylist 0 -1

 <no title>

 Instruct Redis to start an Append Only File rewrite process.
The rewrite will create a small optimized version of the current Append Only
File.

If BGREWRITEAOF fails, no data gets lost as the old AOF will be untouched.

The rewrite will be only triggered by Redis if there is not already a background
process doing persistence.
Specifically:

	If a Redis child is creating a snapshot on disk, the AOF rewrite is
scheduled but not started until the saving child producing the RDB file
terminates.
In this case the BGREWRITEAOF will still return an OK code, but with an
appropriate message.
You can check if an AOF rewrite is scheduled looking at the INFO command
as of Redis 2.6.

	If an AOF rewrite is already in progress the command returns an error and no
AOF rewrite will be scheduled for a later time.

Since Redis 2.4 the AOF rewrite is automatically triggered by Redis, however the
BGREWRITEAOF command can be used to trigger a rewrite at any time.

Please refer to the persistence documentation for detailed information.

@return

@simple-string-reply: always OK.

 <no title>

 BRPOP is a blocking list pop primitive.
It is the blocking version of RPOP because it blocks the connection when there
are no elements to pop from any of the given lists.
An element is popped from the tail of the first list that is non-empty, with the
given keys being checked in the order that they are given.

See the BLPOP documentation for the exact semantics, since BRPOP is
identical to BLPOP with the only difference being that it pops elements from
the tail of a list instead of popping from the head.

@return

@array-reply: specifically:

	A nil multi-bulk when no element could be popped and the timeout expired.

	A two-element multi-bulk with the first element being the name of the key
where an element was popped and the second element being the value of the
popped element.

@examples

redis> DEL list1 list2
(integer) 0
redis> RPUSH list1 a b c
(integer) 3
redis> BRPOP list1 list2 0
1) "list1"
2) "c"

 Consistency with range functions in various programming languages

 Returns the specified elements of the list stored at key.
The offsets start and stop are zero-based indexes, with 0 being the first
element of the list (the head of the list), 1 being the next element and so
on.

These offsets can also be negative numbers indicating offsets starting at the
end of the list.
For example, -1 is the last element of the list, -2 the penultimate, and so
on.

Consistency with range functions in various programming languages

Note that if you have a list of numbers from 0 to 100, LRANGE list 0 10 will
return 11 elements, that is, the rightmost item is included.
This may or may not be consistent with behavior of range-related functions
in your programming language of choice (think Ruby’s Range.new, Array#slice
or Python’s range() function).

Out-of-range indexes

Out of range indexes will not produce an error.
If start is larger than the end of the list, an empty list is returned.
If stop is larger than the actual end of the list, Redis will treat it like
the last element of the list.

@return

@array-reply: list of elements in the specified range.

@examples

RPUSH mylist "one"
RPUSH mylist "two"
RPUSH mylist "three"
LRANGE mylist 0 0
LRANGE mylist -3 2
LRANGE mylist -100 100
LRANGE mylist 5 10

 CLIENT KILL and Redis Sentinel

 The CLIENT KILL command closes a given client connection. Up to Redis 2.8.11 it was possible to close a connection only by client address, using the following form:

CLIENT KILL addr:port

The ip:port should match a line returned by the CLIENT LIST command (addr field).

However starting with Redis 2.8.12 or greater, the command accepts the following
form:

CLIENT KILL <filter> <value> <filter> <value>

With the new form it is possible to kill clients by different attributes
instead of killing just by address. The following filters are available:

	CLIENT KILL ADDR ip:port. This is exactly the same as the old three-arguments behavior.

	CLIENT KILL ID client-id. Allows to kill a client by its unique ID field, which was introduced in the CLIENT LIST command starting from Redis 2.8.12.

	CLIENT KILL TYPE type, where type is one of normal, master, slave and pubsub (the master type is available from v3.2). This closes the connections of all the clients in the specified class. Note that clients blocked into the MONITOR command are considered to belong to the normal class.

	CLIENT KILL SKIPME yes/no. By default this option is set to yes, that is, the client calling the command will not get killed, however setting this option to no will have the effect of also killing the client calling the command.

It is possible to provide multiple filters at the same time. The command will handle multiple filters via logical AND. For example:

CLIENT KILL addr 127.0.0.1:6379 type slave

is valid and will kill only a slaves with the specified address. This format containing multiple filters is rarely useful currently.

When the new form is used the command no longer returns OK or an error, but instead the number of killed clients, that may be zero.

CLIENT KILL and Redis Sentinel

Recent versions of Redis Sentinel (Redis 2.8.12 or greater) use CLIENT KILL
in order to kill clients when an instance is reconfigured, in order to
force clients to perform the handshake with one Sentinel again and update
its configuration.

Notes

Due to the single-threaded nature of Redis, it is not possible to
kill a client connection while it is executing a command. From
the client point of view, the connection can never be closed
in the middle of the execution of a command. However, the client
will notice the connection has been closed only when the
next command is sent (and results in network error).

@return

When called with the three arguments format:

@simple-string-reply: OK if the connection exists and has been closed

When called with the filter / value format:

@integer-reply: the number of clients killed.

 <no title>

 Evaluates a script cached on the server side by its SHA1 digest.
Scripts are cached on the server side using the SCRIPT LOAD command.
The command is otherwise identical to EVAL.

 Pattern: real-time metrics using bitmaps

 Count the number of set bits (population counting) in a string.

By default all the bytes contained in the string are examined.
It is possible to specify the counting operation only in an interval passing the
additional arguments start and end.

Like for the GETRANGE command start and end can contain negative values in
order to index bytes starting from the end of the string, where -1 is the last
byte, -2 is the penultimate, and so forth.

Non-existent keys are treated as empty strings, so the command will return zero.

@return

@integer-reply

The number of bits set to 1.

@examples

SET mykey "foobar"
BITCOUNT mykey
BITCOUNT mykey 0 0
BITCOUNT mykey 1 1

Pattern: real-time metrics using bitmaps

Bitmaps are a very space-efficient representation of certain kinds of
information.
One example is a Web application that needs the history of user visits, so that
for instance it is possible to determine what users are good targets of beta
features.

Using the SETBIT command this is trivial to accomplish, identifying every day
with a small progressive integer.
For instance day 0 is the first day the application was put online, day 1 the
next day, and so forth.

Every time a user performs a page view, the application can register that in
the current day the user visited the web site using the SETBIT command setting
the bit corresponding to the current day.

Later it will be trivial to know the number of single days the user visited the
web site simply calling the BITCOUNT command against the bitmap.

A similar pattern where user IDs are used instead of days is described
in the article called “Fast easy realtime metrics using Redis
bitmaps [http://blog.getspool.com/2011/11/29/fast-easy-realtime-metrics-using-redis-bitmaps]”.

Performance considerations

In the above example of counting days, even after 10 years the application is
online we still have just 365*10 bits of data per user, that is just 456 bytes
per user.
With this amount of data BITCOUNT is still as fast as any other O(1) Redis
command like GET or INCR.

When the bitmap is big, there are two alternatives:

	Taking a separated key that is incremented every time the bitmap is modified.
This can be very efficient and atomic using a small Redis Lua script.

	Running the bitmap incrementally using the BITCOUNT start and end
optional parameters, accumulating the results client-side, and optionally
caching the result into a key.

 <no title>

 Returns the values associated with the specified fields in the hash stored at
key.

For every field that does not exist in the hash, a nil value is returned.
Because a non-existing keys are treated as empty hashes, running HMGET against
a non-existing key will return a list of nil values.

@return

@array-reply: list of values associated with the given fields, in the same
order as they are requested.

HSET myhash field1 "Hello"
HSET myhash field2 "World"
HMGET myhash field1 field2 nofield

 <no title>

 Returns the remaining time to live of a key that has a timeout.
This introspection capability allows a Redis client to check how many seconds a
given key will continue to be part of the dataset.

In Redis 2.6 or older the command returns -1 if the key does not exist or if the key exist but has no associated expire.

Starting with Redis 2.8 the return value in case of error changed:

	The command returns -2 if the key does not exist.

	The command returns -1 if the key exists but has no associated expire.

See also the PTTL command that returns the same information with milliseconds resolution (Only available in Redis 2.6 or greater).

@return

@integer-reply: TTL in seconds, or a negative value in order to signal an error (see the description above).

@examples

SET mykey "Hello"
EXPIRE mykey 10
TTL mykey

 <no title>

 CLIENT PAUSE is a connections control command able to suspend all the Redis clients for the specified amount of time (in milliseconds).

The command performs the following actions:

	It stops processing all the pending commands from normal and pub/sub clients. However interactions with slaves will continue normally.

	However it returns OK to the caller ASAP, so the CLIENT PAUSE command execution is not paused by itself.

	When the specified amount of time has elapsed, all the clients are unblocked: this will trigger the processing of all the commands accumulated in the query buffer of every client during the pause.

This command is useful as it makes able to switch clients from a Redis instance to another one in a controlled way. For example during an instance upgrade the system administrator could do the following:

	Pause the clients using CLIENT PAUSE

	Wait a few seconds to make sure the slaves processed the latest replication stream from the master.

	Turn one of the slaves into a master.

	Reconfigure clients to connect with the new master.

It is possible to send CLIENT PAUSE in a MULTI/EXEC block together with the INFO replication command in order to get the current master offset at the time the clients are blocked. This way it is possible to wait for a specific offset in the slave side in order to make sure all the replication stream was processed.

Since Redis 3.2.10 / 4.0.0, this command also prevents keys to be evicted or
expired during the time clients are paused. This way the dataset is guaranteed
to be static not just from the point of view of clients not being able to write, but also from the point of view of internal operations.

@return

@simple-string-reply: The command returns OK or an error if the timeout is invalid.

 <no title>

 Removes and returns the first element of the list stored at key.

@return

@bulk-string-reply: the value of the first element, or nil when key does not exist.

@examples

RPUSH mylist "one"
RPUSH mylist "two"
RPUSH mylist "three"
LPOP mylist
LRANGE mylist 0 -1

 <no title>

 Like TTL this command returns the remaining time to live of a key that has an
expire set, with the sole difference that TTL returns the amount of remaining
time in seconds while PTTL returns it in milliseconds.

In Redis 2.6 or older the command returns -1 if the key does not exist or if the key exist but has no associated expire.

Starting with Redis 2.8 the return value in case of error changed:

	The command returns -2 if the key does not exist.

	The command returns -1 if the key exists but has no associated expire.

@return

@integer-reply: TTL in milliseconds, or a negative value in order to signal an error (see the description above).

@examples

SET mykey "Hello"
EXPIRE mykey 1
PTTL mykey

 <no title>

 The command returns an array of keys names stored in the contacted node and
hashing to the specified hash slot. The maximum number of keys to return
is specified via the count argument, so that it is possible for the user
of this API to batch-processing keys.

The main usage of this command is during rehashing of cluster slots from one
node to another. The way the rehashing is performed is exposed in the Redis
Cluster specification, or in a more simple to digest form, as an appendix
of the CLUSTER SETSLOT command documentation.

> CLUSTER GETKEYSINSLOT 7000 3
"47344|273766|70329104160040|key_39015"
"47344|273766|70329104160040|key_89793"
"47344|273766|70329104160040|key_92937"

@return

@array-reply: From 0 to count key names in a Redis array reply.

 <no title>

 Sets the list element at index to value.
For more information on the index argument, see LINDEX.

An error is returned for out of range indexes.

@return

@simple-string-reply

@examples

RPUSH mylist "one"
RPUSH mylist "two"
RPUSH mylist "three"
LSET mylist 0 "four"
LSET mylist -2 "five"
LRANGE mylist 0 -1

 <no title>

 Returns the set cardinality (number of elements) of the set stored at key.

@return

@integer-reply: the cardinality (number of elements) of the set, or 0 if key
does not exist.

@examples

SADD myset "Hello"
SADD myset "World"
SCARD myset

 Details on why the ban-list is needed

 The command is used in order to remove a node, specified via its node ID,
from the set of known nodes of the Redis Cluster node receiving the command.
In other words the specified node is removed from the nodes table of the
node receiving the command.

Because when a given node is part of the cluster, all the other nodes
participating in the cluster knows about it, in order for a node to be
completely removed from a cluster, the CLUSTER FORGET command must be
sent to all the remaining nodes, regardless of the fact they are masters
or slaves.

However the command cannot simply drop the node from the internal node
table of the node receiving the command, it also implements a ban-list, not
allowing the same node to be added again as a side effect of processing the
gossip section of the heartbeat packets received from other nodes.

Details on why the ban-list is needed

In the following example we’ll show why the command must not just remove
a given node from the nodes table, but also prevent it for being re-inserted
again for some time.

Let’s assume we have four nodes, A, B, C and D. In order to
end with just a three nodes cluster A, B, C we may follow these steps:

	Reshard all the hash slots from D to nodes A, B, C.

	D is now empty, but still listed in the nodes table of A, B and C.

	We contact A, and send CLUSTER FORGET D.

	B sends node A a heartbeat packet, where node D is listed.

	A does no longer known node D (see step 3), so it starts an handshake with D.

	D ends re-added in the nodes table of A.

As you can see in this way removing a node is fragile, we need to send
CLUSTER FORGET commands to all the nodes ASAP hoping there are no
gossip sections processing in the meantime. Because of this problem the
command implements a ban-list with an expire time for each entry.

So what the command really does is:

	The specified node gets removed from the nodes table.

	The node ID of the removed node gets added to the ban-list, for 1 minute.

	The node will skip all the node IDs listed in the ban-list when processing gossip sections received in heartbeat packets from other nodes.

This way we have a 60 second window to inform all the nodes in the cluster that
we want to remove a node.

Special conditions not allowing the command execution

The command does not succeed and returns an error in the following cases:

	The specified node ID is not found in the nodes table.

	The node receiving the command is a slave, and the specified node ID identifies its current master.

	The node ID identifies the same node we are sending the command to.

@return

@simple-string-reply: OK if the command was executed successfully, otherwise an error is returned.

 <no title>

 Kills the currently executing Lua script, assuming no write operation was yet
performed by the script.

This command is mainly useful to kill a script that is running for too much
time(for instance because it entered an infinite loop because of a bug).
The script will be killed and the client currently blocked into EVAL will see
the command returning with an error.

If the script already performed write operations it can not be killed in this
way because it would violate Lua script atomicity contract.
In such a case only SHUTDOWN NOSAVE is able to kill the script, killing
the Redis process in an hard way preventing it to persist with half-written
information.

Please refer to the EVAL documentation for detailed information about Redis
Lua scripting.

@return

@simple-string-reply

 <no title>

 Subscribes the client to the given patterns.

Supported glob-style patterns:

	h?llo subscribes to hello, hallo and hxllo

	h*llo subscribes to hllo and heeeello

	h[ae]llo subscribes to hello and hallo, but not hillo

Use \ to escape special characters if you want to match them verbatim.

 <no title>

 Returns PONG if no argument is provided, otherwise return a copy of the
argument as a bulk.
This command is often used to test if a connection is still alive, or to measure
latency.

If the client is subscribed to a channel or a pattern, it will instead return a
multi-bulk with a “pong” in the first position and an empty bulk in the second
position, unless an argument is provided in which case it returns a copy
of the argument.

@return

@simple-string-reply

@examples

PING

PING "hello world"

 <no title>

 The command reconfigures a node as a slave of the specified master.
If the node receiving the command is an empty master, as a side effect
of the command, the node role is changed from master to slave.

Once a node is turned into the slave of another master node, there is no need
to inform the other cluster nodes about the change: heartbeat packets exchanged
between nodes will propagate the new configuration automatically.

A slave will always accept the command, assuming that:

	The specified node ID exists in its nodes table.

	The specified node ID does not identify the instance we are sending the command to.

	The specified node ID is a master.

If the node receiving the command is not already a slave, but is a master,
the command will only succeed, and the node will be converted into a slave,
only if the following additional conditions are met:

	The node is not serving any hash slots.

	The node is empty, no keys are stored at all in the key space.

If the command succeeds the new slave will immediately try to contact its master in order to replicate from it.

@return

@simple-string-reply: OK if the command was executed successfully, otherwise an error is returned.

 <no title>

 Return the position of the first bit set to 1 or 0 in a string.

The position is returned, thinking of the string as an array of bits from left to
right, where the first byte’s most significant bit is at position 0, the second
byte’s most significant bit is at position 8, and so forth.

The same bit position convention is followed by GETBIT and SETBIT.

By default, all the bytes contained in the string are examined.
It is possible to look for bits only in a specified interval passing the additional arguments start and end (it is possible to just pass start, the operation will assume that the end is the last byte of the string. However there are semantic differences as explained later). The range is interpreted as a range of bytes and not a range of bits, so start=0 and end=2 means to look at the first three bytes.

Note that bit positions are returned always as absolute values starting from bit zero even when start and end are used to specify a range.

Like for the GETRANGE command start and end can contain negative values in
order to index bytes starting from the end of the string, where -1 is the last
byte, -2 is the penultimate, and so forth.

Non-existent keys are treated as empty strings.

@return

@integer-reply

The command returns the position of the first bit set to 1 or 0 according to the request.

If we look for set bits (the bit argument is 1) and the string is empty or composed of just zero bytes, -1 is returned.

If we look for clear bits (the bit argument is 0) and the string only contains bit set to 1, the function returns the first bit not part of the string on the right. So if the string is three bytes set to the value 0xff the command BITPOS key 0 will return 24, since up to bit 23 all the bits are 1.

Basically, the function considers the right of the string as padded with zeros if you look for clear bits and specify no range or the start argument only.

However, this behavior changes if you are looking for clear bits and specify a range with both start and end. If no clear bit is found in the specified range, the function returns -1 as the user specified a clear range and there are no 0 bits in that range.

@examples

SET mykey "\xff\xf0\x00"
BITPOS mykey 0
SET mykey "\x00\xff\xf0"
BITPOS mykey 1 0
BITPOS mykey 1 2
set mykey "\x00\x00\x00"
BITPOS mykey 1

 Nested Result Array

 Returns @array-reply of details about all Redis commands.

Cluster clients must be aware of key positions in commands so commands can go to matching instances,
but Redis commands vary between accepting one key,
multiple keys, or even multiple keys separated by other data.

You can use COMMAND to cache a mapping between commands and key positions for
each command to enable exact routing of commands to cluster instances.

Nested Result Array

Each top-level result contains six nested results. Each nested result is:

	command name

	command arity specification

	nested @array-reply of command flags

	position of first key in argument list

	position of last key in argument list

	step count for locating repeating keys

Command Name

Command name is the command returned as a lowercase string.

Command Arity

	

1) 1) "get"
 2) (integer) 2
 3) 1) readonly
 4) (integer) 1
 5) (integer) 1
 6) (integer) 1

	

1) 1) "mget"
 2) (integer) -2
 3) 1) readonly
 4) (integer) 1
 5) (integer) -1
 6) (integer) 1

Command arity follows a simple pattern:

	positive if command has fixed number of required arguments.

	negative if command has minimum number of required arguments, but may have more.

Command arity includes counting the command name itself.

Examples:

	GET arity is 2 since the command only accepts one
argument and always has the format GET _key_.

	MGET arity is -2 since the command accepts at a minimum
one argument, but up to an unlimited number: MGET _key1_ [key2] [key3]

Also note with MGET, the -1 value for “last key position” means the list
of keys may have unlimited length.

Flags

Command flags is @array-reply containing one or more status replies:

	write - command may result in modifications

	readonly - command will never modify keys

	denyoom - reject command if currently OOM

	admin - server admin command

	pubsub - pubsub-related command

	noscript - deny this command from scripts

	random - command has random results, dangerous for scripts

	sort_for_script - if called from script, sort output

	loading - allow command while database is loading

	stale - allow command while replica has stale data

	skip_monitor - do not show this command in MONITOR

	asking - cluster related - accept even if importing

	fast - command operates in constant or log(N) time. Used for latency monitoring.

	movablekeys - keys have no pre-determined position. You must discover keys yourself.

Movable Keys

1) 1) "sort"
 2) (integer) -2
 3) 1) write
 2) denyoom
 3) movablekeys
 4) (integer) 1
 5) (integer) 1
 6) (integer) 1

Some Redis commands have no predetermined key locations. For those commands,
flag movablekeys is added to the command flags @array-reply. Your Redis
Cluster client needs to parse commands marked movablekeys to locate all relevant key positions.

Complete list of commands currently requiring key location parsing:

	SORT - optional STORE key, optional BY weights, optional GET keys

	ZUNIONSTORE - keys stop when WEIGHT or AGGREGATE starts

	ZINTERSTORE - keys stop when WEIGHT or AGGREGATE starts

	EVAL - keys stop after numkeys count arguments

	EVALSHA - keys stop after numkeys count arguments

Also see COMMAND GETKEYS for getting your Redis server tell you where keys
are in any given command.

First Key in Argument List

For most commands the first key is position 1. Position 0 is
always the command name itself.

Last Key in Argument List

Redis commands usually accept one key, two keys, or an unlimited number of keys.

If a command accepts one key, the first key and last key positions is 1.

If a command accepts two keys (e.g. BRPOPLPUSH, SMOVE, RENAME, ...) then the
last key position is the location of the last key in the argument list.

If a command accepts an unlimited number of keys, the last key position is -1.

Step Count

	

1) 1) "mset"
 2) (integer) -3
 3) 1) write
 2) denyoom
 4) (integer) 1
 5) (integer) -1
 6) (integer) 2

	

1) 1) "mget"
 2) (integer) -2
 3) 1) readonly
 4) (integer) 1
 5) (integer) -1
 6) (integer) 1

Key step count allows us to find key positions in commands
like MSET where the format is MSET _key1_ _val1_ [key2] [val2] [key3] [val3]....

In the case of MSET, keys are every other position so the step value is 2. Compare
with MGET above where the step value is just 1.

@return

@array-reply: nested list of command details. Commands are returned
in random order.

@examples

COMMAND

 <no title>

 The command returns the number of failure reports for the specified node.
Failure reports are the way Redis Cluster uses in order to promote a
PFAIL state, that means a node is not reachable, to a FAIL state,
that means that the majority of masters in the cluster agreed within
a window of time that the node is not reachable.

A few more details:

	A node flags another node with PFAIL when the node is not reachable for a time greater than the configured node timeout, which is a fundamental configuration parameter of a Redis Cluster.

	Nodes in PFAIL state are provided in gossip sections of heartbeat packets.

	Every time a node processes gossip packets from other nodes, it creates (and refreshes the TTL if needed) failure reports, remembering that a given node said another given node is in PFAIL condition.

	Each failure report has a time to live of two times the node timeout time.

	If at a given time a node has another node flagged with PFAIL, and at the same time collected the majority of other master nodes failure reports about this node (including itself if it is a master), then it elevates the failure state of the node from PFAIL to FAIL, and broadcasts a message forcing all the nodes that can be reached to flag the node as FAIL.

This command returns the number of failure reports for the current node which are currently not expired (so received within two times the node timeout time). The count does not include what the node we are asking this count believes about the node ID we pass as argument, the count only includes the failure reports the node received from other nodes.

This command is mainly useful for debugging, when the failure detector of
Redis Cluster is not operating as we believe it should.

@return

@integer-reply: the number of active failure reports for the node.

 <no title>

 Returns if member is a member of the set stored at key.

@return

@integer-reply, specifically:

	1 if the element is a member of the set.

	0 if the element is not a member of the set, or if key does not exist.

@examples

SADD myset "one"
SISMEMBER myset "one"
SISMEMBER myset "two"

 <no title>

 Resets the statistics reported by Redis using the INFO command.

These are the counters that are reset:

	Keyspace hits

	Keyspace misses

	Number of commands processed

	Number of connections received

	Number of expired keys

	Number of rejected connections

	Latest fork(2) time

	The aof_delayed_fsync counter

@return

@simple-string-reply: always OK.

 <no title>

 Removes the specified members from the sorted set stored at key.
Non existing members are ignored.

An error is returned when key exists and does not hold a sorted set.

@return

@integer-reply, specifically:

	The number of members removed from the sorted set, not including non existing
members.

@history

	>= 2.4: Accepts multiple elements.
In Redis versions older than 2.4 it was possible to remove a single member per
call.

@examples

ZADD myzset 1 "one"
ZADD myzset 2 "two"
ZADD myzset 3 "three"
ZREM myzset "two"
ZRANGE myzset 0 -1 WITHSCORES

 <no title>

 Computes the intersection of numkeys sorted sets given by the specified keys,
and stores the result in destination.
It is mandatory to provide the number of input keys (numkeys) before passing
the input keys and the other (optional) arguments.

By default, the resulting score of an element is the sum of its scores in the
sorted sets where it exists.
Because intersection requires an element to be a member of every given sorted
set, this results in the score of every element in the resulting sorted set to
be equal to the number of input sorted sets.

For a description of the WEIGHTS and AGGREGATE options, see ZUNIONSTORE.

If destination already exists, it is overwritten.

@return

@integer-reply: the number of elements in the resulting sorted set at
destination.

@examples

ZADD zset1 1 "one"
ZADD zset1 2 "two"
ZADD zset2 1 "one"
ZADD zset2 2 "two"
ZADD zset2 3 "three"
ZINTERSTORE out 2 zset1 zset2 WEIGHTS 2 3
ZRANGE out 0 -1 WITHSCORES

 Refreshing expires

 Set a timeout on key.
After the timeout has expired, the key will automatically be deleted.
A key with an associated timeout is often said to be volatile in Redis
terminology.

The timeout will only be cleared by commands that delete or overwrite the
contents of the key, including DEL, SET, GETSET and all the *STORE
commands.
This means that all the operations that conceptually alter the value stored at
the key without replacing it with a new one will leave the timeout untouched.
For instance, incrementing the value of a key with INCR, pushing a new value
into a list with LPUSH, or altering the field value of a hash with HSET are
all operations that will leave the timeout untouched.

