

Welcome to redicts’s documentation!

A utility package to save arbitrary nested Python dicts and objects in Redis.

[image: _images/logo.svg]This package can be used to save arbitrary values in a hierarchy. Each element
of this hierarchy is referenced by a dotted path like this: a.b.c. When
saving a nested dictionary, it’s nested contents automatically get translated
to such a dotted path by it’s string keys:

`23` can be read by specifying the path "a.b.c":
{
 "a": {
 "b": {
 "c": 23
 }
 }
}

A special feature of this package is concurrent access: It can be safely used
from more than one process. The locking implementation is also separated and
can be used on it’s one if desirable. Also, the implementation is clever enough
to not require a global lock if changes are done in different parts of the
hierarchy.

You can store every object in redicts that works with json.dumps().

	Installation
	Over PyPI

	Manual installation

	Example Usage
	Basics

	Advanced

	API Reference
	Main Interface

	Locking

	Exceptions

Indices and tables

	Index

	Module Index

	Search Page

Installation

Over PyPI

$ pip install redicts

Manual installation

This requires git to be installed.

$ git clone https://github.com/adnymics/redicts
$ cd redicts
$ pip install -r requirements.txt
$ python setup.py install

If you want to run the tests you can also do:

$ pip install -r test_requirements.txt
$ pytest

It is recommended to do these steps in a virtual environment.

Example Usage

Instead of boring you with an insanely long description of what this library is
capable of, we’ll keep it short and just give you examples. You’ll learn the
concepts along the way. All details also can be found in the
API Reference.

Basics

Getting and setting values

All values in redis are accessed by instances of the
redicts.Proxy. class. They represent a key that points to a value
and can be asked to fetch it with redicts.Proxy.val:

>>> from redicts import Proxy, root
>>> p = Proxy("a.b.c")
>>> p.set("d", 42)
>>> p.get("d").val()
42
set() also returns a proxy for the current value:
>>> p.set("x", {"y": "z"}).val()
{'x': {'y': 'z'}, 'd': 42}
>>> root().val()
{'a': {'b': {'c': {'x': {'y': 'z'}, 'd': 42}}}}
>>> # Not exsting values will yield None.
>>> root().get("who?").val()
None

Also observe that the values really live a hierarchy.

Warning

	Note that value access is not locked by default for performance reasons!

	Take a look at the next example to allow concurrent access.

Concurrent access to values

Every redicts.Proxy can be locked against concurrent access with
it’s redicts.Proxy.acquire and redicts.Proxy.release
methods. This is optional, since locking can eat quite a bit of performance
when done often. Take this example:

from redicts import Proxy
from multiprocessing import Process

Proxy("a.b.c").set("d", 0)

def increment():
 for _ in range(10000):
 with Proxy("a.b.c") as prox:
 prox.get("d").add(1)

p = Process(target=increment)
p.start()
increment()
p.join()

Try this example without the with to see the difference.

Other useful operations

Here are a few operations you can do on a redicts.Proxy:

	redicts.Proxy.iter_children(): Return a redicts.Proxy: for each direct child.

	redicts.Proxy.delete(): Delete a single subkey.

	redicts.Proxy.exists(): Check if a key has a value assigned.

	redicts.Proxy.clear(): Clear everthing below this prox.

Here they are in action:

>>> from redicts import Pool, root
>>> r = root()
>>> r.set('x', 1)
>>> r.set('y', {"z": 2})
>>> r.val()
{'y': {'z': 2}, 'x': 1}
>>> list(r)
>>> ["y", "x"]
>>> {p.key(): p.val() for p in root().iter_children()}
{'y.z': 2, 'x': 1}
>>> r.get("x").exists()
True
>>> r.delete("x")
>>> r.get("x").exists()
False
>>> r.clear()
>>> r.get("y").exists()
False

Different redis server

Everything related to connection details can be configured via the redicts.Pool
singleton. It’s responsible for keeping a pool of open connections and acts as
central instance for configurations. Upon first use of anything network related
redicts.Pool is instantiated with default connection details. If you like to use
different connection details you can do this:

from redicts import Pool, root

Pool().reload(cfg=dict(
 host="localhost",
 port=6379,
 database=0,
 password="1234",
 max_connections=100,
 timeout_secs=50,
))

Using fakredis

Using a real instance of redis can be inconvinient for testing.
In this case you can setup your tests with fakeredis:

from redicts import Pool, root

Make sure to use `fakeredis`
Pool().reload(fake_redis=True)

clear everything that was written by this library:
root().clear()

Advanced

Not all of the following features might be required during »daily« usage.

Using more than one database

If you’d like to use more than one database you can setup a mapping in the beginning:

from redicts import Pool, Proxy

Assuming default setup:
Pool().reload(cfg={
 "default": 0,
 "names": {
 "persons": 1,
 "things": 2,
 }
})

Later on you can use the human readable name for your database:
All three values are stored in different redis db with different values.
Proxy("x").set("y", 1)
Proxy("x", db_name="persons").set("y", 2)
Proxy("x", db_name="things").set("y", 3)

Time to live

You can tell redis to expire keys after some time. This is also possible with redicts:

import time
from redicts import Pool, root

Expire this key in 10 seconds:
root().set("x", "still here!", expire=10)
time.sleep(1)
root().get("x").time_to_live() # => 9
root().get("x").val() # => "still here!"
time.sleep(10)
root().get("x").time_to_live() # => -2
root().get("x").val() # => None

You can also alternatively set the expire time later:
root().set("x", "still here!")
root().get("x").expire(10)

API Reference

This documentation is generated from the docstrings found in the source.