The timeout can also be cleared, turning the key back into a persistent key,
using the PERSIST command.

If a key is renamed with RENAME, the associated time to live is transferred to
the new key name.

If a key is overwritten by RENAME, like in the case of an existing key Key_A
that is overwritten by a call like RENAME Key_B Key_A, it does not matter if
the original Key_A had a timeout associated or not, the new key Key_A will
inherit all the characteristics of Key_B.

Note that calling EXPIRE/PEXPIRE with a non-positive timeout or
EXPIREAT/PEXPIREAT with a time in the past will result in the key being
deleted rather than expired (accordingly, the emitted key event
will be del, not expired).

Refreshing expires

It is possible to call EXPIRE using as argument a key that already has an
existing expire set.
In this case the time to live of a key is updated to the new value.
There are many useful applications for this, an example is documented in the
Navigation session pattern section below.

Differences in Redis prior 2.1.3

In Redis versions prior 2.1.3 altering a key with an expire set using a
command altering its value had the effect of removing the key entirely.
This semantics was needed because of limitations in the replication layer that
are now fixed.

EXPIRE would return 0 and not alter the timeout for a key with a timeout set.

@return

@integer-reply, specifically:

	1 if the timeout was set.

	0 if key does not exist.

@examples

SET mykey "Hello"
EXPIRE mykey 10
TTL mykey
SET mykey "Hello World"
TTL mykey

Pattern: Navigation session

Imagine you have a web service and you are interested in the latest N pages
recently visited by your users, such that each adjacent page view was not
performed more than 60 seconds after the previous.
Conceptually you may consider this set of page views as a Navigation session
of your user, that may contain interesting information about what kind of
products he or she is looking for currently, so that you can recommend related
products.

You can easily model this pattern in Redis using the following strategy: every
time the user does a page view you call the following commands:

MULTI
RPUSH pagewviews.user:<userid> http://.....
EXPIRE pagewviews.user:<userid> 60
EXEC

If the user will be idle more than 60 seconds, the key will be deleted and only
subsequent page views that have less than 60 seconds of difference will be
recorded.

This pattern is easily modified to use counters using INCR instead of lists
using RPUSH.

Appendix: Redis expires

Keys with an expire

Normally Redis keys are created without an associated time to live.
The key will simply live forever, unless it is removed by the user in an
explicit way, for instance using the DEL command.

The EXPIRE family of commands is able to associate an expire to a given key,
at the cost of some additional memory used by the key.
When a key has an expire set, Redis will make sure to remove the key when the
specified amount of time elapsed.

The key time to live can be updated or entirely removed using the EXPIRE and
PERSIST command (or other strictly related commands).

Expire accuracy

In Redis 2.4 the expire might not be pin-point accurate, and it could be between
zero to one seconds out.

Since Redis 2.6 the expire error is from 0 to 1 milliseconds.

Expires and persistence

Keys expiring information is stored as absolute Unix timestamps (in milliseconds
in case of Redis version 2.6 or greater).
This means that the time is flowing even when the Redis instance is not active.

For expires to work well, the computer time must be taken stable.
If you move an RDB file from two computers with a big desync in their clocks,
funny things may happen (like all the keys loaded to be expired at loading
time).

Even running instances will always check the computer clock, so for instance if
you set a key with a time to live of 1000 seconds, and then set your computer
time 2000 seconds in the future, the key will be expired immediately, instead of
lasting for 1000 seconds.

How Redis expires keys

Redis keys are expired in two ways: a passive way, and an active way.

A key is passively expired simply when some client tries to access it, and the
key is found to be timed out.

Of course this is not enough as there are expired keys that will never be
accessed again.
These keys should be expired anyway, so periodically Redis tests a few keys at
random among keys with an expire set.
All the keys that are already expired are deleted from the keyspace.

Specifically this is what Redis does 10 times per second:

	Test 20 random keys from the set of keys with an associated expire.

	Delete all the keys found expired.

	If more than 25% of keys were expired, start again from step 1.

This is a trivial probabilistic algorithm, basically the assumption is that our
sample is representative of the whole key space, and we continue to expire until
the percentage of keys that are likely to be expired is under 25%

This means that at any given moment the maximum amount of keys already expired
that are using memory is at max equal to max amount of write operations per
second divided by 4.

How expires are handled in the replication link and AOF file

In order to obtain a correct behavior without sacrificing consistency, when a
key expires, a DEL operation is synthesized in both the AOF file and gains all
the attached slaves.
This way the expiration process is centralized in the master instance, and there
is no chance of consistency errors.

However while the slaves connected to a master will not expire keys
independently (but will wait for the DEL coming from the master), they’ll
still take the full state of the expires existing in the dataset, so when a
slave is elected to a master it will be able to expire the keys independently,
fully acting as a master.

 <no title>

 Unsubscribes the client from the given patterns, or from all of them if none is
given.

When no patterns are specified, the client is unsubscribed from all the
previously subscribed patterns.
In this case, a message for every unsubscribed pattern will be sent to the
client.

 <no title>

 Returns if key exists.

Since Redis 3.0.3 it is possible to specify multiple keys instead of a single one. In such a case, it returns the total number of keys existing. Note that returning 1 or 0 for a single key is just a special case of the variadic usage, so the command is completely backward compatible.

The user should be aware that if the same existing key is mentioned in the arguments multiple times, it will be counted multiple times. So if somekey exists, EXISTS somekey somekey will return 2.

@return

@integer-reply, specifically:

	1 if the key exists.

	0 if the key does not exist.

Since Redis 3.0.3 the command accepts a variable number of keys and the return value is generalized:

	The number of keys existing among the ones specified as arguments. Keys mentioned multiple times and existing are counted multiple times.

@examples

SET key1 "Hello"
EXISTS key1
EXISTS nosuchkey
SET key2 "World"
EXISTS key1 key2 nosuchkey

 <no title>

 This command swaps two Redis databases, so that immediately all the
clients connected to a given database will see the data of the other database, and
the other way around. Example:

SWAPDB 0 1

This will swap database 0 with database 1. All the clients connected with database 0 will immediately see the new data, exactly like all the clients connected with database 1 will see the data that was formerly of database 0.

@return

@simple-string-reply: OK if SWAPDB was executed correctly.

@examples

SWAPDB 0 1

 <no title>

 Returns the members of the set resulting from the intersection of all the given
sets.

For example:

key1 = {a,b,c,d}
key2 = {c}
key3 = {a,c,e}
SINTER key1 key2 key3 = {c}

Keys that do not exist are considered to be empty sets.
With one of the keys being an empty set, the resulting set is also empty (since
set intersection with an empty set always results in an empty set).

@return

@array-reply: list with members of the resulting set.

@examples

SADD key1 "a"
SADD key1 "b"
SADD key1 "c"
SADD key2 "c"
SADD key2 "d"
SADD key2 "e"
SINTER key1 key2

 <no title>

 Returns @array-reply of keys from a full Redis command.

COMMAND GETKEYS is a helper command to let you find the keys
from a full Redis command.

COMMAND shows some commands as having movablekeys meaning
the entire command must be parsed to discover storage or retrieval
keys. You can use COMMAND GETKEYS to discover key positions
directly from how Redis parses the commands.

@return

@array-reply: list of keys from your command.

@examples

COMMAND GETKEYS MSET a b c d e f
COMMAND GETKEYS EVAL "not consulted" 3 key1 key2 key3 arg1 arg2 arg3 argN
COMMAND GETKEYS SORT mylist ALPHA STORE outlist

 Read only variants

 Return the members of a sorted set populated with geospatial information using GEOADD, which are within the borders of the area specified with the center location and the maximum distance from the center (the radius).

This manual page also covers the GEORADIUS_RO and GEORADIUSBYRANGE_RO variants (see the section below for more information).

The common use case for this command is to retrieve geospatial items near a specified point and no far than a given amount of meters (or other units). This allows, for example, to suggest mobile users of an application nearby places.

The radius is specified in one of the following units:

	m for meters.

	km for kilometers.

	mi for miles.

	ft for feet.

The command optionally returns additional information using the following options:

	WITHDIST: Also return the distance of the returned items from the specified center. The distance is returned in the same unit as the unit specified as the radius argument of the command.

	WITHCOORD: Also return the longitude,latitude coordinates of the matching items.

	WITHHASH: Also return the raw geohash-encoded sorted set score of the item, in the form of a 52 bit unsigned integer. This is only useful for low level hacks or debugging and is otherwise of little interest for the general user.

The command default is to return unsorted items. Two different sorting methods can be invoked using the following two options:

	ASC: Sort returned items from the nearest to the farthest, relative to the center.

	DESC: Sort returned items from the farthest to the nearest, relative to the center.

By default all the matching items are returned. It is possible to limit the results to the first N matching items by using the COUNT <count> option. However note that internally the command needs to perform an effort proportional to the number of items matching the specified area, so to query very large areas with a very small COUNT option may be slow even if just a few results are returned. On the other hand COUNT can be a very effective way to reduce bandwidth usage if normally just the first results are used.

@return

@array-reply, specifically:

	Without any WITH option specified, the command just returns a linear array like [“New York”,”Milan”,”Paris”].

	If WITHCOORD, WITHDIST or WITHHASH options are specified, the command returns an array of arrays, where each sub-array represents a single item.

When additional information is returned as an array of arrays for each item, the first item in the sub-array is always the name of the returned item. The other information is returned in the following order as successive elements of the sub-array.

	The distance from the center as a floating point number, in the same unit specified in the radius.

	The geohash integer.

	The coordinates as a two items x,y array (longitude,latitude).

So for example the command GEORADIUS Sicily 15 37 200 km WITHCOORD WITHDIST will return each item in the following way:

["Palermo","190.4424",["13.361389338970184","38.115556395496299"]]

Read only variants

Since GEORADIUS and GEORADIUSBYMEMBER have a STORE and STOREDIST option they are technically flagged as writing commands in the Redis command table. For this reason read-only slaves will flag them, and Redis Cluster slaves will redirect them to the master instance even if the connection is in read only mode (See the READONLY command of Redis Cluster).

Breaking the compatibility with the past was considered but rejected, at least for Redis 4.0, so instead two read only variants of the commands were added. They are exactly like the original commands but refuse the STORE and STOREDIST options. The two variants are called GEORADIUS_RO and GEORADIUSBYMEMBER_RO, and can safely be used in slaves.

Both commands were introduced in Redis 3.2.10 and Redis 4.0.0 respectively.

@examples

GEOADD Sicily 13.361389 38.115556 "Palermo" 15.087269 37.502669 "Catania"
GEORADIUS Sicily 15 37 200 km WITHDIST
GEORADIUS Sicily 15 37 200 km WITHCOORD
GEORADIUS Sicily 15 37 200 km WITHDIST WITHCOORD

 <no title>

 Enables read queries for a connection to a Redis Cluster slave node.

Normally slave nodes will redirect clients to the authoritative master for
the hash slot involved in a given command, however clients can use slaves
in order to scale reads using the READONLY command.

READONLY tells a Redis Cluster slave node that the client is willing to
read possibly stale data and is not interested in running write queries.

When the connection is in readonly mode, the cluster will send a redirection
to the client only if the operation involves keys not served by the slave’s
master node. This may happen because:

	The client sent a command about hash slots never served by the master of this slave.

	The cluster was reconfigured (for example resharded) and the slave is no longer able to serve commands for a given hash slot.

@return

@simple-string-reply

 <no title>

 Removes all elements in the sorted set stored at key with rank between start
and stop.
Both start and stop are 0 -based indexes with 0 being the element with
the lowest score.
These indexes can be negative numbers, where they indicate offsets starting at
the element with the highest score.
For example: -1 is the element with the highest score, -2 the element with
the second highest score and so forth.

@return

@integer-reply: the number of elements removed.

@examples

ZADD myzset 1 "one"
ZADD myzset 2 "two"
ZADD myzset 3 "three"
ZREMRANGEBYRANK myzset 0 1
ZRANGE myzset 0 -1 WITHSCORES

 <no title>

 The SAVE commands performs a synchronous save of the dataset producing a
point in time snapshot of all the data inside the Redis instance, in the form
of an RDB file.

You almost never want to call SAVE in production environments where it will
block all the other clients.
Instead usually BGSAVE is used.
However in case of issues preventing Redis to create the background saving child
(for instance errors in the fork(2) system call), the SAVE command can be a
good last resort to perform the dump of the latest dataset.

Please refer to the persistence documentation for detailed information.

@return

@simple-string-reply: The commands returns OK on success.

 How does it work?

 Adds the specified geospatial items (latitude, longitude, name) to the specified
key. Data is stored into the key as a sorted set, in a way that makes it possible to later retrieve items using a query by radius with the GEORADIUS or GEORADIUSBYMEMBER commands.

The command takes arguments in the standard format x,y so the longitude must
be specified before the latitude. There are limits to the coordinates that
can be indexed: areas very near to the poles are not indexable. The exact
limits, as specified by EPSG:900913 / EPSG:3785 / OSGEO:41001 are the following:

	Valid longitudes are from -180 to 180 degrees.

	Valid latitudes are from -85.05112878 to 85.05112878 degrees.

The command will report an error when the user attempts to index coordinates outside the specified ranges.

Note: there is no GEODEL command because you can use ZREM in order to remove elements. The Geo index structure is just a sorted set.

How does it work?

The way the sorted set is populated is using a technique called
Geohash [https://en.wikipedia.org/wiki/Geohash]. Latitude and Longitude
bits are interleaved in order to form an unique 52 bit integer. We know
that a sorted set double score can represent a 52 bit integer without losing
precision.

This format allows for radius querying by checking the 1+8 areas needed
to cover the whole radius, and discarding elements outside the radius.
The areas are checked by calculating the range of the box covered removing
enough bits from the less significant part of the sorted set score, and
computing the score range to query in the sorted set for each area.

What Earth model does it use?

It just assumes that the Earth is a sphere, since the used distance formula
is the Haversine formula. This formula is only an approximation when applied to the Earth, which is not a perfect sphere. The introduced errors are not an issue when used in the context of social network sites that need to query by radius
and most other applications. However in the worst case the error may be up to
0.5%, so you may want to consider other systems for error-critical applications.

@return

@integer-reply, specifically:

	The number of elements added to the sorted set, not including elements
already existing for which the score was updated.

@examples

GEOADD Sicily 13.361389 38.115556 "Palermo" 15.087269 37.502669 "Catania"
GEODIST Sicily Palermo Catania
GEORADIUS Sicily 15 37 100 km
GEORADIUS Sicily 15 37 200 km

 Consistency and WAIT

 This command blocks the current client until all the previous write commands
are successfully transferred and acknowledged by at least the specified number
of slaves. If the timeout, specified in milliseconds, is reached, the command
returns even if the specified number of slaves were not yet reached.

The command will always return the number of slaves that acknowledged
the write commands sent before the WAIT command, both in the case where
the specified number of slaves are reached, or when the timeout is reached.

A few remarks:

	When WAIT returns, all the previous write commands sent in the context of the current connection are guaranteed to be received by the number of slaves returned by WAIT.

	If the command is sent as part of a MULTI transaction, the command does not block but instead just return ASAP the number of slaves that acknowledged the previous write commands.

	A timeout of 0 means to block forever.

	Since WAIT returns the number of slaves reached both in case of failure and success, the client should check that the returned value is equal or greater to the replication level it demanded.

Consistency and WAIT

Note that WAIT does not make Redis a strongly consistent store: while synchronous replication is part of a replicated state machine, it is not the only thing needed. However in the context of Sentinel or Redis Cluster failover, WAIT improves the real world data safety.

Specifically if a given write is transferred to one or more slaves, it is more likely (but not guaranteed) that if the master fails, we’ll be able to promote, during a failover, a slave that received the write: both Sentinel and Redis Cluster will do a best-effort attempt to promote the best slave among the set of available slaves.

However this is just a best-effort attempt so it is possible to still lose a write synchronously replicated to multiple slaves.

Implementation details

Since the introduction of partial resynchronization with slaves (PSYNC feature)
Redis slaves asynchronously ping their master with the offset they already
processed in the replication stream. This is used in multiple ways:

	Detect timed out slaves.

	Perform a partial resynchronization after a disconnection.

	Implement WAIT.

In the specific case of the implementation of WAIT, Redis remembers, for each client, the replication offset of the produced replication stream when a given
write command was executed in the context of a given client. When WAIT is
called Redis checks if the specified number of slaves already acknowledged
this offset or a greater one.

@return

@integer-reply: The command returns the number of slaves reached by all the writes performed in the context of the current connection.

@examples

> SET foo bar
OK
> WAIT 1 0
(integer) 1
> WAIT 2 1000
(integer) 1

In the following example the first call to WAIT does not use a timeout and asks for the write to reach 1 slave. It returns with success. In the second attempt instead we put a timeout, and ask for the replication of the write to two slaves. Since there is a single slave available, after one second WAIT unblocks and returns 1, the number of slaves reached.

 <no title>

 The CLIENT GETNAME returns the name of the current connection as set by CLIENT SETNAME. Since every new connection starts without an associated name, if no name was assigned a null bulk reply is returned.

@return

@bulk-string-reply: The connection name, or a null bulk reply if no name is set.

 <no title>

 Sets the given keys to their respective values.
MSET replaces existing values with new values, just as regular SET.
See MSETNX if you don’t want to overwrite existing values.

MSET is atomic, so all given keys are set at once.
It is not possible for clients to see that some of the keys were updated while
others are unchanged.

@return

@simple-string-reply: always OK since MSET can’t fail.

@examples

MSET key1 "Hello" key2 "World"
GET key1
GET key2

 <no title>

 Inserts value at the head of the list stored at key, only if key already
exists and holds a list.
In contrary to LPUSH, no operation will be performed when key does not yet
exist.

@return

@integer-reply: the length of the list after the push operation.

@examples

LPUSH mylist "World"
LPUSHX mylist "Hello"
LPUSHX myotherlist "Hello"
LRANGE mylist 0 -1
LRANGE myotherlist 0 -1

 <no title>

 Returns @array-reply of details about multiple Redis commands.

Same result format as COMMAND except you can specify which commands
get returned.

If you request details about non-existing commands, their return
position will be nil.

@return

@array-reply: nested list of command details.

@examples

COMMAND INFO get set eval
COMMAND INFO foo evalsha config bar

 <no title>

 Returns the number of keys in the specified Redis Cluster hash slot. The
command only queries the local data set, so contacting a node
that is not serving the specified hash slot will always result in a count of
zero being returned.

> CLUSTER COUNTKEYSINSLOT 7000
(integer) 50341

@return

@integer-reply: The number of keys in the specified hash slot, or an error if the hash slot is invalid.

 <no title>

 Move key from the currently selected database (see SELECT) to the specified
destination database.
When key already exists in the destination database, or it does not exist in
the source database, it does nothing.
It is possible to use MOVE as a locking primitive because of this.

@return

@integer-reply, specifically:

	1 if key was moved.

	0 if key was not moved.

 <no title>

 Remove the specified members from the set stored at key.
Specified members that are not a member of this set are ignored.
If key does not exist, it is treated as an empty set and this command returns
0.

An error is returned when the value stored at key is not a set.

@return

@integer-reply: the number of members that were removed from the set, not
including non existing members.

@history

	>= 2.4: Accepts multiple member arguments.
Redis versions older than 2.4 can only remove a set member per call.

@examples

SADD myset "one"
SADD myset "two"
SADD myset "three"
SREM myset "one"
SREM myset "four"
SMEMBERS myset

 Use case

 Geospatial Redis commands encode positions of objects in a single 52 bit integer, using a technique called geohash. The encoding is further explained in the GEODECODE and GEOADD documentation. The GEOENCODE command, documented in this page, is able to convert a longitude and latitude pair into such 52 bit integer, which is used as the score for the sorted set members representing geopositional information.

Normally you don’t need to use this command, unless you plan to implement low level code in the client side interacting with the Redis geo commands. This command may also be useful for debugging purposes.

GEOENCODE takes as input:

	The longitude and latitude of a point on the Earth surface.

	Optionally a radius represented by an integer and an unit.

And returns a set of information, including the representation of the position as a 52 bit integer, the min and max corners of the bounding box represented by the geo hash, the center point in the area covered by the geohash integer, and finally the two sorted set scores to query in order to retrieve all the elements included in the geohash area.

The radius optionally provided to the command is used in order to compute the two scores returned by the command for range query purposes. Moreover the returned geohash integer will only have the most significant bits set, according to the number of bits needed to approximate the specified radius.

Use case

As already specified this command is mostly not needed if not for debugging. However there are actual use cases, which is, when there is to query for the same areas multiple times, or with a different granularity or area shape compared to what Redis GEORADIUS is able to provide, the client may implement using this command part of the logic on the client side. Score ranges representing given areas can be cached client side and used to retrieve elements directly using ZRANGEBYSCORE.

@return

@array-reply, specifically:

The command returns an array of give elements in the following order:

	The 52 bit geohash

	min-longitude, min-latitude of the area identified

	max-longitude, max-latitude of the area identified

	center-longitude, center-latitude

	min-score and max-score of the sorted set to retrieve the members inside the area

@examples

GEOADD Sicily 13.361389 38.115556 "Palermo" 15.087269 37.502669 "Catania"
ZSCORE Sicily "Palermo"
GEOENCODE 13.361389 38.115556 100 km

 <no title>

 Returns the score of member in the sorted set at key.

If member does not exist in the sorted set, or key does not exist, nil is
returned.

@return

@bulk-string-reply: the score of member (a double precision floating point number),
represented as string.

@examples

ZADD myzset 1 "one"
ZSCORE myzset "one"

 <no title>

 Disables read queries for a connection to a Redis Cluster slave node.

Read queries against a Redis Cluster slave node are disabled by default,
but you can use the READONLY command to change this behavior on a per-
connection basis. The READWRITE command resets the readonly mode flag
of a connection back to readwrite.

@return

@simple-string-reply

 <no title>

 Warning: this command was renamed to GETRANGE, it is called SUBSTR in
Redis versions <= 2.0.

Returns the substring of the string value stored at key, determined by the
offsets start and end (both are inclusive).
Negative offsets can be used in order to provide an offset starting from the end
of the string.
So -1 means the last character, -2 the penultimate and so forth.

The function handles out of range requests by limiting the resulting range to
the actual length of the string.

@return

@bulk-string-reply

@examples

SET mykey "This is a string"
GETRANGE mykey 0 3
GETRANGE mykey -3 -1
GETRANGE mykey 0 -1
GETRANGE mykey 10 100

 <no title>

 The CLIENT SETNAME command assigns a name to the current connection.

The assigned name is displayed in the output of CLIENT LIST so that it is possible to identify the client that performed a given connection.

For instance when Redis is used in order to implement a queue, producers and consumers of messages may want to set the name of the connection according to their role.

There is no limit to the length of the name that can be assigned if not the usual limits of the Redis string type (512 MB). However it is not possible to use spaces in the connection name as this would violate the format of the CLIENT LIST reply.

It is possible to entirely remove the connection name setting it to the empty string, that is not a valid connection name since it serves to this specific purpose.

The connection name can be inspected using CLIENT GETNAME.

Every new connection starts without an assigned name.

Tip: setting names to connections is a good way to debug connection leaks due to bugs in the application using Redis.

@return

@simple-string-reply: OK if the connection name was successfully set.

 <no title>

 Returns all field names in the hash stored at key.

@return

@array-reply: list of fields in the hash, or an empty list when key does
not exist.

@examples

HSET myhash field1 "Hello"
HSET myhash field2 "World"
HKEYS myhash

 <no title>

 Unsubscribes the client from the given channels, or from all of them if none is
given.

When no channels are specified, the client is unsubscribed from all the
previously subscribed channels.
In this case, a message for every unsubscribed channel will be sent to the
client.

 <no title>

 Marks the start of a transaction block.
Subsequent commands will be queued for atomic execution using EXEC.

@return

@simple-string-reply: always OK.

 <no title>

 When all the elements in a sorted set are inserted with the same score, in order to force lexicographical ordering, this command returns all the elements in the sorted set at key with a value between max and min.

Apart from the reversed ordering, ZREVRANGEBYLEX is similar to ZRANGEBYLEX.

@return

@array-reply: list of elements in the specified score range.

@examples

ZADD myzset 0 a 0 b 0 c 0 d 0 e 0 f 0 g
ZREVRANGEBYLEX myzset [c -
ZREVRANGEBYLEX myzset (c -
ZREVRANGEBYLEX myzset (g [aaa

 <no title>

 Returns all values in the hash stored at key.

@return

@array-reply: list of values in the hash, or an empty list when key does
not exist.

@examples

HSET myhash field1 "Hello"
HSET myhash field2 "World"
HVALS myhash

 Exclusive intervals and infinity

 Returns all the elements in the sorted set at key with a score between min
and max (including elements with score equal to min or max).
The elements are considered to be ordered from low to high scores.

The elements having the same score are returned in lexicographical order (this
follows from a property of the sorted set implementation in Redis and does not
involve further computation).

The optional LIMIT argument can be used to only get a range of the matching
elements (similar to SELECT LIMIT offset, count in SQL).
Keep in mind that if offset is large, the sorted set needs to be traversed for
offset elements before getting to the elements to return, which can add up to
O(N) time complexity.

The optional WITHSCORES argument makes the command return both the element and
its score, instead of the element alone.
This option is available since Redis 2.0.

Exclusive intervals and infinity

min and max can be -inf and +inf, so that you are not required to know
the highest or lowest score in the sorted set to get all elements from or up to
a certain score.

By default, the interval specified by min and max is closed (inclusive).
It is possible to specify an open interval (exclusive) by prefixing the score
with the character (.
For example:

ZRANGEBYSCORE zset (1 5

Will return all elements with 1 < score <= 5 while:

ZRANGEBYSCORE zset (5 (10

Will return all the elements with 5 < score < 10 (5 and 10 excluded).

@return

@array-reply: list of elements in the specified score range (optionally
with their scores).

@examples

ZADD myzset 1 "one"
ZADD myzset 2 "two"
ZADD myzset 3 "three"
ZRANGEBYSCORE myzset -inf +inf
ZRANGEBYSCORE myzset 1 2
ZRANGEBYSCORE myzset (1 2
ZRANGEBYSCORE myzset (1 (2

Pattern: weighted random selection of an element

Normally ZRANGEBYSCORE is simply used in order to get range of items
where the score is the indexed integer key, however it is possible to do less
obvious things with the command.

For example a common problem when implementing Markov chains and other algorithms
is to select an element at random from a set, but different elements may have
different weights that change how likely it is they are picked.

This is how we use this command in order to mount such an algorithm:

Imagine you have elements A, B and C with weights 1, 2 and 3.
You compute the sum of the weights, which is 1+2+3 = 6

At this point you add all the elements into a sorted set using this algorithm:

SUM = ELEMENTS.TOTAL_WEIGHT // 6 in this case.
SCORE = 0
FOREACH ELE in ELEMENTS
 SCORE += ELE.weight / SUM
 ZADD KEY SCORE ELE
END

This means that you set:

A to score 0.16
B to score .5
C to score 1

Since this involves approximations, in order to avoid C is set to,
like, 0.998 instead of 1, we just modify the above algorithm to make sure
the last score is 1 (left as an exercise for the reader...).

At this point, each time you want to get a weighted random element,
just compute a random number between 0 and 1 (which is like calling
rand() in most languages), so you can just do:

RANDOM_ELE = ZRANGEBYSCORE key RAND() +inf LIMIT 0 1

 <no title>

 See SCAN for SSCAN documentation.

 <no title>

 This command works exactly like EXPIRE but the time to live of the key is
specified in milliseconds instead of seconds.

@return

@integer-reply, specifically:

	1 if the timeout was set.

	0 if key does not exist.

@examples

SET mykey "Hello"
PEXPIRE mykey 1500
TTL mykey
PTTL mykey

 <no title>

 Return a random key from the currently selected database.

@return

@bulk-string-reply: the random key, or nil when the database is empty.

 <no title>

 Decrements the number stored at key by one.
If the key does not exist, it is set to 0 before performing the operation.
An error is returned if the key contains a value of the wrong type or contains a
string that can not be represented as integer.
This operation is limited to 64 bit signed integers.

See INCR for extra information on increment/decrement operations.

@return

@integer-reply: the value of key after the decrement

@examples

SET mykey "10"
DECR mykey
SET mykey "234293482390480948029348230948"
DECR mykey

 <no title>

 Returns the bit value at offset in the string value stored at key.

When offset is beyond the string length, the string is assumed to be a
contiguous space with 0 bits.
When key does not exist it is assumed to be an empty string, so offset is
always out of range and the value is also assumed to be a contiguous space with
0 bits.

@return

@integer-reply: the bit value stored at offset.

@examples

SETBIT mykey 7 1
GETBIT mykey 0
GETBIT mykey 7
GETBIT mykey 100

 Implementation details: MEET and PING packets

 CLUSTER MEET is used in order to connect different Redis nodes with cluster
support enabled, into a working cluster.

The basic idea is that nodes by default don’t trust each other, and are
considered unknown, so that it is unlikely that different cluster nodes will
mix into a single one because of system administration errors or network
addresses modifications.

So in order for a given node to accept another one into the list of nodes
composing a Redis Cluster, there are only two ways:

	The system administrator sends a CLUSTER MEET command to force a node to meet another one.

	An already known node sends a list of nodes in the gossip section that we are not aware of. If the receiving node trusts the sending node as a known node, it will process the gossip section and send an handshake to the nodes that are still not known.

Note that Redis Cluster needs to form a full mesh (each node is connected with each other node), but in order to create a cluster, there is no need to send all the CLUSTER MEET commands needed to form the full mesh. What matter is to send enough CLUSTER MEET messages so that each node can reach each other node through a chain of known nodes. Thanks to the exchange of gossip information in heartbeat packets, the missing links will be created.

So, if we link node A with node B via CLUSTER MEET, and B with C, A and C will find their ways to handshake and create a link.

Another example: if we imagine a cluster formed of the following four nodes called A, B, C and D, we may send just the following set of commands to A:

	CLUSTER MEET B-ip B-port

	CLUSTER MEET C-ip C-port

	CLUSTER MEET D-ip D-port

As a side effect of A knowing and being known by all the other nodes, it will send gossip sections in the heartbeat packets that will allow each other node to create a link with each other one, forming a full mesh in a matter of seconds, even if the cluster is large.

Moreover CLUSTER MEET does not need to be reciprocal. If I send the command to A in order to join B, I don’t need to also send it to B in order to join A.

Implementation details: MEET and PING packets

When a given node receives a CLUSTER MEET message, the node specified in the
command still does not know the node we sent the command to. So in order for
the node to force the receiver to accept it as a trusted node, it sends a
MEET packet instead of a PING packet. The two packets have exactly the
same format, but the former forces the receiver to acknowledge the node as
trusted.

@return

@simple-string-reply: OK if the command was successful. If the address or port specified are invalid an error is returned.

 Supported subcommands and integer types

 The command treats a Redis string as a array of bits, and is capable of addressing specific integer fields of varying bit widths and arbitrary non (necessary) aligned offset. In practical terms using this command you can set, for example, a signed 5 bits integer at bit offset 1234 to a specific value, retrieve a 31 bit unsigned integer from offset 4567. Similarly the command handles increments and decrements of the specified integers, providing guaranteed and well specified overflow and underflow behavior that the user can configure.

BITFIELD is able to operate with multiple bit fields in the same command call. It takes a list of operations to perform, and returns an array of replies, where each array matches the corresponding operation in the list of arguments.

For example the following command increments an 8 bit signed integer at bit offset 100, and gets the value of the 4 bit unsigned integer at bit offset 0:

> BITFIELD mykey INCRBY i5 100 1 GET u4 0
1) (integer) 1
2) (integer) 0

Note that:

	Addressing with GET bits outside the current string length (including the case the key does not exist at all), results in the operation to be performed like the missing part all consists of bits set to 0.

	Addressing with SET or INCRBY bits outside the current string length will enlarge the string, zero-padding it, as needed, for the minimal length needed, according to the most far bit touched.

Supported subcommands and integer types

The following is the list of supported commands.

	GET <type> <offset> – Returns the specified bit field.

	SET <type> <offset> <value> – Set the specified bit field and returns its old value.

	INCRBY <type> <offset> <increment> – Increments or decrements (if a negative increment is given) the specified bit field and returns the new value.

There is another subcommand that only changes the behavior of successive
INCRBY subcommand calls by setting the overflow behavior:

	OVERFLOW [WRAP|SAT|FAIL]

Where an integer type is expected, it can be composed by prefixing with i for signed integers and u for unsigned integers with the number of bits of our integer type. So for example u8 is an unsigned integer of 8 bits and i16 is a
signed integer of 16 bits.

The supported types are up to 64 bits for signed integers, and up to 63 bits for
unsigned integers. This limitation with unsigned integers is due to the fact
that currently the Redis protocol is unable to return 64 bit unsigned integers
as replies.

Bits and positional offsets

There are two ways in order to specify offsets in the bitfield command.
If a number without any prefix is specified, it is used just as a zero based
bit offset inside the string.

However if the offset is prefixed with a # character, the specified offset
is multiplied by the integer type width, so for example:

BITFIELD mystring SET i8 #0 100 i8 #1 200

Will set the first i8 integer at offset 0 and the second at offset 8.
This way you don’t have to do the math yourself inside your client if what
you want is a plain array of integers of a given size.

Overflow control

Using the OVERFLOW command the user is able to fine-tune the behavior of
the increment or decrement overflow (or underflow) by specifying one of
the following behaviors:

	WRAP: wrap around, both with signed and unsigned integers. In the case of unsigned integers, wrapping is like performing the operation modulo the maximum value the integer can contain (the C standard behavior). With signed integers instead wrapping means that overflows restart towards the most negative value and underflows towards the most positive ones, so for example if an i8 integer is set to the value 127, incrementing it by 1 will yield -128.

	SAT: uses saturation arithmetic, that is, on underflows the value is set to the minimum integer value, and on overflows to the maximum integer value. For example incrementing an i8 integer starting from value 120 with an increment of 10, will result into the value 127, and further increments will always keep the value at 127. The same happens on underflows, but towards the value is blocked at the most negative value.

	FAIL: in this mode no operation is performed on overflows or underflows detected. The corresponding return value is set to NULL to signal the condition to the caller.

Note that each OVERFLOW statement only affects the INCRBY commands
that follow it in the list of subcommands, up to the next OVERFLOW
statement.

By default, WRAP is used if not otherwise specified.

> BITFIELD mykey incrby u2 100 1 OVERFLOW SAT incrby u2 102 1
1) (integer) 1
2) (integer) 1
> BITFIELD mykey incrby u2 100 1 OVERFLOW SAT incrby u2 102 1
1) (integer) 2
2) (integer) 2
> BITFIELD mykey incrby u2 100 1 OVERFLOW SAT incrby u2 102 1
1) (integer) 3
2) (integer) 3
> BITFIELD mykey incrby u2 100 1 OVERFLOW SAT incrby u2 102 1
1) (integer) 0
2) (integer) 3

Return value

The command returns an array with each entry being the corresponding result of
the sub command given at the same position. OVERFLOW subcommands don’t count
as generating a reply.

The following is an example of OVERFLOW FAIL returning NULL.

> BITFIELD mykey OVERFLOW FAIL incrby u2 102 1
1) (nil)

Motivations

The motivation for this command is that the ability to store many small integers
as a single large bitmap (or segmented over a few keys to avoid having huge keys) is extremely memory efficient, and opens new use cases for Redis to be applied, especially in the field of real time analytics. This use cases are supported by the ability to specify the overflow in a controlled way.

Fun fact: Reddit’s 2017 April fools’ project r/place [https://reddit.com/r/place] was built using the Redis BITFIELD command [https://redditblog.com/2017/04/13/how-we-built-rplace/] in order to take an in-memory representation of the collaborative canvas.

Performance considerations

Usually BITFIELD is a fast command, however note that addressing far bits of currently short strings will trigger an allocation that may be more costly than executing the command on bits already existing.

Orders of bits

The representation used by BITFIELD considers the bitmap as having the
bit number 0 to be the most significant bit of the first byte, and so forth, so
for example setting a 5 bits unsigned integer to value 23 at offset 7 into a
bitmap previously set to all zeroes, will produce the following representation:

+--------+--------+
|00000001|01110000|
+--------+--------+

When offsets and integer sizes are aligned to bytes boundaries, this is the
same as big endian, however when such alignment does not exist, its important
to also understand how the bits inside a byte are ordered.

 <no title>

 Returns the values of all specified keys.
For every key that does not hold a string value or does not exist, the special
value nil is returned.
Because of this, the operation never fails.

@return

@array-reply: list of values at the specified keys.

@examples

SET key1 "Hello"
SET key2 "World"
MGET key1 key2 nonexisting

 <no title>

 Flushes all previously queued commands in a transaction and restores the
connection state to normal.

If WATCH was used, DISCARD unwatches all keys watched by the connection.

@return

@simple-string-reply: always OK.

 SAVE and NOSAVE modifiers

 The command behavior is the following:

	Stop all the clients.

	Perform a blocking SAVE if at least one save point is configured.

	Flush the Append Only File if AOF is enabled.

	Quit the server.

If persistence is enabled this commands makes sure that Redis is switched off
without the lost of any data.
This is not guaranteed if the client uses simply SAVE and then QUIT because
other clients may alter the DB data between the two commands.

Note: A Redis instance that is configured for not persisting on disk (no AOF
configured, nor “save” directive) will not dump the RDB file on SHUTDOWN, as
usually you don’t want Redis instances used only for caching to block on when
shutting down.

SAVE and NOSAVE modifiers

It is possible to specify an optional modifier to alter the behavior of the
command.
Specifically:

	SHUTDOWN SAVE will force a DB saving operation even if no save points are
configured.

	SHUTDOWN NOSAVE will prevent a DB saving operation even if one or more
save points are configured.
(You can think of this variant as an hypothetical ABORT command that just
stops the server).

Conditions where a SHUTDOWN fails

When the Append Only File is enabled the shutdown may fail because the
system is in a state that does not allow to safely immediately persist
on disk.

Normally if there is an AOF child process performing an AOF rewrite, Redis
will simply kill it and exit. However there are two conditions where it is
unsafe to do so, and the SHUTDOWN command will be refused with an error
instead. This happens when:

	The user just turned on AOF, and the server triggered the first AOF rewrite in order to create the initial AOF file. In this context, stopping will result in losing the dataset at all: once restarted, the server will potentially have AOF enabled without having any AOF file at all.

	A slave with AOF enabled, reconnected with its master, performed a full resynchronization, and restarted the AOF file, triggering the initial AOF creation process. In this case not completing the AOF rewrite is dangerous because the latest dataset received from the master would be lost. The new master can actually be even a different instance (if the SLAVEOF command was used in order to reconfigure the slave), so it is important to finish the AOF rewrite and start with the correct data set representing the data set in memory when the server was terminated.

There are conditions when we want just to terminate a Redis instance ASAP, regardless of what its content is. In such a case, the right combination of commands is to send a CONFIG appendonly no followed by a SHUTDOWN NOSAVE. The first command will turn off the AOF if needed, and will terminate the AOF rewriting child if there is one active. The second command will not have any problem to execute since the AOF is no longer enabled.

@return

@simple-string-reply on error.
On success nothing is returned since the server quits and the connection is
closed.

 <no title>

 The TIME command returns the current server time as a two items lists: a Unix
timestamp and the amount of microseconds already elapsed in the current second.
Basically the interface is very similar to the one of the gettimeofday system
call.

@return

@array-reply, specifically:

A multi bulk reply containing two elements:

	unix time in seconds.

	microseconds.

@examples

TIME
TIME

 <no title>

 This command is exactly like GEORADIUS with the sole difference that instead
of taking, as the center of the area to query, a longitude and latitude value, it takes the name of a member already existing inside the geospatial index represented by the sorted set.

The position of the specified member is used as the center of the query.

Please check the example below and the GEORADIUS documentation for more information about the command and its options.

Note that GEORADIUSBYMEMBER_RO is also available since Redis 3.2.10 and Redis 4.0.0 in order to provide a read-only command that can be used in slaves. See the GEORADIUS page for more information.

@examples

GEOADD Sicily 13.583333 37.316667 "Agrigento"
GEOADD Sicily 13.361389 38.115556 "Palermo" 15.087269 37.502669 "Catania"
GEORADIUSBYMEMBER Sicily Agrigento 100 km

 FLUSHDB ASYNC (Redis 4.0.0 or greater)

 Delete all the keys of the currently selected DB.
This command never fails.

The time-complexity for this operation is O(N), N being the number of
keys in the database.

FLUSHDB ASYNC (Redis 4.0.0 or greater)

See FLUSHALL for documentation.

@return

@simple-string-reply

 <no title>

 Returns the length of the list stored at key.
If key does not exist, it is interpreted as an empty list and 0 is returned.
An error is returned when the value stored at key is not a list.

@return

@integer-reply: the length of the list at key.

@examples

LPUSH mylist "World"
LPUSH mylist "Hello"
LLEN mylist

 <no title>

 Returns the number of fields contained in the hash stored at key.

@return

@integer-reply: number of fields in the hash, or 0 when key does not exist.

@examples

HSET myhash field1 "Hello"
HSET myhash field2 "World"
HLEN myhash

 <no title>

 Returns the value associated with field in the hash stored at key.

@return

@bulk-string-reply: the value associated with field, or nil when field is not
present in the hash or key does not exist.

@examples

HSET myhash field1 "foo"
HGET myhash field1
HGET myhash field2

 Redis slow log overview

 This command is used in order to read and reset the Redis slow queries log.

Redis slow log overview

The Redis Slow Log is a system to log queries that exceeded a specified
execution time.
The execution time does not include I/O operations like talking with the client,
sending the reply and so forth, but just the time needed to actually execute the
command (this is the only stage of command execution where the thread is blocked
and can not serve other requests in the meantime).

You can configure the slow log with two parameters: slowlog-log-slower-than
tells Redis what is the execution time, in microseconds, to exceed in order for
the command to get logged.
Note that a negative number disables the slow log, while a value of zero forces
the logging of every command.
slowlog-max-len is the length of the slow log.
The minimum value is zero.
When a new command is logged and the slow log is already at its maximum length,
the oldest one is removed from the queue of logged commands in order to make
space.

The configuration can be done by editing redis.conf or while the server is
running using the CONFIG GET and CONFIG SET commands.

Reading the slow log

The slow log is accumulated in memory, so no file is written with information
about the slow command executions.
This makes the slow log remarkably fast at the point that you can enable the
logging of all the commands (setting the slowlog-log-slower-than config
parameter to zero) with minor performance hit.

To read the slow log the SLOWLOG GET command is used, that returns every
entry in the slow log.
It is possible to return only the N most recent entries passing an additional
argument to the command (for instance SLOWLOG GET 10).

Note that you need a recent version of redis-cli in order to read the slow log
output, since it uses some features of the protocol that were not formerly
implemented in redis-cli (deeply nested multi bulk replies).

Output format

redis 127.0.0.1:6379> slowlog get 2
1) 1) (integer) 14
 2) (integer) 1309448221
 3) (integer) 15
 4) 1) "ping"
2) 1) (integer) 13
 2) (integer) 1309448128
 3) (integer) 30
 4) 1) "slowlog"
 2) "get"
 3) "100"

There are also optional fields emitted only by Redis 4.0 or greater:

5) "127.0.0.1:58217"
6) "worker-123"

Every entry is composed of four (or six starting with Redis 4.0) fields:

	A unique progressive identifier for every slow log entry.

	The unix timestamp at which the logged command was processed.

	The amount of time needed for its execution, in microseconds.

	The array composing the arguments of the command.

	Client IP address and port (4.0 only).

	Client name if set via the CLIENT SETNAME command (4.0 only).

The entry’s unique ID can be used in order to avoid processing slow log entries
multiple times (for instance you may have a script sending you an email alert
for every new slow log entry).

The ID is never reset in the course of the Redis server execution, only a server
restart will reset it.

Obtaining the current length of the slow log

It is possible to get just the length of the slow log using the command
SLOWLOG LEN.

Resetting the slow log.

You can reset the slow log using the SLOWLOG RESET command.
Once deleted the information is lost forever.

 <no title>

 Removes the specified keys.
A key is ignored if it does not exist.

@return

@integer-reply: The number of keys that were removed.

@examples

SET key1 "Hello"
SET key2 "World"
DEL key1 key2 key3

 <no title>

 Returns the rank of member in the sorted set stored at key, with the scores
ordered from low to high.
The rank (or index) is 0-based, which means that the member with the lowest
score has rank 0.

Use ZREVRANK to get the rank of an element with the scores ordered from high
to low.

@return

	If member exists in the sorted set, @integer-reply: the rank of member.

	If member does not exist in the sorted set or key does not exist,
@bulk-string-reply: nil.

@examples

ZADD myzset 1 "one"
ZADD myzset 2 "two"
ZADD myzset 3 "three"
ZRANK myzset "three"
ZRANK myzset "four"

 Performances

 When called with a single key, returns the approximated cardinality computed by the HyperLogLog data structure stored at the specified variable, which is 0 if the variable does not exist.

When called with multiple keys, returns the approximated cardinality of the union of the HyperLogLogs passed, by internally merging the HyperLogLogs stored at the provided keys into a temporary HyperLogLog.

The HyperLogLog data structure can be used in order to count unique elements in a set using just a small constant amount of memory, specifically 12k bytes for every HyperLogLog (plus a few bytes for the key itself).

The returned cardinality of the observed set is not exact, but approximated with a standard error of 0.81%.

For example in order to take the count of all the unique search queries performed in a day, a program needs to call PFADD every time a query is processed. The estimated number of unique queries can be retrieved with PFCOUNT at any time.

Note: as a side effect of calling this function, it is possible that the HyperLogLog is modified, since the last 8 bytes encode the latest computed cardinality
for caching purposes. So PFCOUNT is technically a write command.

@return

@integer-reply, specifically:

	The approximated number of unique elements observed via PFADD.

@examples

PFADD hll foo bar zap
PFADD hll zap zap zap
PFADD hll foo bar
PFCOUNT hll
PFADD some-other-hll 1 2 3
PFCOUNT hll some-other-hll

Performances

When PFCOUNT is called with a single key, performances are excellent even if
in theory constant times to process a dense HyperLogLog are high. This is
possible because the PFCOUNT uses caching in order to remember the cardinality
previously computed, that rarely changes because most PFADD operations will
not update any register. Hundreds of operations per second are possible.

When PFCOUNT is called with multiple keys, an on-the-fly merge of the
HyperLogLogs is performed, which is slow, moreover the cardinality of the union
can’t be cached, so when used with multiple keys PFCOUNT may take a time in
the order of magnitude of the millisecond, and should be not abused.

The user should take in mind that single-key and multiple-keys executions of
this command are semantically different and have different performances.

HyperLogLog representation

Redis HyperLogLogs are represented using a double representation: the sparse representation suitable for HLLs counting a small number of elements (resulting in a small number of registers set to non-zero value), and a dense representation suitable for higher cardinalities. Redis automatically switches from the sparse to the dense representation when needed.

The sparse representation uses a run-length encoding optimized to store efficiently a big number of registers set to zero. The dense representation is a Redis string of 12288 bytes in order to store 16384 6-bit counters. The need for the double representation comes from the fact that using 12k (which is the dense representation memory requirement) to encode just a few registers for smaller cardinalities is extremely suboptimal.

Both representations are prefixed with a 16 bytes header, that includes a magic, an encoding / version field, and the cached cardinality estimation computed, stored in little endian format (the most significant bit is 1 if the estimation is invalid since the HyperLogLog was updated since the cardinality was computed).

The HyperLogLog, being a Redis string, can be retrieved with GET and restored with SET. Calling PFADD, PFCOUNT or PFMERGE commands with a corrupted HyperLogLog is never a problem, it may return random values but does not affect the stability of the server. Most of the times when corrupting a sparse representation, the server recognizes the corruption and returns an error.

The representation is neutral from the point of view of the processor word size and endianness, so the same representation is used by 32 bit and 64 bit processor, big endian or little endian.

More details about the Redis HyperLogLog implementation can be found in this blog post [http://antirez.com/news/75]. The source code of the implementation in the hyperloglog.c file is also easy to read and understand, and includes a full specification for the exact encoding used for the sparse and dense representations.

 Nested Result Array

 CLUSTER SLOTS returns details about which cluster slots map to which
Redis instances. The command is suitable to be used by Redis Cluster client
libraries implementations in order to retrieve (or update when a redirection
is received) the map associating cluster hash slots with actual nodes
network coordinates (composed of an IP address and a TCP port), so that when
a command is received, it can be sent to what is likely the right instance
for the keys specified in the command.

Nested Result Array

Each nested result is:

	Start slot range

	End slot range

	Master for slot range represented as nested IP/Port array

	First replica of master for slot range

	Second replica

	...continues until all replicas for this master are returned.

Each result includes all active replicas of the master instance
for the listed slot range. Failed replicas are not returned.

The third nested reply is guaranteed to be the IP/Port pair of
the master instance for the slot range.
All IP/Port pairs after the third nested reply are replicas
of the master.

If a cluster instance has non-contiguous slots (e.g. 1-400,900,1800-6000) then
master and replica IP/Port results will be duplicated for each top-level
slot range reply.

Warning: Newer versions of Redis Cluster will output, for each Redis instance, not just the IP and port, but also the node ID as third element of the array. In future versions there could be more elements describing the node better. In general a client implementation should just rely on the fact that certain parameters are at fixed positions as specified, but more parameters may follow and should be ignored. Similarly a client library should try if possible to cope with the fact that older versions may just have the IP and port parameter.

@return

@array-reply: nested list of slot ranges with IP/Port mappings.

Sample Output (old version)

127.0.0.1:7001> cluster slots
1) 1) (integer) 0
 2) (integer) 4095
 3) 1) "127.0.0.1"
 2) (integer) 7000
 4) 1) "127.0.0.1"
 2) (integer) 7004
2) 1) (integer) 12288
 2) (integer) 16383
 3) 1) "127.0.0.1"
 2) (integer) 7003
 4) 1) "127.0.0.1"
 2) (integer) 7007
3) 1) (integer) 4096
 2) (integer) 8191
 3) 1) "127.0.0.1"
 2) (integer) 7001
 4) 1) "127.0.0.1"
 2) (integer) 7005
4) 1) (integer) 8192
 2) (integer) 12287
 3) 1) "127.0.0.1"
 2) (integer) 7002
 4) 1) "127.0.0.1"
 2) (integer) 7006

Sample Output (new version, includes IDs)

127.0.0.1:30001> cluster slots
1) 1) (integer) 0
 2) (integer) 5460
 3) 1) "127.0.0.1"
 2) (integer) 30001
 3) "09dbe9720cda62f7865eabc5fd8857c5d2678366"
 4) 1) "127.0.0.1"
 2) (integer) 30004
 3) "821d8ca00d7ccf931ed3ffc7e3db0599d2271abf"
2) 1) (integer) 5461
 2) (integer) 10922
 3) 1) "127.0.0.1"
 2) (integer) 30002
 3) "c9d93d9f2c0c524ff34cc11838c2003d8c29e013"
 4) 1) "127.0.0.1"
 2) (integer) 30005
 3) "faadb3eb99009de4ab72ad6b6ed87634c7ee410f"
3) 1) (integer) 10923
 2) (integer) 16383
 3) 1) "127.0.0.1"
 2) (integer) 30003
 3) "044ec91f325b7595e76dbcb18cc688b6a5b434a1"
 4) 1) "127.0.0.1"
 2) (integer) 30006
 3) "58e6e48d41228013e5d9c1c37c5060693925e97e"

 <no title>

 Sometimes it can be useful for clients to completely disable replies from the Redis server. For example when the client sends fire and forget commands or performs a mass loading of data, or in caching contexts where new data is streamed constantly. In such contexts to use server time and bandwidth in order to send back replies to clients, which are going to be ignored, is considered wasteful.