Main Interface

	
class redicts.Proxy(path, lock_acquire_timeout=10, lock_expire_timeout=30, db_name=None)

	Create a new Proxy.

	Parameters

	
	str_or_iterable (path) – The path where this value is stored.
Can be a string (a dotted path) or an iterable of strings.

	redis.Redis (rconn) – Optional; the redis connection to use.

	Returns Proxy

	The ready to use Proxy.

	
acquire()

	Acquire a lock on this value and all of it’s children.

	
add(count)

	Convinience function to add a count to this value.
If the value did not exist yet, it will be set to count.
Will raise an ValueError if the key exists and does not support
the add operator.

	Parameters

	count – (int) The count to increment.

	Returns

	The new total count.

	
clear()

	Clear this level of the value tree including all children

	
delete(key)

	Delete an existing key.

	Parameters

	key – (str) A dotted path.

	
exists()

	Return true if this value actually exists

	
expire(seconds)

	Expire (i.e. delete) the key after a certain number of seconds.
After this time .val() will return None and .exists() will return
False.

	Parameters

	seconds – (int) seconds after this value will no longer
accessible.

	
get(key)

	Return a lazy value for this key.

	Parameters

	key – (str) A dotted path or simple

	Returns

	A child Proxy.

	
is_locked()

	Check if the node or any of its parents are locked

	
iter_children()

	Iterate over all children including and below this node.

	Returns

	A generator object, yielding ValueProxies.

	
key()

	Return the key of this value in redis

	
release()

	Release a previously acquired lock.

Note that this does not clear the locks of the children,
if you locked those explicitly you have to release them.

	
set(key, value, expire=None)

	Set a new value to this key.

	Parameters

	
	key – (str) A dotted path.

	value – (object) Any value that can be passed to json.dumps.

	expire – (int) Time in seconds when to expire this key or None.

	
time_to_live()

	Return the amount of seconds, this value will be accessible.

	Returns int

	the amount to live in seconds.

	
val(default=None)

	Get the actual value of this proxy

	
redicts.root(*args, **kwargs)

	Return the root Proxy

	
redicts.section(name, *args, **kwargs)

	Convience method for getting a Proxy for a first-level section.
Try to to use a unique name, otherwise you might overwrite foreign keys.
A good idiom is to use something like this to get a descriptive, but
unique name for your module:

section(__name__)

	Parameters

	str (name) – The section name. May not contain dots.

	Returns

	A Proxy for the section.

	
class redicts.Pool(cfg=None)

	Pool of redis connections

	
get_connection(db_name=None)

	Get a new (or recycled) connection.
Note: This function may block if there are too many connections open.

	Return redis.StrictRedis

	A new redis connection.

	
reload(cfg=None, fake_redis=False)

	Reload the pool, disconnecting previous connections
and creating a new pool.

	Parameters

	(dict) (cfg) – See documentation for __init__.

Locking

The locking implementation is available as separte class and can be used as
multiprocess lock.

	
class redicts.Lock(redis_conn, key, expire_timeout=30, acquire_timeout=10)

	Implement a distributed, thread-safe lock for redis.

The basics are described here: https://redis.io/topics/transactions
This lock is more flexible than other locking implementations, since
it supports tree-based locking by specifying a dotted path as key.

If you lock an element higher up in the hierarchy, all elements below it
will be automatically locked too. It is still possible to lock elements
below though, but those will only add their lock to the lock above.

This implementation uses optimistic locking, i.e. retry if some of the
to be locked values changed.

	
acquire()

	Acquire the lock and wait if needed

	
is_locked()

	Return True if this lock was already acquired by someone

	
release()

	Release the lock again

Exceptions

	
exception redicts.InternalError

	Raised when the implementation got confused.
This should only happen when somebody else tampers with the locking
keys in redis.

	
exception redicts.LockTimeout

	Raised when lock creation fails within the timeout

Index

 A
 | C
 | D
 | E
 | G
 | I
 | K
 | L
 | P
 | R
 | S
 | T
 | V

A

 	
 	acquire() (redicts.Lock method)

 	(redicts.Proxy method)

 	
 	add() (redicts.Proxy method)

C

 	
 	clear() (redicts.Proxy method)

D

 	
 	delete() (redicts.Proxy method)

E

 	
 	exists() (redicts.Proxy method)

 	
 	expire() (redicts.Proxy method)

G

 	
 	get() (redicts.Proxy method)

 	
 	get_connection() (redicts.Pool method)

I

 	
 	InternalError

 	is_locked() (redicts.Lock method)

 	(redicts.Proxy method)

 	
 	iter_children() (redicts.Proxy method)

K

 	
 	key() (redicts.Proxy method)

L

 	
 	Lock (class in redicts)

 	
 	LockTimeout

P

 	
 	Pool (class in redicts)

 	
 	Proxy (class in redicts)

R

 	
 	release() (redicts.Lock method)

 	(redicts.Proxy method)

 	
 	reload() (redicts.Pool method)

 	root() (in module redicts)

S

 	
 	section() (in module redicts)

 	
 	set() (redicts.Proxy method)

T

 	
 	time_to_live() (redicts.Proxy method)

V

 	
 	val() (redicts.Proxy method)

 nav.xhtml

 Table of Contents

 		
 Welcome to redicts’s documentation!

 		
 Installation

 		
 Over PyPI

 		
 Manual installation

 		
 Example Usage

 		
 Basics

 		
 Getting and setting values

 		
 Concurrent access to values

 		
 Other useful operations

 		
 Different redis server

 		
 Using fakredis

 		
 Advanced

 		
 Using more than one database

 		
 Time to live

 		
 API Reference

 		
 Main Interface

 		
 Locking

 		
 Exceptions

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