The CLIENT REPLY command controls whether the server will reply the client’s commands. The following modes are available:

	ON. This is the default mode in which the server returns a reply to every command.

	OFF. In this mode the server will not reply to client commands.

	SKIP. This mode skips the reply of command immediately after it.

@return

When called with either OFF or SKIP subcommands, no reply is made. When called with ON:

@simple-string-reply: OK.

 Notes

 The CLIENT LIST command returns information and statistics about the client
connections server in a mostly human readable format.

@return

@bulk-string-reply: a unique string, formatted as follows:

	One client connection per line (separated by LF)

	Each line is composed of a succession of property=value fields separated
by a space character.

Here is the meaning of the fields:

	id: an unique 64-bit client ID (introduced in Redis 2.8.12).

	addr: address/port of the client

	fd: file descriptor corresponding to the socket

	age: total duration of the connection in seconds

	idle: idle time of the connection in seconds

	flags: client flags (see below)

	db: current database ID

	sub: number of channel subscriptions

	psub: number of pattern matching subscriptions

	multi: number of commands in a MULTI/EXEC context

	qbuf: query buffer length (0 means no query pending)

	qbuf-free: free space of the query buffer (0 means the buffer is full)

	obl: output buffer length

	oll: output list length (replies are queued in this list when the buffer is full)

	omem: output buffer memory usage

	events: file descriptor events (see below)

	cmd: last command played

The client flags can be a combination of:

O: the client is a slave in MONITOR mode
S: the client is a normal slave server
M: the client is a master
x: the client is in a MULTI/EXEC context
b: the client is waiting in a blocking operation
i: the client is waiting for a VM I/O (deprecated)
d: a watched keys has been modified - EXEC will fail
c: connection to be closed after writing entire reply
u: the client is unblocked
U: the client is connected via a Unix domain socket
r: the client is in readonly mode against a cluster node
A: connection to be closed ASAP
N: no specific flag set

The file descriptor events can be:

r: the client socket is readable (event loop)
w: the client socket is writable (event loop)

Notes

New fields are regularly added for debugging purpose. Some could be removed
in the future. A version safe Redis client using this command should parse
the output accordingly (i.e. handling gracefully missing fields, skipping
unknown fields).

 SCAN basic usage

 The SCAN command and the closely related commands SSCAN, HSCAN and ZSCAN are used in order to incrementally iterate over a collection of elements.

	SCAN iterates the set of keys in the currently selected Redis database.

	SSCAN iterates elements of Sets types.

	HSCAN iterates fields of Hash types and their associated values.

	ZSCAN iterates elements of Sorted Set types and their associated scores.

Since these commands allow for incremental iteration, returning only a small number of elements per call, they can be used in production without the downside of commands like KEYS or SMEMBERS that may block the server for a long time (even several seconds) when called against big collections of keys or elements.

However while blocking commands like SMEMBERS are able to provide all the elements that are part of a Set in a given moment, The SCAN family of commands only offer limited guarantees about the returned elements since the collection that we incrementally iterate can change during the iteration process.

Note that SCAN, SSCAN, HSCAN and ZSCAN all work very similarly, so this documentation covers all the four commands. However an obvious difference is that in the case of SSCAN, HSCAN and ZSCAN the first argument is the name of the key holding the Set, Hash or Sorted Set value. The SCAN command does not need any key name argument as it iterates keys in the current database, so the iterated object is the database itself.

SCAN basic usage

SCAN is a cursor based iterator. This means that at every call of the command, the server returns an updated cursor that the user needs to use as the cursor argument in the next call.

An iteration starts when the cursor is set to 0, and terminates when the cursor returned by the server is 0. The following is an example of SCAN iteration:

redis 127.0.0.1:6379> scan 0
1) "17"
2) 1) "key:12"
 2) "key:8"
 3) "key:4"
 4) "key:14"
 5) "key:16"
 6) "key:17"
 7) "key:15"
 8) "key:10"
 9) "key:3"
 10) "key:7"
 11) "key:1"
redis 127.0.0.1:6379> scan 17
1) "0"
2) 1) "key:5"
 2) "key:18"
 3) "key:0"
 4) "key:2"
 5) "key:19"
 6) "key:13"
 7) "key:6"
 8) "key:9"
 9) "key:11"

In the example above, the first call uses zero as a cursor, to start the iteration. The second call uses the cursor returned by the previous call as the first element of the reply, that is, 17.

As you can see the SCAN return value is an array of two values: the first value is the new cursor to use in the next call, the second value is an array of elements.

Since in the second call the returned cursor is 0, the server signaled to the caller that the iteration finished, and the collection was completely explored. Starting an iteration with a cursor value of 0, and calling SCAN until the returned cursor is 0 again is called a full iteration.

Scan guarantees

The SCAN command, and the other commands in the SCAN family, are able to provide to the user a set of guarantees associated to full iterations.

	A full iteration always retrieves all the elements that were present in the collection from the start to the end of a full iteration. This means that if a given element is inside the collection when an iteration is started, and is still there when an iteration terminates, then at some point SCAN returned it to the user.

	A full iteration never returns any element that was NOT present in the collection from the start to the end of a full iteration. So if an element was removed before the start of an iteration, and is never added back to the collection for all the time an iteration lasts, SCAN ensures that this element will never be returned.

However because SCAN has very little state associated (just the cursor) it has the following drawbacks:

	A given element may be returned multiple times. It is up to the application to handle the case of duplicated elements, for example only using the returned elements in order to perform operations that are safe when re-applied multiple times.

	Elements that were not constantly present in the collection during a full iteration, may be returned or not: it is undefined.

Number of elements returned at every SCAN call

SCAN family functions do not guarantee that the number of elements returned per call are in a given range. The commands are also allowed to return zero elements, and the client should not consider the iteration complete as long as the returned cursor is not zero.

However the number of returned elements is reasonable, that is, in practical terms SCAN may return a maximum number of elements in the order of a few tens of elements when iterating a large collection, or may return all the elements of the collection in a single call when the iterated collection is small enough to be internally represented as an encoded data structure (this happens for small sets, hashes and sorted sets).

However there is a way for the user to tune the order of magnitude of the number of returned elements per call using the COUNT option.

The COUNT option

While SCAN does not provide guarantees about the number of elements returned at every iteration, it is possible to empirically adjust the behavior of SCAN using the COUNT option. Basically with COUNT the user specified the amount of work that should be done at every call in order to retrieve elements from the collection. This is just an hint for the implementation, however generally speaking this is what you could expect most of the times from the implementation.

	The default COUNT value is 10.

	When iterating the key space, or a Set, Hash or Sorted Set that is big enough to be represented by a hash table, assuming no MATCH option is used, the server will usually return count or a bit more than count elements per call.

	When iterating Sets encoded as intsets (small sets composed of just integers), or Hashes and Sorted Sets encoded as ziplists (small hashes and sets composed of small individual values), usually all the elements are returned in the first SCAN call regardless of the COUNT value.

Important: there is no need to use the same COUNT value for every iteration. The caller is free to change the count from one iteration to the other as required, as long as the cursor passed in the next call is the one obtained in the previous call to the command.

The MATCH option

It is possible to only iterate elements matching a given glob-style pattern, similarly to the behavior of the KEYS command that takes a pattern as only argument.

To do so, just append the MATCH <pattern> arguments at the end of the SCAN command (it works with all the SCAN family commands).

This is an example of iteration using MATCH:

redis 127.0.0.1:6379> sadd myset 1 2 3 foo foobar feelsgood
(integer) 6
redis 127.0.0.1:6379> sscan myset 0 match f*
1) "0"
2) 1) "foo"
 2) "feelsgood"
 3) "foobar"
redis 127.0.0.1:6379>

It is important to note that the MATCH filter is applied after elements are retrieved from the collection, just before returning data to the client. This means that if the pattern matches very little elements inside the collection, SCAN will likely return no elements in most iterations. An example is shown below:

redis 127.0.0.1:6379> scan 0 MATCH *11*
1) "288"
2) 1) "key:911"
redis 127.0.0.1:6379> scan 288 MATCH *11*
1) "224"
2) (empty list or set)
redis 127.0.0.1:6379> scan 224 MATCH *11*
1) "80"
2) (empty list or set)
redis 127.0.0.1:6379> scan 80 MATCH *11*
1) "176"
2) (empty list or set)
redis 127.0.0.1:6379> scan 176 MATCH *11* COUNT 1000
1) "0"
2) 1) "key:611"
 2) "key:711"
 3) "key:118"
 4) "key:117"
 5) "key:311"
 6) "key:112"
 7) "key:111"
 8) "key:110"
 9) "key:113"
 10) "key:211"
 11) "key:411"
 12) "key:115"
 13) "key:116"
 14) "key:114"
 15) "key:119"
 16) "key:811"
 17) "key:511"
 18) "key:11"
redis 127.0.0.1:6379>

As you can see most of the calls returned zero elements, but the last call where a COUNT of 1000 was used in order to force the command to do more scanning for that iteration.

Multiple parallel iterations

It is possible for an infinite number of clients to iterate the same collection at the same time, as the full state of the iterator is in the cursor, that is obtained and returned to the client at every call. Server side no state is taken at all.

Terminating iterations in the middle

Since there is no state server side, but the full state is captured by the cursor, the caller is free to terminate an iteration half-way without signaling this to the server in any way. An infinite number of iterations can be started and never terminated without any issue.

Calling SCAN with a corrupted cursor

Calling SCAN with a broken, negative, out of range, or otherwise invalid cursor, will result into undefined behavior but never into a crash. What will be undefined is that the guarantees about the returned elements can no longer be ensured by the SCAN implementation.

The only valid cursors to use are:

	The cursor value of 0 when starting an iteration.

	The cursor returned by the previous call to SCAN in order to continue the iteration.

Guarantee of termination

The SCAN algorithm is guaranteed to terminate only if the size of the iterated collection remains bounded to a given maximum size, otherwise iterating a collection that always grows may result into SCAN to never terminate a full iteration.

This is easy to see intuitively: if the collection grows there is more and more work to do in order to visit all the possible elements, and the ability to terminate the iteration depends on the number of calls to SCAN and its COUNT option value compared with the rate at which the collection grows.

Return value

SCAN, SSCAN, HSCAN and ZSCAN return a two elements multi-bulk reply, where the first element is a string representing an unsigned 64 bit number (the cursor), and the second element is a multi-bulk with an array of elements.

	SCAN array of elements is a list of keys.

	SSCAN array of elements is a list of Set members.

	HSCAN array of elements contain two elements, a field and a value, for every returned element of the Hash.

	ZSCAN array of elements contain two elements, a member and its associated score, for every returned element of the sorted set.

Additional examples

Iteration of a Hash value.

redis 127.0.0.1:6379> hmset hash name Jack age 33
OK
redis 127.0.0.1:6379> hscan hash 0
1) "0"
2) 1) "name"
 2) "Jack"
 3) "age"
 4) "33"

 <no title>

 When all the elements in a sorted set are inserted with the same score, in order to force lexicographical ordering, this command removes all elements in the sorted set stored at key between the lexicographical range specified by min and max.

The meaning of min and max are the same of the ZRANGEBYLEX command. Similarly, this command actually returns the same elements that ZRANGEBYLEX would return if called with the same min and max arguments.

@return

@integer-reply: the number of elements removed.

@examples

ZADD myzset 0 aaaa 0 b 0 c 0 d 0 e
ZADD myzset 0 foo 0 zap 0 zip 0 ALPHA 0 alpha
ZRANGE myzset 0 -1
ZREMRANGEBYLEX myzset [alpha [omega
ZRANGE myzset 0 -1

 <no title>

 Returns the specified range of elements in the sorted set stored at key.
The elements are considered to be ordered from the highest to the lowest score.
Descending lexicographical order is used for elements with equal score.

Apart from the reversed ordering, ZREVRANGE is similar to ZRANGE.

@return

@array-reply: list of elements in the specified range (optionally with
their scores).

@examples

ZADD myzset 1 "one"
ZADD myzset 2 "two"
ZADD myzset 3 "three"
ZREVRANGE myzset 0 -1
ZREVRANGE myzset 2 3
ZREVRANGE myzset -2 -1

 <no title>

 Forces a node to save the nodes.conf configuration on disk. Before to return
the command calls fsync(2) in order to make sure the configuration is
flushed on the computer disk.

This command is mainly used in the event a nodes.conf node state file
gets lost / deleted for some reason, and we want to generate it again from
scratch. It can also be useful in case of mundane alterations of a node cluster
configuration via the CLUSTER command in order to ensure the new configuration
is persisted on disk, however all the commands should normally be able to
auto schedule to persist the configuration on disk when it is important
to do so for the correctness of the system in the event of a restart.

@return

@simple-string-reply: OK or an error if the operation fails.

 <no title>

 Returns the sorted set cardinality (number of elements) of the sorted set stored
at key.

@return

@integer-reply: the cardinality (number of elements) of the sorted set, or 0
if key does not exist.

@examples

ZADD myzset 1 "one"
ZADD myzset 2 "two"
ZCARD myzset

 <no title>

 Save the DB in background.
The OK code is immediately returned.
Redis forks, the parent continues to serve the clients, the child saves the DB
on disk then exits.
A client may be able to check if the operation succeeded using the LASTSAVE
command.

Please refer to the persistence documentation for detailed information.

@return

@simple-string-reply

 <no title>

 Returns the members of the set resulting from the union of all the given sets.

For example:

key1 = {a,b,c,d}
key2 = {c}
key3 = {a,c,e}
SUNION key1 key2 key3 = {a,b,c,d,e}

Keys that do not exist are considered to be empty sets.

@return

@array-reply: list with members of the resulting set.

@examples

SADD key1 "a"
SADD key1 "b"
SADD key1 "c"
SADD key2 "c"
SADD key2 "d"
SADD key2 "e"
SUNION key1 key2

 <no title>

 Decrements the number stored at key by decrement.
If the key does not exist, it is set to 0 before performing the operation.
An error is returned if the key contains a value of the wrong type or contains a
string that can not be represented as integer.
This operation is limited to 64 bit signed integers.

See INCR for extra information on increment/decrement operations.

@return

@integer-reply: the value of key after the decrement

@examples

SET mykey "10"
DECRBY mykey 3

 <no title>

 Increments the number stored at key by increment.
If the key does not exist, it is set to 0 before performing the operation.
An error is returned if the key contains a value of the wrong type or contains a
string that can not be represented as integer.
This operation is limited to 64 bit signed integers.

See INCR for extra information on increment/decrement operations.

@return

@integer-reply: the value of key after the increment

@examples

SET mykey "10"
INCRBY mykey 5

 <no title>

 Posts a message to the given channel.

@return

@integer-reply: the number of clients that received the message.

 Specification of the behavior when count is passed

 Removes and returns one or more random elements from the set value store at key.

This operation is similar to SRANDMEMBER, that returns one or more random elements from a set but does not remove it.

The count argument is available since version 3.2.

@return

@bulk-string-reply: the removed element, or nil when key does not exist.

@examples

SADD myset "one"
SADD myset "two"
SADD myset "three"
SPOP myset
SMEMBERS myset
SADD myset "four"
SADD myset "five"
SPOP myset 3
SMEMBERS myset

Specification of the behavior when count is passed

If count is bigger than the number of elements inside the Set, the command will only return the whole set without additional elements.

Distribution of returned elements

Note that this command is not suitable when you need a guaranteed uniform distribution of the returned elements. For more information about the algorithms used for SPOP, look up both the Knuth sampling and Floyd sampling algorithms.

Count argument extension

Redis 3.2 introduced an optional count argument that can be passed to SPOP in order to retrieve multiple elements in a single call.

 <no title>

 This command is equal to SINTER, but instead of returning the resulting set,
it is stored in destination.

If destination already exists, it is overwritten.

@return

@integer-reply: the number of elements in the resulting set.

@examples

SADD key1 "a"
SADD key1 "b"
SADD key1 "c"
SADD key2 "c"
SADD key2 "d"
SADD key2 "e"
SINTERSTORE key key1 key2
SMEMBERS key

 <no title>

 Returns all the elements in the sorted set at key with a score between max
and min (including elements with score equal to max or min).
In contrary to the default ordering of sorted sets, for this command the
elements are considered to be ordered from high to low scores.

The elements having the same score are returned in reverse lexicographical
order.

Apart from the reversed ordering, ZREVRANGEBYSCORE is similar to
ZRANGEBYSCORE.

@return

@array-reply: list of elements in the specified score range (optionally
with their scores).

@examples

ZADD myzset 1 "one"
ZADD myzset 2 "two"
ZADD myzset 3 "three"
ZREVRANGEBYSCORE myzset +inf -inf
ZREVRANGEBYSCORE myzset 2 1
ZREVRANGEBYSCORE myzset 2 (1
ZREVRANGEBYSCORE myzset (2 (1

 <no title>

 Return the distance between two members in the geospatial index represented by the sorted set.

Given a sorted set representing a geospatial index, populated using the GEOADD command, the command returns the distance between the two specified members in the specified unit.

If one or both the members are missing, the command returns NULL.

The unit must be one of the following, and defaults to meters:

	m for meters.

	km for kilometers.

	mi for miles.

	ft for feet.

The distance is computed assuming that the Earth is a perfect sphere, so errors up to 0.5% are possible in edge cases.

@return

@bulk-string-reply, specifically:

The command returns the distance as a double (represented as a string)
in the specified unit, or NULL if one or both the elements are missing.

@examples

GEOADD Sicily 13.361389 38.115556 "Palermo" 15.087269 37.502669 "Catania"
GEODIST Sicily Palermo Catania
GEODIST Sicily Palermo Catania km
GEODIST Sicily Palermo Catania mi
GEODIST Sicily Foo Bar

 Implementation details

 Increment the specified field of a hash stored at key, and representing a
floating point number, by the specified increment. If the increment value
is negative, the result is to have the hash field value decremented instead of incremented.
If the field does not exist, it is set to 0 before performing the operation.
An error is returned if one of the following conditions occur:

	The field contains a value of the wrong type (not a string).

	The current field content or the specified increment are not parsable as a
double precision floating point number.

The exact behavior of this command is identical to the one of the INCRBYFLOAT
command, please refer to the documentation of INCRBYFLOAT for further
information.

@return

@bulk-string-reply: the value of field after the increment.

@examples

HSET mykey field 10.50
HINCRBYFLOAT mykey field 0.1
HINCRBYFLOAT mykey field -5
HSET mykey field 5.0e3
HINCRBYFLOAT mykey field 2.0e2

Implementation details

The command is always propagated in the replication link and the Append Only
File as a HSET operation, so that differences in the underlying floating point
math implementation will not be sources of inconsistency.

 Notes

 The INFO command returns information and statistics about the server in a
format that is simple to parse by computers and easy to read by humans.

The optional parameter can be used to select a specific section of information:

	server: General information about the Redis server

	clients: Client connections section

	memory: Memory consumption related information

	persistence: RDB and AOF related information

	stats: General statistics

	replication: Master/slave replication information

	cpu: CPU consumption statistics

	commandstats: Redis command statistics

	cluster: Redis Cluster section

	keyspace: Database related statistics

It can also take the following values:

	all: Return all sections

	default: Return only the default set of sections

When no parameter is provided, the default option is assumed.

@return

@bulk-string-reply: as a collection of text lines.

Lines can contain a section name (starting with a # character) or a property.
All the properties are in the form of field:value terminated by \r\n.

INFO

Notes

Please note depending on the version of Redis some of the fields have been
added or removed. A robust client application should therefore parse the
result of this command by skipping unknown properties, and gracefully handle
missing fields.

Here is the description of fields for Redis >= 2.4.

Here is the meaning of all fields in the server section:

	redis_version: Version of the Redis server

	redis_git_sha1: Git SHA1

	redis_git_dirty: Git dirty flag

	os: Operating system hosting the Redis server

	arch_bits: Architecture (32 or 64 bits)

	multiplexing_api: event loop mechanism used by Redis

	gcc_version: Version of the GCC compiler used to compile the Redis server

	process_id: PID of the server process

	run_id: Random value identifying the Redis server (to be used by Sentinel and Cluster)

	tcp_port: TCP/IP listen port

	uptime_in_seconds: Number of seconds since Redis server start

	uptime_in_days: Same value expressed in days

	lru_clock: Clock incrementing every minute, for LRU management

Here is the meaning of all fields in the clients section:

	connected_clients: Number of client connections (excluding connections from slaves)

	client_longest_output_list: longest output list among current client connections

	client_biggest_input_buf: biggest input buffer among current client connections

	blocked_clients: Number of clients pending on a blocking call (BLPOP, BRPOP, BRPOPLPUSH)

Here is the meaning of all fields in the memory section:

	used_memory: total number of bytes allocated by Redis using its
allocator (either standard libc, jemalloc, or an alternative allocator such
as tcmalloc [http://code.google.com/p/google-perftools/]

	used_memory_human: Human readable representation of previous value

	used_memory_rss: Number of bytes that Redis allocated as seen by the
operating system (a.k.a resident set size). This is the number reported by tools
such as top(1) and ps(1)

	used_memory_peak: Peak memory consumed by Redis (in bytes)

	used_memory_peak_human: Human readable representation of previous value

	used_memory_lua: Number of bytes used by the Lua engine

	mem_fragmentation_ratio: Ratio between used_memory_rss and used_memory

	mem_allocator: Memory allocator, chosen at compile time

Ideally, the used_memory_rss value should be only slightly higher than used_memory.
When rss >> used, a large difference means there is memory fragmentation
(internal or external), which can be evaluated by checking mem_fragmentation_ratio.
When used >> rss, it means part of Redis memory has been swapped off by the operating
system: expect some significant latencies.

Because Redis does not have control over how its allocations are mapped to
memory pages, high used_memory_rss is often the result of a spike in memory
usage.

When Redis frees memory, the memory is given back to the allocator, and the
allocator may or may not give the memory back to the system. There may be
a discrepancy between the used_memory value and memory consumption as
reported by the operating system. It may be due to the fact memory has been
used and released by Redis, but not given back to the system. The used_memory_peak
value is generally useful to check this point.

Here is the meaning of all fields in the persistence section:

	loading: Flag indicating if the load of a dump file is on-going

	rdb_changes_since_last_save: Number of changes since the last dump

	rdb_bgsave_in_progress: Flag indicating a RDB save is on-going

	rdb_last_save_time: Epoch-based timestamp of last successful RDB save

	rdb_last_bgsave_status: Status of the last RDB save operation

	rdb_last_bgsave_time_sec: Duration of the last RDB save operation in seconds

	rdb_current_bgsave_time_sec: Duration of the on-going RDB save operation if any

	aof_enabled: Flag indicating AOF logging is activated

	aof_rewrite_in_progress: Flag indicating a AOF rewrite operation is on-going

	aof_rewrite_scheduled: Flag indicating an AOF rewrite operation
will be scheduled once the on-going RDB save is complete.

	aof_last_rewrite_time_sec: Duration of the last AOF rewrite operation in seconds

	aof_current_rewrite_time_sec: Duration of the on-going AOF rewrite operation if any

	aof_last_bgrewrite_status: Status of the last AOF rewrite operation

changes_since_last_save refers to the number of operations that produced
some kind of changes in the dataset since the last time either SAVE or
BGSAVE was called.

If AOF is activated, these additional fields will be added:

	aof_current_size: AOF current file size

	aof_base_size: AOF file size on latest startup or rewrite

	aof_pending_rewrite: Flag indicating an AOF rewrite operation
will be scheduled once the on-going RDB save is complete.

	aof_buffer_length: Size of the AOF buffer

	aof_rewrite_buffer_length: Size of the AOF rewrite buffer

	aof_pending_bio_fsync: Number of fsync pending jobs in background I/O queue

	aof_delayed_fsync: Delayed fsync counter

If a load operation is on-going, these additional fields will be added:

	loading_start_time: Epoch-based timestamp of the start of the load operation

	loading_total_bytes: Total file size

	loading_loaded_bytes: Number of bytes already loaded

	loading_loaded_perc: Same value expressed as a percentage

	loading_eta_seconds: ETA in seconds for the load to be complete

Here is the meaning of all fields in the stats section:

	total_connections_received: Total number of connections accepted by the server

	total_commands_processed: Total number of commands processed by the server

	instantaneous_ops_per_sec: Number of commands processed per second

	rejected_connections: Number of connections rejected because of maxclients limit

	expired_keys: Total number of key expiration events

	evicted_keys: Number of evicted keys due to maxmemory limit

	keyspace_hits: Number of successful lookup of keys in the main dictionary

	keyspace_misses: Number of failed lookup of keys in the main dictionary

	pubsub_channels: Global number of pub/sub channels with client subscriptions

	pubsub_patterns: Global number of pub/sub pattern with client subscriptions

	latest_fork_usec: Duration of the latest fork operation in microseconds

Here is the meaning of all fields in the replication section:

	role: Value is “master” if the instance is slave of no one, or “slave” if the instance is enslaved to a master.
Note that a slave can be master of another slave (daisy chaining).

If the instance is a slave, these additional fields are provided:

	master_host: Host or IP address of the master

	master_port: Master listening TCP port

	master_link_status: Status of the link (up/down)

	master_last_io_seconds_ago: Number of seconds since the last interaction with master

	master_sync_in_progress: Indicate the master is syncing to the slave

If a SYNC operation is on-going, these additional fields are provided:

	master_sync_left_bytes: Number of bytes left before syncing is complete

	master_sync_last_io_seconds_ago: Number of seconds since last transfer I/O during a SYNC operation

If the link between master and slave is down, an additional field is provided:

	master_link_down_since_seconds: Number of seconds since the link is down

The following field is always provided:

	connected_slaves: Number of connected slaves

For each slave, the following line is added:

	slaveXXX: id, IP address, port, state

Here is the meaning of all fields in the cpu section:

	used_cpu_sys: System CPU consumed by the Redis server

	used_cpu_user:User CPU consumed by the Redis server

	used_cpu_sys_children: System CPU consumed by the background processes

	used_cpu_user_children: User CPU consumed by the background processes

The commandstats section provides statistics based on the command type,
including the number of calls, the total CPU time consumed by these commands,
and the average CPU consumed per command execution.

For each command type, the following line is added:

	cmdstat_XXX: calls=XXX,usec=XXX,usec_per_call=XXX

The cluster section currently only contains a unique field:

	cluster_enabled: Indicate Redis cluster is enabled

The keyspace section provides statistics on the main dictionary of each database.
The statistics are the number of keys, and the number of keys with an expiration.

For each database, the following line is added:

	dbXXX: keys=XXX,expires=XXX

 Commands not logged by MONITOR

 MONITOR is a debugging command that streams back every command processed by
the Redis server.
It can help in understanding what is happening to the database.
This command can both be used via redis-cli and via telnet.

The ability to see all the requests processed by the server is useful in order
to spot bugs in an application both when using Redis as a database and as a
distributed caching system.

$ redis-cli monitor
1339518083.107412 [0 127.0.0.1:60866] "keys" "*"
1339518087.877697 [0 127.0.0.1:60866] "dbsize"
1339518090.420270 [0 127.0.0.1:60866] "set" "x" "6"
1339518096.506257 [0 127.0.0.1:60866] "get" "x"
1339518099.363765 [0 127.0.0.1:60866] "del" "x"
1339518100.544926 [0 127.0.0.1:60866] "get" "x"

Use SIGINT (Ctrl-C) to stop a MONITOR stream running via redis-cli.

$ telnet localhost 6379
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
MONITOR
+OK
+1339518083.107412 [0 127.0.0.1:60866] "keys" "*"
+1339518087.877697 [0 127.0.0.1:60866] "dbsize"
+1339518090.420270 [0 127.0.0.1:60866] "set" "x" "6"
+1339518096.506257 [0 127.0.0.1:60866] "get" "x"
+1339518099.363765 [0 127.0.0.1:60866] "del" "x"
+1339518100.544926 [0 127.0.0.1:60866] "get" "x"
QUIT
+OK
Connection closed by foreign host.

Manually issue the QUIT command to stop a MONITOR stream running via
telnet.

Commands not logged by MONITOR

For security concerns, certain special administration commands like CONFIG
are not logged into the MONITOR output.

Cost of running MONITOR

Because MONITOR streams back all commands, its use comes at a cost.
The following (totally unscientific) benchmark numbers illustrate what the cost
of running MONITOR can be.

Benchmark result without MONITOR running:

$ src/redis-benchmark -c 10 -n 100000 -q
PING_INLINE: 101936.80 requests per second
PING_BULK: 102880.66 requests per second
SET: 95419.85 requests per second
GET: 104275.29 requests per second
INCR: 93283.58 requests per second

Benchmark result with MONITOR running (redis-cli monitor > /dev/null):

$ src/redis-benchmark -c 10 -n 100000 -q
PING_INLINE: 58479.53 requests per second
PING_BULK: 59136.61 requests per second
SET: 41823.50 requests per second
GET: 45330.91 requests per second
INCR: 41771.09 requests per second

In this particular case, running a single MONITOR client can reduce the
throughput by more than 50%.
Running more MONITOR clients will reduce throughput even more.

@return

Non standard return value, just dumps the received commands in an infinite
flow.

 <no title>

 Sets the given keys to their respective values.
MSETNX will not perform any operation at all even if just a single key already
exists.

Because of this semantic MSETNX can be used in order to set different keys
representing different fields of an unique logic object in a way that ensures
that either all the fields or none at all are set.

MSETNX is atomic, so all given keys are set at once.
It is not possible for clients to see that some of the keys were updated while
others are unchanged.

@return

@integer-reply, specifically:

	1 if the all the keys were set.

	0 if no key was set (at least one key already existed).

@examples

MSETNX key1 "Hello" key2 "there"
MSETNX key2 "there" key3 "world"
MGET key1 key2 key3

 <no title>

 Returns the rank of member in the sorted set stored at key, with the scores
ordered from high to low.
The rank (or index) is 0-based, which means that the member with the highest
score has rank 0.

Use ZRANK to get the rank of an element with the scores ordered from low to
high.

@return

	If member exists in the sorted set, @integer-reply: the rank of member.

	If member does not exist in the sorted set or key does not exist,
@bulk-string-reply: nil.

@examples

ZADD myzset 1 "one"
ZADD myzset 2 "two"
ZADD myzset 3 "three"
ZREVRANK myzset "one"
ZREVRANK myzset "four"

 <no title>

 Load a script into the scripts cache, without executing it.
After the specified command is loaded into the script cache it will be callable
using EVALSHA with the correct SHA1 digest of the script, exactly like after
the first successful invocation of EVAL.

The script is guaranteed to stay in the script cache forever (unless SCRIPT FLUSH is called).

The command works in the same way even if the script was already present in the
script cache.

Please refer to the EVAL documentation for detailed information about Redis
Lua scripting.

@return

@bulk-string-reply This command returns the SHA1 digest of the script added into the
script cache.

 <no title>

 Removes the first count occurrences of elements equal to value from the list
stored at key.
The count argument influences the operation in the following ways:

	count > 0: Remove elements equal to value moving from head to tail.

	count < 0: Remove elements equal to value moving from tail to head.

	count = 0: Remove all elements equal to value.

For example, LREM list -2 "hello" will remove the last two occurrences of
"hello" in the list stored at list.

Note that non-existing keys are treated like empty lists, so when key does not
exist, the command will always return 0.

@return

@integer-reply: the number of removed elements.

@examples

RPUSH mylist "hello"
RPUSH mylist "hello"
RPUSH mylist "foo"
RPUSH mylist "hello"
LREM mylist -2 "hello"
LRANGE mylist 0 -1

 <no title>

 Returns the length of the string value stored at key.
An error is returned when key holds a non-string value.

@return

@integer-reply: the length of the string at key, or 0 when key does not
exist.

@examples

SET mykey "Hello world"
STRLEN mykey
STRLEN nonexisting

 Sorting by external keys

 Returns or stores the elements contained in the list, set or
sorted set at key.
By default, sorting is numeric and elements are compared by their value
interpreted as double precision floating point number.
This is SORT in its simplest form:

SORT mylist

Assuming mylist is a list of numbers, this command will return the same list
with the elements sorted from small to large.
In order to sort the numbers from large to small, use the !DESC modifier:

SORT mylist DESC

When mylist contains string values and you want to sort them
lexicographically, use the !ALPHA modifier:

SORT mylist ALPHA

Redis is UTF-8 aware, assuming you correctly set the !LC_COLLATE environment
variable.

The number of returned elements can be limited using the !LIMIT modifier.
This modifier takes the offset argument, specifying the number of elements to
skip and the count argument, specifying the number of elements to return from
starting at offset.
The following example will return 10 elements of the sorted version of mylist,
starting at element 0 (offset is zero-based):

SORT mylist LIMIT 0 10

Almost all modifiers can be used together.
The following example will return the first 5 elements, lexicographically sorted
in descending order:

SORT mylist LIMIT 0 5 ALPHA DESC

Sorting by external keys

Sometimes you want to sort elements using external keys as weights to compare
instead of comparing the actual elements in the list, set or sorted set.
Let’s say the list mylist contains the elements 1, 2 and 3 representing
unique IDs of objects stored in object_1, object_2 and object_3.
When these objects have associated weights stored in weight_1, weight_2 and
weight_3, SORT can be instructed to use these weights to sort mylist with
the following statement:

SORT mylist BY weight_*

The BY option takes a pattern (equal to weight_* in this example) that is
used to generate the keys that are used for sorting.
These key names are obtained substituting the first occurrence of * with the
actual value of the element in the list (1, 2 and 3 in this example).

Skip sorting the elements

The !BY option can also take a non-existent key, which causes SORT to skip
the sorting operation.
This is useful if you want to retrieve external keys (see the !GET option
below) without the overhead of sorting.

SORT mylist BY nosort

Retrieving external keys

Our previous example returns just the sorted IDs.
In some cases, it is more useful to get the actual objects instead of their IDs
(object_1, object_2 and object_3).
Retrieving external keys based on the elements in a list, set or sorted set can
be done with the following command:

SORT mylist BY weight_* GET object_*

The !GET option can be used multiple times in order to get more keys for every
element of the original list, set or sorted set.

It is also possible to !GET the element itself using the special pattern #:

SORT mylist BY weight_* GET object_* GET #

Storing the result of a SORT operation

By default, SORT returns the sorted elements to the client.
With the !STORE option, the result will be stored as a list at the specified
key instead of being returned to the client.

SORT mylist BY weight_* STORE resultkey

An interesting pattern using SORT ... STORE consists in associating an
EXPIRE timeout to the resulting key so that in applications where the result
of a SORT operation can be cached for some time.
Other clients will use the cached list instead of calling SORT for every
request.
When the key will timeout, an updated version of the cache can be created by
calling SORT ... STORE again.

Note that for correctly implementing this pattern it is important to avoid
multiple clients rebuilding the cache at the same time.
Some kind of locking is needed here (for instance using SETNX).

Using hashes in !BY and !GET

It is possible to use !BY and !GET options against hash fields with the
following syntax:

SORT mylist BY weight_*->fieldname GET object_*->fieldname

The string -> is used to separate the key name from the hash field name.
The key is substituted as documented above, and the hash stored at the resulting
key is accessed to retrieve the specified hash field.

@return

@array-reply: without passing the store option the command returns a list of sorted elements.
@integer-reply: when the store option is specified the command returns the number of sorted elements in the destination list.

 <no title>

 Ask the server to close the connection.
The connection is closed as soon as all pending replies have been written to the
client.

@return

@simple-string-reply: always OK.

 <no title>

 Return the number of keys in the currently-selected database.

@return

@integer-reply

 <no title>

 Returns information about the existence of the scripts in the script cache.

This command accepts one or more SHA1 digests and returns a list of ones or
zeros to signal if the scripts are already defined or not inside the script
cache.
This can be useful before a pipelining operation to ensure that scripts are
loaded (and if not, to load them using SCRIPT LOAD) so that the pipelining
operation can be performed solely using EVALSHA instead of EVAL to save
bandwidth.

Please refer to the EVAL documentation for detailed information about Redis
Lua scripting.

@return

@array-reply The command returns an array of integers that correspond to
the specified SHA1 digest arguments.
For every corresponding SHA1 digest of a script that actually exists in the
script cache, an 1 is returned, otherwise 0 is returned.

 Atomic rewrite process

 The CONFIG REWRITE command rewrites the redis.conf file the server was started with, applying the minimal changes needed to make it reflect the configuration currently used by the server, which may be different compared to the original one because of the use of the CONFIG SET command.

The rewrite is performed in a very conservative way:

	Comments and the overall structure of the original redis.conf are preserved as much as possible.

	If an option already exists in the old redis.conf file, it will be rewritten at the same position (line number).

	If an option was not already present, but it is set to its default value, it is not added by the rewrite process.

	If an option was not already present, but it is set to a non-default value, it is appended at the end of the file.

	Non used lines are blanked. For instance if you used to have multiple save directives, but the current configuration has fewer or none as you disabled RDB persistence, all the lines will be blanked.

CONFIG REWRITE is also able to rewrite the configuration file from scratch if the original one no longer exists for some reason. However if the server was started without a configuration file at all, the CONFIG REWRITE will just return an error.

Atomic rewrite process

In order to make sure the redis.conf file is always consistent, that is, on errors or crashes you always end with the old file, or the new one, the rewrite is performed with a single write(2) call that has enough content to be at least as big as the old file. Sometimes additional padding in the form of comments is added in order to make sure the resulting file is big enough, and later the file gets truncated to remove the padding at the end.

@return

@simple-string-reply: OK when the configuration was rewritten properly.
Otherwise an error is returned.

 <no title>

 Returns the specified range of elements in the sorted set stored at key.
The elements are considered to be ordered from the lowest to the highest score.
Lexicographical order is used for elements with equal score.

See ZREVRANGE when you need the elements ordered from highest to lowest score
(and descending lexicographical order for elements with equal score).

Both start and stop are zero-based indexes, where 0 is the first element,
1 is the next element and so on.
They can also be negative numbers indicating offsets from the end of the sorted
set, with -1 being the last element of the sorted set, -2 the penultimate
element and so on.

start and stop are inclusive ranges, so for example ZRANGE myzset 0 1
will return both the first and the second element of the sorted set.

Out of range indexes will not produce an error.
If start is larger than the largest index in the sorted set, or start > stop, an empty list is returned.
If stop is larger than the end of the sorted set Redis will treat it like it
is the last element of the sorted set.

It is possible to pass the WITHSCORES option in order to return the scores of
the elements together with the elements.
The returned list will contain value1,score1,...,valueN,scoreN instead of
value1,...,valueN.
Client libraries are free to return a more appropriate data type (suggestion: an
array with (value, score) arrays/tuples).

@return

@array-reply: list of elements in the specified range (optionally with
their scores, in case the WITHSCORES option is given).

@examples

ZADD myzset 1 "one"
ZADD myzset 2 "two"
ZADD myzset 3 "three"
ZRANGE myzset 0 -1
ZRANGE myzset 2 3
ZRANGE myzset -2 -1

The following example using WITHSCORES shows how the command returns always an array, but this time, populated with element_1, score_1, element_2, score_2, ..., element_N, score_N.

ZRANGE myzset 0 1 WITHSCORES

 <no title>

 Remove the existing timeout on key, turning the key from volatile (a key
with an expire set) to persistent (a key that will never expire as no timeout
is associated).

@return

@integer-reply, specifically:

	1 if the timeout was removed.

	0 if key does not exist or does not have an associated timeout.

@examples

SET mykey "Hello"
EXPIRE mykey 10
TTL mykey
PERSIST mykey
TTL mykey

 <no title>

 Returns all fields and values of the hash stored at key.
In the returned value, every field name is followed by its value, so the length
of the reply is twice the size of the hash.

@return

@array-reply: list of fields and their values stored in the hash, or an
empty list when key does not exist.

@examples

HSET myhash field1 "Hello"
HSET myhash field2 "World"
HGETALL myhash

 Output format

 Provide information on the role of a Redis instance in the context of replication, by returning if the instance is currently a master, slave, or sentinel. The command also returns additional information about the state of the replication (if the role is master or slave) or the list of monitored master names (if the role is sentinel).

Output format

The command returns an array of elements. The first element is the role of
the instance, as one of the following three strings:

	“master”

	“slave”

	“sentinel”

The additional elements of the array depends on the role.

Master output

An example of output when ROLE is called in a master instance:

1) "master"
2) (integer) 3129659
3) 1) 1) "127.0.0.1"
 2) "9001"
 3) "3129242"
 2) 1) "127.0.0.1"
 2) "9002"
 3) "3129543"

The master output is composed of the following parts:

	The string master.

	The current master replication offset, which is an offset that masters and slaves share to understand, in partial resynchronizations, the part of the replication stream the slave needs to fetch to continue.

	An array composed of three elements array representing the connected slaves. Every sub-array contains the slave IP, port, and the last acknowledged replication offset.

Slave output

An example of output when ROLE is called in a slave instance:

1) "slave"
2) "127.0.0.1"
3) (integer) 9000
4) "connected"
5) (integer) 3167038

The slave output is composed of the following parts:

	The string slave.

	The IP of the master.

	The port number of the master.

	The state of the replication from the point of view of the master, that can be connect (the instance needs to connect to its master), connecting (the slave-master connection is in progress), sync (the master and slave are trying to perform the synchronization), connected (the slave is online).

	The amount of data received from the slave so far in terms of master replication offset.

Sentinel output

An example of Sentinel output:

1) "sentinel"
2) 1) "resque-master"
 2) "html-fragments-master"
 3) "stats-master"
 4) "metadata-master"

The sentinel output is composed of the following parts:

	The string sentinel.

	An array of master names monitored by this Sentinel instance.

@return

@array-reply: where the first element is one of master, slave, sentinel and the additional elements are role-specific as illustrated above.

@history

	This command was introduced in the middle of a Redis stable release, specifically with Redis 2.8.12.

@examples

ROLE

 <no title>

 Insert all the specified values at the head of the list stored at key.
If key does not exist, it is created as empty list before performing the push
operations.
When key holds a value that is not a list, an error is returned.

It is possible to push multiple elements using a single command call just
specifying multiple arguments at the end of the command.
Elements are inserted one after the other to the head of the list, from the
leftmost element to the rightmost element.
So for instance the command LPUSH mylist a b c will result into a list
containing c as first element, b as second element and a as third element.

@return

@integer-reply: the length of the list after the push operations.

@history

	>= 2.4: Accepts multiple value arguments.
In Redis versions older than 2.4 it was possible to push a single value per
command.

@examples

LPUSH mylist "world"
LPUSH mylist "hello"
LRANGE mylist 0 -1

 <no title>

 Returns the string length of the value associated with field in the hash stored at key. If the key or the field do not exist, 0 is returned.

@return

@integer-reply: the string length of the value associated with field, or zero when field is not present in the hash or key does not exist at all.

@examples

HMSET myhash f1 HelloWorld f2 99 f3 -256
HSTRLEN myhash f1
HSTRLEN myhash f2
HSTRLEN myhash f3

 <no title>

 Returns the element at index index in the list stored at key.
The index is zero-based, so 0 means the first element, 1 the second element
and so on.
Negative indices can be used to designate elements starting at the tail of the
list.
Here, -1 means the last element, -2 means the penultimate and so forth.

When the value at key is not a list, an error is returned.

@return

@bulk-string-reply: the requested element, or nil when index is out of range.

@examples

LPUSH mylist "World"
LPUSH mylist "Hello"
LINDEX mylist 0
LINDEX mylist -1
LINDEX mylist 3

 Options

 Set key to hold the string value.
If key already holds a value, it is overwritten, regardless of its type.
Any previous time to live associated with the key is discarded on successful SET operation.

Options

Starting with Redis 2.6.12 SET supports a set of options that modify its
behavior:

	EX seconds – Set the specified expire time, in seconds.

	PX milliseconds – Set the specified expire time, in milliseconds.

	NX – Only set the key if it does not already exist.

	XX – Only set the key if it already exist.

Note: Since the SET command options can replace SETNX, SETEX, PSETEX, it is possible that in future versions of Redis these three commands will be deprecated and finally removed.

@return

@simple-string-reply: OK if SET was executed correctly.
@nil-reply: a Null Bulk Reply is returned if the SET operation was not performed because the user specified the NX or XX option but the condition was not met.

@examples

SET mykey "Hello"
GET mykey

Patterns

Note: The following pattern is discouraged in favor of the Redlock algorithm [http://redis.io/topics/distlock] which is only a bit more complex to implement, but offers better guarantees and is fault tolerant.

The command SET resource-name anystring NX EX max-lock-time is a simple way to implement a locking system with Redis.

A client can acquire the lock if the above command returns OK (or retry after some time if the command returns Nil), and remove the lock just using DEL.

The lock will be auto-released after the expire time is reached.

It is possible to make this system more robust modifying the unlock schema as follows:

	Instead of setting a fixed string, set a non-guessable large random string, called token.

	Instead of releasing the lock with DEL, send a script that only removes the key if the value matches.

This avoids that a client will try to release the lock after the expire time deleting the key created by another client that acquired the lock later.

An example of unlock script would be similar to the following:

if redis.call("get",KEYS[1]) == ARGV[1]
then
 return redis.call("del",KEYS[1])
else
 return 0
end

The script should be called with EVAL ...script... 1 resource-name token-value

 <no title>

 Removes the specified fields from the hash stored at key.
Specified fields that do not exist within this hash are ignored.
If key does not exist, it is treated as an empty hash and this command returns
0.

@return

@integer-reply: the number of fields that were removed from the hash, not
including specified but non existing fields.

@history

	>= 2.4: Accepts multiple field arguments.
Redis versions older than 2.4 can only remove a field per call.

To remove multiple fields from a hash in an atomic fashion in earlier
versions, use a MULTI / EXEC block.

@examples

HSET myhash field1 "foo"
HDEL myhash field1
HDEL myhash field2

 How to specify intervals

 When all the elements in a sorted set are inserted with the same score, in order to force lexicographical ordering, this command returns all the elements in the sorted set at key with a value between min and max.

If the elements in the sorted set have different scores, the returned elements are unspecified.

The elements are considered to be ordered from lower to higher strings as compared byte-by-byte using the memcmp() C function. Longer strings are considered greater than shorter strings if the common part is identical.

The optional LIMIT argument can be used to only get a range of the matching
elements (similar to SELECT LIMIT offset, count in SQL).
Keep in mind that if offset is large, the sorted set needs to be traversed for
offset elements before getting to the elements to return, which can add up to
O(N) time complexity.

How to specify intervals

Valid start and stop must start with (or [, in order to specify
if the range item is respectively exclusive or inclusive.
The special values of + or - for start and stop have the special
meaning or positively infinite and negatively infinite strings, so for
instance the command ZRANGEBYLEX myzset - + is guaranteed to return
all the elements in the sorted set, if all the elements have the same
score.

Details on strings comparison

Strings are compared as binary array of bytes. Because of how the ASCII character
set is specified, this means that usually this also have the effect of comparing
normal ASCII characters in an obvious dictionary way. However this is not true
if non plain ASCII strings are used (for example utf8 strings).

However the user can apply a transformation to the encoded string so that
the first part of the element inserted in the sorted set will compare as the
user requires for the specific application. For example if I want to
add strings that will be compared in a case-insensitive way, but I still
want to retrieve the real case when querying, I can add strings in the
following way:

ZADD autocomplete 0 foo:Foo 0 bar:BAR 0 zap:zap

Because of the first normalized part in every element (before the colon character), we are forcing a given comparison, however after the range is queries using ZRANGEBYLEX the application can display to the user the second part of the string, after the colon.

The binary nature of the comparison allows to use sorted sets as a general
purpose index, for example the first part of the element can be a 64 bit
big endian number: since big endian numbers have the most significant bytes
in the initial positions, the binary comparison will match the numerical
comparison of the numbers. This can be used in order to implement range
queries on 64 bit values. As in the example below, after the first 8 bytes
we can store the value of the element we are actually indexing.

@return

@array-reply: list of elements in the specified score range.

@examples

ZADD myzset 0 a 0 b 0 c 0 d 0 e 0 f 0 g
ZRANGEBYLEX myzset - [c
ZRANGEBYLEX myzset - (c
ZRANGEBYLEX myzset [aaa (g

 <no title>

 Returns message.

@return

@bulk-string-reply

@examples

ECHO "Hello World!"

 <no title>

 Sets field in the hash stored at key to value.
If key does not exist, a new key holding a hash is created.
If field already exists in the hash, it is overwritten.

@return

@integer-reply, specifically:

	1 if field is a new field in the hash and value was set.

	0 if field already exists in the hash and the value was updated.

@examples

HSET myhash field1 "Hello"
HGET myhash field1

 Implementation details

 Increment the string representing a floating point number stored at key by the
specified increment. By using a negative increment value, the result is
that the value stored at the key is decremented (by the obvious properties
of addition).
If the key does not exist, it is set to 0 before performing the operation.
An error is returned if one of the following conditions occur:

	The key contains a value of the wrong type (not a string).

	The current key content or the specified increment are not parsable as a
double precision floating point number.

If the command is successful the new incremented value is stored as the new
value of the key (replacing the old one), and returned to the caller as a
string.

Both the value already contained in the string key and the increment argument
can be optionally provided in exponential notation, however the value computed
after the increment is stored consistently in the same format, that is, an
integer number followed (if needed) by a dot, and a variable number of digits
representing the decimal part of the number.
Trailing zeroes are always removed.

The precision of the output is fixed at 17 digits after the decimal point
regardless of the actual internal precision of the computation.

@return

@bulk-string-reply: the value of key after the increment.

@examples

SET mykey 10.50
INCRBYFLOAT mykey 0.1
INCRBYFLOAT mykey -5
SET mykey 5.0e3
INCRBYFLOAT mykey 2.0e2

Implementation details

The command is always propagated in the replication link and the Append Only
File as a SET operation, so that differences in the underlying floating point
math implementation will not be sources of inconsistency.

 <no title>

 Trim an existing list so that it will contain only the specified range of
elements specified.
Both start and stop are zero-based indexes, where 0 is the first element
of the list (the head), 1 the next element and so on.

For example: LTRIM foobar 0 2 will modify the list stored at foobar so that
only the first three elements of the list will remain.

start and end can also be negative numbers indicating offsets from the end
of the list, where -1 is the last element of the list, -2 the penultimate
element and so on.

Out of range indexes will not produce an error: if start is larger than the
end of the list, or start > end, the result will be an empty list (which
causes key to be removed).
If end is larger than the end of the list, Redis will treat it like the last
element of the list.

A common use of LTRIM is together with LPUSH / RPUSH.
For example:

LPUSH mylist someelement
LTRIM mylist 0 99

This pair of commands will push a new element on the list, while making sure
that the list will not grow larger than 100 elements.
This is very useful when using Redis to store logs for example.
It is important to note that when used in this way LTRIM is an O(1) operation
because in the average case just one element is removed from the tail of the
list.

@return

@simple-string-reply

@examples

RPUSH mylist "one"
RPUSH mylist "two"
RPUSH mylist "three"
LTRIM mylist 1 -1
LRANGE mylist 0 -1

 Pattern: Time series

 If key already exists and is a string, this command appends the value at the
end of the string.
If key does not exist it is created and set as an empty string, so APPEND
will be similar to SET in this special case.

@return

@integer-reply: the length of the string after the append operation.

@examples

EXISTS mykey
APPEND mykey "Hello"
APPEND mykey " World"
GET mykey

Pattern: Time series

The APPEND command can be used to create a very compact representation of a
list of fixed-size samples, usually referred as time series.
Every time a new sample arrives we can store it using the command

APPEND timeseries "fixed-size sample"

Accessing individual elements in the time series is not hard:

	STRLEN can be used in order to obtain the number of samples.

	GETRANGE allows for random access of elements.
If our time series have associated time information we can easily implement
a binary search to get range combining GETRANGE with the Lua scripting
engine available in Redis 2.6.

	SETRANGE can be used to overwrite an existing time series.

The limitation of this pattern is that we are forced into an append-only mode
of operation, there is no way to cut the time series to a given size easily
because Redis currently lacks a command able to trim string objects.
However the space efficiency of time series stored in this way is remarkable.

Hint: it is possible to switch to a different key based on the current Unix
time, in this way it is possible to have just a relatively small amount of
samples per key, to avoid dealing with very big keys, and to make this pattern
more friendly to be distributed across many Redis instances.

An example sampling the temperature of a sensor using fixed-size strings (using
a binary format is better in real implementations).

APPEND ts "0043"
APPEND ts "0035"
GETRANGE ts 0 3
GETRANGE ts 4 7

 <no title>

 Get the value of key.
If the key does not exist the special value nil is returned.
An error is returned if the value stored at key is not a string, because GET
only handles string values.

@return

@bulk-string-reply: the value of key, or nil when key does not exist.

@examples

GET nonexisting
SET mykey "Hello"
GET mykey

 ZADD options (Redis 3.0.2 or greater)

 Adds all the specified members with the specified scores to the sorted set
stored at key.
It is possible to specify multiple score / member pairs.
If a specified member is already a member of the sorted set, the score is
updated and the element reinserted at the right position to ensure the correct
ordering.

If key does not exist, a new sorted set with the specified members as sole
members is created, like if the sorted set was empty. If the key exists but does not hold a sorted set, an error is returned.

The score values should be the string representation of a double precision floating point number. +inf and -inf values are valid values as well.

ZADD options (Redis 3.0.2 or greater)

ZADD supports a list of options, specified after the name of the key and before
the first score argument. Options are:

	XX: Only update elements that already exist. Never add elements.

	NX: Don’t update already existing elements. Always add new elements.

	CH: Modify the return value from the number of new elements added, to the total number of elements changed (CH is an abbreviation of changed). Changed elements are new elements added and elements already existing for which the score was updated. So elements specified in the command line having the same score as they had in the past are not counted. Note: normally the return value of ZADD only counts the number of new elements added.

	INCR: When this option is specified ZADD acts like ZINCRBY. Only one score-element pair can be specified in this mode.

Range of integer scores that can be expressed precisely

Redis sorted sets use a double 64-bit floating point number to represent the score. In all the architectures we support, this is represented as an IEEE 754 floating point number, that is able to represent precisely integer numbers between -(2^53) and +(2^53) included. In more practical terms, all the integers between -9007199254740992 and 9007199254740992 are perfectly representable. Larger integers, or fractions, are internally represented in exponential form, so it is possible that you get only an approximation of the decimal number, or of the very big integer, that you set as score.

Sorted sets 101

Sorted sets are sorted by their score in an ascending way.
The same element only exists a single time, no repeated elements are
permitted. The score can be modified both by ZADD that will update the
element score, and as a side effect, its position on the sorted set, and
by ZINCRBY that can be used in order to update the score relatively to its
previous value.

The current score of an element can be retrieved using the ZSCORE command,
that can also be used to verify if an element already exists or not.

For an introduction to sorted sets, see the data types page on sorted
sets.

Elements with the same score

While the same element can’t be repeated in a sorted set since every element
is unique, it is possible to add multiple different elements having the same score. When multiple elements have the same score, they are ordered lexicographically (they are still ordered by score as a first key, however, locally, all the elements with the same score are relatively ordered lexicographically).

The lexicographic ordering used is binary, it compares strings as array of bytes.

If the user inserts all the elements in a sorted set with the same score (for example 0), all the elements of the sorted set are sorted lexicographically, and range queries on elements are possible using the command ZRANGEBYLEX (Note: it is also possible to query sorted sets by range of scores using ZRANGEBYSCORE).

@return

@integer-reply, specifically:

	The number of elements added to the sorted sets, not including elements
already existing for which the score was updated.

If the INCR option is specified, the return value will be @bulk-string-reply:

	the new score of member (a double precision floating point number), represented as string.

@history

	>= 2.4: Accepts multiple elements.
In Redis versions older than 2.4 it was possible to add or update a single
member per call.

@examples

ZADD myzset 1 "one"
ZADD myzset 1 "uno"
ZADD myzset 2 "two" 3 "three"
ZRANGE myzset 0 -1 WITHSCORES

 Background

 EXPIREAT has the same effect and semantic as EXPIRE, but instead of
specifying the number of seconds representing the TTL (time to live), it takes
an absolute Unix timestamp [http://en.wikipedia.org/wiki/Unix_time] (seconds since January 1, 1970). A
timestamp in the past will delete the key immediately.

Please for the specific semantics of the command refer to the documentation of
EXPIRE.

Background

EXPIREAT was introduced in order to convert relative timeouts to absolute
timeouts for the AOF persistence mode.
Of course, it can be used directly to specify that a given key should expire at
a given time in the future.

@return

@integer-reply, specifically:

	1 if the timeout was set.

	0 if key does not exist.

@examples

SET mykey "Hello"
EXISTS mykey
EXPIREAT mykey 1293840000
EXISTS mykey

 <no title>

 Insert all the specified values at the tail of the list stored at key.
If key does not exist, it is created as empty list before performing the push
operation.
When key holds a value that is not a list, an error is returned.

It is possible to push multiple elements using a single command call just
specifying multiple arguments at the end of the command.
Elements are inserted one after the other to the tail of the list, from the
leftmost element to the rightmost element.
So for instance the command RPUSH mylist a b c will result into a list
containing a as first element, b as second element and c as third element.

@return

@integer-reply: the length of the list after the push operation.

@history

	>= 2.4: Accepts multiple value arguments.
In Redis versions older than 2.4 it was possible to push a single value per
command.

@examples

RPUSH mylist "hello"
RPUSH mylist "world"
LRANGE mylist 0 -1

 Patterns

 Overwrites part of the string stored at key, starting at the specified offset,
for the entire length of value.
If the offset is larger than the current length of the string at key, the
string is padded with zero-bytes to make offset fit.
Non-existing keys are considered as empty strings, so this command will make
sure it holds a string large enough to be able to set value at offset.

Note that the maximum offset that you can set is 2^29 -1 (536870911), as Redis
Strings are limited to 512 megabytes.
If you need to grow beyond this size, you can use multiple keys.

Warning: When setting the last possible byte and the string value stored at
key does not yet hold a string value, or holds a small string value, Redis
needs to allocate all intermediate memory which can block the server for some
time.
On a 2010 MacBook Pro, setting byte number 536870911 (512MB allocation) takes
~300ms, setting byte number 134217728 (128MB allocation) takes ~80ms, setting
bit number 33554432 (32MB allocation) takes ~30ms and setting bit number 8388608
(8MB allocation) takes ~8ms.
Note that once this first allocation is done, subsequent calls to SETRANGE for
the same key will not have the allocation overhead.

Patterns

Thanks to SETRANGE and the analogous GETRANGE commands, you can use Redis
strings as a linear array with O(1) random access.
This is a very fast and efficient storage in many real world use cases.

@return

@integer-reply: the length of the string after it was modified by the command.

@examples

Basic usage:

SET key1 "Hello World"
SETRANGE key1 6 "Redis"
GET key1

Example of zero padding:

SETRANGE key2 6 "Redis"
GET key2

 Example

 This command is useful in order to modify a node’s view of the cluster
configuration. Specifically it assigns a set of hash slots to the node
receiving the command. If the command is successful, the node will map
the specified hash slots to itself, and will start broadcasting the new
configuration.

However note that:

	The command only works if all the specified slots are, from the point of view of the node receiving the command, currently not assigned. A node will refuse to take ownership for slots that already belong to some other node (including itself).

	The command fails if the same slot is specified multiple times.

	As a side effect of the command execution, if a slot among the ones specified as argument is set as importing, this state gets cleared once the node assigns the (previously unbound) slot to itself.

Example

For example the following command assigns slots 1 2 3 to the node receiving
the command:

> CLUSTER ADDSLOTS 1 2 3
OK

However trying to execute it again results into an error since the slots
are already assigned:

> CLUSTER ADDSLOTS 1 2 3
ERR Slot 1 is already busy

Usage in Redis Cluster

This command only works in cluster mode and is useful in the following
Redis Cluster operations:

	To create a new cluster ADDSLOTS is used in order to initially setup master nodes splitting the available hash slots among them.

	In order to fix a broken cluster where certain slots are unassigned.

Information about slots propagation and warnings

Note that once a node assigns a set of slots to itself, it will start
propagating this information in heartbeat packet headers. However the
other nodes will accept the information only if they have the slot as
not already bound with another node, or if the configuration epoch of the
node advertising the new hash slot, is greater than the node currently listed
in the table.

This means that this command should be used with care only by applications
orchestrating Redis Cluster, like redis-trib, and the command if used
out of the right context can leave the cluster in a wrong state or cause
data loss.

@return

@simple-string-reply: OK if the command was successful. Otherwise an error is returned.

 <no title>

 Returns if field is an existing field in the hash stored at key.

@return

@integer-reply, specifically:

	1 if the hash contains field.

	0 if the hash does not contain field, or key does not exist.

@examples

HSET myhash field1 "foo"
HEXISTS myhash field1
HEXISTS myhash field2

 <no title>

 Returns @integer-reply of number of total commands in this Redis server.

@return

@integer-reply: number of commands returned by COMMAND

@examples

COMMAND COUNT

 <no title>

 CLUSTER INFO provides INFO style information about Redis Cluster
vital parameters. The following is a sample output, followed by the
description of each field reported.

cluster_state:ok
cluster_slots_assigned:16384
cluster_slots_ok:16384
cluster_slots_pfail:0
cluster_slots_fail:0
cluster_known_nodes:6
cluster_size:3
cluster_current_epoch:6
cluster_my_epoch:2
cluster_stats_messages_sent:1483972
cluster_stats_messages_received:1483968

	cluster_state: State is ok if the node is able to receive queries. fail if there is at least one hash slot which is unbound (no node associated), in error state (node serving it is flagged with FAIL flag), or if the majority of masters can’t be reached by this node.

	cluster_slots_assigned: Number of slots which are associated to some node (not unbound). This number should be 16384 for the node to work properly, which means that each hash slot should be mapped to a node.

	cluster_slots_ok: Number of hash slots mapping to a node not in FAIL or PFAIL state.

	cluster_slots_pfail: Number of hash slots mapping to a node in PFAIL state. Note that those hash slots still work correctly, as long as the PFAIL state is not promoted to FAIL by the failure detection algorithm. PFAIL only means that we are currently not able to talk with the node, but may be just a transient error.

	cluster_slots_fail: Number of hash slots mapping to a node in FAIL state. If this number is not zero the node is not able to serve queries unless cluster-require-full-coverage is set to no in the configuration.

	cluster_known_nodes: The total number of known nodes in the cluster, including nodes in HANDSHAKE state that may not currently be proper members of the cluster.

	cluster_size: The number of master nodes serving at least one hash slot in the cluster.

	cluster_current_epoch: The local Current Epoch variable. This is used in order to create unique increasing version numbers during fail overs.

	cluster_my_epoch: The Config Epoch of the node we are talking with. This is the current configuration version assigned to this node.

	cluster_stats_messages_sent: Number of messages sent via the cluster node-to-node binary bus.

	cluster_stats_messages_received: Number of messages received via the cluster node-to-node binary bus.

More information about the Current Epoch and Config Epoch variables are available in the Redis Cluster specification document.

@return

@bulk-string-reply: A map between named fields and values in the form of <field>:<value> lines separated by newlines composed by the two bytes CRLF.

 Serialization format

 Each node in a Redis Cluster has its view of the current cluster configuration,
given by the set of known nodes, the state of the connection we have with such
nodes, their flags, properties and assigned slots, and so forth.

CLUSTER NODES provides all this information, that is, the current cluster
configuration of the node we are contacting, in a serialization format which
happens to be exactly the same as the one used by Redis Cluster itself in
order to store on disk the cluster state (however the on disk cluster state
has a few additional info appended at the end).

Note that normally clients willing to fetch the map between Cluster
hash slots and node addresses should use CLUSTER SLOTS instead.
CLUSTER NODES, that provides more information, should be used for
administrative tasks, debugging, and configuration inspections.
It is also used by redis-trib in order to manage a cluster.

Serialization format

The output of the command is just a space-separated CSV string, where
each line represents a node in the cluster. The following is an example
of output:

07c37dfeb235213a872192d90877d0cd55635b91 127.0.0.1:30004 slave e7d1eecce10fd6bb5eb35b9f99a514335d9ba9ca 0 1426238317239 4 connected
67ed2db8d677e59ec4a4cefb06858cf2a1a89fa1 127.0.0.1:30002 master - 0 1426238316232 2 connected 5461-10922
292f8b365bb7edb5e285caf0b7e6ddc7265d2f4f 127.0.0.1:30003 master - 0 1426238318243 3 connected 10923-16383
6ec23923021cf3ffec47632106199cb7f496ce01 127.0.0.1:30005 slave 67ed2db8d677e59ec4a4cefb06858cf2a1a89fa1 0 1426238316232 5 connected
824fe116063bc5fcf9f4ffd895bc17aee7731ac3 127.0.0.1:30006 slave 292f8b365bb7edb5e285caf0b7e6ddc7265d2f4f 0 1426238317741 6 connected
e7d1eecce10fd6bb5eb35b9f99a514335d9ba9ca 127.0.0.1:30001 myself,master - 0 0 1 connected 0-5460

Each line is composed of the following fields:

<id> <ip:port> <flags> <master> <ping-sent> <pong-recv> <config-epoch> <link-state> <slot> <slot> ... <slot>

The meaning of each filed is the following:

	id: The node ID, a 40 characters random string generated when a node is created and never changed again (unless CLUSTER RESET HARD is used).

	ip:port: The node address where clients should contact the node to run queries.

	flags: A list of comma separated flags: myself, master, slave, fail?, fail, handshake, noaddr, noflags. Flags are explained in detail in the next section.

	master: If the node is a slave, and the master is known, the master node ID, otherwise the “-” character.

	ping-sent: Milliseconds unix time at which the currently active ping was sent, or zero if there are no pending pings.

	pong-recv: Milliseconds unix time the last pong was received.

	config-epoch: The configuration epoch (or version) of the current node (or of the current master if the node is a slave). Each time there is a failover, a new, unique, monotonically increasing configuration epoch is created. If multiple nodes claim to serve the same hash slots, the one with higher configuration epoch wins.

	link-state: The state of the link used for the node-to-node cluster bus. We use this link to communicate with the node. Can be connected or disconnected.

	slot: A hash slot number or range. Starting from argument number 9, but there may be up to 16384 entries in total (limit never reached). This is the list of hash slots served by this node. If the entry is just a number, is parsed as such. If it is a range, it is in the form start-end, and means that the node is responsible for all the hash slots from start to end including the start and end values.

Meaning of the flags (field number 3):

	myself: The node you are contacting.

	master: Node is a master.

	slave: Node is a slave.

	fail?: Node is in PFAIL state. Not reachable for the node you are contacting, but still logically reachable (not in FAIL state).

	fail: Node is in FAIL state. It was not reachable for multiple nodes that promoted the PFAIL state to FAIL.

	handshake: Untrusted node, we are handshaking.

	noaddr: No address known for this node.

	noflags: No flags at all.

Notes on published config epochs

Slaves broadcast their master’s config epochs (in order to get an UPDATE
message if they are found to be stale), so the real config epoch of the
slave (which is meaningless more or less, since they don’t serve hash slots)
can be only obtained checking the node flagged as myself, which is the entry
of the node we are asking to generate CLUSTER NODES output. The other slaves
epochs reflect what they publish in heartbeat packets, which is, the
configuration epoch of the masters they are currently replicating.

Special slot entries

Normally hash slots associated to a given node are in one of the following formats,
as already explained above:

	Single number: 3894

	Range: 3900-4000

However node hash slots can be in a special state, used in order to communicate errors after a node restart (mismatch between the keys in the AOF/RDB file, and the node hash slots configuration), or when there is a resharding operation in progress. This two states are importing and migrating.

The meaning of the two states is explained in the Redis Specification, however the gist of the two states is the following:

	Importing slots are yet not part of the nodes hash slot, there is a migration in progress. The node will accept queries about these slots only if the ASK command is used.

	Migrating slots are assigned to the node, but are being migrated to some other node. The node will accept queries if all the keys in the command exist already, otherwise it will emit what is called an ASK redirection, to force new keys creation directly in the importing node.

Importing and migrating slots are emitted in the CLUSTER NODES output as follows:

	Importing slot: [slot_number-<-importing_from_node_id]

	Migrating slot: [slot_number->-migrating_to_node_id]

The following are a few examples of importing and migrating slots:

	[93-<-292f8b365bb7edb5e285caf0b7e6ddc7265d2f4f]

	[1002-<-67ed2db8d677e59ec4a4cefb06858cf2a1a89fa1]

	[77->-e7d1eecce10fd6bb5eb35b9f99a514335d9ba9ca]

	[16311->-292f8b365bb7edb5e285caf0b7e6ddc7265d2f4f]

Note that the format does not have any space, so CLUSTER NODES output format is plain CSV with space as separator even when this special slots are emitted. However a complete parser for the format should be able to handle them.

Note that:

	Migration and importing slots are only added to the node flagged as myself. This information is local to a node, for its own slots.

	Importing and migrating slots are provided as additional info. If the node has a given hash slot assigned, it will be also a plain number in the list of hash slots, so clients that don’t have a clue about hash slots migrations can just skip this special fields.

@return

@bulk-string-reply: The serialized cluster configuration.

 <no title>

 Set key to hold the string value and set key to timeout after a given
number of seconds.
This command is equivalent to executing the following commands:

SET mykey value
EXPIRE mykey seconds

SETEX is atomic, and can be reproduced by using the previous two commands
inside an MULTI / EXEC block.
It is provided as a faster alternative to the given sequence of operations,
because this operation is very common when Redis is used as a cache.

An error is returned when seconds is invalid.

@return

@simple-string-reply

@examples

SETEX mykey 10 "Hello"
TTL mykey
GET mykey

 FORCE option: manual failover when the master is down

 This command, that can only be sent to a Redis Cluster slave node, forces
the slave to start a manual failover of its master instance.

A manual failover is a special kind of failover that is usually executed when
there are no actual failures, but we wish to swap the current master with one
of its slaves (which is the node we send the command to), in a safe way,
without any window for data loss. It works in the following way:

	The slave tells the master to stop processing queries from clients.

	The master replies to the slave with the current replication offset.

	The slave waits for the replication offset to match on its side, to make sure it processed all the data from the master before it continues.

	The slave starts a failover, obtains a new configuration epoch from the majority of the masters, and broadcasts the new configuration.

	The old master receives the configuration update: unblocks its clients and starts replying with redirection messages so that they’ll continue the chat with the new master.

This way clients are moved away from the old master to the new master
atomically and only when the slave that is turning into the new master
has processed all of the replication stream from the old master.

FORCE option: manual failover when the master is down

The command behavior can be modified by two options: FORCE and TAKEOVER.

If the FORCE option is given, the slave does not perform any handshake
with the master, that may be not reachable, but instead just starts a
failover ASAP starting from point 4. This is useful when we want to start
a manual failover while the master is no longer reachable.

However using FORCE we still need the majority of masters to be available
in order to authorize the failover and generate a new configuration epoch
for the slave that is going to become master.

TAKEOVER option: manual failover without cluster consensus

There are situations where this is not enough, and we want a slave to failover
without any agreement with the rest of the cluster. A real world use case
for this is to mass promote slaves in a different data center to masters
in order to perform a data center switch, while all the masters are down
or partitioned away.

The TAKEOVER option implies everything FORCE implies, but also does
not uses any cluster authorization in order to failover. A slave receiving
CLUSTER FAILOVER TAKEOVER will instead:

	Generate a new configEpoch unilaterally, just taking the current greatest epoch available and incrementing it if its local configuration epoch is not already the greatest.

	Assign itself all the hash slots of its master, and propagate the new configuration to every node which is reachable ASAP, and eventually to every other node.

Note that TAKEOVER violates the last-failover-wins principle of Redis Cluster, since the configuration epoch generated by the slave violates the normal generation of configuration epochs in several ways:

	There is no guarantee that it is actually the higher configuration epoch, since, for example, we can use the TAKEOVER option within a minority, nor any message exchange is performed to generate the new configuration epoch.

	If we generate a configuration epoch which happens to collide with another instance, eventually our configuration epoch, or the one of another instance with our same epoch, will be moved away using the configuration epoch collision resolution algorithm.

Because of this the TAKEOVER option should be used with care.

Implementation details and notes

CLUSTER FAILOVER, unless the TAKEOVER option is specified, does not
execute a failover synchronously, it only schedules a manual failover,
bypassing the failure detection stage, so to check if the failover actually
happened, CLUSTER NODES or other means should be used in order to verify
that the state of the cluster changes after some time the command was sent.

@return

@simple-string-reply: OK if the command was accepted and a manual failover is going to be attempted. An error if the operation cannot be executed, for example if we are talking with a node which is already a master.

 Geohash string properties

 Return valid Geohash [https://en.wikipedia.org/wiki/Geohash] strings representing the position of one or more elements in a sorted set value representing a geospatial index (where elements were added using GEOADD).

Normally Redis represents positions of elements using a variation of the Geohash
technique where positions are encoded using 52 bit integers. The encoding is
also different compared to the standard because the initial min and max
coordinates used during the encoding and decoding process are different. This
command however returns a standard Geohash in the form of a string as
described in the Wikipedia article [https://en.wikipedia.org/wiki/Geohash] and compatible with the geohash.org [http://geohash.org] web site.

Geohash string properties

The command returns 11 characters Geohash strings, so no precision is loss
compared to the Redis internal 52 bit representation. The returned Geohashes
have the following properties:

	They can be shortened removing characters from the right. It will lose precision but will still point to the same area.

	It is possible to use them in geohash.org URLs such as http://geohash.org/<geohash-string>. This is an example of such URL [http://geohash.org/sqdtr74hyu0].

	Strings with a similar prefix are nearby, but the contrary is not true, it is possible that strings with different prefixes are nearby too.

@return

@array-reply, specifically:

The command returns an array where each element is the Geohash corresponding to
each member name passed as argument to the command.

@examples

GEOADD Sicily 13.361389 38.115556 "Palermo" 15.087269 37.502669 "Catania"
GEOHASH Sicily Palermo Catania

 Design pattern

 Atomically sets key to value and returns the old value stored at key.
Returns an error when key exists but does not hold a string value.

Design pattern

GETSET can be used together with INCR for counting with atomic reset.
For example: a process may call INCR against the key mycounter every time
some event occurs, but from time to time we need to get the value of the counter
and reset it to zero atomically.
This can be done using GETSET mycounter "0":

INCR mycounter
GETSET mycounter "0"
GET mycounter

@return

@bulk-string-reply: the old value stored at key, or nil when key did not exist.

@examples

SET mykey "Hello"
GETSET mykey "World"
GET mykey

 <no title>

 See SCAN for HSCAN documentation.

 <no title>

 Executes all previously queued commands in a transaction and restores the
connection state to normal.

When using WATCH, EXEC will execute commands only if the watched keys were
not modified, allowing for a check-and-set mechanism.

@return

@array-reply: each element being the reply to each of the commands in the
atomic transaction.

When using WATCH, EXEC can return a @nil-reply if the execution was aborted.

 <no title>

 Serialize the value stored at key in a Redis-specific format and return it to
the user.
The returned value can be synthesized back into a Redis key using the RESTORE
command.

The serialization format is opaque and non-standard, however it has a few
semantic characteristics:

	It contains a 64-bit checksum that is used to make sure errors will be
detected.
The RESTORE command makes sure to check the checksum before synthesizing a
key using the serialized value.

	Values are encoded in the same format used by RDB.

	An RDB version is encoded inside the serialized value, so that different Redis
versions with incompatible RDB formats will refuse to process the serialized
value.

The serialized value does NOT contain expire information.
In order to capture the time to live of the current value the PTTL command
should be used.

If key does not exist a nil bulk reply is returned.

@return

@bulk-string-reply: the serialized value.

@examples

SET mykey 10
DUMP mykey

 <no title>

 This command is equal to SDIFF, but instead of returning the resulting set, it
is stored in destination.

If destination already exists, it is overwritten.

@return

@integer-reply: the number of elements in the resulting set.

@examples

SADD key1 "a"
SADD key1 "b"
SADD key1 "c"
SADD key2 "c"
SADD key2 "d"
SADD key2 "e"
SDIFFSTORE key key1 key2
SMEMBERS key

 Pattern: Reliable queue

 Atomically returns and removes the last element (tail) of the list stored at
source, and pushes the element at the first element (head) of the list stored
at destination.

For example: consider source holding the list a,b,c, and destination
holding the list x,y,z.
Executing RPOPLPUSH results in source holding a,b and destination
holding c,x,y,z.

If source does not exist, the value nil is returned and no operation is
performed.
If source and destination are the same, the operation is equivalent to
removing the last element from the list and pushing it as first element of the
list, so it can be considered as a list rotation command.

@return

@bulk-string-reply: the element being popped and pushed.

@examples

RPUSH mylist "one"
RPUSH mylist "two"
RPUSH mylist "three"
RPOPLPUSH mylist myotherlist
LRANGE mylist 0 -1
LRANGE myotherlist 0 -1

Pattern: Reliable queue

Redis is often used as a messaging server to implement processing of background
jobs or other kinds of messaging tasks.
A simple form of queue is often obtained pushing values into a list in the
producer side, and waiting for this values in the consumer side using RPOP
(using polling), or BRPOP if the client is better served by a blocking
operation.

However in this context the obtained queue is not reliable as messages can
be lost, for example in the case there is a network problem or if the consumer
crashes just after the message is received but it is still to process.

RPOPLPUSH (or BRPOPLPUSH for the blocking variant) offers a way to avoid
this problem: the consumer fetches the message and at the same time pushes it
into a processing list.
It will use the LREM command in order to remove the message from the
processing list once the message has been processed.

An additional client may monitor the processing list for items that remain
there for too much time, and will push those timed out items into the queue
again if needed.

Pattern: Circular list

Using RPOPLPUSH with the same source and destination key, a client can visit
all the elements of an N-elements list, one after the other, in O(N) without
transferring the full list from the server to the client using a single LRANGE
operation.

The above pattern works even if the following two conditions:

	There are multiple clients rotating the list: they’ll fetch different
elements, until all the elements of the list are visited, and the process
restarts.

	Even if other clients are actively pushing new items at the end of the list.

The above makes it very simple to implement a system where a set of items must
be processed by N workers continuously as fast as possible.
An example is a monitoring system that must check that a set of web sites are
reachable, with the smallest delay possible, using a number of parallel workers.

Note that this implementation of workers is trivially scalable and reliable,
because even if a message is lost the item is still in the queue and will be
processed at the next iteration.

 Introduction to EVAL

Introduction to EVAL

EVAL and EVALSHA are used to evaluate scripts using the Lua interpreter
built into Redis starting from version 2.6.0.

The first argument of EVAL is a Lua 5.1 script.
The script does not need to define a Lua function (and should not).
It is just a Lua program that will run in the context of the Redis server.

The second argument of EVAL is the number of arguments that follows the script
(starting from the third argument) that represent Redis key names.
The arguments can be accessed by Lua using the !KEYS global variable in the
form of a one-based array (so KEYS[1], KEYS[2], ...).

All the additional arguments should not represent key names and can be accessed
by Lua using the ARGV global variable, very similarly to what happens with
keys (so ARGV[1], ARGV[2], ...).

The following example should clarify what stated above:

> eval "return {KEYS[1],KEYS[2],ARGV[1],ARGV[2]}" 2 key1 key2 first second
1) "key1"
2) "key2"
3) "first"
4) "second"

Note: as you can see Lua arrays are returned as Redis multi bulk replies, that
is a Redis return type that your client library will likely convert into an
Array type in your programming language.

It is possible to call Redis commands from a Lua script using two different Lua
functions:

	redis.call()

	redis.pcall()

redis.call() is similar to redis.pcall(), the only difference is that if a
Redis command call will result in an error, redis.call() will raise a Lua
error that in turn will force EVAL to return an error to the command caller,
while redis.pcall will trap the error and return a Lua table representing the
error.

The arguments of the redis.call() and redis.pcall() functions are all
the arguments of a well formed Redis command:

> eval "return redis.call('set','foo','bar')" 0
OK

The above script sets the key foo to the string bar.
However it violates the EVAL command semantics as all the keys that the script
uses should be passed using the !KEYS array:

> eval "return redis.call('set',KEYS[1],'bar')" 1 foo
OK

All Redis commands must be analyzed before execution to determine which
keys the command will operate on. In order for this to be true for EVAL, keys must be passed explicitly.
This is useful in many ways, but especially to make sure Redis Cluster
can forward your request to the appropriate cluster node.

Note this rule is not enforced in order to provide the user with
opportunities to abuse the Redis single instance configuration, at the cost of
writing scripts not compatible with Redis Cluster.

Lua scripts can return a value that is converted from the Lua type to the Redis
protocol using a set of conversion rules.

Conversion between Lua and Redis data types

Redis return values are converted into Lua data types when Lua calls a Redis
command using call() or pcall().
Similarly, Lua data types are converted into the Redis protocol when calling
a Redis command and when a Lua script returns a value, so that scripts can
control what EVAL will return to the client.

This conversion between data types is designed in a way that if a Redis type is
converted into a Lua type, and then the result is converted back into a Redis
type, the result is the same as the initial value.

In other words there is a one-to-one conversion between Lua and Redis types.
The following table shows you all the conversions rules:

Redis to Lua conversion table.

	Redis integer reply -> Lua number

	Redis bulk reply -> Lua string

	Redis multi bulk reply -> Lua table (may have other Redis data types nested)

	Redis status reply -> Lua table with a single ok field containing the status

	Redis error reply -> Lua table with a single err field containing the error

	Redis Nil bulk reply and Nil multi bulk reply -> Lua false boolean type

Lua to Redis conversion table.

	Lua number -> Redis integer reply (the number is converted into an integer)

	Lua string -> Redis bulk reply

	Lua table (array) -> Redis multi bulk reply (truncated to the first nil inside the Lua array if any)

	Lua table with a single ok field -> Redis status reply

	Lua table with a single err field -> Redis error reply

	Lua boolean false -> Redis Nil bulk reply.

There is an additional Lua-to-Redis conversion rule that has no corresponding
Redis to Lua conversion rule:

	Lua boolean true -> Redis integer reply with value of 1.

Also there are two important rules to note:

	Lua has a single numerical type, Lua numbers. There is no distinction between integers and floats. So we always convert Lua numbers into integer replies, removing the decimal part of the number if any. If you want to return a float from Lua you should return it as a string, exactly like Redis itself does (see for instance the ZSCORE command).

	There is no simple way to have nils inside Lua arrays [http://www.lua.org/pil/19.1.html], this is a result of Lua table semantics, so when Redis converts a Lua array into Redis protocol the conversion is stopped if a nil is encountered.

Here are a few conversion examples:

> eval "return 10" 0
(integer) 10

> eval "return {1,2,{3,'Hello World!'}}" 0
1) (integer) 1
2) (integer) 2
3) 1) (integer) 3
 2) "Hello World!"

> eval "return redis.call('get','foo')" 0
"bar"

The last example shows how it is possible to receive the exact return value of
redis.call() or redis.pcall() from Lua that would be returned if the command
was called directly.

In the following example we can see how floats and arrays with nils are handled:

> eval "return {1,2,3.3333,'foo',nil,'bar'}" 0
1) (integer) 1
2) (integer) 2
3) (integer) 3
4) "foo"

As you can see 3.333 is converted into 3, and the bar string is never returned as there is a nil before.

Helper functions to return Redis types

There are two helper functions to return Redis types from Lua.

	redis.error_reply(error_string) returns an error reply. This function simply returns a single field table with the err field set to the specified string for you.

	redis.status_reply(status_string) returns a status reply. This function simply returns a single field table with the ok field set to the specified string for you.

There is no difference between using the helper functions or directly returning the table with the specified format, so the following two forms are equivalent:

return {err="My Error"}
return redis.error_reply("My Error")

Atomicity of scripts

Redis uses the same Lua interpreter to run all the commands.
Also Redis guarantees that a script is executed in an atomic way: no other
script or Redis command will be executed while a script is being executed.
This semantic is similar to the one of MULTI / EXEC.
From the point of view of all the other clients the effects of a script are
either still not visible or already completed.

However this also means that executing slow scripts is not a good idea.
It is not hard to create fast scripts, as the script overhead is very low, but
if you are going to use slow scripts you should be aware that while the script
is running no other client can execute commands.

Error handling

As already stated, calls to redis.call() resulting in a Redis command error
will stop the execution of the script and return an error, in a way that
makes it obvious that the error was generated by a script:

> del foo
(integer) 1
> lpush foo a
(integer) 1
> eval "return redis.call('get','foo')" 0
(error) ERR Error running script (call to f_6b1bf486c81ceb7edf3c093f4c48582e38c0e791): ERR Operation against a key holding the wrong kind of value

Using redis.pcall() no error is raised, but an error object is
returned in the format specified above (as a Lua table with an err field).
The script can pass the exact error to the user by returning the error object
returned by redis.pcall().

Bandwidth and EVALSHA

The EVAL command forces you to send the script body again and again.
Redis does not need to recompile the script every time as it uses an internal
caching mechanism, however paying the cost of the additional bandwidth may not
be optimal in many contexts.

On the other hand, defining commands using a special command or via redis.conf
would be a problem for a few reasons:

	Different instances may have different implementations of a command.

	Deployment is hard if we have to make sure all instances contain a
given command, especially in a distributed environment.

	Reading application code, the complete semantics might not be clear since the
application calls commands defined server side.

In order to avoid these problems while avoiding the bandwidth penalty, Redis
implements the EVALSHA command.

EVALSHA works exactly like EVAL, but instead of having a script as the first
argument it has the SHA1 digest of a script.
The behavior is the following:

	If the server still remembers a script with a matching SHA1 digest, the
script is executed.

	If the server does not remember a script with this SHA1 digest, a special
error is returned telling the client to use EVAL instead.

Example:

> set foo bar
OK
> eval "return redis.call('get','foo')" 0
"bar"
> evalsha 6b1bf486c81ceb7edf3c093f4c48582e38c0e791 0
"bar"
> evalsha ff 0
(error) `NOSCRIPT` No matching script. Please use `EVAL`.

The client library implementation can always optimistically send EVALSHA under
the hood even when the client actually calls EVAL, in the hope the script was
already seen by the server.
If the NOSCRIPT error is returned EVAL will be used instead.

Passing keys and arguments as additional EVAL arguments is also very useful in
this context as the script string remains constant and can be efficiently cached
by Redis.

Script cache semantics

Executed scripts are guaranteed to be in the script cache of a given execution
of a Redis instance forever. This means that if an EVAL is performed against a Redis instance all the subsequent EVALSHA calls will succeed.

The reason why scripts can be cached for long time is that it is unlikely for
a well written application to have enough different scripts to cause memory
problems. Every script is conceptually like the implementation of a new command, and even a large application will likely have just a few hundred of them.
Even if the application is modified many times and scripts will change, the
memory used is negligible.

The only way to flush the script cache is by explicitly calling the SCRIPT FLUSH command, which will completely flush the scripts cache removing all the
scripts executed so far.

This is usually needed only when the instance is going to be instantiated for
another customer or application in a cloud environment.

Also, as already mentioned, restarting a Redis instance flushes the
script cache, which is not persistent. However from the point of view of the
client there are only two ways to make sure a Redis instance was not restarted
between two different commands.

	The connection we have with the server is persistent and was never closed so far.

	The client explicitly checks the runid field in the INFO command in order to make sure the server was not restarted and is still the same process.

Practically speaking, for the client it is much better to simply assume that in the context of a given connection, cached scripts are guaranteed to be there
unless an administrator explicitly called the SCRIPT FLUSH command.

The fact that the user can count on Redis not removing scripts is semantically
useful in the context of pipelining.

For instance an application with a persistent connection to Redis can be sure
that if a script was sent once it is still in memory, so EVALSHA can be used
against those scripts in a pipeline without the chance of an error being
generated due to an unknown script (we’ll see this problem in detail later).

A common pattern is to call SCRIPT LOAD to load all the scripts that will
appear in a pipeline, then use EVALSHA directly inside the pipeline without
any need to check for errors resulting from the script hash not being
recognized.

The SCRIPT command

Redis offers a SCRIPT command that can be used in order to control the scripting
subsystem.
SCRIPT currently accepts three different commands:

	SCRIPT FLUSH

This command is the only way to force Redis to flush the scripts cache.
It is most useful in a cloud environment where the same instance can be
reassigned to a different user.
It is also useful for testing client libraries’ implementations of the
scripting feature.

	SCRIPT EXISTS sha1 sha2 ... shaN

Given a list of SHA1 digests as arguments this command returns an array of
1 or 0, where 1 means the specific SHA1 is recognized as a script already
present in the scripting cache, while 0 means that a script with this SHA1
was never seen before (or at least never seen after the latest SCRIPT FLUSH
command).

	SCRIPT LOAD script

This command registers the specified script in the Redis script cache.
The command is useful in all the contexts where we want to make sure that
EVALSHA will not fail (for instance during a pipeline or MULTI/EXEC
operation), without the need to actually execute the script.

	SCRIPT KILL

This command is the only way to interrupt a long-running script that reaches
the configured maximum execution time for scripts.
The SCRIPT KILL command can only be used with scripts that did not modify
the dataset during their execution (since stopping a read-only script does
not violate the scripting engine’s guaranteed atomicity).
See the next sections for more information about long running scripts.

Scripts as pure functions

A very important part of scripting is writing scripts that are pure functions.
Scripts executed in a Redis instance are, by default, replicated on slaves
and into the AOF file by sending the script itself – not the resulting
commands.

The reason is that sending a script to another Redis instance is often much
faster than sending the multiple commands the script generates, so if the
client is sending many scripts to the master, converting the scripts into
individual commands for the slave / AOF would result in too much bandwidth
for the replication link or the Append Only File (and also too much CPU since
dispatching a command received via network is a lot more work for Redis compared
to dispatching a command invoked by Lua scripts).

Normally replicating scripts instead of the effects of the scripts makes sense,
however not in all the cases. So starting with Redis 3.2,
the scripting engine is able to, alternatively, replicate the sequence of write
commands resulting from the script execution, instead of replication the
script itself. See the next section for more information.
In this section we’ll assume that scripts are replicated by sending the whole
script. Let’s call this replication mode whole scripts replication.

The main drawback with the whole scripts replication approach is that scripts are required to have the following property:

	The script must always evaluates the same Redis write commands with the
same arguments given the same input data set.
Operations performed by the script cannot depend on any hidden (non-explicit)
information or state that may change as script execution proceeds or between
different executions of the script, nor can it depend on any external input
from I/O devices.

Things like using the system time, calling Redis random commands like
RANDOMKEY, or using Lua random number generator, could result into scripts
that will not always evaluate in the same way.

In order to enforce this behavior in scripts Redis does the following:

	Lua does not export commands to access the system time or other external
state.

	Redis will block the script with an error if a script calls a Redis
command able to alter the data set after a Redis random command like
RANDOMKEY, SRANDMEMBER, TIME.
This means that if a script is read-only and does not modify the data set it
is free to call those commands.
Note that a random command does not necessarily mean a command that uses
random numbers: any non-deterministic command is considered a random command
(the best example in this regard is the TIME command).

	Redis commands that may return elements in random order, like SMEMBERS
(because Redis Sets are unordered) have a different behavior when called
from Lua, and undergo a silent lexicographical sorting filter before
returning data to Lua scripts.
So redis.call("smembers",KEYS[1]) will always return the Set elements
in the same order, while the same command invoked from normal clients may
return different results even if the key contains exactly the same elements.

	Lua pseudo random number generation functions math.random and
math.randomseed are modified in order to always have the same seed every
time a new script is executed.
This means that calling math.random will always generate the same sequence
of numbers every time a script is executed if math.randomseed is not used.

However the user is still able to write commands with random behavior using the
following simple trick.
Imagine I want to write a Redis script that will populate a list with N random
integers.

I can start with this small Ruby program:

require 'rubygems'
require 'redis'

r = Redis.new

RandomPushScript = <<EOF
 local i = tonumber(ARGV[1])
 local res
 while (i > 0) do
 res = redis.call('lpush',KEYS[1],math.random())
 i = i-1
 end
 return res
EOF

r.del(:mylist)
puts r.eval(RandomPushScript,[:mylist],[10,rand(2**32)])

Every time this script executed the resulting list will have exactly the
following elements:

> lrange mylist 0 -1
 1) "0.74509509873814"
 2) "0.87390407681181"
 3) "0.36876626981831"
 4) "0.6921941534114"
 5) "0.7857992587545"
 6) "0.57730350670279"
 7) "0.87046522734243"
 8) "0.09637165539729"
 9) "0.74990198051087"
10) "0.17082803611217"

In order to make it a pure function, but still be sure that every invocation
of the script will result in different random elements, we can simply add an
additional argument to the script that will be used in order to seed the Lua
pseudo-random number generator.
The new script is as follows:

RandomPushScript = <<EOF
 local i = tonumber(ARGV[1])
 local res
 math.randomseed(tonumber(ARGV[2]))
 while (i > 0) do
 res = redis.call('lpush',KEYS[1],math.random())
 i = i-1
 end
 return res
EOF

r.del(:mylist)
puts r.eval(RandomPushScript,1,:mylist,10,rand(2**32))

What we are doing here is sending the seed of the PRNG as one of the arguments.
This way the script output will be the same given the same arguments, but we are
changing one of the arguments in every invocation, generating the random seed
client-side.
The seed will be propagated as one of the arguments both in the replication
link and in the Append Only File, guaranteeing that the same changes will be
generated when the AOF is reloaded or when the slave processes the script.

Note: an important part of this behavior is that the PRNG that Redis implements
as math.random and math.randomseed is guaranteed to have the same output
regardless of the architecture of the system running Redis.
32-bit, 64-bit, big-endian and little-endian systems will all produce the same
output.

Replicating commands instead of scripts

Starting with Redis 3.2, it is possible to select an
alternative replication method. Instead of replication whole scripts, we
can just replicate single write commands generated by the script.
We call this script effects replication.

In this replication mode, while Lua scripts are executed, Redis collects
all the commands executed by the Lua scripting engine that actually modify
the dataset. When the script execution finishes, the sequence of commands
that the script generated are wrapped into a MULTI / EXEC transaction and
are sent to slaves and AOF.

This is useful in several ways depending on the use case:

	When the script is slow to compute, but the effects can be summarized by
a few write commands, it is a shame to re-compute the script on the slaves
or when reloading the AOF. In this case to replicate just the effect of the
script is much better.

	When script effects replication is enabled, the controls about non
deterministic functions are disabled. You can, for example, use the TIME
or SRANDMEMBER commands inside your scripts freely at any place.

	The Lua PRNG in this mode is seeded randomly at every call.

In order to enable script effects replication, you need to issue the
following Lua command before any write operated by the script:

redis.replicate_commands()

The function returns true if the script effects replication was enabled,
otherwise if the function was called after the script already called
some write command, it returns false, and normal whole script replication
is used.

Selective replication of commands

When script effects replication is selected (see the previous section), it
is possible to have more control in the way commands are replicated to slaves
and AOF. This is a very advanced feature since a misuse can do damage by
breaking the contract that the master, slaves, and AOF, all must contain the
same logical content.

However this is a useful feature since, sometimes, we need to execute certain
commands only in the master in order to create, for example, intermediate
values.

Think at a Lua script where we perform an intersection between two sets.
Pick five random elements, and create a new set with this five random
elements. Finally we delete the temporary key representing the intersection
between the two original sets. What we want to replicate is only the creation
of the new set with the five elements. It’s not useful to also replicate the
commands creating the temporary key.

For this reason, Redis 3.2 introduces a new command that only works when
script effects replication is enabled, and is able to control the scripting
replication engine. The command is called redis.set_repl() and fails raising
an error if called when script effects replication is disabled.

The command can be called with four different arguments:

redis.set_repl(redis.REPL_ALL) -- Replicate to AOF and slaves.
redis.set_repl(redis.REPL_AOF) -- Replicate only to AOF.
redis.set_repl(redis.REPL_SLAVE) -- Replicate only to slaves.
redis.set_repl(redis.REPL_NONE) -- Don't replicate at all.

By default the scripting engine is always set to REPL_ALL. By calling
this function the user can switch on/off AOF and or slaves replication, and
turn them back later at her/his wish.

A simple example follows:

redis.replicate_commands() -- Enable effects replication.
redis.call('set','A','1')
redis.set_repl(redis.REPL_NONE)
redis.call('set','B','2')
redis.set_repl(redis.REPL_ALL)
redis.call('set','C','3')

After running the above script, the result is that only keys A and C
will be created on slaves and AOF.

Global variables protection

Redis scripts are not allowed to create global variables, in order to avoid
leaking data into the Lua state.
If a script needs to maintain state between calls (a pretty uncommon need) it
should use Redis keys instead.

When global variable access is attempted the script is terminated and EVAL
returns with an error:

redis 127.0.0.1:6379> eval 'a=10' 0
(error) ERR Error running script (call to f_933044db579a2f8fd45d8065f04a8d0249383e57): user_script:1: Script attempted to create global variable 'a'

Accessing a non existing global variable generates a similar error.

Using Lua debugging functionality or other approaches like altering the meta
table used to implement global protections in order to circumvent globals
protection is not hard.
However it is difficult to do it accidentally.
If the user messes with the Lua global state, the consistency of AOF and
replication is not guaranteed: don’t do it.

Note for Lua newbies: in order to avoid using global variables in your scripts
simply declare every variable you are going to use using the local keyword.

Using SELECT inside scripts

It is possible to call SELECT inside Lua scripts like with normal clients,
However one subtle aspect of the behavior changes between Redis 2.8.11 and
Redis 2.8.12. Before the 2.8.12 release the database selected by the Lua
script was transferred to the calling script as current database.
Starting from Redis 2.8.12 the database selected by the Lua script only
affects the execution of the script itself, but does not modify the database
selected by the client calling the script.

The semantic change between patch level releases was needed since the old
behavior was inherently incompatible with the Redis replication layer and
was the cause of bugs.

Available libraries

The Redis Lua interpreter loads the following Lua libraries:

	base lib.

	table lib.

	string lib.

	math lib.

	struct lib.

	cjson lib.

	cmsgpack lib.

	bitop lib.

	redis.sha1hex function.

	redis.breakpoint and redis.debug function in the context of the Redis Lua debugger.

Every Redis instance is guaranteed to have all the above libraries so you can
be sure that the environment for your Redis scripts is always the same.

struct, CJSON and cmsgpack are external libraries, all the other libraries are standard
Lua libraries.

struct

struct is a library for packing/unpacking structures within Lua.

Valid formats:
> - big endian
< - little endian
![num] - alignment
x - pading
b/B - signed/unsigned byte
h/H - signed/unsigned short
l/L - signed/unsigned long
T - size_t
i/In - signed/unsigned integer with size `n' (default is size of int)
cn - sequence of `n' chars (from/to a string); when packing, n==0 means
 the whole string; when unpacking, n==0 means use the previous
 read number as the string length
s - zero-terminated string
f - float
d - double
' ' - ignored

Example:

127.0.0.1:6379> eval 'return struct.pack("HH", 1, 2)' 0
"\x01\x00\x02\x00"
127.0.0.1:6379> eval 'return {struct.unpack("HH", ARGV[1])}' 0 "\x01\x00\x02\x00"
1) (integer) 1
2) (integer) 2
3) (integer) 5
127.0.0.1:6379> eval 'return struct.size("HH")' 0
(integer) 4

CJSON

The CJSON library provides extremely fast JSON manipulation within Lua.

Example:

redis 127.0.0.1:6379> eval 'return cjson.encode({["foo"]= "bar"})' 0
"{\"foo\":\"bar\"}"
redis 127.0.0.1:6379> eval 'return cjson.decode(ARGV[1])["foo"]' 0 "{\"foo\":\"bar\"}"
"bar"

cmsgpack

The cmsgpack library provides simple and fast MessagePack manipulation within Lua.

Example:

127.0.0.1:6379> eval 'return cmsgpack.pack({"foo", "bar", "baz"})' 0
"\x93\xa3foo\xa3bar\xa3baz"
127.0.0.1:6379> eval 'return cmsgpack.unpack(ARGV[1])' 0 "\x93\xa3foo\xa3bar\xa3baz"
1) "foo"
2) "bar"
3) "baz"

bitop

The Lua Bit Operations Module adds bitwise operations on numbers.
It is available for scripting in Redis since version 2.8.18.

Example:

127.0.0.1:6379> eval 'return bit.tobit(1)' 0
(integer) 1
127.0.0.1:6379> eval 'return bit.bor(1,2,4,8,16,32,64,128)' 0
(integer) 255
127.0.0.1:6379> eval 'return bit.tohex(422342)' 0
"000671c6"

It supports several other functions:
bit.tobit, bit.tohex, bit.bnot, bit.band, bit.bor, bit.bxor,
bit.lshift, bit.rshift, bit.arshift, bit.rol, bit.ror, bit.bswap.
All available functions are documented in the Lua BitOp documentation [http://bitop.luajit.org/api.html]

redis.sha1hex

Perform the SHA1 of the input string.

Example:

127.0.0.1:6379> eval 'return redis.sha1hex(ARGV[1])' 0 "foo"
"0beec7b5ea3f0fdbc95d0dd47f3c5bc275da8a33"

Emitting Redis logs from scripts

It is possible to write to the Redis log file from Lua scripts using the
redis.log function.

redis.log(loglevel,message)

loglevel is one of:

	redis.LOG_DEBUG

	redis.LOG_VERBOSE

	redis.LOG_NOTICE

	redis.LOG_WARNING

They correspond directly to the normal Redis log levels.
Only logs emitted by scripting using a log level that is equal or greater than
the currently configured Redis instance log level will be emitted.

The message argument is simply a string.
Example:

redis.log(redis.LOG_WARNING,"Something is wrong with this script.")

Will generate the following:

[32343] 22 Mar 15:21:39 # Something is wrong with this script.

Sandbox and maximum execution time

Scripts should never try to access the external system, like the file system or
any other system call.
A script should only operate on Redis data and passed arguments.

Scripts are also subject to a maximum execution time (five seconds by default).
This default timeout is huge since a script should usually run in under a
millisecond.
The limit is mostly to handle accidental infinite loops created during
development.

It is possible to modify the maximum time a script can be executed with
millisecond precision, either via redis.conf or using the CONFIG GET / CONFIG
SET command.
The configuration parameter affecting max execution time is called
lua-time-limit.

When a script reaches the timeout it is not automatically terminated by Redis
since this violates the contract Redis has with the scripting engine to ensure
that scripts are atomic.
Interrupting a script means potentially leaving the dataset with half-written
data.
For this reasons when a script executes for more than the specified time the
following happens:

	Redis logs that a script is running too long.

	It starts accepting commands again from other clients, but will reply with a
BUSY error to all the clients sending normal commands.
The only allowed commands in this status are SCRIPT KILL and SHUTDOWN NOSAVE.

	It is possible to terminate a script that executes only read-only commands
using the SCRIPT KILL command.
This does not violate the scripting semantic as no data was yet written to the
dataset by the script.

	If the script already called write commands the only allowed command becomes
SHUTDOWN NOSAVE that stops the server without saving the current data set on
disk (basically the server is aborted).

EVALSHA in the context of pipelining

Care should be taken when executing EVALSHA in the context of a pipelined
request, since even in a pipeline the order of execution of commands must be
guaranteed.
If EVALSHA will return a NOSCRIPT error the command can not be reissued
later otherwise the order of execution is violated.

The client library implementation should take one of the following approaches:

	Always use plain EVAL when in the context of a pipeline.

	Accumulate all the commands to send into the pipeline, then check for EVAL
commands and use the SCRIPT EXISTS command to check if all the scripts are
already defined.
If not, add SCRIPT LOAD commands on top of the pipeline as required, and
use EVALSHA for all the EVAL calls.

Debugging Lua scripts

Starting with Redis 3.2, Redis has support for native
Lua debugging. The Redis Lua debugger is a remote debugger consisting of
a server, which is Redis itself, and a client, which is by default redis-cli.

The Lua debugger is described in the Lua scripts debugging section of the Redis documentation.

 <no title>

 Add the specified members to the set stored at key.
Specified members that are already a member of this set are ignored.
If key does not exist, a new set is created before adding the specified
members.

An error is returned when the value stored at key is not a set.

@return

@integer-reply: the number of elements that were added to the set, not including
all the elements already present into the set.

@history

	>= 2.4: Accepts multiple member arguments.
Redis versions before 2.4 are only able to add a single member per call.

@examples

SADD myset "Hello"
SADD myset "World"
SADD myset "World"
SMEMBERS myset

 Example

 In Redis Cluster, each node keeps track of which master is serving
a particular hash slot.

The DELSLOTS command asks a particular Redis Cluster node to
forget which master is serving the hash slots specified as arguments.

In the context of a node that has received a DELSLOTS command and
has consequently removed the associations for the passed hash slots,
we say those hash slots are unbound. Note that the existence of
unbound hash slots occurs naturally when a node has not been
configured to handle them (something that can be done with the
ADDSLOTS command) and if it has not received any information about
who owns those hash slots (something that it can learn from heartbeat
or update messages).

If a node with unbound hash slots receives a heartbeat packet from
another node that claims to be the owner of some of those hash
slots, the association is established instantly. Moreover, if a
heartbeat or update message is received with a configuration epoch
greater than the node’s own, the association is re-established.

However, note that:

	The command only works if all the specified slots are already
associated with some node.

	The command fails if the same slot is specified multiple times.

	As a side effect of the command execution, the node may go into
down state because not all hash slots are covered.

Example

The following command removes the association for slots 5000 and
5001 from the node receiving the command:

> CLUSTER DELSLOTS 5000 5001
OK

Usage in Redis Cluster

This command only works in cluster mode and may be useful for
debugging and in order to manually orchestrate a cluster configuration
when a new cluster is created. It is currently not used by redis-trib,
and mainly exists for API completeness.

@return

@simple-string-reply: OK if the command was successful. Otherwise
an error is returned.

 <no title>

 Sets field in the hash stored at key to value, only if field does not
yet exist.
If key does not exist, a new key holding a hash is created.
If field already exists, this operation has no effect.

@return

@integer-reply, specifically:

	1 if field is a new field in the hash and value was set.

	0 if field already exists in the hash and no operation was performed.

@examples

HSETNX myhash field "Hello"
HSETNX myhash field "World"
HGET myhash field

 <no title>

 Move member from the set at source to the set at destination.
This operation is atomic.
In every given moment the element will appear to be a member of source or
destination for other clients.

If the source set does not exist or does not contain the specified element, no
operation is performed and 0 is returned.
Otherwise, the element is removed from the source set and added to the
destination set.
When the specified element already exists in the destination set, it is only
removed from the source set.

An error is returned if source or destination does not hold a set value.

@return

@integer-reply, specifically:

	1 if the element is moved.

	0 if the element is not a member of source and no operation was performed.

@examples

SADD myset "one"
SADD myset "two"
SADD myotherset "three"
SMOVE myset myotherset "two"
SMEMBERS myset
SMEMBERS myotherset

 <no title>

 Renames key to newkey.
It returns an error when key does not exist.
If newkey already exists it is overwritten, when this happens RENAME executes an implicit DEL operation, so if the deleted key contains a very big value it may cause high latency even if RENAME itself is usually a constant-time operation.

Note: Before Redis 3.2.0, an error is returned if source and destination names are the same.

@return

@simple-string-reply

@examples

SET mykey "Hello"
RENAME mykey myotherkey
GET myotherkey

 <no title>

 Marks the given keys to be watched for conditional execution of a
transaction.

@return

@simple-string-reply: always OK.

 <no title>

 Increments the score of member in the sorted set stored at key by
increment.
If member does not exist in the sorted set, it is added with increment as
its score (as if its previous score was 0.0).
If key does not exist, a new sorted set with the specified member as its
sole member is created.

An error is returned when key exists but does not hold a sorted set.

The score value should be the string representation of a numeric value, and
accepts double precision floating point numbers.
It is possible to provide a negative value to decrement the score.

@return

@bulk-string-reply: the new score of member (a double precision floating point
number), represented as string.

@examples

ZADD myzset 1 "one"
ZADD myzset 2 "two"
ZINCRBY myzset 2 "one"
ZRANGE myzset 0 -1 WITHSCORES

 <no title>

 Sets or clears the bit at offset in the string value stored at key.

The bit is either set or cleared depending on value, which can be either 0 or

	

When key does not exist, a new string value is created.
The string is grown to make sure it can hold a bit at offset.
The offset argument is required to be greater than or equal to 0, and smaller
than 2^32 (this limits bitmaps to 512MB).
When the string at key is grown, added bits are set to 0.

Warning: When setting the last possible bit (offset equal to 2^32 -1) and
the string value stored at key does not yet hold a string value, or holds a
small string value, Redis needs to allocate all intermediate memory which can
block the server for some time.
On a 2010 MacBook Pro, setting bit number 2^32 -1 (512MB allocation) takes
~300ms, setting bit number 2^30 -1 (128MB allocation) takes ~80ms, setting bit
number 2^28 -1 (32MB allocation) takes ~30ms and setting bit number 2^26 -1 (8MB
allocation) takes ~8ms.
Note that once this first allocation is done, subsequent calls to SETBIT for
the same key will not have the allocation overhead.

@return

@integer-reply: the original bit value stored at offset.

@examples

SETBIT mykey 7 1
SETBIT mykey 7 0
GET mykey

 <no title>

 The OBJECT command allows to inspect the internals of Redis Objects associated
with keys.
It is useful for debugging or to understand if your keys are using the specially
encoded data types to save space.
Your application may also use the information reported by the OBJECT command
to implement application level key eviction policies when using Redis as a
Cache.

The OBJECT command supports multiple sub commands:

	OBJECT REFCOUNT <key> returns the number of references of the value
associated with the specified key.
This command is mainly useful for debugging.

	OBJECT ENCODING <key> returns the kind of internal representation used in
order to store the value associated with a key.

	OBJECT IDLETIME <key> returns the number of seconds since the object stored
at the specified key is idle (not requested by read or write operations).
While the value is returned in seconds the actual resolution of this timer is
10 seconds, but may vary in future implementations.

Objects can be encoded in different ways:

	Strings can be encoded as raw (normal string encoding) or int (strings
representing integers in a 64 bit signed interval are encoded in this way in
order to save space).

	Lists can be encoded as ziplist or linkedlist.
The ziplist is the special representation that is used to save space for
small lists.

	Sets can be encoded as intset or hashtable.
The intset is a special encoding used for small sets composed solely of
integers.

	Hashes can be encoded as ziplist or hashtable.
The ziplist is a special encoding used for small hashes.

	Sorted Sets can be encoded as ziplist or skiplist format.
As for the List type small sorted sets can be specially encoded using
ziplist, while the skiplist encoding is the one that works with sorted
sets of any size.

All the specially encoded types are automatically converted to the general type
once you perform an operation that makes it impossible for Redis to retain the
space saving encoding.

@return

Different return values are used for different subcommands.

	Subcommands refcount and idletime return integers.

	Subcommand encoding returns a bulk reply.

If the object you try to inspect is missing, a null bulk reply is returned.

@examples

redis> lpush mylist "Hello World"
(integer) 4
redis> object refcount mylist
(integer) 1
redis> object encoding mylist
"ziplist"
redis> object idletime mylist
(integer) 10

In the following example you can see how the encoding changes once Redis is no
longer able to use the space saving encoding.

redis> set foo 1000
OK
redis> object encoding foo
"int"
redis> append foo bar
(integer) 7
redis> get foo
"1000bar"
redis> object encoding foo
"raw"

 <no title>

 This command is very similar to DEL: it removes the specified keys.
Just like DEL a key is ignored if it does not exist. However the command
performs the actual memory reclaiming in a different thread, so it is not
blocking, while DEL is. This is where the command name comes from: the
command just unlinks the keys from the keyspace. The actual removal
will happen later asynchronously.

@return

@integer-reply: The number of keys that were unlinked.

@examples

SET key1 "Hello"
SET key2 "World"
UNLINK key1 key2 key3

 <no title>

 DEBUG SEGFAULT performs an invalid memory access that crashes Redis.
It is used to simulate bugs during the development.

@return

@simple-string-reply

 Specification of the behavior when count is passed

 When called with just the key argument, return a random element from the set value stored at key.

Starting from Redis version 2.6, when called with the additional count argument, return an array of count distinct elements if count is positive. If called with a negative count the behavior changes and the command is allowed to return the same element multiple times. In this case the number of returned elements is the absolute value of the specified count.

When called with just the key argument, the operation is similar to SPOP, however while SPOP also removes the randomly selected element from the set, SRANDMEMBER will just return a random element without altering the original set in any way.

@return

@bulk-string-reply: without the additional count argument the command returns a Bulk Reply with the randomly selected element, or nil when key does not exist.
@array-reply: when the additional count argument is passed the command returns an array of elements, or an empty array when key does not exist.

@examples

SADD myset one two three
SRANDMEMBER myset
SRANDMEMBER myset 2
SRANDMEMBER myset -5

Specification of the behavior when count is passed

When a count argument is passed and is positive, the elements are returned
as if every selected element is removed from the set (like the extraction
of numbers in the game of Bingo). However elements are not removed from
the Set. So basically:

	No repeated elements are returned.

	If count is bigger than the number of elements inside the Set, the command will only return the whole set without additional elements.

When instead the count is negative, the behavior changes and the extraction happens as if you put the extracted element inside the bag again after every extraction, so repeated elements are possible, and the number of elements requested is always returned as we can repeat the same elements again and again, with the exception of an empty Set (non existing key) that will always produce an empty array as a result.

Distribution of returned elements

The distribution of the returned elements is far from perfect when the number of elements in the set is small, this is due to the fact that we used an approximated random element function that does not really guarantees good distribution.

The algorithm used, that is implemented inside dict.c, samples the hash table buckets to find a non-empty one. Once a non empty bucket is found, since we use chaining in our hash table implementation, the number of elements inside the bucket is checked and a random element is selected.

This means that if you have two non-empty buckets in the entire hash table, and one has three elements while one has just one, the element that is alone in its bucket will be returned with much higher probability.

 <no title>

 Return the positions (longitude,latitude) of all the specified members of the geospatial index represented by the sorted set at key.

Given a sorted set representing a geospatial index, populated using the GEOADD command, it is often useful to obtain back the coordinates of specified members. When the geospatial index is populated via GEOADD the coordinates are converted into a 52 bit geohash, so the coordinates returned may not be exactly the ones used in order to add the elements, but small errors may be introduced.

The command can accept a variable number of arguments so it always returns an array of positions even when a single element is specified.

@return

@array-reply, specifically:

The command returns an array where each element is a two elements array
representing longitude and latitude (x,y) of each member name passed as
argument to the command.

Non existing elements are reported as NULL elements of the array.

@examples

GEOADD Sicily 13.361389 38.115556 "Palermo" 15.087269 37.502669 "Catania"
GEOPOS Sicily Palermo Catania NonExisting

 <no title>

 Flush the Lua scripts cache.

Please refer to the EVAL documentation for detailed information about Redis
Lua scripting.

@return

@simple-string-reply

 <no title>

 PSETEX works exactly like SETEX with the sole difference that the expire
time is specified in milliseconds instead of seconds.

@examples

PSETEX mykey 1000 "Hello"
PTTL mykey
GET mykey

 <no title>

 Returns the string representation of the type of the value stored at key.
The different types that can be returned are: string, list, set, zset
and hash.

@return

@simple-string-reply: type of key, or none when key does not exist.

@examples

SET key1 "value"
LPUSH key2 "value"
SADD key3 "value"
TYPE key1
TYPE key2
TYPE key3

 <no title>

 Removes all elements in the sorted set stored at key with a score between
min and max (inclusive).

Since version 2.1.6, min and max can be exclusive, following the syntax of
ZRANGEBYSCORE.

@return

@integer-reply: the number of elements removed.

@examples

ZADD myzset 1 "one"
ZADD myzset 2 "two"
ZADD myzset 3 "three"
ZREMRANGEBYSCORE myzset -inf (2
ZRANGE myzset 0 -1 WITHSCORES

 PUBSUB CHANNELS [pattern]

 The PUBSUB command is an introspection command that allows to inspect the
state of the Pub/Sub subsystem. It is composed of subcommands that are
documented separately. The general form is:

PUBSUB <subcommand> ... args ...

PUBSUB CHANNELS [pattern]

Lists the currently active channels. An active channel is a Pub/Sub channel
with one or more subscribers (not including clients subscribed to patterns).

If no pattern is specified, all the channels are listed, otherwise if pattern
is specified only channels matching the specified glob-style pattern are
listed.

@return

@array-reply: a list of active channels, optionally matching the specified pattern.

PUBSUB NUMSUB [channel-1 ... channel-N]

Returns the number of subscribers (not counting clients subscribed to patterns)
for the specified channels.

@return

@array-reply: a list of channels and number of subscribers for every channel. The format is channel, count, channel, count, ..., so the list is flat.
The order in which the channels are listed is the same as the order of the
channels specified in the command call.

Note that it is valid to call this command without channels. In this case it
will just return an empty list.

PUBSUB NUMPAT

Returns the number of subscriptions to patterns (that are performed using the
PSUBSCRIBE command). Note that this is not just the count of clients subscribed
to patterns but the total number of patterns all the clients are subscribed to.

@return

@integer-reply: the number of patterns all the clients are subscribed to.

 CLUSTER SETSLOT <slot> MIGRATING <destination-node-id>

 CLUSTER SETSLOT is responsible of changing the state of a hash slot in the receiving node in different ways. It can, depending on the subcommand used:

	MIGRATING subcommand: Set a hash slot in migrating state.

	IMPORTING subcommand: Set a hash slot in importing state.

	STABLE subcommand: Clear any importing / migrating state from hash slot.

	NODE subcommand: Bind the hash slot to a different node.

The command with its set of subcommands is useful in order to start and end cluster live resharding operations, which are accomplished by setting a hash slot in migrating state in the source node, and importing state in the destination node.

Each subcommand is documented below. At the end you’ll find a description of
how live resharding is performed using this command and other related commands.

CLUSTER SETSLOT <slot> MIGRATING <destination-node-id>

This subcommand sets a slot to migrating state. In order to set a slot
in this state, the node receiving the command must be the hash slot owner,
otherwise an error is returned.

When a slot is set in migrating state, the node changes behavior in the
following way:

	If a command is received about an existing key, the command is processed as usually.

	If a command is received about a key that does not exists, an ASK redirection is emitted by the node, asking the client to retry only that specific query into destination-node. In this case the client should not update its hash slot to node mapping.

	If the command contains multiple keys, in case none exist, the behavior is the same as point 2, if all exist, it is the same as point 1, however if only a partial number of keys exist, the command emits a TRYAGAIN error in order for the keys interested to finish being migrated to the target node, so that the multi keys command can be executed.

CLUSTER SETSLOT <slot> IMPORTING <source-node-id>

This subcommand is the reverse of MIGRATING, and prepares the destination
node to import keys from the specified source node. The command only works if
the node is not already owner of the specified hash slot.

When a slot is set in importing state, the node changes behavior in the following way:

	Commands about this hash slot are refused and a MOVED redirection is generated as usually, but in the case the command follows an ASKING command, in this case the command is executed.

In this way when a node in migrating state generates an ASK redirection, the client contacts the target node, sends ASKING, and immediately after sends the command. This way commands about non-existing keys in the old node or keys already migrated to the target node are executed in the target node, so that:

	New keys are always created in the target node. During a hash slot migration we’ll have to move only old keys, not new ones.

	Commands about keys already migrated are correctly processed in the context of the node which is the target of the migration, the new hash slot owner, in order to guarantee consistency.

	Without ASKING the behavior is the same as usually. This guarantees that clients with a broken hash slots mapping will not write for error in the target node, creating a new version of a key that has yet to be migrated.

CLUSTER SETSLOT <slot> STABLE

This subcommand just clears migrating / importing state from the slot. It is
mainly used to fix a cluster stuck in a wrong state by redis-trib fix.
Normally the two states are cleared automatically at the end of the migration
using the SETSLOT ... NODE ... subcommand as explained in the next section.

CLUSTER SETSLOT <slot> NODE <node-id>

The NODE subcommand is the one with the most complex semantics. It
associates the hash slot with the specified node, however the command works
only in specific situations and has different side effects depending on the
slot state. The following is the set of pre-conditions and side effects of the
command:

	If the current hash slot owner is the node receiving the command, but for effect of the command the slot would be assigned to a different node, the command will return an error if there are still keys for that hash slot in the node receiving the command.

	If the slot is in migrating state, the state gets cleared when the slot is assigned to another node.

	If the slot was in importing state in the node receiving the command, and the command assigns the slot to this node (which happens in the target node at the end of the resharding of a hash slot from one node to another), the command has the following side effects: A) the importing state is cleared. B) If the node config epoch is not already the greatest of the cluster, it generates a new one and assigns the new config epoch to itself. This way its new hash slot ownership will win over any past configuration created by previous failovers or slot migrations.

It is important to note that step 3 is the only time when a Redis Cluster node will create a new config epoch without agreement from other nodes. This only happens when a manual configuration is operated. However it is impossible that this creates a non-transient setup where two nodes have the same config epoch, since Redis Cluster uses a config epoch collision resolution algorithm.

@return

@simple-string-reply: All the subcommands return OK if the command was successful. Otherwise an error is returned.

Redis Cluster live resharding explained

The CLUSTER SETSLOT command is an important piece used by Redis Cluster in order to migrate all the keys contained in one hash slot from one node to another. This is how the migration is orchestrated, with the help of other commands as well. We’ll call the node that has the current ownership of the hash slot the source node, and the node where we want to migrate the destination node.

	Set the destination node slot to importing state using CLUSTER SETSLOT <slot> IMPORTING <source-node-id>.

	Set the source node slot to migrating state using CLUSTER SETSLOT <slot> MIGRATING <destination-node-id>.

	Get keys from the source node with CLUSTER GETKEYSINSLOT command and move them into the destination node using the MIGRATE command.

	Use CLUSTER SETSLOT <slot> NODE <destination-node-id> in the source or destination.

Notes:

	The order of step 1 and 2 is important. We want the destination node to be ready to accept ASK redirections when the source node is configured to redirect.

	Step 4 does not technically need to use SETSLOT in the nodes not involved in the resharding, since the configuration will eventually propagate itself, however it is a good idea to do so in order to stop nodes from pointing to the wrong node for the hash slot moved as soon as possible, resulting in less redirections to find the right node.

 <no title>

 Select the Redis logical database having the specified zero-based numeric index.
New connections always use the database 0.

Redis different selectable databases are a form of namespacing: all the databases are anyway persisted together in the same RDB / AOF file. However different databases can have keys having the same name, and there are commands available like FLUSHDB, SWAPDB or RANDOMKEY that work on specific databases.

In practical terms, Redis databases should mainly used in order to, if needed, separate different keys belonging to the same application, and not in order to use a single Redis instance for multiple unrelated applications.

When using Redis Cluster, the SELECT command cannot be used, since Redis Cluster only supports database zero. In the case of Redis Cluster, having multiple databases would be useless, and a worthless source of complexity, because anyway commands operating atomically on a single database would not be possible with the Redis Cluster design and goals.

Since the currently selected database is a property of the connection, clients should track the currently selected database and re-select it on reconnection. While there is no command in order to query the selected database in the current connection, the CLIENT LIST output shows, for each client, the currently selected database.

@return

@simple-string-reply

 <no title>

 Adds all the element arguments to the HyperLogLog data structure stored at the variable name specified as first argument.

As a side effect of this command the HyperLogLog internals may be updated to reflect a different estimation of the number of unique items added so far (the cardinality of the set).

If the approximated cardinality estimated by the HyperLogLog changed after executing the command, PFADD returns 1, otherwise 0 is returned. The command automatically creates an empty HyperLogLog structure (that is, a Redis String of a specified length and with a given encoding) if the specified key does not exist.

To call the command without elements but just the variable name is valid, this will result into no operation performed if the variable already exists, or just the creation of the data structure if the key does not exist (in the latter case 1 is returned).

For an introduction to HyperLogLog data structure check the PFCOUNT command page.

@return

@integer-reply, specifically:

	1 if at least 1 HyperLogLog internal register was altered. 0 otherwise.

@examples

PFADD hll a b c d e f g
PFCOUNT hll

 <no title>

 Returns all the members of the set value stored at key.

This has the same effect as running SINTER with one argument key.

@return

@array-reply: all elements of the set.

@examples

SADD myset "Hello"
SADD myset "World"
SMEMBERS myset

 <no title>

 @examples

@return

 <no title>

 Reset a Redis Cluster node, in a more or less drastic way depending on the
reset type, that can be hard or soft. Note that this command
does not work for masters if they hold one or more keys, in that case
to completely reset a master node keys must be removed first, e.g. by using FLUSHALL first,
and then CLUSTER RESET.

Effects on the node:

	All the other nodes in the cluster are forgotten.

	All the assigned / open slots are reset, so the slots-to-nodes mapping is totally cleared.

	If the node is a slave it is turned into an (empty) master. Its dataset is flushed, so at the end the node will be an empty master.

	Hard reset only: a new Node ID is generated.

	Hard reset only: currentEpoch and configEpoch vars are set to 0.

	The new configuration is persisted on disk in the node cluster configuration file.

This command is mainly useful to re-provision a Redis Cluster node
in order to be used in the context of a new, different cluster. The command
is also extensively used by the Redis Cluster testing framework in order to
reset the state of the cluster every time a new test unit is executed.

If no reset type is specified, the default is soft.

@return

@simple-string-reply: OK if the command was successful. Otherwise an error is returned.

 Pattern: Reliable queue

 BRPOPLPUSH is the blocking variant of RPOPLPUSH.
When source contains elements, this command behaves exactly like RPOPLPUSH.
When used inside a MULTI/EXEC block, this command behaves exactly like RPOPLPUSH.
When source is empty, Redis will block the connection until another client
pushes to it or until timeout is reached.
A timeout of zero can be used to block indefinitely.

See RPOPLPUSH for more information.

@return

@bulk-string-reply: the element being popped from source and pushed to destination.
If timeout is reached, a @nil-reply is returned.

Pattern: Reliable queue

Please see the pattern description in the RPOPLPUSH documentation.

Pattern: Circular list

Please see the pattern description in the RPOPLPUSH documentation.

 <no title>

 Return the UNIX TIME of the last DB save executed with success.
A client may check if a BGSAVE command succeeded reading the LASTSAVE value,
then issuing a BGSAVE command and checking at regular intervals every N
seconds if LASTSAVE changed.

@return

@integer-reply: an UNIX time stamp.

 <no title>

 Flushes all the previously watched keys for a transaction.

If you call EXEC or DISCARD, there’s no need to manually call UNWATCH.

@return

@simple-string-reply: always OK.

 FLUSHALL ASYNC (Redis 4.0.0 or greater)

 Delete all the keys of all the existing databases, not just the currently
selected one.
This command never fails.

The time-complexity for this operation is O(N), N being the number of
keys in all existing databases.

FLUSHALL ASYNC (Redis 4.0.0 or greater)

Redis is now able to delete keys in the background in a different thread without blocking the server.
An ASYNC option was added to FLUSHALL and FLUSHDB in order to let the entire dataset or a single database to be freed asynchronously.

@return

@simple-string-reply

 <no title>

 This command is equal to SUNION, but instead of returning the resulting set,
it is stored in des